Publ. RIMS. Kyoto Univ. 21 (1985), 403–409

Theory of Connexes. II

By

Yōhei YAMASAKI*

Introduction

Here we have a display of the famous game named Hex, where two players White and Black occupy the vertices in the rhombus and who obtains a path between his initially posed pieces wins. It is remarkable that this game always gives a single winner. Regarding the board as the upper half of the sphere, we notice the following statement:

Figure 1

Suppose there be a simplicial decomposition of the sphere invariant by the antipodal mapping. If two players occupy whole the dipoles of vertices, then there exists strictly one player who obtains in his territory a connected set of vertices invariant under the antipodal action.

Our purpose in this paper is to prove the above statement in more general situation. We have already proved in [3] the converse of the relevant statement, namely, a graph with an action of \mathbb{Z}_2 is essentially spherical besides certain exceptions if it admits the unique winner property.

Communicated by S. Hitotumatu, April 17, 1984.

^{*} College of Nursing and Bio-medical Technology, Osaka University, Toyonaka, Osaka 560, Japan.

§1. Preliminary

We fix a set Π of two players \top and \bot and the involution $^{\circ}$ of Π namely, $\uparrow = \bot$ and $\hat{\bot} = \top$. For any finite set X, we call a mapping \mathfrak{d} from X to Π as a division on X. We consider a compact real 2-dimensional manifold M with an action of a finite group G. We consider also a G-invariant simplicial decomposition $\mathbf{K} = (K^0, K^1, K^2)$ of M.

For i=0 or 1, we say two *i*-simplices to be adjacent if they are distinct and are contained in the boundary of an i+1-simplex. The connectivity of a subset of K^i is considered with respect to this adjacency. We assume that the action of G is faithful on K^0 and that any complete subset of K^0 is contained in the boundary of 2-simplex.

For a subset A of K^0 , we denote by [A] the subset of M defined as follows:

 $[A] = \{x \in M \mid x \text{ is a point of a simplex whose vertices are all in } A\}.$

Let X be a subset of M. Then we denote by \overline{X} the closure of X and define a subgroup S(X) of G as

$$S(X) = \{g \in G \mid X \text{ is } g \text{-invariant}\}.$$

Lemma 1. Let A be a subset of K^0 . Then S([A]) coincides with S(A). Let B be a connected component of A. Then [B] is a connected component of [A].

The proof of this lemma is easy and is omitted.

Let \mathfrak{d} be a G-invariant division on K^0 . Then we denote by \mathscr{B} the set of connected components of the open set $M - \bigcup_{\pi \in \Pi} [\mathfrak{d}^{-1}(\pi)]$. We fix the division \mathfrak{d} in the rest of this section. We assume that \mathfrak{d} is not constant.

Lemma 2. Let π be a player, C a connected component of $\mathfrak{d}^{-1}(\pi)$ and \mathscr{B}_{C} a subset of \mathscr{B} defined as follows:

$$\mathscr{B}_{\mathcal{C}} = \{\mathscr{C} \in \mathscr{B} | \overline{\mathscr{C}} \cap \mathfrak{d}^{-1}(\pi) \subset C\}.$$

Assume there be given an element \mathcal{L}_0 of \mathcal{B}_C . Then

 $S(C) = \{g \in G \mid g \mathscr{E}_0 \in \mathscr{B}_C\}.$

Especially, S(C) contains $S(\mathscr{E}_0)$.

This lemma follows immediately the above lemma and the facts that ϑ is G-invariant and that C is a connected component.

• .

Lemma 3. An element of \mathcal{B} is orientable.

Proof. Let \checkmark be an element of \mathscr{B} . Then for any 1-simplex in \checkmark , there exist exactly two 1-simplices adjacent to it. Touring along the 1-simplices of \checkmark , we obtain an orientation with the 0-simplices occupied by \top on the right side.

Figure 2

Lemma 4. Let ℓ be an element of \mathscr{B} and $S_0(\ell)$ the set consisting of the elements of $S(\ell)$ which preserve an orientation of ℓ . Then $S_0(\ell)$ is a cyclic subgroup of $S(\ell)$ of index 1 or 2. If this index is 2, then any element of $S(\ell) - S_0(\ell)$ stabilizes exactly two elements of $K^1 \cup K^2$ contained in ℓ .

Proof. Let Γ be the graph whose vertices are the 1-simplices contained in \checkmark and the adjacency be defined before. Then there is a natural homomorphism from $S(\checkmark)$ to the automorphism group of Γ , which is injective because G is faithful on K^0 . Now our lemma is clear.

Lemma 5. Let ℓ be an element of \mathscr{B} . Then for each player π , $\mathfrak{d}^{-1}(\pi) \cap \overline{\ell}$ is connected and is invariant under $S(\ell)$.

This lemma is easily verified and its proof is omitted.

Let π be a player and C a connected component of $\mathfrak{d}^{-1}(\pi)$. We define a family \mathcal{N}_C of connected components of $\mathfrak{d}^{-1}(\hat{\pi})$ as follows:

 $\mathcal{N}_{C} = \{E \mid E \text{ is a connected components of } \mathfrak{d}^{-1}(\hat{\pi}) \text{ such that } C \cup E \text{ is connected} \}.$ For $E \in \mathcal{N}_{C}$ we define a subset of G as follows:

$$\begin{pmatrix} C\\ E \end{pmatrix} = \{g \in G | g E \in \mathcal{N}_C\}.$$

We define also a new division $\mathfrak{d}_{\mathcal{C}}$ on K^0 as follows:

$$\mathfrak{d}_C^{-1}(\pi) = \mathfrak{d}^{-1}(\pi) - GC.$$

Lemma 6. Let the assumptions be as above. Assume moreover that \mathfrak{d} is not constant. Then the stabilizer of the connected component C' of $\mathfrak{d}_{c}^{-1}(\hat{\pi})$ containing C is given as follows:

Yõhei Yamasaki

$$S(C') = \left\langle \left(\begin{array}{c} C \\ E \end{array}\right) \middle| E \in \mathcal{N}_C \right\rangle.$$

If $|\mathcal{N}_{C}| = 1$, moreover, then S(C') = S(E), where E is the element of \mathcal{N}_{C} .

Proof. It is evident that S(C') contains the relevant group. Let γ be an element of S(C'). Then there exists a series $\gamma_1 C$, $g_1 E_1$, $\gamma_2 C$, $g_2 E_2$,..., $\gamma_{n-1} C$, $g_{n-1}E_{n-1}$, $\gamma_n C$ for a positive integer n where $E_i \in \mathcal{N}_C$, $g_i \in G$, $\gamma_i \in G$, $\gamma_1^{-1} \gamma_n = \gamma$ and the union of each neighbouring two is connected. If n=1, then $\gamma_1^{-1} \gamma_n \in S(C)$. If $n \ge 2$, then for $1 \le i \le n-1$

$$\gamma_i^{-1}g_i$$
 and $\gamma_{i+1}^{-1}g_i \in \begin{pmatrix} C \\ E_i \end{pmatrix}$.

Therefore $\gamma = \gamma_1^{-1} \gamma_n$ is an element of the relevant group. The latter part is evident.

Figure 3

§2. Linear Groups on the Unit Sphere (1)

From now on we assume M as the unit sphere in \mathbb{R}^3 . For a positive integer n we define 3×3 -matrices $g_{-}(n)$ and g_{+} as follows:

$$g_{-}(n) = \begin{pmatrix} \cos \frac{\pi}{n} & \sin \frac{\pi}{n} & 0 \\ -\sin \frac{\pi}{n} & \cos \frac{\pi}{n} & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$g_{+} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

406

In this section we assume G as one of the linear groups $G_{-}(n) = \langle g_{-}(n) \rangle$ and $G_{+}(n) = \langle g_{-}(n)^2, g_{+} \rangle$ with the usual action on M. In case $G = G_{+}(n)$, we assume $n \ge 2$. We fix a G-invariant simplicial decomposition $\mathbb{K} = (K^0, K^1, K^2)$ of M.

Theorem. Let the assumptions be as above. Let \mathfrak{d} be a G-invariant division on K^0 . We regard a player π as a winner if $\mathfrak{d}^{-1}(\pi)$ has a G-invariant connected component. Then there exists a unique winner.

Proof. This statement is obvious if \mathfrak{d} is a constant mapping. Suppose it to be false and let \mathfrak{d} be a counter example minimal with respect to the number $|\mathscr{B}|$. We choose a pair $(\mathscr{I}, [C])$ of an element \mathscr{I} of \mathscr{B} and a connected component [C] of $M - \mathscr{I}$ such that [C] is minimal. Then, by the Jordan curve theorem, \mathscr{I} is the only element of \mathscr{B} whose closure intersects with C. Lemma 2 tells us $S(C) = S(\mathscr{I})$. If $G = G_+(n)$ for $n \ge 2$, then

$$S(C) = S(\mathscr{O}) = S_0(\mathscr{O}),$$

and if $G = G_{-}(n)$, then by Lemma 4

$$S(C) = S(\mathscr{A}) \not\ni g_{-}(n).$$

In any way, we have $S(C) \neq G$.

Now we consider a division \mathfrak{d}_C with respect to the player $\pi = \mathfrak{d}(C)$. Then $\mathfrak{d}_C^{-1}(\pi) \subset \mathfrak{d}^{-1}(\pi)$. We have seen above that there is no *G*-invariant connected component of $\mathfrak{d}^{-1}(\pi)$ besides the ones of $\mathfrak{d}_C^{-1}(\pi)$. On the other hand, by Lemma 6, every *G*-invariant connected component $\mathfrak{d}_C^{-1}(\hat{\pi})$ remains a connected component even if it is restricted to $\mathfrak{d}^{-1}(\hat{\pi})$. This contradicts the minimality of \mathfrak{d} .

Figure 4

§3. Linear Groups on the Unit Sphere (2)

In the last section we have studied the action of $G_{-}(n)$ and $G_{+}(n)$ on the unit sphere. We know that the finite linear group of degree 3 is conjugate in SL (3, **R**) to a subgroup of $\langle g_{-}(n), g_{+} \rangle$ for a positive integer *n* or of polyhedral groups. Then it is still possible that the simplicial decomposition in the last section admits an action of larger groups. We give here an example.

Let G be the group generated by the reflections on xy-, yz- and zx-planes, which contains $G_{-}(1)$. Let $\mathbf{K} = (K^0, K^1, K^2)$ be a G-invariant simplicial decomposition of M. Let \mathfrak{d} be a G-invariant division on K^0 . Then one of $\mathfrak{d}^{-1}(\top)$ and $\mathfrak{d}^{-1}(\bot)$ has a $G_{-}(1)$ invariant connected component by our theorem, which is G-invariant. This causes the following proposition.

Proposition. Let $\mathbf{K} = (K^0, K^1, K^2)$ be a simplicial decomposition of a triangle and \mathfrak{d} a division on K^0 . Then exactly one of $\mathfrak{d}^{-1}(\top)$ and $\mathfrak{d}^{-1}(\bot)$ contains a connected components which intersects each edge of the initial triangle.

If the initial triangle is on a plane and any 1-simplex is parallel to an edge of the previons triangle, then this example is equivalent to what Komiya [1] calls trinitrix, which was announced to the author by his friend Mr. Tsujino.

Bibliography

- [1] Komiya, K., A connection game on a triangle and a numbering puzzle, *Surikagaku Puzzle* V, 1980, in Japanese.
- [2] Yamasaki, Y., Theory of division games, Publ. RIMS Kyoto Univ., 14 (1978), 337-358.
- [3] ——, Theory of connexes. I, Publ. RIMS Kyoto Univ., 17 (1981), 777-812.