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Theory of Connexes0

By

Yohei YAMASAKI*

Introduction

Here we have a display of the famous game named Hex, where two players

White and Black occupy the vertices in the rhombus and who obtains a path

between his initially posed pieces wins. It is remarkable that this game always

gives a single winner. Regarding the board as the upper half of the sphere, we

notice the following statement:

Figure 1

Suppose there be a simplicial decomposition of the sphere invariant by

the antipodal mapping. If two players occupy whole the dipoles of

vertices, then there exists strictly one player who obtains in his territory

a connected set of vertices invariant under the antipodal action.

Our purpose in this paper is to prove the above statement in more general

situation. We have already proved in [3] the converse of the relevant statement,

namely, a graph with an action of Z2 is essentially spherical besides certain

exceptions if it admits the unique winner property.
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§ 1. Preliminary

We fix a set IT of two players j and J_ and the involution " of II namely,
^

7 = _L and -L = T • For any finite set X, we call a mapping b from X to 17 as a

division on X. We consider a compact real 2-dimensional manifold M with an

action of a finite group G. We consider also a G-invariant simplicial decom-

position K = (X°, K1, K2) of M.

For i = 0 or 1, we say two i-simplices to be adjacent if they are distinct and

are contained in the boundary of an i + 1-simplex. The connectivity of a subset

of Kl is considered with respect to this adjacency. We assume that the action

of G is faithful on K° and that any complete subset of K° is contained in the

boundary of 2-simplex.

For a subset A of K°, we denote by [_A\ the subset of M defined as follows :

\A\ = {x e M | x is a point of a simplex whose vertices are all in A} .

Let X be a subset of M. Then we denote by X the closure of X and define a

subgroup S(X) of G as

S(X) = {g e G \ X is g-invariant} .

Lemma 1. Let A be a subset of K°. Then S([AJ) coincides with S(A).

Let B be a connected component of A. Then [B] is a connected component of

[A\.
The proof of this lemma is easy and is omitted.

Let b be a G-invariant division on K°. Then we denote by 8$ the set of

connected components of the open set M— \J [b~1(7r)]. We fix the division b
Tte/I

in the rest of this section. We assume that b is not constant.

Lemma 2. Let n be a player, C a connected component of b"1(7c) and 38 c

a subset of 8$ defined as follows:

@c = [Se@\S n b-1^) cC} .

Assume there be given an element /0 of @tc. Then

Especially, S(C) contains S(/0).

This lemma follows immediately the above lemma and_ the facts that b is

G-invariant and that C is a connected component.

Lemma 39 An element of @ is orientable.
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Proof. Let / be an element of ^. Then for any 1-simplex in /, there

exist exactly two 1-simplices adjacent to it. Touring along the 1-simplices of /,

we obtain an orientation with the 0-simplices occupied by 7 on the right side.

Figure 2

Lemma 48 Let / be an element of & and S0(/) the set consisting of the

elements 0/S(/) which preserve an orientation of /. Then S0(/) is a cyclic

subgroup of 5(/) of index 1 or 2. If this index is 2, then any element of S(/)

— S0(X) stabilizes exactly two elements of K1 U K2 contained in /.

Proof. Let jT be the graph whose vertices are the 1-simplices contained in

/ and the adjacency be defined before. Then there is a natural homomorphism

from 5(/) to the automorphism group of F, which is injective because G is

faithful on K°. Now our lemma is clear.

Lemma 5. Let / be an element of 38. Then for each player n, b'^Ti) n /

is connected and is invariant under S(/).

This lemma is easily verified and its proof is omitted.

Let n be a player and C a connected component of b"1^). We define a

family j^c of connected components of b-1(^) as follows:

Jfc = {E\E is a connected components of b"1^) such that C U E is connected}.

For E G Jfc we define a subset of G as follows:

C

E

We define also a new division bc on K° as follows:

Lemma 6, Let the assumptions be as above. Assume moreover that b

is not constant. Then the stabilizer of the connected component C' ofbc~
l(fi)

containing C is given as follows:
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c
E

l, moreover, then S(C/) = S(£), where E is the element of

Proof. It is evident that S(C') contains the relevant group. Let y be an

element of S(C'). Then there exists a series yjC, g±E^ y2C, g2E2,...,yn^vC,

#„_!£„_!, ynC for a positive integer n whereE te ̂ Tc, ^eG, y,-eG, yi"1yn = y and

the union of each neighbouring two is connected. If n = l, then

If 72^2, then for l:g/^n — 1

y\~^Q' and y - + i ~ ^ ^ - E (

Therefore y = yi"1y,I is an element of the relevant group. The latter part is

evident.

Figure 3

§ 2. Linear Groups on the Unit Sphere (1)

From, now on we assume M as the unit sphere in J?3. For a positive integer

n we define 3 x 3-matrices g~(n) and g+ as follows:
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In this section we assume G as one of the linear groups G_(¥) = <0_(«)> and

G+(n) = <0_(/i)2, g + y with the usual action on M. In case G = G+(ri), we assume
n^2. We fix a G-invariant simplicial decomposition K = (K°, K1, K2) of M.

Theorem. Let the assumptions be as above. Let b be a G-invariant divi-

sion on K°. We regard a player n as a winner if b"1^) has a G-invariant

connected component. Then there exists a unique winner.

Proof. This statement is obvious if b is a constant mapping. Suppose it

to be false and let b be a counter example minimal with respect to the number

|̂ |. We choose a pair (/, [C]) of an element / of 38 and a connected compo-

nent [C] of M — / such that [C] is minimal. Then, by the Jordan curve theorem,

/ is the only element of 3$ whose closure intersects with C. Lemma 2 tells us

If G = G+0) for n^2, then

and if G = G_(n), then by Lemma 4

In any way, we have

Now we consider a division bc with respect to the player 7r = b(C). Then

bc~
1(7r)c:b~1(7r). We have seen above that there is no G-invariant connected

component of b"1^) besides the ones ofbc~
l(n). On the other hand, by Lemma

6, every G-invariant connected component iv1^) remains a connected compo-

nent even if it is restricted to b~1(n). This contradicts the minimality of b.

Figure 4
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§3, Linear Groups on the Unit Sphere (2)

In the last section we have studied the action of G_(n) and G+(n) on the

unit sphere. We know that the finite linear group of degree 3 is conjugate in

SL(3, R) to a subgroup of <#_(«), # + > for a positive integer n or of polyhedral

groups. Then it is still possible that the simplicial decomposition in the last

section admits an action of larger groups. We give here an example.

Let G be the group generated by the reflections on xy-9 yz~ and zx-planes,

which contains C_(l). Let K = (K°, K1, K2) be a G-invariant simplicial

decomposition of M. Let b be a G-invariant division on K°. Then one of

b~1(j) and b"^-!) has a G_(l) invariant connected component by our theorem,
which is G-invariant. This causes the following proposition.

Proposition. Let K = (K°, K1, K2) be a simplicial decomposition of a

triangle and b a division on K°. Then exactly one of b"1(j) and b~1(J_)

contains a connected components which intersects each edge of the initial

triangle.

Figure 5

If the initial triangle is on a plane and any 1-simplex is parallel to an edge of

the previons triangle, then this example is equivalent to what Komiya [1] calls

trinitrix, which was announced to the author by his friend Mr. Tsujino.
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