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Rotationally-QuasiJnvariant on
the Dual of a Hilbert

By

Hiroaki SHIMOMURA*

§ 1. Introduction

Let H be a real Hilbert space equipped with the scalar product < •, • >H

and the norm || • || H. And let Ha be the algebraic dual space of H. We consider

a probability measure \JL defined on the cr-field 23 generated by cylinder sets of

Ha. That is, 95 is the minimal cr-field with which all functions fh (h e If); xeHa

i->x(/0 e R are measurable. Let 0(H) be the group of all orthogonal operators

on H. Then for each UeO(H) its algebraic transpose *U is a measurable

transformation on (Ha, 93). So we define nv as nv(B) = n(1U~l(B)) for all

Be 95.

Definition

(a) JK is said to be rotationally-invariant, if jUi/ = ju holds for all (/e O(H).

(b) ju is said to be rotationally-quasi-invariant, if fjLv~iJL (/% and /j are absolutely

continuous with each other.) holds for all U e 0(H).

It is well-known that rotationally-invariant measures are characterized as

suitable sums of canonical Gaussian measures in terms of the variance parameter.

(See, [2].) On the other hand, up to the present time the study of quasi-invariant

measures is rather neglected. In this paper, we shall consider such measures and

show in Theorem 2 that for any rotationaUy-quasi-invariant measure \JL, there

exists a rotationally-invariant measure which is equivalent with p. First in

§2 we consider probability measures on J?°° to discuss the rotational-quasi-

invariance, and prove a version of the above statement. The proof of the main

theorem will be carried out in §3.
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§2. Rotationally-Quasi-Invariant Measures on jR°°

Let I?00 be the countable direct-product of R and put R$ = {x = ( x l 9 . . . 9 xn,

. . .) e R^IX,! — 0 except finite numbers of n]. Next, let U be a one-to-one onto

linear operator on R*Q which is extended to an orthogonal operator on /2. The

group G of all such U's will play an essential role in our discussions. Let
n

efl = (0,...5 0, 1, 0,...) (n = l,2,...) be the canonical base on J?^. Among sub-

groups of G, we shall take following important groups 0(n)9 0(oo) and OCw)1,

0(n) = {£/eG|l/^ = ̂  for all j>n}9 0(oo) = U,?=1 O(H) and 0(n)-L = {l/eO(oo)|

Uej = ej for l^j^n}. Clearly, we have G=DO(oo)=DO(f7)1=30(« + l)J-. Now

consider a probability measure /z on the usual Borel field 23(2?°°) on R™. Since

for each 17 6 G, its transpose '17 (for the duality of RQ and J?°°) is a measurable

transformation on J?°°, so /% is defined as before. If fJLv^fjL holds for all 17 6 G

(/%=# holds for all l/60(oo)), # is said to be rotationally-G-quasi-invariant

(rotationally-O(oo)-in variant), respectively. We begin with a following fun-

damental lemma.

Lemma 1. Let jj, be rotationally-G-quasi-invariant and put

n= sup
UeO(n)1-

Then we have limen =

Proof. As {ej is monotone decreasing, lim en = e exists at any rate. Assume
n

C I dlLLwr £
that e>0. Then there exists L71eO(l)-L such that \ —£^-(x) — 1 du(x)>—.

) I ajU 2
From the definition of O(l)1, U} belongs to O(n2} for some w2. Without loss of

generality we can assume that w 2 > l =«!• Next replacing l = n{ by «2 (noting

s,,2>e/2), we repeat this procedure, and so on. Then as it is easily seen, a

sequence n 1 < - " < n k < - - - and UkeO(n^L n 0(«fe+1) are defined inductively

such that

(1) -(*)-! <fy(jc) > y for all fc .

Since 0(wk)
1 nO(w f c + 1) is regarded as the orthogonal group on J?M f c +i~' t f c

? it is

compact in the natural topology. Hence the direct-product K = Ylf^i.Q(nk)'L

nO(nk+i) is again a compact group. Naturally, each element W=(Wl9...,
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Wk,...)eK acts on lfg> as W; x^S^i x^.^x^ + Z^i »i(xnjl + 1 ̂  + j +

+ x / J ) . It is obvious that J^eG for all FFeK. Put

where dW is the normalized Haar measure of K. p. is invariant under the

actions of W(WeK), especially fi = (fi)Vk, and £i~Li holds in virtue of G-quasi-

invariance of ju. Now - ~k (x) = - (r [/£ 1x) holds for /Z-a.e.x, because for all

we have Hu,(B)= , (*W(x)= (<U^x)dfl(x). It

follows from (1) that

(2) > A for all fc .

In this step, we take an /eLi such that \ I -§4 (x)-/(x) dfl(x)< -§- and /"
J I u/l ' o

depends on only finite numbers of coordinates, say x1,...,xs. Thus if nk^s,

we have/(x)=/(fC/fc1x). Consequently for fl/^s we have

However it contradicts to (2). Q. E. D.

We note that

Now we shall proceed to the definition of the limiting measure ^ of ILL. Let

£, F be Borel sets of Rm, Rl respectively, and put Pm\ x e R°°t->(xl9..., xm) e Rm.

Applying Lemma 1 ,

exists for all £, F. Because for nr>n>m choose Unjl- E O(n)1- such that

^n,»-«n + 1 = ««' + 1 v- - , t/n.n-Cn + / = gH' + /• Then we have

Hence
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(3) 2\rix\(xl9...9

-u38>^\
5 (Xtl + 1 5 ' ' ' 5 *« + /) ^ F)

u(x) = ew for n'>n>m.

Therefore they form a Cauchy sequence. It is obvious that for l<lr,

Rl'-l\P~l(E)') = ]Lil(F\p-1(EJ). Consequently {^l(-\P-l(EJ)}l forms a consistent

family of measures on {Rl}i by natural projections, and a measure ^ • [JP"1^))

is defined on <B(R") such that ^(P^(F)\P^(E))=^(F\P-l(E)). Especially,

we simply write /ic>( • ) instead of juw( • |/?°°).

Lemma 2. For any m and for any Bore! set EcRm, ^w(-\P^n
l(E)) is

O(ao)-invariant.

Proof. For the proof it is necessary and sufficient to show /iz(' l^
)-in variant for all /. Let UeO(Rl). Then for each n>m we can take

an VneO(n)L fl 0(n + l) such that nUn(x\(xl9..., xm)eE9 (xn+1,..., xn+l) e F)

= [A(x\(xl9..., xm)e£, (xll+1,..., xn + /)e UF)9 for all Borel sets Fc:Rl. Hence by

Lemma 1, ji(x|(xiv, ^m) e E> ( ^ » + i ? - - - 5 ^+0 e L7F) - X^K^iv-., xj e £,

This implies that ^UF\^(E)) = ̂ F\P-l(E)). Q. E. D.

By the above Lemma, iJLw(-\P~^(E)) is represented by a suitable sum of

canonical Gaussian measures gv with mean 0 and variance v on 23(J?°°). (See,

for example [1].) Next let 23" be a minimal (7-field on j?°° with which all the

coordinate functions x,1+1,..., xn+k,... are measurable and put 93^ = ^^^=] 33".

Lemma 3. For any m and for any Borel set EaRm,

n P"1^)) holds for all B e »«,.

Proof. Letting n'—>co in (3), we have

for all n^m. By 0(oo)-invariance of ^£0(• IP^CE)), the above inequality

becomes, \fim((xn+l9...9 xn+J) e FIP-1^)) - fj(x\(xl9...9 xm) e£, (xn+l9...9 xn+l)

eF)|^2~1en for all n^.m. As the right hand does not depend on /, so for all

n^m and for all Be33" we have \p0(B\P^l(E))-ij(P^(E) nB)|^2-1ew. Espe-

cially for any Be^B^ it holds independently on n. So the proof is complete,

letting n-+co. Q. E. D.
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In order to observe the explicit form of ^w(- IP'^E)), we use a family of

conditional probability measures {i*x}xeR°° of \JL with respect to 93 ̂  For
{/j*}X6j?co, it is well-known that

(a) for every x e Raj, /.ix is a probability measure on 23(J?°°),

(b) for a fixed E e 93(J?00), /rY(£) is a 93 aj -measurable function of x e J?°°,

(c) u(E r\B)=( Lix(E)dii(x) for all E e 93(J?°°) and for all B e 93 ̂
JB

Now let Be93a . Then by Lemma 3,

= //(B n P- '(£)) = ( /^(P
JB

By the way, for a fixed E, A£G4) = \ nx(P~n
l(E))dyco(x) is an 0(oo)-invariant

J^L
measure in virtue of (b) and of 0(oo)-invariance of ^ As the form of O(oo)-

invariant measure is completely determined on 93^, (See, [1].) it follows from

the above that AE( • ) = juw( • JP"1^)). Consequently,

Lemma 4. Let {^x}xeR^ be the conditional probability measures of f.i

with respect to 33^. Then we have

X\ for all
B

Here we shall add brief results for ^w. (The proofs are obvious.)

1. M = /^,, if A* is O(oo)-invariant.

2, If /-( is a convex sum of two rotationally-G-quasi-invariant measures ^

and jit2, then /*w is the same sum of ^i and ^.

We shall prove jii^^ in the remainder part of this section. Now consider

an isometric operator S on I2, Se1 =e2,..., Sen = e2n,... • Corresponding to S,

we take UneO(2n) for each n such that U,tel=e2, Une2 = e^.. ., Unen = e2n,

,̂.+ i = « i , ^>«+2 = «3»"- 9 Vnen+k = *2k-i> ••-•> Une2n = e2n-l. Since Utej =
Umej 0=1,..., n) for n^l^m, we have D'-^EOfa)1. It follows

that sup{|K^m(£))-Xft/,(JE))| £6»(lfflD)} = sup{|Ai('t/in
lC/r1(£))-X^I ^e

^(^^J^Z-1^,. Therefore by Lemma 1, lim //('(/„(£)) s/ty(£) exists for all

£6$(J?°°). It is obvious that /^ s<//. Further putting Wao-={Ee'$(R*>)\tUE

= E for V17 e 0(oo)}, /xs = jti holds on 21 ro. In order to observe jus, we put p; A' =

(*!,..., x f f , . . .)6 J?°°^(A'I? x3,..., Xz^!,...) 6 ^°°, g; .x = (x1,..., .xn,...)e J?°V>(x2,

x4,...,x2l l,...)e Jf t t, and T; xe JT^OX*), g(x))E J?mx ^°°. If £, Fare Borel
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sets of *", AisGr WtfO) n 4~W(£))=^s(*l(*i, x3,...9 x2m-JeF9 (x2, x49...9

= H0,(P-m
1(F)\P-\Ey) = P_IW ̂ (p-i(E))d/a*) . It follows that

^p-1(B1)nq-1(B2))=( ^CB2)d/a*) for all £„
jBi

Hence

x 52) =

^(^Mf^rf/ax) = J0, x ju

Consequently, we have

(4) r^(B) = J(^x^)(B)^(x) for all

Here we consider translational-quasi-in variance of /LLS. (For these notions we

refer [1], [3] or [4].)

Lemma 5. If \JL^ is translationally-l2-quasi-invariant (equivalently the

Dirac term of p^ is dropped), then for any he I2 there exists ^eS^ with

Hm(BJ = l such that nx = Vx+hfor allxeBh.

Proof. Since juco([B-/t]0B) = 0 for all BeS^ (See, [1]), the same holds

for \JL by Lemma 3. Especially, putting fih(E) = fi(E-h) for all £eS(Jf?°°),

lih = li holds on »„. It follows that for any Bete^ and for any

= (
JB)B-h JB

As fix(E) and ^x+h(E) are both 93 ̂ -measurable functions, so ^x(E) = ^x+h(E)

holds for ii-&.e.x. Take a countable algebra J5" generating 23(JR°°) and put

Bh = ̂ se& {x\Px(S) = Px+h(^)}- It is clear that l^eS^, l = K5A) = jua>(5A)
and AI* = #*+* holds for all x e 5ft. Q. E. D.

Lemma 6. // ^ is translationally-l2-quasi-invariant, then we have

(Ps)fi — Psfor att h = h1ei + h2e3-{ H/zne2 w_iH—, S?=i h2<oo.

Proof. It is enough to show that Tp,s is translationally-quasi-invariant for

all (h, 0) e I2 x J?00. Using (4) and Lemma 5, it is assured as follows.

5*x# J
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H*(y\(0, y)eB-(h90)-(x,Q))dtim(x) = Ot=* l>s(5-(/i? 0)) = 0
JBh

Q.E.D.

Next we consider the effect of the Dirac term of /*w. The following three

cases are possible.

(a) //({0}) = 1. In this case fi = ̂ co = S09 so it is nothing to prove.

(b) /<{0})=0.

(c) 0<Ju({0})<l. Put n\E)= ^ff)8* forall£e*B(ir).

Then /i1 is rotationally-G-quasi-in variant. And we have

H=A<{0}>5o+X{OW and ^=X{0})<50+M{Om.

Thus for the proof of ^^^w, it is sufficient to consider the case (b). Now let

X{0}) = 0, and put Nn = {x e J?°°|xw = 0} for each n. We wish to show K^i) = 0,

equivalently fj,(Nn) = Q for all n. Suppose that it would be false. Since 0 =

n({Q}) = limfi(Nl n N2 n - n ATJ, fj(Nl)>i4N1 n - n ATK) holds for sufficiently
n

large n. It follows that ^(N^ n N£)>Q for some /c^2, equivalently /*(Wi H JV§)

>0. Take UeeO(2)9 Uee1=cos9el + sin0e2, Uee2= -sin^j+cos 9e2. As

we have 'l/e1^ n N2) = {xe Rco\xl co$6 + x2 sin 0 = 0, -xt sin 9 + x2 cos 9

^0}, so they are mutually disjoint for different 9e [0, TC). Hence we conclude

that 0 = /zC2701(]V1 r\N^)) = fJLU9(Nl r\N$). However it contradicts to f^(Nl n

From fi(Nn) = 0, it follows that ^fl,(N1) = lim /x(JVn) = 0 and therefore
?i

^i) = 0. From these arguments,

Lemma 7. ///* has no Dirac term, then so is JLL(O.

Hereafter assume that ju({0}) = 0. Then we take a probability measure

a on 23(J?°°) which is translationally-J^J-quasi-invariant and or(/2) = l. The

convolution /i*or and p.w are both translationally-J^o'-quasi-in variant, and for any

Since the equivalence classes of translationally-J?(f-quasi-invariant measures
are completely determined on 2?^, (See, [1]) we conclude that ^*er^/xw. Using
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these results and the following last Lemma we prove that jn^^.

Lemma 8. Let ^i and l*2 be rotationally-O(co)-quasi-invariant prob-

ability measures. Then for jLL1<f.i2, it is necessary and sufficient that jut

Proof. The necessity is obvious. For the sufficiency, put u.= ^l ^2 .

Then there exists some Ae^R™) such that ^(A n B) = 0<^u2(J3) = 0 for any

BeSB(R°°). We claim that A can be taken such as AeW^. Since we have

H2(A
C) = Q, so v2(

tUAc) = Q and therefore ^(A n tUAc) = Q. Replacing U by I/"1,

n(AQtUA) = Q holds for all UeO(oo). Now using the indicator function %A

of A and the Haar measure dU of 0(n), we put gn(x)= \ %A(?Ux)dU. Then
J0(n) _

gn is 0(ft)-invariant and #,,(x) = #x(x) holds for /x-a.e.x. Hence putting lim
n

gn(x) = g(x\ g is 0(oo)-in variant and g(x) — ̂ A(x) holds for /j-a.e.x. Finally,

put A = {xeRco\g(x) = l}. Then it is easily checked that AeVl^ and i*(AQA)

= 0. Under the above preparation, let fi1<ft2 hold on $1 .̂ Then we have

Hi(Ac) = Q. And if /^2(£) = 0 for some E e $(1?°°), then we have n(En£) = Q

which implies //^E n 1) = 0. It follows that ^(E)^^(E n ,4) + /*!(£ n lc) = 0.
Q.E.D.

Theorem 1. For a rotationally-G-quasi-invariant measure /^, we have

Proof. By the preceding arguments, it may be assumed that XW) — 0-

First we shall show fi<^to. Let AeW^ and ^0,(A) = Q which is equivalent to

jU*cr(v4) = 0. It implies that ii(A — /i) = 0 for some h = h1el-\ ----- \-hnen-{ — el2.

Take 6n for each n such that

holds for (7eG defined by Ue2n_l=cos6ne2n-1+sm8ne2n, Ue2n = — sin 9ne2n _ !

+ cosflne2n 0 = 1,2,...). Since for any C/ f leO(n)9 we have Wn=U~1UnUe

0(w + l), so f t / - l f(7- 1(>4) = rC/-1 f^-1(^) = r^"1(^) and therefore '[/-^e
^l,,. It follows from jut/(^-/?) = 0 that ^(tU~1(A)-tU-1h) = Q which implies

^sCC/-1U)-f[/-1/i) = 0. By Lemma 6, we have /xsCU-1(-4)) = 0. As j£ =

jiis holds on 21 ,̂ so it holds Xf^~1(^)) = 0, equivalently X^) = 0.

Next we shall show [if!,<ii. We use a representation of ^CT by a probability

measure P on (0, oo)5 /!«,(£)= ( gv(B)dP(v) for all £eS(JT). Put r(x) =
J(0,°o)

_ i

Hm-^^^=1 xj. Then r(x) is a ^B^ -measurable function and gv(r~1(v)) = l by

the law of large numbers. It follows that ^co(x|r(x)6(a, /?]) = F((oc, ^]). By
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the way, gv takes only the values 1 or 0 on 91^, because gv is O(oo)-ergodic.

Now we put BA = r~l{v\gv(A)=l} for each AeM^- Then gv(A)=l implies

BA=>r~l(v) and therefore gv(BA) = }. While, gv(A) = 0 implies BAnrl(v) = 0

and therefore gv(BA) = Q. Consequently, gJ(AQBA) = 0 for all i>, hence we have

H(0(AQBA) = Q. We note the same holds for /*, since we have seen /*w>^. Now

the proof follows from these arguments and Lemma 3. Let Ae^l^ and

H(A) = 0. Taking BAe&m as above, we have 0 = fi(BA) = fi(IJ(BA) = fim(A).

Q.E.D.

§ 3, RotationaSIy-Qiiasi-Ievariant Measures on Ha

In this section we prove the result announced in the introduction. Let \i

be a rotationally-quasi-invariant probability measure on (Ha, 23). Take an

arbitrary count ably-infinite orthonormal system/l5/2,... ,/„,... and put jLi/ = T/ju

by a map T f ; x E Ha^(x(fl),..., x(f„),...) e J?°°. Then f.if is a rotationally-G-

quasi-invariant measure on ©(J?00). Because taking an U e 0(H] for each U E G

such that <0/k,/j>H = <Uek, ^>/2 (fc, 7 = 1, 2,...), we can assure that Tf
 tU =

lVTf. It follows that ^ = Tf^^Tf
tV^ = tVTf^ = tV^f. Hence the limiting

measure ^ is defined, /x£(B)= ( gv(B)dPf(v} for all 5 e 95(J?°°), and it holds
J[0,oo)

fjL-fc^fjL^ by Theorem 1. In order to observe that Pf does not depend on the

choice of /!,...,/„,..., we take another system f \ 9 . . . 9 f ' n 9 . . . . We perform

Schmidt's orthogonalization process for fl9/i,...,/„,/!,,... to obtain an ortho-

normal system ftls..., /?„,. . . . It is clear that/,, and/J, are finite linear combinations

of /?!,..., /?„,..., . We wish to show pf = Ph. Now consider an operator Ton

J^J such that Te,,= X?=i (/,», ̂ k)nek f°r eacn n- (Actually it is a finite sum.)
Tpreserves /2-norm as easily seen. Hence we have fT^ = /xfJ. Further noting

that {xe«°°|K'T:t)e(a,/?]}€»„ for a, £eJ?, it follows that P;'(O3 j8]) =

^(xe^°°|r(x)6(a, /?]) = AI*(JC e «°°|Krrx) e (a, j9]) = ̂ (x 6 «°°|r(fTx) e (a, /J])

= /z(x e H«|Kf7Tftx)G(a, ]S]) = ̂ e/f-|Kr/x)e(a, /T|) = Ai /(xe J?°°|r(x)6(a, ffl)
= P'((a, ]»]). Similarly we have Ph = Pf. So putting P = pf = pf, a

rotationally-invariant probability measure v is defined on (Hfl, 95), v(J5)= \
J[0,oo)

Gv(B)dP(v), for all B e S, where Gy is a canonical Gaussian measure on (Ha, 23)

with mean 0 and variace v. We show that y^v. In fact, first we note that

TfV = n&- Next, for any A e 23, there exist some countably-infinite orthonormal

system/lf/2,...,/„,... and leS(J?°°) such that ^W = ̂ (W/iX-..3 ^O,),...))
for all x e Ha. It follows that v(4) = O^/i^l) = Oo^-^(JJ) = Oofi(A) = 0. Thus,
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Theorem 2. For any rotationally-quasi-invariant probability measure

IA on (Ha, S3), there exists a rotationally-invariant probability measure v such

that JLL^V. The explicit form of v is as follows. v(B)=\ Gv(B)dP(v) for
J[0,oo)

all 5e93, where Gv is a canonical Gaussian measure on (Ha
9 2J) with mean 0

and variance v, and P is a probability measure on [0, oo) defined by P(E) =

ft(xeHa\ lim-Tr ZJ=i x(/n)
2e£) for Borel sets EcR, using a countably-

infinite orthonormal system/15/2J...,/„,... on H.
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