Rotationally-Quasi-Invariant Measures on the Dual of a Hilbert Space

By

Hiroaki Shimomura*

§1. Introduction

Let *H* be a real Hilbert space equipped with the scalar product $\langle \cdot, \cdot \rangle_H$ and the norm $\|\cdot\|_H$. And let H^a be the algebraic dual space of *H*. We consider a probability measure μ defined on the σ -field \mathfrak{B} generated by cylinder sets of H^a . That is, \mathfrak{B} is the minimal σ -field with which all functions f_h $(h \in H)$; $x \in H^a \mapsto x(h) \in \mathbb{R}$ are measurable. Let O(H) be the group of all orthogonal operators on *H*. Then for each $U \in O(H)$ its algebraic transpose 'U is a measurable transformation on (H^a, \mathfrak{B}) . So we define μ_U as $\mu_U(B) = \mu({}^tU^{-1}(B))$ for all $B \in \mathfrak{B}$.

Definition

(a) μ is said to be rotationally-invariant, if $\mu_U = \mu$ holds for all $U \in O(H)$.

(b) μ is said to be rotationally-quasi-invariant, if $\mu_U \simeq \mu$ (μ_U and μ are absolutely continuous with each other.) holds for all $U \in O(H)$.

It is well-known that rotationally-invariant measures are characterized as suitable sums of canonical Gaussian measures in terms of the variance parameter. (See, [2].) On the other hand, up to the present time the study of quasi-invariant measures is rather neglected. In this paper, we shall consider such measures and show in Theorem 2 that for any rotationally-quasi-invariant measure μ , there exists a rotationally-invariant measure which is equivalent with μ . First in §2 we consider probability measures on \mathbb{R}^{∞} to discuss the rotational-quasi-invariance, and prove a version of the above statement. The proof of the main theorem will be carried out in §3.

Communicated by S. Matsuura, June 7, 1984.

^{*} Department of Mathematics, Fukui University, Fukui 910, Japan.

§2. Rotationally-Quasi-Invariant Measures on R^{∞}

Let \mathbf{R}^{∞} be the countable direct-product of \mathbf{R} and put $\mathbf{R}_{0}^{\infty} = \{x = (x_{1}, ..., x_{n}, x_{n},$...) $\in \mathbf{R}^{\infty}|x_n=0$ except finite numbers of n}. Next, let U be a one-to-one onto linear operator on R_0^{∞} which is extended to an orthogonal operator on l^2 . The group G of all such U's will play an essential role in our discussions. Let $e_n = (0, \dots, 0, \overset{n}{1}, 0, \dots)$ $(n = 1, 2, \dots)$ be the canonical base on \mathbb{R}_0^{∞} . Among subgroups of G, we shall take following important groups O(n), $O(\infty)$ and $O(n)^{\perp}$, $O(n) = \{U \in G | Ue_j = e_j \text{ for all } j > n\}, \ O(\infty) = \bigcup_{n=1}^{\infty} O(n) \text{ and } O(n)^{\perp} = \{U \in O(\infty) | u \in O(\infty) | u \in O(\infty) \}$ $Ue_i = e_i$ for $1 \le j \le n$. Clearly, we have $G \supset O(\infty) \supset O(n)^{\perp} \supset O(n+1)^{\perp}$. Now consider a probability measure μ on the usual Borel field $\mathfrak{B}(\mathbf{R}^{\infty})$ on \mathbf{R}^{∞} . Since for each $U \in G$, its transpose 'U (for the duality of \mathbb{R}_0^{∞} and \mathbb{R}^{∞}) is a measurable transformation on \mathbf{R}^{∞} , so μ_U is defined as before. If $\mu_U \simeq \mu$ holds for all $U \in G$ $(\mu_U = \mu$ holds for all $U \in O(\infty)$), μ is said to be rotationally-G-quasi-invariant (rotationally- $O(\infty)$ -invariant), respectively. We begin with a following fundamental lemma.

Lemma 1. Let μ be rotationally-G-quasi-invariant and put

$$x_n = \sup_{U \in O(n)^{\perp}} \int \left| \frac{d\mu_U}{d\mu} (x) - 1 \right| d\mu(x)$$

Then we have $\lim \varepsilon_n = 0$.

Proof. As $\{\varepsilon_n\}$ is monotone decreasing, $\lim_n \varepsilon_n = \varepsilon$ exists at any rate. Assume that $\varepsilon > 0$. Then there exists $U_1 \in O(1)^{\perp}$ such that $\int \left| \frac{d\mu_{U_1}}{d\mu}(x) - 1 \right| d\mu(x) > \frac{\varepsilon}{2}$. From the definition of $O(1)^{\perp}$, U_1 belongs to $O(n_2)$ for some n_2 . Without loss of generality we can assume that $n_2 > 1 \equiv n_1$. Next replacing $1 = n_1$ by n_2 (noting $\varepsilon_{n_2} > \varepsilon/2$), we repeat this procedure, and so on. Then as it is easily seen, a sequence $n_1 < \cdots < n_k < \cdots$ and $U_k \in O(n_k)^{\perp} \cap O(n_{k+1})$ are defined inductively such that

(1)
$$\int \left| \frac{d\mu_{U_k}}{d\mu}(x) - 1 \right| d\mu(x) > \frac{\varepsilon}{2} \quad \text{for all} \quad k$$

Since $O(n_k)^{\perp} \cap O(n_{k+1})$ is regarded as the orthogonal group on $\mathbb{R}^{n_{k+1}-n_k}$, it is compact in the natural topology. Hence the direct-product $K \equiv \prod_{k=1}^{\infty} O(n_k)^{\perp} \cap O(n_{k+1})$ is again a compact group. Naturally, each element $W = (W_1, ..., W_k)$

 $W_{k},...) \in K \text{ acts on } \mathbb{R}_{0}^{\infty} \text{ as } \widetilde{W}; x = \sum_{j=1}^{\infty} x_{j}e_{j} \mapsto x_{1}e_{1} + \sum_{k=1}^{\infty} W_{k}(x_{n_{k}+1}e_{n_{k}+1} + \cdots + x_{n_{k+1}}e_{n_{k}+1}).$ It is obvious that $\widetilde{W} \in G$ for all $W \in K$. Put $\widetilde{\mu}(B) = \int_{W \in K} \mu_{\widetilde{W}}(B)dW$, where dW is the normalized Haar measure of K. $\widetilde{\mu}$ is invariant under the actions of \widetilde{W} ($W \in K$), especially $\widetilde{\mu} = (\widetilde{\mu})_{U_{k}}$, and $\widetilde{\mu} \simeq \mu$ holds in virtue of G-quasi-invariance of μ . Now $\frac{d\mu_{U_{k}}}{d\widetilde{\mu}}(x) = \frac{d\mu}{d\widetilde{\mu}}({}^{t}U_{k}^{-1}x)$ holds for $\widetilde{\mu}$ -a.e.x, because for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$ we have $\mu_{U_{k}}(B) = \int_{t_{U_{k}}^{-1}(B)} \frac{d\mu}{d\widetilde{\mu}}(x)d\widetilde{\mu}(x) = \int_{B} \frac{d\mu}{d\widetilde{\mu}}({}^{t}U_{k}^{-1}x)d\widetilde{\mu}(x)$. It follows from (1) that

(2)
$$\int \left| \frac{d\mu}{d\tilde{\mu}} \left({}^{\prime}U_{k}^{-1}x \right) - \frac{d\mu}{d\tilde{\mu}} \left(x \right) \right| d\tilde{\mu}(x) > \frac{\varepsilon}{2} \quad \text{for all} \quad k$$

In this step, we take an $f \in L^1_{\mu}$ such that $\int \left| \frac{d\mu}{d\tilde{\mu}}(x) - f(x) \right| d\tilde{\mu}(x) < \frac{\varepsilon}{8}$ and f depends on only finite numbers of coordinates, say x_1, \dots, x_s . Thus if $n_k \ge s$, we have $f(x) = f({}^tU_k^{-1}x)$. Consequently for $n_k \ge s$ we have

$$\begin{split} & \int \left| \frac{d\mu}{d\tilde{\mu}} \left({}^{\prime}U_{k}^{-1}x \right) - \frac{d\mu}{d\tilde{\mu}} \left(x \right) \right| d\tilde{\mu}(x) \leq \int \left| \frac{d\mu}{d\tilde{\mu}} \left({}^{\prime}U_{k}^{-1}x \right) - f\left({}^{\prime}U_{k}^{-1}x \right) \right| d\tilde{\mu}(x) \\ & + \int \left| \frac{d\mu}{d\tilde{\mu}} \left(x \right) - f\left(x \right) \right| d\tilde{\mu}(x) < \frac{\varepsilon}{8} + \frac{\varepsilon}{8} = \frac{\varepsilon}{4} \,. \end{split}$$

However it contradicts to (2).

We note that

$$\int \left| \frac{d\mu_U}{d\mu}(x) - 1 \right| d\mu(x) = 2 \sup \left\{ |\mu_U(B) - \mu(B)| \right| B \in \mathfrak{B}(\mathbb{R}^\infty) \right\}$$

Now we shall proceed to the definition of the limiting measure μ_{ω} of μ . Let *E*, *F* be Borel sets of \mathbb{R}^m , \mathbb{R}^l respectively, and put P_m ; $x \in \mathbb{R}^{\infty} \mapsto (x_1, ..., x_m) \in \mathbb{R}^m$. Applying Lemma 1,

$$\lim_{m \to \infty} \mu(x \in \mathbf{R}^{\infty} | (x_1, \dots, x_m) \in E, (x_{n+1}, \dots, x_{n+l}) \in F) \equiv \mu_l(F | P_m^{-1}(E))$$

exists for all *E*, *F*. Because for $n' \ge n \ge m$ choose $U_{n,n'} \in O(n)^{\perp}$ such that $U_{n,n'}e_{n+1} = e_{n'+1}, \dots, U_{n,n'}e_{n+l} = e_{n'+l}$. Then we have

$$\mu_{U_{n,n'}}(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in F)$$

= $\mu(x|(x_1,...,x_m) \in E, (x_{n'+1},...,x_{n'+l}) \in F).$

Hence

(3)
$$2 \left| \mu(x|(x_1,...,x_m) \in E, (x_{n'+1},...,x_{n'+l}) \in F) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in F) \right|$$
$$\leq \sup_{U \in O(n)^{\perp}} \int \left| \frac{d\mu_U}{d\mu}(x) - 1 \right| d\mu(x) = \varepsilon_n \quad \text{for} \quad n' \ge n \ge m$$

Therefore they form a Cauchy sequence. It is obvious that for l < l', $\mu_{l'}(F \times \mathbf{R}^{l'-l}|P_m^{-1}(E)) = \mu_l(F|P_m^{-1}(E))$. Consequently $\{\mu_l(\cdot|P_m^{-1}(E))\}_l$ forms a consistent family of measures on $\{\mathbf{R}^l\}_l$ by natural projections, and a measure $\mu_{\omega}(\cdot|P_m^{-1}(E))$ is defined on $\mathfrak{B}(\mathbf{R}^{\infty})$ such that $\mu_{\omega}(P_l^{-1}(F)|P_m^{-1}(E)) = \mu_l(F|P_m^{-1}(E))$. Especially, we simply write $\mu_{\omega}(\cdot)$ instead of $\mu_{\omega}(\cdot|\mathbf{R}^{\infty})$.

Lemma 2. For any *m* and for any Borel set $E \subset \mathbb{R}^m$, $\mu_{\omega}(\cdot | P_m^{-1}(E))$ is $O(\infty)$ -invariant.

Proof. For the proof it is necessary and sufficient to show $\mu_l(\cdot | P_m^{-1}(E))$ is $O(\mathbf{R}^l)$ -invariant for all l. Let $U \in O(\mathbf{R}^l)$. Then for each $n \ge m$ we can take an $U_n \in O(n)^{\perp} \cap O(n+l)$ such that $\mu_{U_n}(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in F) = \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF)$, for all Borel sets $F \subset \mathbf{R}^l$. Hence by Lemma 1, $|\mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in UF))$.

This implies that $\mu_l(UF|P_m^{-1}(E)) = \mu_l(F|P_m^{-1}(E)).$ Q. E. D.

By the above Lemma, $\mu_{\omega}(\cdot | P_m^{-1}(E))$ is represented by a suitable sum of canonical Gaussian measures g_v with mean 0 and variance v on $\mathfrak{B}(\mathbb{R}^{\infty})$. (See, for example [1].) Next let \mathfrak{B}^n be a minimal σ -field on \mathbb{R}^{∞} with which all the coordinate functions $x_{n+1}, \ldots, x_{n+k}, \ldots$ are measurable and put $\mathfrak{B}_{\infty} = \bigcap_{n=1}^{\infty} \mathfrak{B}^n$.

Lemma 3. For any *m* and for any Borel set $E \subset \mathbb{R}^m$, $\mu_{\omega}(B|P_m^{-1}(E)) = \mu(B \cap P_m^{-1}(E))$ holds for all $B \in \mathfrak{B}_{\infty}$.

Proof. Letting $n' \rightarrow \infty$ in (3), we have

$$\left| \mu_{\omega}(P_{l}^{-1}(F)|P_{m}^{-1}(E)) - \mu(x|(x_{1},...,x_{m}) \in E, (x_{n+1},...,x_{n+l}) \in F) \right| \leq 2^{-1}\varepsilon_{n}$$

for all $n \ge m$. By $O(\infty)$ -invariance of $\mu_{\omega}(\cdot |P_m^{-1}(E))$, the above inequality becomes, $|\mu_{\omega}((x_{n+1},...,x_{n+l}) \in F|P_m^{-1}(E)) - \mu(x|(x_1,...,x_m) \in E, (x_{n+1},...,x_{n+l}) \in F)| \le 2^{-1}\varepsilon_n$ for all $n \ge m$. As the right hand does not depend on l, so for all $n \ge m$ and for all $B \in \mathfrak{B}^n$ we have $|\mu_{\omega}(B|P_m^{-1}(E)) - \mu(P_m^{-1}(E) \cap B)| \le 2^{-1}\varepsilon_n$. Especially for any $B \in \mathfrak{B}_{\infty}$ it holds independently on n. So the proof is complete, letting $n \to \infty$. Q. E. D.

414

In order to observe the explicit form of $\mu_{\omega}(\cdot | P_m^{-1}(E))$, we use a family of conditional probability measures $\{\mu^x\}_{x \in \mathbb{R}^{\infty}}$ of μ with respect to \mathfrak{B}_{∞} . For $\{\mu^x\}_{x \in \mathbb{R}^{\infty}}$, it is well-known that

- (a) for every $x \in \mathbb{R}^{\infty}$, μ^x is a probability measure on $\mathfrak{B}(\mathbb{R}^{\infty})$,
- (b) for a fixed $E \in \mathfrak{B}(\mathbb{R}^{\infty})$, $\mu^{x}(E)$ is a \mathfrak{B}_{∞} -measurable function of $x \in \mathbb{R}^{\infty}$,

(c)
$$\mu(E \cap B) = \int_{B} \mu^{x}(E) d\mu(x)$$
 for all $E \in \mathfrak{B}(\mathbb{R}^{\infty})$ and for all $B \in \mathfrak{B}_{\infty}$

Now let $B \in \mathfrak{B}_{\alpha}$. Then by Lemma 3,

$$\mu_{\omega}(B|P_m^{-1}(E)) = \mu(B \cap P_m^{-1}(E)) = \int_B \mu^x(P_m^{-1}(E))d\mu(x) = \int_B \mu^x(P_m^{-1}(E))d\mu_{\omega}(x).$$

By the way, for a fixed E, $\lambda_E(A) = \int_A \mu^x (P_m^{-1}(E)) d\mu_\omega(x)$ is an $O(\infty)$ -invariant measure in virtue of (b) and of $O(\infty)$ -invariance of μ_ω . As the form of $O(\infty)$ -invariant measure is completely determined on \mathfrak{B}_∞ , (See, [1].) it follows from the above that $\lambda_E(\cdot) = \mu_\omega(\cdot |P_m^{-1}(E))$. Consequently,

Lemma 4. Let $\{\mu^x\}_{x \in \mathbb{R}^\infty}$ be the conditional probability measures of μ with respect to \mathfrak{B}_∞ . Then we have

$$\mu_{\omega}(B|P_m^{-1}(E)) = \int_B \mu^x(P_m^{-1}(E))d\mu_{\omega}(x), \quad \text{for all} \quad B \in \mathfrak{B}(\mathbb{R}^\infty).$$

Here we shall add brief results for μ_{ω} . (The proofs are obvious.)

- 1. $\mu = \mu_{\omega}$, if μ is $O(\infty)$ -invariant.
- 2. If μ is a convex sum of two rotationally-G-quasi-invariant measures μ^1 and μ^2 , then μ_{ω} is the same sum of μ^1_{ω} and μ^2_{ω} .

We shall prove $\mu \simeq \mu_{\omega}$ in the remainder part of this section. Now consider an isometric operator S on l^2 , $Se_1 = e_2, ..., Se_n = e_{2n}, ...$ Corresponding to S, we take $U_n \in O(2n)$ for each *n* such that $U_n e_1 = e_2$, $U_n e_2 = e_4, ..., U_n e_n = e_{2n}$, $U_n e_{n+1} = e_1$, $U_n e_{n+2} = e_3, ..., U_n e_{n+k} = e_{2k-1}$, ..., $U_n e_{2n} = e_{2n-1}$. Since $U_l e_j =$ $U_m e_j$ (j = 1, ..., n) for $n \le l \le m$, we have $U_m^{-1} U_l \in O(n)^{\perp}$. It follows that $\sup \{|\mu({}^t U_m(E)) - \mu({}^t U_l(E))| | E \in \mathfrak{B}(\mathbb{R}^\infty)\} = \sup \{|\mu({}^t U_m{}^t U_l^{-1}(E)) - \mu(E)| | E \in$ $\mathfrak{B}(\mathbb{R}^\infty)\} \le 2^{-1} e_n$. Therefore by Lemma 1, $\lim_n \mu({}^t U_n(E)) \equiv \mu_S(E)$ exists for all $E \in \mathfrak{B}(\mathbb{R}^\infty)$. It is obvious that $\mu_S \le \mu$. Further putting $\mathfrak{U}_\infty = \{E \in \mathfrak{B}(\mathbb{R}^\infty)|{}^t UE = E$ for $\forall U \in O(\infty)\}$, $\mu_S = \mu$ holds on \mathfrak{U}_∞ . In order to observe μ_S , we put p; x = $(x_1, ..., x_n, ...) \in \mathbb{R}^\infty \mapsto (x_1, x_3, ..., x_{2n-1}, ...) \in \mathbb{R}^\infty$, q; $x = (x_1, ..., x_n, ...) \in \mathbb{R}^\infty \mapsto (x_2, x_4, ..., x_{2n}, ...) \in \mathbb{R}^\infty$, and T; $x \in \mathbb{R}^\infty \mapsto (p(x), q(x)) \in \mathbb{R}^\infty \times \mathbb{R}^\infty$. If E, F are Borel HIROAKI SHIMOMURA

sets of
$$\mathbb{R}^{m}$$
, $\mu_{S}(p^{-1}(P_{m}^{-1}(F)) \cap q^{-1}(P_{m}^{-1}(E)) = \mu_{S}(x|(x_{1}, x_{3}, ..., x_{2m-1}) \in F, (x_{2}, x_{4}, ..., x_{2m}) \in E) = \lim_{n} \mu(x|(x_{1}, x_{2}, ..., x_{m}) \in E, (x_{n+1}, x_{n+2}, ..., x_{n+m}) \in F) = \mu_{m}(F|P_{m}^{-1}(E))$
 $= \mu_{\omega}(P_{m}^{-1}(F)|P_{m}^{-1}(E)) = \int_{P_{m}^{-1}(F)} \mu^{x}(P_{m}^{-1}(E))d\mu_{\omega}(x).$ It follows that
 $\mu_{S}(p^{-1}(B_{1}) \cap q^{-1}(B_{2})) = \int_{B_{1}} \mu^{x}(B_{2})d\mu_{\omega}(x)$ for all $B_{1}, B_{2} \in \mathfrak{B}(\mathbb{R}^{\infty}).$

Hence

$$T\mu_{S}(B_{1} \times B_{2}) = \mu_{S}(p^{-1}(B_{1}) \cap q^{-1}(B_{2}))$$

= $\int \delta_{x}(B_{1})\mu^{x}(B_{2})d\mu_{\omega}(x) = \int (\delta_{x} \times \mu^{x})(B_{1} \times B_{2})d\mu_{\omega}(x).$

Consequently, we have

(4)
$$T\mu_{\mathcal{S}}(B) = \int (\delta_x \times \mu^x)(B) d\mu_{\omega}(x) \quad \text{for all} \quad B \in \mathfrak{B}(\mathbb{R}^{\infty} \times \mathbb{R}^{\infty}).$$

Here we consider translational-quasi-invariance of μ_s . (For these notions we refer [1], [3] or [4].)

Lemma 5. If μ_{ω} is translationally- l^2 -quasi-invariant (equivalently the Dirac term of μ_{ω} is dropped), then for any $h \in l^2$ there exists $B_h \in \mathfrak{B}_{\infty}$ with $\mu_{\omega}(B_h) = 1$ such that $\mu^x = \mu^{x+h}$ for all $x \in B_h$.

Proof. Since $\mu_{\omega}([B-h] \ominus B) = 0$ for all $B \in \mathfrak{B}_{\infty}$ (See, [1]), the same holds for μ by Lemma 3. Especially, putting $\mu_h(E) = \mu(E-h)$ for all $E \in \mathfrak{B}(\mathbb{R}^{\infty})$, $\mu_h = \mu$ holds on \mathfrak{B}_{∞} . It follows that for any $B \in \mathfrak{B}_{\infty}$ and for any $E \in \mathfrak{B}(\mathbb{R}^{\infty})$,

$$\mu(E \cap B) = \int_{B} \mu^{x}(E)d\mu(x) = \int_{B} \mu^{x}(E)d\mu_{h}(x)$$
$$= \int_{B-h} \mu^{x+h}(E)d\mu(x) = \int_{B} \mu^{x+h}(E)d\mu(x)$$

As $\mu^{x}(E)$ and $\mu^{x+h}(E)$ are both \mathfrak{B}_{∞} -measurable functions, so $\mu^{x}(E) = \mu^{x+h}(E)$ holds for μ -a.e.x. Take a countable algebra \mathscr{F} generating $\mathfrak{B}(\mathbb{R}^{\infty})$ and put $B_{h} = \bigcap_{S \in \mathscr{F}} \{x | \mu^{x}(S) = \mu^{x+h}(S)\}$. It is clear that $B_{h} \in \mathfrak{B}_{\infty}$, $1 = \mu(B_{h}) = \mu_{\omega}(B_{h})$ and $\mu^{x} = \mu^{x+h}$ holds for all $x \in B_{h}$. Q. E. D.

Lemma 6. If μ_{ω} is translationally-l²-quasi-invariant, then we have $(\mu_S)_{\hat{h}} \simeq \mu_S$ for all $\hat{h} = h_1 e_1 + h_2 e_3 + \dots + h_n e_{2n-1} + \dots$, $\sum_{n=1}^{\infty} h_n^2 < \infty$.

Proof. It is enough to show that $T\mu_s$ is translationally-quasi-invariant for all $(h, 0) \in l^2 \times \mathbb{R}^{\infty}$. Using (4) and Lemma 5, it is assured as follows.

$$T\mu_{\mathcal{S}}(B) = 0 \Longleftrightarrow \int (\delta_x \times \mu^x)(B) d\mu_{\omega}(x) = 0 \Longleftrightarrow$$

$$\begin{aligned} \int \mu^{x} (y|(0,y) \in B - (x, 0)) d\mu_{\omega}(x) &= 0 \iff \\ \int \mu^{x+h} (y|(0, y) \in B - (h, 0) - (x, 0)) d\mu_{\omega}(x) &= 0 \iff \\ \int_{B_{h}} \mu^{x} (y|(0, y) \in B - (h, 0) - (x, 0)) d\mu_{\omega}(x) &= 0 \iff T\mu_{s} (B - (h, 0)) = 0 \end{aligned}$$
Q. E. D.

Next we consider the effect of the Dirac term of μ_{ω} . The following three cases are possible.

- (a) $\mu(\{0\})=1$. In this case $\mu = \mu_{\omega} = \delta_0$, so it is nothing to prove.
- (b) $\mu(\{0\}) = 0.$
- (c) $0 < \mu(\{0\}) < 1$. Put $\mu^1(E) = \frac{\mu(E \cap \{0\}^c)}{\mu(\{0\}^c)}$ for all $E \in \mathfrak{B}(\mathbb{R}^\infty)$. Then μ^1 is rotationally-G-quasi-invariant. And we have

$$\mu = \mu(\{0\})\delta_0 + \mu(\{0\}^c)\mu^1 \quad \text{and} \quad \mu_\omega = \mu(\{0\})\delta_0 + \mu(\{0\}^c)\mu_\omega^1$$

Thus for the proof of $\mu \simeq \mu_{\omega}$, it is sufficient to consider the case (b). Now let $\mu(\{0\})=0$, and put $N_n = \{x \in \mathbb{R}^{\infty} | x_n = 0\}$ for each *n*. We wish to show $\mu(N_1)=0$, equivalently $\mu(N_n)=0$ for all *n*. Suppose that it would be false. Since $0 = \mu(\{0\}) = \lim_{n} \mu(N_1 \cap N_2 \cap \dots \cap N_n)$, $\mu(N_1) > \mu(N_1 \cap \dots \cap N_n)$ holds for sufficiently large *n*. It follows that $\mu(N_1 \cap N_k^c) > 0$ for some $k \ge 2$, equivalently $\mu(N_1 \cap N_2^c) > 0$. Take $U_{\theta} \in O(2)$, $U_{\theta}e_1 = \cos \theta e_1 + \sin \theta e_2$, $U_{\theta}e_2 = -\sin \theta e_1 + \cos \theta e_2$. As we have ${}^tU_{\theta}^{-1}(N_1 \cap N_2^c) = \{x \in \mathbb{R}^{\infty} | x_1 \cos \theta + x_2 \sin \theta = 0, -x_1 \sin \theta + x_2 \cos \theta \neq 0\}$, so they are mutually disjoint for different $\theta \in [0, \pi)$. Hence we conclude that $0 = \mu({}^tU_{\theta}^{-1}(N_1 \cap N_2^c)) = \mu_{U_{\theta}}(N_1 \cap N_2^c)$. However it contradicts to $\mu(N_1 \cap N_2^c) > 0$. From $\mu(N_n) = 0$, it follows that $\mu_{\omega}(N_1) = \lim_{n} \mu(N_n) = 0$ and therefore $\mu_{\omega}(\{0\}) \le \mu_{\omega}(N_1) = 0$. From these arguments,

Lemma 7. If μ has no Dirac term, then so is μ_{ω} .

Hereafter assume that $\mu(\{0\})=0$. Then we take a probability measure σ on $\mathfrak{B}(\mathbb{R}^{\infty})$ which is translationally- \mathbb{R}_{0}^{∞} -quasi-invariant and $\sigma(l^{2})=1$. The convolution $\mu * \sigma$ and μ_{ω} are both translationally- \mathbb{R}_{0}^{∞} -quasi-invariant, and for any $B \in \mathfrak{B}_{\infty}$,

$$\mu \ast \sigma(B) = \int_{I^2} \mu(B-h) d\sigma(h) = \int_{I^2} \mu(B) d\sigma(h) = \mu(B) = \mu_{\omega}(B) \,.$$

Since the equivalence classes of translationally- \mathbb{R}_0^{∞} -quasi-invariant measures are completely determined on \mathfrak{B}_{∞} , (See, [1]) we conclude that $\mu * \sigma \simeq \mu_{\omega}$. Using

HIROAKI SHIMOMURA

these results and the following last Lemma we prove that $\mu \simeq \mu_{\omega}$.

Lemma 8. Let μ_1 and μ_2 be rotationally- $O(\infty)$ -quasi-invariant probability measures. Then for $\mu_1 \leq \mu_2$, it is necessary and sufficient that $\mu_1 \leq \mu_2$ on \mathfrak{A}_{∞} .

Proof. The necessity is obvious. For the sufficiency, put $\mu = \frac{\mu_1 + \mu_2}{2}$. Then there exists some $A \in \mathfrak{B}(\mathbb{R}^{\infty})$ such that $\mu(A \cap B) = 0 \Leftrightarrow \mu_2(B) = 0$ for any $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. We claim that A can be taken such as $A \in \mathfrak{A}_{\infty}$. Since we have $\mu_2(A^c) = 0$, so $\mu_2({}^{t}UA^c) = 0$ and therefore $\mu(A \cap {}^{t}UA^c) = 0$. Replacing U by U^{-1} , $\mu(A \ominus {}^{t}UA) = 0$ holds for all $U \in O(\infty)$. Now using the indicator function χ_A of A and the Haar measure dU of O(n), we put $g_n(x) = \int_{O(n)} \chi_A({}^{t}Ux) dU$. Then g_n is O(n)-invariant and $g_n(x) = \chi_A(x)$ holds for μ -a.e.x. Hence putting $\lim_n g_n(x) = g(x)$, g is $O(\infty)$ -invariant and $g(x) = \chi_A(x)$ holds for μ -a.e.x. Finally, put $\hat{A} = \{x \in \mathbb{R}^{\infty} | g(x) = 1\}$. Then it is easily checked that $\hat{A} \in \mathfrak{A}_{\infty}$ and $\mu(A \ominus \hat{A}) = 0$. Under the above preparation, let $\mu_1 \leq \mu_2$ hold on \mathfrak{A}_{∞} . Then we have $\mu_1(\hat{A}^c) = 0$. And if $\mu_2(E) = 0$ for some $E \in \mathfrak{B}(\mathbb{R}^{\infty})$, then we have $\mu(E \cap \hat{A}) = 0$. Which implies $\mu_1(E \cap \hat{A}) = 0$. It follows that $\mu_1(E) \leq \mu_1(E \cap \hat{A}) + \mu_1(E \cap \hat{A}^c) = 0$.

Theorem 1. For a rotationally-G-quasi-invariant measure μ , we have $\mu \simeq \mu_{\omega}$.

Proof. By the preceding arguments, it may be assumed that $\mu(\{0\})=0$. First we shall show $\mu \leq \mu_{\omega}$. Let $A \in \mathfrak{A}[_{\infty}$ and $\mu_{\omega}(A)=0$ which is equivalent to $\mu * \sigma(A)=0$. It implies that $\mu(A-h)=0$ for some $h=h_1e_1+\dots+h_ne_n+\dots \in l^2$. Take θ_n for each n such that ${}^tU^{-1}h=\sqrt{h_1^2+h_2^2}e_1+\dots+\sqrt{h_{2n-1}^2+h_{2n}^2}e_{2n-1}+\dots$ holds for $U \in G$ defined by $Ue_{2n-1}=\cos\theta_ne_{2n-1}+\sin\theta_ne_{2n}$, $Ue_{2n}=-\sin\theta_ne_{2n-1}+\cos\theta_ne_{2n}$ $(n=1, 2, \dots)$. Since for any $U_n \in O(n)$, we have $W_n=U^{-1}U_nU \in O(n+1)$, so ${}^tU_n^{-1}tU^{-1}(A)={}^tU^{-1}{}^tW_n^{-1}(A)={}^tU^{-1}(A)$ and therefore ${}^tU^{-1}(A) \in \mathfrak{A}[\infty]$. It follows from $\mu_U(A-h)=0$ that $\mu({}^tU^{-1}(A)-{}^tU^{-1}h)=0$ which implies $\mu_s({}^tU^{-1}(A)-{}^tU^{-1}h)=0$. By Lemma 6, we have $\mu_s({}^tU^{-1}(A))=0$. As $\mu=\mu_s$ holds on \mathfrak{A}_{∞} , so it holds $\mu({}^tU^{-1}(A))=0$, equivalently $\mu(A)=0$.

Next we shall show $\mu_{\omega} \leq \mu$. We use a representation of μ_{ω} by a probability measure P on $(0, \infty)$, $\mu_{\omega}(B) = \int_{(0,\infty)} g_v(B) dP(v)$ for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$. Put $r(x) = \overline{\lim_{N} \frac{1}{N} \sum_{n=1}^{N} x_n^2}$. Then r(x) is a \mathfrak{B}_{∞} -measurable function and $g_v(r^{-1}(v)) = 1$ by the law of large numbers. It follows that $\mu_{\omega}(x|r(x) \in (\alpha, \beta]) = P((\alpha, \beta])$. By

the way, g_v takes only the values 1 or 0 on \mathfrak{A}_{∞} , because g_v is $O(\infty)$ -ergodic. Now we put $B_A = r^{-1}\{v|g_v(A) = 1\}$ for each $A \in \mathfrak{A}_{\infty}$. Then $g_v(A) = 1$ implies $B_A \supset r^{-1}(v)$ and therefore $g_v(B_A) = 1$. While, $g_v(A) = 0$ implies $B_A \cap r^{-1}(v) = \emptyset$ and therefore $g_v(B_A) = 0$. Consequently, $g_v(A \ominus B_A) = 0$ for all v, hence we have $\mu_{\omega}(A \ominus B_A) = 0$. We note the same holds for μ , since we have seen $\mu_{\omega} \gtrsim \mu$. Now the proof follows from these arguments and Lemma 3. Let $A \in \mathfrak{A}_{\infty}$ and $\mu(A) = 0$. Taking $B_A \in \mathfrak{B}_{\infty}$ as above, we have $0 = \mu(B_A) = \mu_{\omega}(B_A) = \mu_{\omega}(A)$. Q. E. D.

§3. Rotationally-Quasi-Invariant Measures on H^a

In this section we prove the result announced in the introduction. Let μ be a rotationally-quasi-invariant probability measure on (H^a, \mathfrak{B}) . Take an arbitrary countably-infinite orthonormal system $f_1, f_2, ..., f_n, ...$ and put $\mu^f = T_f \mu$ by a map T_f ; $x \in H^a \mapsto (x(f_1), \dots, x(f_n), \dots) \in \mathbb{R}^{\infty}$. Then μ^f is a rotationally-Gquasi-invariant measure on $\mathfrak{B}(\mathbb{R}^{\infty})$. Because taking an $\widehat{U} \in O(H)$ for each $U \in G$ such that $\langle \hat{U}f_k, f_j \rangle_H = \langle Ue_k, e_j \rangle_{l^2}$ (k, j=1, 2,...), we can assure that $T_f^{t} \hat{U} =$ ${}^{t}UT_{f}$. It follows that $\mu^{f} = T_{f}\mu \simeq T_{f}{}^{t}\hat{U}\mu = {}^{t}UT_{f}\mu = {}^{t}U\mu^{f}$. Hence the limiting measure μ_{ω}^{f} is defined, $\mu_{\omega}^{f}(B) = \int_{[0,\infty)} g_{\nu}(B) dP^{f}(\nu)$ for all $B \in \mathfrak{B}(\mathbb{R}^{\infty})$, and it holds $\mu^f \simeq \mu_{\omega}^f$ by Theorem 1. In order to observe that P^f does not depend on the choice of f_1, \ldots, f_n, \ldots , we take another system $f'_1, \ldots, f'_n, \ldots$. We perform Schmidt's orthogonalization process for $f_1, f'_1, \dots, f_n, f'_n, \dots$ to obtain an orthonormal system h_1, \ldots, h_n, \ldots . It is clear that f_n and f'_n are finite linear combinations of h_1, \ldots, h_n, \ldots . We wish to show $P^f = P^h$. Now consider an operator T on \mathbf{R}_0^∞ such that $Te_n = \sum_{k=1}^\infty \langle f_n, h_k \rangle_H e_k$ for each *n*. (Actually it is a finite sum.) T preserves l^2 -norm as easily seen. Hence we have ${}^tT\mu_{\omega}^h = \mu_{\omega}^h$. Further noting that $\{x \in \mathbb{R}^{\infty} | r(^{t}Tx) \in (\alpha, \beta]\} \in \mathfrak{B}_{\infty}$ for $\alpha, \beta \in \mathbb{R}$, it follows that $P^{h}((\alpha, \beta]) =$ $\mu_{\omega}^{h}(x \in \mathbf{R}^{\infty} | r(x) \in (\alpha, \beta]) = \mu_{\omega}^{h}(x \in \mathbf{R}^{\infty} | r(^{t}Tx) \in (\alpha, \beta]) = \mu^{h}(x \in \mathbf{R}^{\infty} | r(^{t}Tx) \in (\alpha, \beta])$ $=\mu(x \in H^a | r(^t TT_h x) \in (\alpha, \beta]) = \mu(x \in H^a | r(T_f x) \in (\alpha, \beta]) = \mu^f(x \in \mathbb{R}^{\infty} | r(x) \in (\alpha, \beta])$ = $P^{f}((\alpha, \beta))$. Similarly we have $P^{h} = P^{f'}$. So putting $P = P^{f} = P^{f'}$, a rotationally-invariant probability measure v is defined on $(H^a, \mathfrak{B}), v(B) = \int_{[0,\infty)}$ $G_v(B)dP(v)$, for all $B \in \mathfrak{B}$, where G_v is a canonical Gaussian measure on (H^a, \mathfrak{B}) with mean 0 and variace v. We show that $\mu \simeq v$. In fact, first we note that $T_f v = \mu_{\omega}^f$. Next, for any $A \in \mathfrak{B}$, there exist some countably-infinite orthonormal system $f_1, f_2, ..., f_n, ...$ and $\tilde{A} \in \mathfrak{B}(\mathbb{R}^\infty)$ such that $\chi_A(x) = \chi_{\tilde{A}}((x(f_1), ..., x(f_n), ...))$ for all $x \in H^a$. It follows that $v(A) = 0 \Leftrightarrow \mu_{\omega}^f(\tilde{A}) = 0 \Leftrightarrow \mu^f(\tilde{A}) = 0 \Leftrightarrow \mu(A) = 0$. Thus, **Theorem 2.** For any rotationally-quasi-invariant probability measure μ on (H^a, \mathfrak{B}) , there exists a rotationally-invariant probability measure ν such that $\mu \simeq \nu$. The explicit form of ν is as follows. $\nu(B) = \int_{[0,\infty)} G_{\nu}(B) dP(\nu)$ for all $B \in \mathfrak{B}$, where G_{ν} is a canonical Gaussian measure on (H^a, \mathfrak{B}) with mean 0 and variance ν , and P is a probability measure on $[0, \infty)$ defined by $P(E) = \mu(x \in H^a | \lim_{N} \frac{1}{N} \sum_{n=1}^{N} x(f_n)^2 \in E)$ for Borel sets $E \subset \mathbf{R}$, using a countably-infinite orthonormal system $f_1, f_2, ..., f_n, ...$ on H.

References

- Shimomura, H., Ergodic decomposition of quasi-invariant measures, *Publ. RIMS*, *Kyoto Univ.*, 14 (1978), 359–381.
- [2] Umemura, Y., Rotationally invariant measures in the dual space of a nuclear space, Proc. Japan Acad., 38 (1962), 15–17.
- [3] —, Measures on infinite dimensional vector spaces, Publ. RIMS, Kyoto Univ. 1 (1965), 1–47.
- [4] Yamasaki, Y., Measures on infinite-dimensional spaces, Kinokuniya, 1978, in Japanese.