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Rotationally-Quasi-Invariant Measures on
the Dual of a Hilbert Space

By

Hiroaki SHIMOMURA*

§1. Imtroduction

Let H be a real Hilbert space equipped with the scalar product<-, -y,
and the norm | - ||;. And let H* be the algebraic dual space of H. We consider
a probability measure u defined on the o-field B generated by cylinder sets of
He. Thatis, B is the minimal o-field with which all functions f, (he€ H); xe€ H®
~x(h) € R are measurable. Let O(H) be the group of all orthogonal operators
on H. Then for each UeO(H) its algebraic transpose ‘U is a measurable
transformation on (H?, B). So we define juy as uy(B)=u('U~Y(B)) for all
BeB.

Definition
(a) u is said to be rotationally-invariant, if u,=p holds for all U e O(H).
(b) uis said to be rotationally-quasi-invariant, if u,~ u (uy and p are absolutely
continuous with each other.) holds for all U € O(H).

It is well-known that rotationally-invariant measures are characterized as
suitable sums of canonical Gaussian measures in terms of the variance parameter.
(See, [2].) On the other hand, up to the present time the study of quasi-invariant
measures is rather neglected. In this paper, we shall consider such measures and
show in Theorem 2 that for any rotationally-quasi-invariant measure p, there
exists a rotationally-invariant measure which is equivalent with u. First in
§2 we consider probability measures on R® to discuss the rotational-quasi-
invariance, and prove a version of the above statement. The proof of the main
theorem will be carried out in §3.
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§2. Rotationally-Quasi-Invariant Measures on R®

Let R™ be the countable direct-product of R and put R ={x=(xy,..., X
...) € R*|x,=0 excepl finite numbers of n}]. Next, let U be a one-to-one onto
linear operator on R§ which is extended to an orthogonal operator on /2. The
group G of all such U’s will play an essential role in our discussions. Let

e,,=(0,...,0,1 0,...) (n=1,2,...) be the canonical base on Ry. Among sub-
groups of G, we shall take following important groups O(n), O(o0) and O(n)*,
O(n)={U e G|Ue;=e; for all j>n}, O(c0)=\Us, O(n) and O(n)*={U € O(0)|
Ue;=e; for 1< j=n}. Clearly, we have G20(0)>0(n)*>0(n+1)*. Now
consider a probability measure p on the usual Borel field B(R*®) on R®. Since
for each U € G, its transpose U (for the duality of RY and R®) is a measurable
transformation on R®, so yuy is defined as before. If pyy~u holds for all Ue G
(uy=u holds for all U e O(0)), u is said to be rotationally-G-quasi-invariant
(rotationally-O(co)-invariant), respectively. We begin with a following [un-
damental lemma.

Lemma 1. Let u be rotationally-G-quasi-invariant and pul

£,= sup Sfdj; (x)—l!du(x).

UeO(n)L

Then we have lim g,=0.
n

Proof. As {e,} is monotone decreasing, lim g, =¢ exists at any rate. Assume
n

that e>0. Then there exists U, € O(1)* such thatgldT'ulj“—(x)—l d,u(x)>§~.
From the definition of O(1)*, U, belongs to O(n,) for some n,. Without loss of
generality we can assume that n,>1=n,. Next replacing 1=n, by n, (noting
&,,>¢/2), we repeat this procedure, and so on. Then as it is easily seen, a
sequence n,<--<m<--- and U,eO(n)* nO(n,,.,) are defined inductively
such that

) S‘-fla/f;l’_"(x)—l du(x) > £ forall k.

Since O(n)t n O(n,,,) is regarded as the orthogonal group on R"<+17"k it is
compact in the natural topology. Hence the direct-product K=[12, O(ny)*
nO(n+,) is again a ecompact group. Naturally, each element W=(W,,...,
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W,,..)eK acts on RY as W;x=Y %, x;e;>x.e+ 250, WilXy +1€u 41+
+ X, o @, ). 1t is obvious that WeG for all We K. Put ji(B)= Sw&x Ww(B)YdW,
where dW is the normalized Haar measure of K. [ isinvariant under the
actions of W (We K), especially fi=(fi)y,, and ji~p holds in virtue of G-quasi-

d“Uk — d# t[]-1y fi-
~di x)= di (*Ux*x) holds for fi-a.e.x, because for all

BeB(R®) we have yu,(B)=S . j‘f (x)dg(x)=g A1 cyDindicx). It
: By dfi B dfi
follows from (1) that

invariance of y. Now

Al -1y A N gmiey s £
) Sl?jﬁwk )= 4 ) |dae)> 5 forall k.
In this step, we take an fe L} such thatg‘ ?I; (x)—f(x) I di(x)< % and f

depends on only finite numbers of coordinates, say x,..., x,, Thus if n,=s,
we have f(x)=f(*Uz!x). Consequently for n,=s we have

IIA

f| 45 curn - G (0| dneo)

dji S'%('UZI-’() —f ("0 x) | dfi(x)

dup .\ _ - € e _ ¢
+g|dﬁ (x) f(x)!du(x)<§+—8——7.
However it contradicts to (2). Q.E.D.

We note that
{12 (=1 | dur=2 s0p (1no(B)~ (B | B e BR) .

Now we shall proceed to the definition of the limiting measure y,, of p. Let
E, F be Borel sets of R™, R' respectively, and put P,; x € R®—(x4,..., X,,) € R™.
Applying Lemma 1,

lim l'l(xe Rwl(xla"-’ xm)eE, (xu+1’~-'> xn+1)EF)E/ll(F|Pn—11(E))

exists for all E, F. Because for n">n>m choose U,, €0(n)* such that

Un,n‘en+ 17 € 415005 Un.n'en-H: eyt Then we have

ﬂU,.,,.r(xl(xl""a xm)EEa (xn+1:---s X".H)EF)

=1U(X|(X15ees X)) EEy (Xpr s 19eees X s ) EF).

Hence
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B 2l XD EE, (s Xya) €F)
‘“,Ll(XI(xl,..-, xm)EE’ (xn+]a'--s xn+I)EF)

< sup, {2 (-1
UeO(n)

du
Therefore they form a Cauchy sequence. It is obvious that for I<l’, w.(F x
RV P, Y(E))=u(F|P,,(E)). Consequently {u(-|P;,(E))}, forms a consistent
family of measures on {R!}, by natural projections, and a measure u,(-|P;,!(E))
is defined on B(R®) such that u,(P;i(F)|P,(E))=u(F|P,;\(E)). Especially,
we simply write () instead of (- |R®).

du(x)=g¢, for n">n>m.

Lemma 2. For any m and for any Borel set EcR™, u,(-|P,(E)) is

O(oo)-invariant.

Proof. For the proof it is necessary and sufficient to show p(-|P;,,1(E)) is
O(RY-invariant for all I. Let UeO(RY). Then for each n>m we can take
an U,eOm)nO(n+1) such that uy (X|(Xq,..., %) EE, (Xps15eees Xys1) €F)
=p(x|(X15es X)) EE, (X1 15---» Xy4) € UF), for all Borel sets F<= R'. Hence by

Lemma 1, !u(xl(xl,‘.‘, %,) €E, (Xys1sees Xps1) € UF) — u(x|(Xy,..., X,) € E,

(xn+ IR xn+l) € F)l §2—18n—+0 (n_)w)
This implies that u(UF|P;!(E))= u(F|P;\(E)). Q.E.D.

By the above Lemma, u,(-|P;,'(E)) is represented by a suitable sum of
canonical Gaussian measures g, with mean 0 and variance v on B(R®). (See,
for example [1].) Next let B” be a minimal o-field on R* with which all the
coordinate functions X, 4 1,..., X, 4-.. are measurable and put B, =2, B".

Lemma 3. For any m and for any Borel set EcR"™, u,(B|P,Y(E))=
U(B n P,Y(E)) holds for all Be B,.

Proof. Letting n’'— oo in (3), we have
.ua)(PTI(F)'P;I(E))—ﬂ(xl(xla9 xm)EEa (xn+ JEARRE] xn+I)GF) éz_lsn

for all n=m. By O(oo)-invariance of u,(-|P,!(E)), the above inequality
becomes, |Uy((Xy415--> Xusp) € FIPRUE)) — u(X|(X15-.0s Xp) EE, (Xyg1sevs Xyat)
€ F)|<2 '¢, for all n=m. As the right hand does not depend on /, so for all
n=m and for all Be B* we have |u,(B|P;(E))—u(P;X(E)n B)| <271, Espe-
cially for any Be B, it holds independently on n. So the proof is complete,
letting n— co. Q.E.D.
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In order to observe the explicit form of u,(-|P;'(E)), we use a family of
conditional probability measures {y*},.g- of p with respect to B,. For
{U*} xer=, it is well-known that

(a) for every xe R*, u* is a probability measure on B(R®),
(b) for a fixed E € B(R®), u*(E) is a B, -measurable function of xe R*,

(c) wENB)= S w*(E)du(x) for all E e B(R*) and for all Be B,,.
B
Now let Be B,. Then by Lemma 3,

Ho(BIPEN=u(B 0 PRE) = w(Pr(ENdu(={ w(PriENdu, ).

By the way, for a fixed E, A(4)= S W (P (E))du,(x) is an O(oo)-invariant
measure in virtue of (b) and of O(w)-iﬁvariance of u,. As the form of O(c0)-
invariant measure is completely determined on B, (See, [1].) it follows from
the above that Ag(-)=p,(-|P;(E)). Consequently,

Lemma 4. Let {y*}, g~ be the conditional probability measures of p
with respect to B,,. Then we have

HoBIPREN= | w(PRHENd,(x),  for all BeB(R?).

Here we shall add brief results for u,. (The proofs are obvious.)

1. u=up,, il u is O(oo)-invariant.
2. If puis a convex sum of two rotationally-G-quasi-invariant measures g’

and u?, then p,, is the same sum of u} and p2.

We shall prove u=yu,, in the remainder part of this section. Now consider

an isometric operator S on [?, Se, =e,,..., Se,=e,,,.... Corresponding to S,
we take U,eO0(2n) for each n such that U,e,=e,, U,e,=e,,..., Ue,=e,,,
Uu"’u+l=elv Unlen-l—2=e3""5 Unen+k=€2k-—l$ cto UueZn=e2n—1' Since UIe_i=
Une; (j=1,...,n) for n=I<m, we have U,'U,e0(n)" 1t follows

that  sup {|u(*U,(E))—u("U(E))| | E € B(R®)} =sup {|u("U,,' U '(E)) — W(E)| iE €
B(R*)} <2 tg,.  Therefore by Lemma I, hm u('U,(E)) = us(E) exists for all
EeB(R™). It is obvious that ug<Spu. Fuxther putting AU ={EeB(R®)|'UE
=E for YU € O(0)}, ps=p holds on A . In order to observe ug, we put p; x=
(pseies Xpoor ) € R®>(X(, X300, Xg9y_10-..) € R™, @5 X=(X{,..., X,...) € RO—(X3,
Xgyeees Xappe--)ER*, and T'; x€ R*—(p(x), q(x))e R”x R*. If E, F are Borel
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sets of R™, us(p™ (P, (F)) N g Y (PUE))=us(X|(x1, X35---» Xom—1) EF> (X2, Xg5--5
x2m) € E)=h:n “(xl(xl’ X35eees xm) GE’ (xn+1’ Xn+25000s xn+m) EF)::.u'm(F‘P;ll (E))
= 4 (PP P=Y(E)) = S @ (PiE)dug(x). It follows that

F)

Pm (
us(p~1(By) N g~ Y(By) = Ssl w*(By)du,(x)  forall B, B,eB(R™).
Hence
Tus(By x B2)=us(p™'(By) N 7(By))
= [ 8B BN = (63 w7) (B, X By ).
Consequently, we have
4 Tug(B)= S (0, % 1) (B)duy,(x) for all BeB(R®xR%).
Here we consider translational-quasi-invariance of ug. (For these notions we
refer [1], [3] or [4].)

Lemma 5. If p, is translationally-12-quasi-invariant (equivalently the
Dirac term of u, is dropped), then for any hel? there exists B,€ B, with
Uo(By) =1 such that p*=u*** for all x € B,.

Proof. Since p,([B—h]©B)=0 for all Be B, (See, [1]), the same holds
for p by Lemma 3. Especially, putting u,(E)=u(E—h) for all EeB(R%),
u,=p holds on B_. It follows that for any Be B, and for any E e B(R®),

W(E n B)= S WH(E)dp(x) = S KB ()
- SB pEHE)I() = S pEHE)d ().
- B

As pX(E) and p**#(E) are both B -measurable functions, so p*(E)=pu***(E)
holds for p-a.e.x. Take a countable algebra & generating B(R®) and put
B,=Nges Xlp*(S)=p**(S)}. It is clear that B, eB,, 1=u(B,)=p,(B,)
and p*=p*** holds for all x € B,. Q.E.D.

Lemma 6. If p, is translationally-1>-quasi-invariant, then we have
(us)s ~us for all h=hie;+hyez+ -+ hyep_ 1+, X2, hZ<co.

Proof. It is enough to show that Tug is translationally-quasi-invariant for
all (h, 0)eI>x R®. Using (4) and Lemma 5, it is assured as follows.

Tits(B)=0 = | (3. x u) (B)dhof(x)=0 =
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[ 0109 €= x, 0)dpa) =0 =
Sw"(yl(o, »)€B—(h, 0)—(x, 0))dpi(x) =0=>

[, =10, y)€ B=(h, 0) = (x, 0)dita()=0 = Tus(B—(h, 0))=0
Q.E.D.

Next we consider the effect of the Dirac term of y,. The following three
cases are possible.

(a) wu({0})=1. In this case u=pu,=43d,, so it is nothing to prove.
(b) u({0h=0.

© O<u({0})<l. Put ul(E)=f%{%i—}O%—cl for all E e B(R).

Then p! is rotationally-G-quasi-invariant. And we have
u=pu({0}do +u({0})u' and  p,=pu({0})do +u({0})us -

Thus for the proof of u~pu,, it is sufficient to consider the case (b). Now let
u({0})=0, and put N,={x e R*|x,=0} for each n. We wish to show u(N,)=0,
equivalently u(N,)=0 for all n. Suppose that it would be false. Since 0=
u{OH=limu(N,nN,n---nNN,), u(N)>u(N,n---nN,) holds for sufficiently
large n. Tt follows that u(N; N N§)>0 for some k=2, equivalently u(N; n N%)
>0. Take Uy,e0(2), Ugye,=cosfe, +sinfe,, Uge,= —sin e, +cos fe,. As
we have *Ugl(N;nNN§)={xe R®|x;cos0+x,sinf0=0, —x,sinf+x,cos
#0}, so they are mutually disjoint for different 6 € [0, 7). Hence we conclude
that 0=u(*Uz(N{ N N$))=py, (N N N5). However it contradicts to u(N, n
N$)>0. From u(N,)=0, it follows that u,(N,)=lim u(N,)=0 and therefore
1o({0D=p,(N{)=0. From these arguments, ’

Lemma 7. If u has no Dirac term, then so is u,.

Hereafter assume that u({0})=0. Then we take a probability measure
o on B(R®) which is translationally-R¥-quasi-invariant and o¢(/2)=1. The

convolution u+o and p,, are both translationally- RP-quasi-invariant, and for any
BeB,,

pro®) = u(B—do(h)= | u(Bo(h)=p(B)=puo(B)-

Since the equivalence classes of translationally-Rg-quasi-invariant measures
are completely determined on B, (See, [1]) we conclude that uxo~p,. Using
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these results and the following last Lemma we prove that p~>~pu,.

Lemma 8. Let p;, and pu, be rotationally-O(co)-quasi-invariant prob-
ability measures. Then for pu, Sp,, it is necessary and sufficient that p,

Sp,on A,

Proof. The necessity is obvious. For the sufficiency, put u= —’i‘;i

Then there exists some AeB(R™) such that u(A n B)=0<>u,(B)=0 for any
BeB(R*). We claim that A can be taken such as 4e 2. Since we have
U2(A)=0, so u,("UA)=0 and therefore u(4 ntUA)=0. Replacing U by U™,
UAB'UA)=0 holds for all Ue O(c0). Now using the indicator function y,
of A and the Haar measure dU of O(n), we put g,(x)= S 14((Ux)dU. Then
g, is O(n)-invariant and g,(x)=y,(x) holds for u-a.e.x?(")Hence putting lim
g(x)=g(x), g is O(oco)-invariant and g(x)=y,(x) holds for u-a.e.x. Finaﬁy,
put A={xe R®|g(x)=1}. Then it is easily checked that 4e A and u(4© A4)
=0. Under the above preparation, let u; <p, hold on A,. Then we have
p1(A€)=0. And if p,(E)=0 for some EeB(R®), then we have u(EnA)=0
which implies u,(E n A)=0. It follows that u,(E)<u,(E n A)+u,(E n A°)=0.
Q.E.D.

Theorem 1. For a rotationally-G-quasi-invariant measure u, we have
=3The

Proof. By the preceding arguments, it may be assumed that u({0})=0.
First we shall show upu,. Let Ae, and pu,(4)=0 which is equivalent to
uka(A)=0. Tt implies that u(4—h)=0 for some h=he,+---+h,e,+--- €l?
Take 6, for each n such that ‘U~th=.\/hi+h3e,+ - +/h},—; +h3uesn—1 +
holds for U € G defined by Ue,,_,=cos 8,¢e,,_,+sin b,e,,, Ue,,= —sinf,e,,_,
+cosf,e,, (n=1,2,...). Since for any U,€0(n), we have W,=U"'U,Ue
O(n+1), so Uyt ' U (A)="U"" W, (4)='U"1(4) and therefore 'U"1(A)e
A,. It follows from uy(A—h)=0 that u(*U~1(A)—'U~th)=0 which implies
usCU1(A)—*U"1h)=0. By Lemma 6, we have us(*U 1(A4))=0. As u=
Us holds on A, so it holds u(*U~1(A))=0, equivalently u(A4)=0.

Next we shall show ji,, <u.  We use a representation of u,, by a probability
measure P on (0, o0), u,(B)= S(o . g B)dP(v) for all Be B(R®). Put r(x)=

@1% >N . x2. Then r(x) is a B_-measurable function and g, (r~1(v))=1 by
the law of large numbers. "It follows that u,(x|r(x)e (o, f1)=P((«, f])- By
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the way, g, takes only the values 1 or 0 on U, because g, is O(co)-ergodic.
Now we put B,=r"'{v|g(4)=1} for each AeU_,. Then g,(4)=1 implies
B, or !(v) and therefore g, (B,)=1. While, g,(4)=0 implies B, nr Y(v)=9
and therefore g,(B,)=0. Consequently, g, (4©B,)=0 for all v, hence we have
1, (A©B,)=0. We note the same holds for u, since we have seen u,zu. Now
the proof follows from these arguments and Lemma 3. Let Ae?, and
u(A)=0. Taking B, e B, as above, we have 0=u(B )= pu,(B,)=pu,(4).
Q.E.D.

§3. Rotationally-Quasi-Invariant Measures on H*

In this section we prove the result announced in the introduction. Let p
be a rotationally-quasi-invariant probability measure on (H¢, B). Take an
arbitrary countably-infinite orthonormal system f, f,,..., f,,... and put p/ =Tpu
by a map T;; xe H*—(x(f,),..., x(f,),...) e R®.  Then u/ is a rotationally-G-
quasi-invariant measure on B(R*®). Because taking an U e O(H) for each U e G
such that <Of,, fou=<(Ue, e;>p (k, j=1,2,..), we can assure that T,'U=
'UT,;. It follows that u/=Tu~T, 'Uu="UT;u="Up’. Hence the limiting
measure y), is defined, u/(B)= S g,(B)dP/(v) for all Be B(R*), and it holds
u/ ~pl by Theorem 1. In ord<[:0r U:o observe that P/ does not depend on the
choice of f,..., f,.... we take another system f1,...,fr,.... We perform
Schmidt’s orthogonalization process for f;, f},..., fy» f1s-.. 0 obtain an ortho-
normal system h,..., h,,.... Itisclear that f, and f are finite linear combinations
of hy,..., hy,...,. We wish to show P/=P" Now consider an operator T on

® such that Te,=> 2 {f,. hogye, for each n. (Actually it is a finite sum.)
T preserves [2-norm as easily seen. Hence we have 'Tu!=ul. Further noting
that {xe R®|r('Tx)e(x, ]} B, for a, fe R, it follows that P"((a, f])=

pni(x € R?|r(x) € (o, f1)=pi(x € R*[r(*Tx) € (o, ) =p"(x € R®|r("Tx) € (, f])
=u(x € H[r('TT,x) € (o, Bl)=p(x € H|r(T;x) € (o, fl)=p'(x € R*|r(x) e (e, B])
=P/((a, f]). Similarly we have P"=P/'. So putting P=P =P/, a
rotationally-invariant probability measure v is defined on (H¢, B), v(B)=S
G,(B)dP(v), for all Be B, where G, is a canonical Gaussian measure on (H "[? 533;
with mean 0 and variace v. We show that u~v. In fact, first we note that
Tyv=pf. Next, for any 4 e B, there exist some countably-infinite orthonormal
system f1, fa,-.s fur--- and A e B(R®) such that y(x)=yxz:((x(f1),-.., X(f,),-..))
for all xe He. It follows that v(A4)=0<>p/(A) =0« (A)=0<u(A)=0. Thus,
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Theorem 2. For any rotationally-quasi-invariant probability measure
u on (He, B), there exists a rotationally-invariant probability measure v such
that u~v. The explicit form of v is as follows. v(B)=S G, (B)dP(v) for
all Be B, where G, is a canonical Gaussian measure on (I[{?”,w)ﬁ) with mean Q
and variance v, and P is a probability measure on [0, ) defined by P(E)=
u(x e He| 11\1]_m]—%/— SN _ x(f,)*€E) for Borel sets EcR, using a countably-

infinite orthonormal system fi, f,s..., fy,-.. on H.
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