
Publ RIMS, Kyoto Univ.
21 (1985), 433-438

Extremal Traces on
Group-Invariant C*-Algebras, II1}

By

Geoffrey L. PRICE*

Abstract

We consider product-type actions of a compact connected Lie group G on a UHF-algebra
21 of Glimm type n°°. Let 9lGcSlT be the fixed-point subalgebras of 21 under the action of
G and of a maximal torus T of G. We show that the fibre of extremal traces of W extending
an extremal trace on 21G is a single orbit under a natural action of the Weyl group of G. We
apply this result to classify the extremal traces of 9IG.

§ 1. Introduction

Let G be a connected compact Lie group, with T a maximal torus of G.

From a continuous representation /?: G-»Aut(B) of G as *-automorphisms of

an n x n matrix algebra B, one may form a strongly continuous representation a

of G of product type on the UHF algebra 21 = ® B of Glimm type n°°. We

consider the C*-subalgebra 21G of elements fixed by a; and by restriction of a to

T, the corresponding fixed point subalgebra 21T.

In [7] it was shown that any extremal trace on 21G arises as the restriction of

a symmetric product state ® co on 21. Using some results from [7] as well as

some K0-theoretic techniques, Handelman [4] has recently shown that any

extremal trace on 21G admits an extension to an extremal trace on 91T. In this

paper we show that, for a fixed extremal trace T on 21G, the fibre of extremal

traces of 21T which restrict to T is a single orbit under the action of the Weyl

group of G. Since it is relatively straightforward to describe the space of tracial

states of 2Ir (see [4], [10], and below), a combination of Handelman's extend-

ability results with the result above yields a complete characterization of the
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extremal traces of 51G.

§ 2. Fixed Point Algebras of Product Actions

Throughout this paper $1 shall denote a uniformly hyperfinite C*-algebra

of type n^. We write 51 as the infinite tensor product $1= ® Bk, where each
keN m

Bk is a copy of an n x n matrix algebra B over C. For m e N, let 8lm = ® Bfc.&=i
Then 5lw consists of finite sums of elements of the form xl®~-®xm, xkeBk.

Moreover, we may view 2lfII as a subalgebra of 51 by identifying it with the canon-
m

ical embedding of ® Bk into 51. Under this identification 5Im and 51 have a
*=i

common identity, 1.

We describe matrix units for 21WI as follows. First let {e,v: !</, ./<«} be
n

matrix units for B; i.e., ^ij^pq = Sjpeiq9 and the diagonal elements have sum £ efi

= 1. Denote by {e^- : 1 < /, j < n} the corresponding matrix units for Bk. If 3,M
is the set of ordered m-tuples / = (/ l 5 / 2 J - - . , /„,)» K/j t<«, then the elements £/j
= ef iyi ®'"®eLjm are m^trix units for 9Im. In particular EIJEKL = dJKEIL, /, J,
K, Le 3m, and the diagonal elements E/j have sum equal to the identity in 5lm.

Let G be a compact connected Lie group, with maximal torus T. Let

ft: G-»Aut(£) be a faithful continuous representation of G, where we assume

that we have chosen matrix units for B so that j8|r embeds diagonally, i.e., for

te T, /J, = Ad(K,), where Ff is the diagonal unitary

(1) Vt=t(y»t)en.
i=l

We then construct the corresponding strongly continuous representation a of

product automorphisms of 51, where o^= (x) /^ for 0 e G.
fce-ZV

We denote by 5(G (respectively, 5(T) the C*-subalgebra of 5( of fixed points

under the action of a (respectively, of a|r). Clearly 2lccgp'csJL Moreover,

if ju is the Haar probability measure on G, it is easy to check that 91G coincides

with the image of the conditional expectation 0, given by

(2)

51G is an AF-algebra: in fact [7] 51G is the uniform closure of the ascending union

of algebras 9I£ = 9Im n 51G, m e AT.

We recall from [7] that there exists an embedding of S(oo), the discrete

group of finite permutations on the symbols of N, into the unitary group
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of 91. Let CF-+U ' „ denote this embedding: then we have, for example,

From [7], S(oo)c9Tc. Hence, if C denotes one of the algebras 91, 91°, 9F, we
shall say that a state co on (£ is symmetric [9] if co^cooAd (L^), all a e S(oo). In
particular, a tracial state on (£ must be symmetric. Observe also that a product

state o)= ® cok on 91 is symmetric if and only if all of the states a>k coincide.
keN

By abuse of notation we write symmetric product states in the form CO =

where P e ^ ( = B] is the density matrix satisfying oJ1(x) = TrJBl (Px), all x e #j.

With the following two results we obtain a characterization of the extremal
traces on 9lr. Although this characterization is already implicit in both [5] and

[10], we provide an independent proof arising from a somewhat different point
of view than in these papers. Moreover, our intermediate step, Proposition 2.1,
is needed in the form given to sharpen the transitivity result in Theorem 3.1.

Proposition 2.1. Let i be an extremal trace o/9lr. Then T is the restric-

tion of a symmetric product state CO=®COD, where DeB is a diagonal density

matrix.

Proof. First observe that for keN, l < i < n , the diagonal elements ek
u lie

in 9IT, from Equation (1). Hence for fixed 772, the diagonal elements £ / /e9TIH,

/ e 3m, lie in 9l]J]. Now for any x e 91 Jj, write

x= Z aijEu, aueC.
/ . J e S ? » i

Since T is a trace, we have

(3) T(X) = T(IX) = T([ Z £//]*) = T( Z (^//^fi//))
/e^m /6^m

= T( Z anEn)= E
fe3m /e^s

Fix £/j = eJ l i l®---®e'-^m in 9I£. Since T is extremal it is multiplicative, by
[7, Theorem 3.2], so that

T(£/,)= HT(*U).k=l

Since T is symmetric we have

n
Now let D e Bl be the diagonal density matrix D= Z T(^/i)^//» and let co=
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be the corresponding product state. Then a straightforward computation shows

that CO(X) = T(X), x e 91JJ, all meN. Therefore co |m
T and i agree on W 3l;£, so

meN
that T = c0|9lT, by continuity. D

We next determine which diagonal D yield traces on 2lr as in the proposition.

To do so we first observe some facts about the Wedderburn decomposition of

3I£ into sums of matrix algebras. Let En (I = (il9 z 2 > - - - 5 *w)e^m) ̂ e a niinimal

diagonal matrix element of Sl£, and define a representation yf of T by

m
The relation (y/, f)En = ( ® Vt)En, teT, follows easily from Eq. (1). Now

k=i
suppose /, J E 3m and that En, Eu lie in the same direct summand of $l£. Then

En=UEjj(U*), for some U e 9IJ, so that

(y/, 0£,z = ( ® ^// = u [( ® »Q£JJ] (^*) = (y* Ofin, ^ e r,fc=l fc=l

i.e., Ji = jj. Conversely, if yI = yJ for /, J e 3W, then note that

so that £7Je^. Let UeWl be the unitary operator [l + (EIJ

— (EH + EJJ)']. Then £/r= l/£jj(l/*), hence £/7 and £jj are in the same direct

summand of 5I£ (cf. [2, Lemma 5.2]).
n

Now suppose D= Z ^ien is a diagonal density matrix of J5, and ID
i=l

= ®COD |^T. If TD is a trace then ^D(EII) = TD(EJj) for £7/, jEjj in the same sum-
m m

mand of 2l£. Computing this gives II \. = FT AA (where (J1?..., ;m) = J).
fc=i fc=i

m

Hence if y/ = yj then Aj = Aj, /, Je3m, where /I7=n \- Conversely, if /lj = Aj

for all /, Je$Im such that yI = yJ, then one shows easily that T^J is a trace,

m e ^V, so that rD is a trace on ^lr by continuity. Hence we have the following.

Theorem 2.2. Let 51T be the fixed point algebra of 51 under the product

action af = Ad(®Ff) of the torus T, where Vt, te Tis given by (1). Then there is

a one to one correspondence, given by T= ®COD \<%T, between the extremal traces
n

T 0/$lT and diagonal density matrices D= £ A^a of B which satisfy

whenever
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I, Je3m, all m eN.

Proof. All that remains to be observed is that the trace T = ®coD|9{T is

extremal for D satisfying (*). But this follows immediately since t is the re-

striction of a product state, [10, Theorem 4.4]. D

Example. Let 91= ® B be the UHF algebra of type 3°°. Consider the
k>l

representation in B of G = SO(3) so that G contains the group T={eieeil +
e~i0e22 + e33: 0e [0, 2n)} as a maximal torus. Using the notation of Theorem
2.2, the product state ®COD restricts to a trace on 2lr if and only if A1A2 = (A3)

2.

§ 3. The Orbit of Extensions

Let T be an extremal trace of 31°. By [4, Theorem 1.3] there exists an

extremal trace TO on QF extending T. It follows from [1] that any other such

extension lies in the G-orbit of t0. We prove a sharpened version of this below.

If T is a maximal torus of G, we denote by N(T) the normalizer group of T,

i.e., N(T) = {geG:gT(g-l) = T}, and by W the Weyl group N(T)/T. The

following result is an analogue of (and has a proof virtually identical to) the

classical result that two elements of T are conjugate in G if and only if they are

conjugate in W, (see [11, Lemma 4.33]).

Theorem 3.1. Let T be an extremal trace on %1G. Then W acts transitively

on the fibre of extremal traces of$lT extending i.

Proof. Note that for keN(T), afc: 2IT->3lr, so that we may define auto-

morphisms aw of 5Ir, we FF, by aw(x) = ak(x), xe9lr, where w = kT. Hence if
T0 is an extremal trace of W extending T, so is TOOCCW.

Now suppose that TO, TI? are extremal traces of 5lr, extending T, and let

DteBy f = 0, 1, be diagonal density matrices such that T,- = (®coI).)|2lT. By [1,

Theorem II. 1 (1)] (see also [3, Theorem 5.4.24]) there is a geG such that

To^oa,. From this it follows easily that D0 = pg(D1). Let N = N(D1) =

{fceG: j9fe(D1) = D1}. Then TeJV, since Dl is diagonal. Also g~lTg^N, for

if teT,

P.-itJP^P.-iMB^P.-M^^

Hence T, g~lTg are maximal tori of N9 so there exists [11, Corollary 4.23] heN
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with h-l(g-lTg)h = T. Set n=gh (e N(T)). Then ^(0^ = 0^ so that il =

T0oa,,, as in the proof of the theorem. D

Remark. From Handelman's result on extendability and the result above,

we have (£(^lG) = (G(3Ir))fr, where (£((£) denotes the extremal traces of a C*-

algebra (L We refer the reader to [5] for some illuminating examples of the

tracial state spaces of UIG and of 3IT.
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