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Hierarchies of Relativized Time-Bounded

By

Hisao TANAKA*>, Masa-akl IZUMI*W and Nobuyuki TAKAHASHI**>

Some results on relativized time-bounded complexity classes are presented. There
can be many kinds of hierarchies of complexity subclasses of relativized NP. For brevity, let
P(A, k) \NP(A, k)} be the relativized complexity class DTIME^(/i*) [resp. NTIME^/i*)] with
respect to oracle set A. (For k=l, replace nk by 2ri). Then for example: 1). There is an
oracle set A such that for all k>Q P(A, k) is properly contained in NP(>4, k) and NP(/4, k) is
properly contained in P(A, k+l). 2) For each &>0, there is an oracle set D (depending
on k) such that for any i<kP(D, i)=£NP(Z>, z)but for all j>k P(D,j)=NP(D,j). Besides,
we show a theorem which is a higher level analog to a theorem of Book, Wilson and Mei-Rui [3],

One of the most Important problems in the theory of computation Is to

find the precise relationship between the two kinds of computation: one Is

deterministic computation and the other is nondetermmlstlc one. A funda-

mental open question Is to determine whether or not

(1) P = NP3

where P [NP] is the class of languages accepted In polynomial time by deter-

minlstic [resp. nondetermlnistic] Turing machines. Baker, Gill and Solovay

[1] (and others) show that the corresponding relativized question to (1) holds

for some oracle sets on one hand and does not hold for some other oracle sets

on the other hand. That is, they construct oracle sets A and B such that
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(2) P(4)=NP(4) and

This result gives a strong influence to methods which will be employed to solve

(i).
Now, for the sake of simplicity, let P (k) [NP (&)] be the complexity class

DTIME(>fc) [resp. NTIME (nk)] for k>l . (For k = l, replace nk by 2n).

Then, although it has been shown by Paul, Pippenger, Szemeredi and Trotter

[5] that P(1)^NP(1), we do not know whether

(3) P(fc) = NP(fc)

holds for any integer k> 1, yet. We suspect that these questions will be difficult

to solve. So5 we here consider their relativized versions and show that there

can be various hierarchies of complexity subclasses of relativized NP. Namely,

it will be shown that (3) holds for some oracle sets B on one hand but does not

hold for other oracle sets A on the other hand. In fact, we shall construct such

oracles A and B independent of fc (Theorems 1 and 2). Significance is their

independence of k. Proofs are easy if their independency of k is not required.

Although our method of the proof for Theorem 1 might be called a kind of the

dovetailing methods (Kintala and Fiscter [4; pp. 49-50]), we will describe its

full proof. Because the polynomial degree of the time-bound function fe(n)

of the e~th polynomial-time-bounded oracle Turing machine does not mono-

tonically increase as e increases. So, our construction of the oracle set A will be

a little better involved. Further, it will be shown that there can be other kinds

of hierarchies, too (Theorem 3). Moreover, these results can be extended to

some classes of exponential time-bounded complexity (Theorems 4, 5 and 6).

Finally, we shall show a theorem which is higher level analog to a theorem of

Book, Wilson and Mei-Rui [3] (Theorem 7).

We mostly use standard terminology and notation for complexity theory.

See, e.g., [l]-[4]. Let I be an alphabet. We assume Z={03 1}. I* denotes

the set of all finite strings consisting of members of Z. A subset L of Z* is called

a language and we denote the complement of L by L: L = Z* — L. For x in

Z*9 \x\ denotes the length of x. Our model for computation is the oracle

Turing machine. An oracle Turing machine (abbreviated by OTM) is a multi-

tape Turing machine with an query tape and with three special internal states
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called the query state q ?, the yes state qY and the no state qN. When an OTM M

Is associated with an oracle set X^Z*, we denote It by Mx and call an OTM

with oracle X, When an OTM Mx enters the state q ?, the machine asks the

oracle X whether the string written on Its query tape belongs to X, If the

string Is In X, then Mx enters qY, otherwise It enters qN.

If the next-move-operation of M Is single-valued, then we call M to be

deterministic, otherwise M to be nondeterministic. Now, suppose that Mx

runs on an Input xe%* and It halts after some running time. (We always

consider OTM9s that halt for every Input.) If the final state in the computation

Is a special state called an accepting state, then we say Mx accepts x. For a

nondeterministic OTM, there can be many computation processes (called

computation paths). Then Mx accepts x if one of computation paths enters an

accepting state. Otherwise we say it rejects x. Let L be a language. L Is

accepted by an Mx (denoted by L=T(MXJ) If the following condition holds:

For all strings x x Is in L iff Mx accepts x.

Let CD be the set of all natural numbers, and let / be a function from co> to

co. An OTM M Is J"-time-bounded if every computation of M on any Input

x halts In fewer than/(|x|) steps, whatever oracle X is used. For & a family

of functions, an OTM M is called to be ^-time-bounded if M Is/-time-bounded

for some / In ^. Let X be an oracle set. DTIME (X,/) [DTIME (X, ^)]

is the class of languages accepted by deterministic / [resp. J^]-time-bounded

OTM's with oracle X. NTIMEpT,/) and NTIME (X, 3?) are their nonde-

termlnistlc counterparts. By convention, e.g., DTIME (Z, nk) Is DTIME

(X,/), where f(n)=nk for fc a constant. For brevity, we use the following

notation:

P (X, k) = DTIME (X9 nk) = U (X, c-nk):c>®} for fc > 1 (by

the speed-up theorem),

P(X, 1)= U {DTIME(X, c - n ) : c>0}(= (X, 2n)),

P(X)= U{P(Z, lc):fc>0},

DEXT(Z, fc)= u {DTIME(X, 2c»k): c>0},

BEXT(Jt) = DTIME(X, 2lin)= U {DTIME(X, 2cn): c>0},

BEPT(Jf»= (X5 2Pol?)= U {BEXT(Jf, fc): Jc>0}.

NP(JST, fc), NP(JT, 1), NP(JT), NEXT(Z, fc), NEXT(JQ and NEPT(JT) are the

corresponding nondeterministic complexity classes to the above, respectively.

We also use P(X, fc+1/2) whose definition is clear. Nonrelativized classes P,

P (k), etc. are used, too.
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For a positive real number a, Fal denotes the least integer larger than or

equal to a. "0(/(w))-time-bounded" means that c-/(n)-time-bounded for

some constant c>0. Similarly for the word "O(f(ri)) steps5'.

§ 3o Two Hierarchies of Subclasses of Relativized NP

In this section we shall construct oracle sets A and B as stated in §1. We

need a fact that is a folklore-type lemma :

Lemma Ao Let m and k be fixed positive integers. Let f(ri) = nm+l/k

and let f'(ri) = nm- rn1/k~\. Then there is a cf-time-bounded TM T for some

constant c such that for any input w T outputs a string v (e.g., of the form wO')

whose length isf'(\w\). D

Let Aki[(k, i>] be a recursive pairing function from (co — {0}) x co onto co. If

e = (k, iy we write (e)0 = k and (e)1 = i. Let Pe\_NP^\ be the e~ih deterministic

[resp. nondeterministic] polynomial-time-bounded OTM, and let fe be its

time-bound. We may assume that fe(n) = cen
k, where k = (e)0. Further we

may assume that c(
e
k+1/2->/k is an even integer for some purpose. (We could

take ce = 1 if k> 1. But, in order to uniformly describe our construction for all

k> 1 and to want to extend Theorems 1 and 2 to Theorems 4 and 5, respectively ,

we do not so.) For any oracle X and any positive integer k, let

Clearly Lk(X) is in NP (X, k). Now we have the following theorem :

Theorem 1. There is an oracle set A such that for all k>Q P(A,k)

1, k)^P(A9 k+i). That is, we obtain the following hierarchy:

(So, for this A, clearly P(A) = NP(A) holds.)

Proof. We construct the required oracle A in stages as in proofs described

in e.g., [1], [3] or [4]. Let A(s) be the set of all strings placed into A prior to

stage s. We construct A in such a way that: for all k> 1

(a) Lk(A)^T(P?k}i>) for any i and hence Lk(A)fP(A, k) and so P (A, k)

^NPG4, k), and

(b) NP (A, k) s p (A, k + 1/2) and hence NP (A, k) c P (A, k + 1).

For (a), our construction causes each machine P^ with (e)0 = k to reject
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Lk(A) by placing a string u into A at an appropriate odd stage 2s + 1. Then

we cancel the index e at this stage and set qe = 2s + l. u must be chosen in

such a way that u has never been queried in any computation performed at any

earlier stage < 2s + 1. To ensure the existence of such a string u we wait until

the conditions (i)-(iv) (see below) are satisfied. To obtain A to be independent

of k, we consider the number b = max {(a)0 : a < e} and choose u depending

on this b.

For (b), consider an arbitrary language L in NP (A, Ic). Let L = T(NP A
ki *>)•

We want a deterministic 0(nfc+1/2)-time-bounded QrYMMA simulating NPA
kti>.

For this purpose we encode full information about nondeterministic acceptance

of a string x by NPA
k>i> into A as a string y of even length. Roughly speaking,

at a certain even stage 2s we place a string y of the form y = Ok 10' 1x10" into

A when and only when NP4
kii> accepts x. In order that every string placed

into A at later odd stages may not queried in any computation of NPAffij on x,

the length of every string queried in any such computation must be less than

For this purpose3 we impose the following condition on y:

Then we get a desired deterministic machine MA as is shown in later proof.

Of course, we also must impose a further condition on y in order to ensure that

A is independent of fc. Now we describe our construction for A in detail. Let

A(0) = A(l) = 0 and start at stage 1. Recall qe is the odd stage at which the

index e is cancelled. As convention, put q_1 = 0.

(I) Stage 2s +1. Let e be the first uncancelled index at this stage and

put e = <fc, i>. Let b = max {(a)0: a<e}. Note that b>l. Suppose the

following conditions are satisfied :

(i) 2s + l>qe.l9
(ii) (2s + l)&/(fco(&+1/2» is an (odd) integer. For brevity, we denote it by m.

(iii) mk >fe'(qe>) for all e' < e, and

(iv) /e(m) = ce-m*<2s+l<2<

Then we execute the following procedure. Run the deterministic machine
pA(2s+i) on faQ string Om. If the machine rejects Om

3 then we add to A a string u

of odd length mk not queried during the computation: A(2s + 2) = A(2s + 1) U {w}.

By (iv) such a string u exists. If Om is accepted let ^4(2s + 2) = ,4(2s + l). Then

cancel the index e at this stage in either case, and set qe = 2s + l.

If at least one of the conditions (i)-(iv) does not hold, then we skip this
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stage and set A(2s -j- 2) = ^4(2s + 1). Clearly every index will eventually cancelled.
(II) Stage 2s + 2. Let e be the last (i.e. largest) index that was cancelled

at an odd stage before 2s + 2. Let J = max {(a)0: a<e}. Consider a stringy

such that

(1) y = QkW^xWn&k<d&2s + 2=\y\ = c(
<

k
k^

for some Ic, i, neco and x e I* .

For such a string y, run NPf£2f+2) on the string x. Note that the length of a

string queried in any computation of this machine on x is less than

c<k,iy\x\k<(c<kiiy\x\k^\x\vn)k/(k+1/2)<(2s

If some computation of this machine accepts x, then we place y into A. Other-

wise, we do nothing.
Let A' (2s + 3) be the set of all strings placed into A by performing the above

procedure for all y satisfying (1), and set ^(2s + 3) = ^(2s + 2) U A' (2s + 3). If

there is no such e or there is no such y satisfying (1), then we skip this stage, and

Define A by ^4= \j A(s). We show that A is a desired oracle set. First
s=0

we show that, in (I), the string u placed into A at the stage qe is not queried in
any computation performed at any earlier stage < qe. For, length of any string

queried at odd stage qe> for any e' <e is less than

where j = (e')Q and fo' = max{(a)0: a<e'}. So, u is not queried at any earlier

odd stage. At an even stage 2t<qe let ef be the largest index cancelled at an
odd stage<2r and let d' = max{(a)0: a<e'}. Hence d' < b = max {(a)0 : a<e}.

Then by (II) with s = t — I, length of any string queried at stage 2t is less than

(2r)d ' / (d '+1/2) < (2s + l)&/( f c+1/2> = \u\.

So, u is not queried at any earlier even stage.

Next, in (II), y is not queried at any earlier stage < 2s + 2. Because, length

of any string queried at any earlier stage is less than 2s 4- 2 which is the length

of y.

Thus, for each stage s at which the described procedure is executed indeed,

any computation performed with oracle A(s) at stage s is the same as one with A.

Now, to prove (a), let i be arbitrary and consider the index e = <lc, i>. m is
as in (I). Then P^ rejects Om iff P^*-) rejects Om iff 3u e A[\u\ = mfe] iff Om e Lk(A).
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So, Pa,i> does not accepts Lk(A).
To prove (b), let LeNP(A, fe) be arbitrary, and let L=T(NPA

kii>). We

define a deterministic O(«k+1/2)4ime-bounded OTM M with oracle A as follows:

Let e' = <fe, z>. Then ge, is determined. Given a string x3 first M generates

the string y such that

(2) y = QkWilxWn and

By Lemma A, this is done in O(|x|fc+1/2) steps. There are only finitely many

x's for which there is no y satisfying (2). So3 we can make a finite table so that

M accepts x iff x is in L for such x's. Now, let 2s + 2 = \y\. Let e be the last

index cancelled before stage 2s + 2. Then e'<e5 since qe,<2s + 2. So k<d5

where J = max {(a)0 : a<e}. Hence (1) holds for these 2s + 2, y, k, i9 n and x.

If y is in A3 then MA accepts x, otherwise MA rejects x. Thus MA accepts x iff

y is in A iff NP$2f?2) accepts x iff NPA
kii> accepts x iff x is in L. That is, MA

accepts L. Obviously, M is deterministic O(nfc+1/2)»time-bounded OTM.

So, L is in P(A, k+i/2) and hence NP(^., k)^P(A, fe+1/2). This completes

the proof of Theorem 1. D

Theorem 2= There is an oracle set B such that for all k>i P(B, k)

= NP(B3 fe).

Proof, Let B(s) be the set of all strings placed into B before stage s, and

let 5(0) = 0.

Stage s. Consider a string y such that

(3) y = ®kWlxWn and s = \y\=c<kii>\x\k for some fe>!3 i, neco and

Run NPffih on x. Length of strings queried in any computation of

on x is less than s. If x is accepted we place y into B. Otherwise we do nothing.

We execute this procedure for every y satisfying (3), and let B'(s + 1) be the set

of all strings added to B at this stage. Let B(s + i) = B(s) U B'(s + 1). If is

no such y we let B(s + l) = jB(s).

Define B= \J B(s). Then B is a desired oracle set. Q
s=0

So, by not all oracles Paul-Pippenger-Szemeredi-Tr otter's Theorem P(l)
^NP(l) can be relativized.
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§ 40 Another Type of Hierarchies on Subclasses of Relativized NP

In this section we prove the following theorem :

Theorem 3= For each fc>l, there is an oracle set Dk such that P(Dk, k)

, k) b

That P(/c) = NP(Jc) implies P(fe+l) = NP(fc + l) is a folkloretype propo-

sition. By Theorem 3 with this proposition, we get the following hierarchy:

» 0]&(V/)D>fc

Proof of Theorem 3, Let k> 1 be fixed. To simplify our proof, we assume

k>2. We use subenumerations {Pe:(e)0 = k or k + l} and {WPe:(e)0 = k or

k+ 1}, where Pe and NPe are OTM's stated in the preceding section. This time,

we may assume that the time-bound functions of Pe and NPe for e = </, i>? where

l = k or k+i, aTGfe(n) = nl, since I>2. As before, D = Dk will be constructed

at stages. Let D(s) be the set of all strings placed into D prior to stage s. We

construct D in such a way that

(a) Lfc(l))^T(PfM>) for any i and hence Lfc(D)<£P(D, fe), so P(D, fc)

^NP(D, fc), and
(b) NP(D, fc+l)<=p(D, fc + i).

At each stage, some strings (possibly none) are placed into D and some

other strings (possibly none) are reserved for the complement D. (a) will be

satisfied at some odd stages and (b) at some even stages. First of all we consider

(b). Let M0 = NP<k+1>i> be arbitrary. We want a deterministic O(nk+1)~

time-bounded OTM M with oracle D which simulates MJ. In order to encode

full information about nondeterministic acceptance of a string x by MQ into

D, we consider the following strings at even stage 2s :

(*) y = &ixWn, where \y\=s,

and we place a string w = yQl into D when and only when "M£(2s) accepts x".

In order that w may not be queried at any earlier stages, we take 1 = \y\k+1. We

have a difficulty to overcome. In Theorem 1, for each nondeterministic 0(nk)~

time-bounded OTM we only need a deterministic O(nk+1/2)-time-bounded OTM

simulating it. This time we must have a deterministic O(nk+ ^-time-bounded

OTM which simulates a given nondeterministic 0(nk+ ̂ -time-bounded OTM.
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So, it Is difficult to expect that every string newly placed into D or newly reserved

for D is never queried at any earlier stage. That is, some unaccepting com-

putation performed at even stage 2s with oracle D(2s) may query some strings

which will be placed into D or reserved for D at some future stages. Then, we

must construct D so that the computation with D(2s) still remains unaccepting

even when the full oracle D Is employed Instead of D(2s). And all accepting

computation with oracle D(2s) still must be accepting one even when the oracle

D Is used. These will be solved by using an idea due to [3].

For (a), no difficulty occurs and a standard technique is applicable. So,

let us turn to describe the construction of D In details. Let D(0) = 0.

( I ) Stage 2s. Consider the following condition

(1) s^l-

If (1) Is not satisfied we skip this stage and set D(2s + l) = D(2s). Suppose (1)

holds. (Clearly all sufficiently large s's satisfy (1). By this, the number of

strings reserved at all earlier even stages including 2s Is less than 22s, as will be

seen later). Consider strings y such that

(2) y = 0llxl0n for some f, nea) and xeZ*, where \y\=s

Let

(3) yi,y2,:;yr ( r>ib y( i ) )
be an enumeration of all such y's. We put yj = Oi^lxjW

n(j) for l<j<r.

Set D0(2s) = D(2s) and consider yjt For simplicity, we write yj = y = Qi\x\ftn.

Run NP^-^^ on x. The length of a string queried In any computation of

this machine is less than sk+1. If x Is accepted we add to D_/_1(2s) the even

length string j;0m, where m = |j;|fc+1. Every string of this length Is not queried

in any computation at any earlier (including this) stage. (See the condition (i)

below). Further we reserve all unreserved strings queried in this accepting

computation for D. If no computation of this machine accepts x, then determine

whether the addition of some unreserved strings to DJ-_1(2s) will lead to ac-

ceptance. (This and following ideas are due to [3; p. 579].) If so (case (a)),

then place those unreserved strings queried in an accepting computation Into D

and D appropriately so that acceptance Is preserved. Place yQm into D. Let

Dj(2s) be the set obtained from DJ-_1(2s) by adding all such strings as above.

If not (case (b)), then we only do reservation of j;0m for D. Let D(2s H- 1) = D/2s)

and go to the next stage. Note that any computation of NP^\s\y on x per-
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formed as above Is not affected by any possible future addition to D. And for

the case of the above illustration

(4) yOm is in D iff NP^\s\y accepts x .

(II) Stage 2s +1. Let i be the first uncancelled index. Suppose the

following three conditions hold :

(i) f<kJ>(qj)<min{s + sk+\ (2s + l)fe) for all j<L

(Note that s + sk+1 Is the length of j;0m, where \y\=s and m = sk+1.)

(ii) f

(iii) (

Run JP^>+1) on z = 02s+1. We reserve all unreserved strings queried in

the computation for D. If the machine rejects z, then we take a string u of length

(2s+l)fc such that it is not queried in the computation and is unreserved at

the beginning of this stage. (Existence of such a string u Is proven In Claim

1 below.) Set D(2s + 2) = D(2s + l) U {u}. If the machine accepts z, then we
reserve all strings of length (2s + l)& for D and D(2s + 2) = D(2s-hl). In either

case we cancel the index i and set qt = 2s + l. If one of the conditions (I)-(iii)

does not hold, then we skip this stage and let D(2s + 2) = D(2s + l). Clearly
each Index i will eventually be cancelled.

00

Define D by D = \j D(s). We show that D Is a desired oracle set.
s=0

Claim 1. When an odd stage 2s + 1 Is executed, there is such a string u.

Note that even though u had been queried In some computation for the case (b)

at an earlier even stage 2s' (<2s + l) the case (b) remains true after adding u to

D. [Proof. By (I) we do not have to consider any earlier odd stage. So,

we evaluate the number of strings reserved at earlier even stages. Let 2s'

<2s + l. At stage 2s7, for each string y = QlixWn with |y|=s' the number

of strings reserved at the computation on x is less than (s')fc+1. So the number

of strings reserved with respect to all such y's Is less than

(s')&+1-(the number of such x9s)<(s')fc+1-2s '<22(s '-2)

by (1). Hence the entire number of strings reserved at all earlier even stages is

less than £ 22(s'~2)<22s, where s0 is the least i such that £k+12r<22^-2> holds.
S'=S0

The number of strings queried at the stage 2s + 1 Is less than (2s + l)k+1. So by

(iii), their sum is less than 2(2s+1)k. Consequently, there is such a string 11.]

By using Claim 1 we can show P(D, fc)^NP(D, fe) as before. Finally

we show P(D, k + l) = NP(D, fe+1). Let L be an arbitrary language In

NP (D, fc+ 1) and let i be such that L=T(NP?k+li t>). We define a deterministic
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O(nk+ ̂ -time-bounded OTMM with oracle D as follows: Given an input x,

M produces a string y such that y = 0*1*10", where w = |x|. This is done in

fewer than O(|x|) steps. Put s = |j;j. So we are considering (2). We execute

stage 2s. Let the above y be the j-th member in the enumeration (3): y = yj.

M produces a string yQm, where m = sfc+1. This is done in fewer than 0(|x|&+1)

steps. Then, M asks the oracle D if j;0m is in D. If the answer is yes, then M

accepts x. Otherwise M rejects x. By (4), x is in L iff NP^^t> accepts x iff

j;0m is in D. Therefore M accepts L. Clearly M is deterministic O(w/c+1)-

time-bounded OTM. So, L is in P(D, fc+1) and hence NP(D, fc+1)

We can easily extend Theorems 1, 2, and 3 to the following form:

o There is an oracle set E such that for all lc>03 BEXT(E3 fc)

: NEXT (E, fe) £ DEXT (E, fc +1).

§o There is an oracle set F such that for all /c>03 BEXT(F3 fc)

= NEXT(F3lc).

Ttoeoffem 60 For eacft fe > 03 there is an oracle set Gh such that DEXT (Gfc3 fe)

^NEXT(Gfc3 fc) fen^ BEXT(Gft3 fe + 1) = NEXT (G&3 fe+1).

Proof. In the proof of Theorem 33 we used the equality DTIME (X, nk)

= U {DTIME (X, cnk): c>0} for fc>l. This time we do not have

(X, 2»k)= U {DTIME (X, 2cnk): c>0}.

So we must modify the proof of Theorem 3 a little. Let J^ = {2c"k: c>0}0

Let D£T<M> [-A^^ajJ be the z'-th deterministic [resp. nondeterministic]
^-time-bounded OTM with its time-bound h<ksi>5 where h<kii>(n) = 2c'nk with
c / = = c<fc,i>- ^et k^l be fixed. We may assume that c^^J^ is an integer. Let

As before, we construct G = Gk in stages. Let G(0) = 03 g_!=0 and ft<fc,-i>(0)

= 0.

Stage 2s. Consider the strings y such that

y = QllxlQn, where \y\=s.

Let y1?...? yr be an enumeration of all such j9s. Let G0(2s) = G(2s) and consider

y = yj (l< j<r). This time, run NEPfaffi on x in fewer than 2"k+1 steps.

[Note. If the machine freely runs on x, then some strings of length about
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exp(2, c<k+lsi>- \x\k+1) may be queried in the computation. ca+u> may be
.2*

very large (e.g., 22'* ) and can not be bounded by an appropriate number,

e.g., by sk+l. Then computation with oracle G(2s-f 1) may not coincide with

one with oracle G.] Subsequent argument is mutatis mutandis the same as in

the proof of Theorems. Claim. DEPT(G, fc + l) = NEPT(G, k + l). For,

let L=T(NEP?k+lii>). We define a deterministic 2°<l*lk+1>-time-bounded

OTMMG which simulates NEP?k+lii>, as follows: Given x, M first produces

the string

y = QilxlQn, where n = c^+
k^>-\x\.

This is done by O(|x|) steps. Subsequent argument is mutatis mutandis the

same as in the proof of Theorem 3. D

§50 2lin Versus 2Pol^0

In this section, we consider a higher-level analog to a theorem of Book,

Wilson and Mei-Rui [3]. Let DEi C/VEJ be the z-th deterministic [resp.

nondeterministic] 2n"-time-bounded OTM with its time-bound gt, where gi(ri)

= 2din, for a positive integer dt. Further, let DEPi \_NEP^\ be the i-th deter-

ministic [resp. nondeterministic] 2poly-time-bounded OTM with its time-bound

2pi(n\ where pt is a polynomial. The following proposition is due to Book [2]:

Proposition, (a) P = NP implies DEXT = NEXT, and (b) DEXT = NEXT

implies DEPT = NEPT.

Proof. We shall state a proof of the relativized version of (b): For all

oracle X, if DEXT (X) = NEXT (X), then DEPT (X) = NEPT (X). Let

K(X) = {OilxlOn: some computation of NEPf accepts x

in fewer than 2n steps} .

Clearly K(X) is in NEXT (X) and hence NEPT (JT)<= p (K(X)) as in [1; Proof of

Lemma on p. 433]. Suppose DEXT (X) = NEXT (X). Then K(X) is in

NEXT(Z) and so there is an index i such that DEf accepts K(X). To show

NEPT (Z)c: DEPT (X), let L be an arbitrary langugage in NEPT(r>. Then

there is an index j for which P|W accepts L. Define a deterministic 2poly-

time-bounded OTMM with oracle X which accepts L: Given an input x,

M first simulates the computation of jpJW on x. If a string w is queried in the

computation, then using oracle X M simulates the computation of DEf on w
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and decides whether w is in K(X). The latter simulation can be done in fewer

than 2d r lw l steps. M accepts x iff Pf(X) does. So, M accepts L. Length of

such a string w is less than PJ(\X\) and the number of queried strings is less than

p/(|x|). Therefore the entire steps of the computation of M on x is bounded by
2^(I*D for some polynomial p. Hence M is a deterministic 2poly-time-bounded

OTM. So, L is in (X). D

In contrast with (a), Book, Wilson and Mei-Rui [3] have shown that

there is an oracle set ^such that P(W)*NP(W) but DEXT(00 = NEXT(WO-
Here we show a counterpart for (b) :

Theorem 7o There is an oracle set H such that (H ) ̂  NEXT (H)

but (H) = NEPT (H).

Proof. As before, H will be constructed by stages. Proof is less com-

plicated than that of Theorem 1 or 3. So we directly state the definition of H.

Let H(s) be the set of all strings placed into If before stage s and let ff(0) = 0.

At some stages we reserve some strings for H; and the index e of each DEe is

cancelled at some stage qe when we ensure that DE** does not accept the language

Clearly LEX(H) is in NEXT(H).

Stage 2s. Consider strings y such that

(1) y = 0*1x10" and 2s = \y\=2Pi^x^ for some i, new and xeZ*.

Run TVETf (2s) on x. If it accepts x, then we take a string yw such that

(2) \w\=pg{\x\)2 + e, where s = 0 or 1,

(3) |j;w| is odd and

(4) yw is not reserved for H, yet.

And we add yw to H. Such a string yw exists. (See Claim 1 below.) If

NEPf(2s) rejects x we do nothing. Let H'(2s+l) be the set of all strings

placed into H at this stage after performing the above procedure for every y

for which (1) holds, and set H(2s + l) = H(2s) U H'(2s + l). If there is no such

yletH(2s + l) =H(2s).

Stage 2s -hi. Let e be the first uncancelled index at the beginning of this

stage. Suppose the following 4 conditions are satisfied :

(i) 2s + l>ge_1(logqe-l) (If e = Q put the right-hand-side = 0).

(ii) log (2s + 2) is an even number,

(iii) There is no string of length larger than 2s + 1 which is reserved for H
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before this stage,

(iv)
Then run DEf<2s+1) on the string z2s+1=0 lo^2s+2>. We reserve for H all

strings of lengths larger than 2s + 1 negatively queried in the computation. If

D£f(2s+1) rejects z2s+1, then we choose a string u of length 2s + 2 not queried

in the computation and add it to H(2s+i) to make H(2s + 2). By (iv), such a

string u exists. If DE^2s+1^ accepts z2s+1 let H(2s + 2) = H(2s + l). In either

case we cancel the index e and let qe = 2s + l. If at least one of (i)-(iv) is not

satisfied, then we do nothing and put H(2s + 2) = H(2s + l). Clearly every

index e will eventually be cancelled.
00

Let H= \J H(s). U is a desired oracle set. To prove this, we note the
s=0

following : When an odd stage 2s + 1 is executed, the following condition holds :

(v) For any e, j, i,x and^if e = 0or 1 and j; =

then there is a string w such that |w|=j^(|.x|)2 + e and \yw\ is odd and
DEf (2s+i) ciogg not query yw in the computation on z2s+i.

This is easily proved by using (iv). Next,

Claim 1. When an even stage 2s is executed, such a yw exists and this

string is not queried in any computation performed at any earlier stage. [Proof.

Let y = 0*1x10" with 2s = \y\=2Pi^x^ be any string taken at stage 2s. Let

2s' + 1 be the last odd stage executed before 2s, and let e be the cancelled index

at this 2s' + 1. By (v) with s = s', there is a string w such that |w|=^(|x|)2 + s,

|jw| is odd and D£f(2s'+1) does not query yw in the computation on z2s' + i°
Since only strings of lengths less than 2s' 4- 1 are queried at odd stages < 2s' + 1

(because of (i) with s = s'), yw is not reserved for H yet. Moreover, only strings

of lengths less than 2s are queried at even stages < 2s. So yw is not queried at

any earlier stage.]

And, when an odd stage 2s + 1 is executed, the chosen string u is not queried

at any earlier stage. This is because of (iii). So, as before, we see that LEX(H)

is not in DEXT (H). Finally, we show NEPT (H) is contained in DEPT (H).

Let L be in NEPT (H) and let i be such that L=T(NEP?). We define a deter-

ministic 2poly-time-bounded OTMM" with oracle H which accepts L. Given

x, M first produces a string y such that

(5) y = QilxlO»&\y\=2p*UxU.

Let |j;|=2s. Then M produces a string w such that |w|=j^(|x|)2 + £ (e = 0 or 1)

and such that \yw\ is odd. M accepts x iff yw is in H. So, by Claim 1, M
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accepts x iff TVETf(2s) accepts x Iff NEPf accepts x Iff x Is In L. Hence L Is

accepted by MH. Guessing such a string w can deteraiinlstlcally be done in

fewer than c-2P i ( |*l ) 2 + 1 steps for some constant c. So, by using oracle H M

can determinlstlcally decide whether It accepts x In fewer than 2p(l*' ) setps for

some polynomial p. Hence L Is In DEPT (H). Consequently NEPT (H) Is

contained in DEPT (H). D

A language on a one-letter alphabet Is called a tally language. It Is known5

by Book, that If BEXT = NEXT then P can not be separated from NP by any

tally language. Constrast with this, we have:

CoroISaryo There is an oracle set H such that DEPT (H) = NEPT (H)

but BEXT(ff) is separated from NEXT (If) by a tally language.
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