
Publ RIMS, Kyoto Univ.
21 (1985), 455-540

Theory of Symbolic Expressions,

By

Masahiko SATO*

A new domain S of symbolic expressions is introduced and its structure is studied formally.
To study S formally an intuitionistic first order theory, SA, is introduced. SA is a theory
adequate for developing elementary metamathematics within it. GodeFs second incom-
pleteness theorem is proved formally within SA to show the adequacy. A modified version
of Post-Smullyan's formal system is used to define basic concepts in SA. The close relation

between formal systems and the logic programming language Qute is also pointed out.

This paper is a continuation to our former paper Sato [10], which we will

refer to as I in the sequel In this paper we continue our study of the domain

S of symbolic expressions. In I we studied the domain S informally, but in

this paper we treat S formally within a formal mathematical theory.

Through our attempts at formalization of the domain S we encountered

several technical difficulties. Most of these difficulties came from the fact that

cons of 0 and 0 was again 0. (We will not go into the details of the difficulties,

but we just mention that they are mostly related to the induction schema on

sexps.) We were therefore forced to reconsider the domain itself, and by a

simple modification (or, rather simplification) on the definition of symbolic

expressions we got a new domain. This domain, which we will denote by the

symbol S, will be the objective of our study in this paper. We will refer to our

old domain of symbolic expressions which we studied in I as SoW.

This paper can be read without any familiarity with I. We should, how-

ever, remark that these two domains are very similar to each other and we will

This paper is based on the result of activities of working groups for the Fifth Generation
Computer Systems Projects.
Communicated by S. Takasu, April 25, 1984.

* Department of Information Science, Faculty of Science, University of Tokyo, Tokyo,
113, Japan.

456 MASAHIKO SATO

study our new domain with the same spirit as in I.

Besides our previous works [10, 11, 12], the domain of symbolic expressions

recently attracted the attention of some logicians. Feferman [4] introduced

second order theories of symbolic expressions and showed that elementary

metamathematics can be naturally developed within his systems. Hayashi [7]

also introduced a theory of symbolic expressions and gave sound foundation

for his computer implemented system that synthesizes a LISP program from the

constructive proof of its specification. The most important reason for the

choice of symbolic expressions as the domain of discourse is because they provide

a natural and easy way of encoding the metamathematical entities such as proofs

or programs. We will adopt the domain of symbolic expressions as our basic

objects of our study for the very same reason.

The paper is organized as follows. In Section 1, we introduce our new do-

main S of symbolic expressions informally. In Section 2, we introduce the

concept of a formal system, which is a simplified version of the corresponding

concept we studied in I. As in I, formal systems will play fundamental roles in

our formal study of S. We also point out that a formal system is essentially

equivalent to a program written in a logic programming language. In Section 3

we introduce a formal theory of symbolic expressions which we call USA (for

Basic Symbolic Arithmetic). We also explain the intended interpretation of the

theory. In Section 4 we introduce a formal system FOT (for First Order

Theory). In FOT we can regard any sexp as an axiom system and we can

define arbitrary axiom system with countable first-order language over intui-

tionistic (or classical) logic by taking suitable sexp for the axiom system.

Formal development of mathematics and metamathematics on the domain

S begins from Section 5. In Section 5 we introduce an axiom system SA (for

Symbolic Arithmetic), which is a conservative extension of BSA, as a system

which is adequate for the formal development of metamathematics within the

system.

In Section 6 we develop simple mathematics within SA as a preparation for

Section 7 where we develop elementary metamathematics within SA. Section 8

will be devoted to the formal proof of some of Godel's incompleteness theorems.

THEORY OF SYMBOLIC EXPRESSIONS, II 457

i 1. Symbolic

lolo

We define symbolic expressions (sexps, for short) by the following Inductive

clauses :

1. * is a sexp.

2. If s and t are sexps then cons(s, t) is a sexp,

3. If s and t are sexps then snoc(s, f) is a sexp.

All the sexps are constructed by finitely many applications of the above three

clauses, and sexps constructed differently are distinct. We denote the set of all

the sexps by S. We denote the Image of the function cons by M and that of

snoc by A. We then have two bijective functions :

cons: SxS-»M

snoc: SxS-»A

Moreover, by the construction of S, we see that S is the union of three mutually

disjoint sets {*}, M and A. In other words, S satisfies the following domain

equation :

We will use the symbol 6 = 9 as Informal equality symbol, and will reserve the

symbol 6 = 9 for the formal equality sign. Elements In M are called molecules

and those in A are called atoms and * is called nil. We define two total functions,
car and cdr, on M by the equations:

car(cons(s, f))=s

cdr(cons(s, f)) = t

Similarly we define two total functions, cbr and ccr, on A by the equations:

cbr(snoc(s, i))==s

ccr(snoc(s, f)) = t

Compositions of the functions car, cbr, ccr and cdr will be abbreviated following

the convention In LISP. For Instance:

cabcdr(t) = car(cbr(ccr(cdr(tJ)J)

We must Introduce some notations for sexp. The so-called dot notation

and list notation introduced below Is fundamental.

458 MASAHIKO SATO

[ti,...,tn.tn+l]=cons(tl9 [t 2 9 . . . , t n . t n +

In particular we have

[s. f] =cons(s, f)

[]=*

A sexp of the form [f l9..., tn~] will be called a list. We will also use the following

abbreviations.

s[.f] for [s.f]

$[*!,..., rB.tB+1] for [s, tl9..., tn.tn + l\

s[f l v . . , f j for [s, *!, . . . ,*„]

For snoc, we only use the following notation

(s. f)=snoc(s, t)

Parentheses will also be used for grouping. Thus (t) will not denote snoc(t, *)

but will denote t. (Readers of our previous papers should note the change of

notations.)
The basic induction schema on S can be stated as follows. Let $(t) be a

proposition about a sexp t. Then we may conclude that <&(f) holds for any t,

if we can prove the following three propositions.

(i) *(*)
(ii) If <f>(s) and #(f) then <P([s . f])

(in) If <f>(s) and #(f) then $((s . 0)

L2o symbols and variables

An atom of the form

(*.*>
will be called a symbol Let Z be the set of 128 ASCII characters. We define
an injective function p: ZWM by using 7 bit ASCII codes, regarding * as 0 and
[*] as 1. For instance, we have

P(l) = [*,[*],[*],*,*,*,[*]]

We extend p homomorphically to I1*, i.e., we define p*: I^-^lVl by

P*(GI'-GI^ = _P(GI),..., p((7k)] (o^ e I). Now consider a string of alphanumeric
characters such that

THEORY OF SYMBOLIC EXPRESSIONS, II 459

(I) Its length is longer than 1,

(ii) it begins with a lowercase character and
(ill) Its second character Is a non-numeric character.

Such a string will be called a name. Let n be a name. Then, by definition, n

denotes the symbol

(*.[*. p*(7T)])

An atom of the form
(var. x)

Is called a variable. (Note that 6var9 denotes a specific symbol. See Example
1.1 below.) We introduce notations for variables. A string of alphanumeric

characters such that
(I) It begins with an uppercase character, or
(II) it consists of a single lowercase character, or
(ill) Its first character Is lowercase and Its second character Is a numeral

denotes a variable as follows. Let n be such a string. Then, by definition, n

denotes the variable

(var.(*.[*.p*(7c)]))
We will regard the under score character 6_9 as a lower case character for con-

venience.

Example 1.1.

var = (*.[*.[[[*], [*], [*], *, [*], [*], *], [[*], [*], *, *, *, *3 [*]],

[[*],[*],[*],*,*,[*],*]]])
= (var. (*.[*.[[[*], *9 [*], *, [*], [*], *], [[*], [*], *, *, *, *, [*]],

[[*],[*],[*],*,*,[*],*]]])) n

§ 2o Formal Systems

2010 formal system

In I, we have defined the concept of a formal system. Here we will redefine

a formal system by giving a simpler definition of It. As explained in I, our

concept of a formal system has its origin in Smullyan [13]. However, unlike
Smullyan's, our formal system will be defined directly as a sexp. This has the

advantage of making the definition of a universal formal system simpler. An-
other practically very important aspect of our concept of a formal system is that

460 MASAHIKO SATO

It can be quite naturally viewed as a so-called logic program. This means that

we can execute formal systems on a computer if we have an interpreter for them.

In fact, Takafumi Sakurai of the University of Tokyo implemented such an

interpreter. (See [12].) We can therefore use formal systems both as

theoretically and practically basic tools for our study of symbolic expressions.

Note. When we Introduced formal systems in I, we were Ignorant of the

programming language PROLOG. But after we had submitted I for publication,

we knew the existence of the language. Since it was clear, for any one who

knows both PROLOG and Post-Smullyan's formal system (or, the concept of

inductive definition), that they are essentially the same, we asked T. Sakurai to

implement an interpreter for our formal systems which we introduced In I.

The interpreter was named Hyperprolog, and it was used to debug the definition

of Ref which we gave In I. In this way we could correct bugs In our formal

systems In the stage of proof reading. We believe that the existence of an

interpreter is essential for finding and correcting such bugs. We also remark

that Hyperprolog was quite useful in designing our new formal system, which we

are about to explain, since it can be simulated on Hyperprolog. Finally we

remark that we have designed a new programming language called Qute which

can compute relations defined by our new formal system. Qute was also

implemented by T. Sakurai. (See Sato and Sakurai [12].) Q

Now let us define our formal system. We will call, by definition, any sexp a

formal system. Our objective, then, is to define a relation proves(p, a, FS) which

holds among certain triples p, a, FS of sexps where the sexp FS is treated as a

formal system. We will employ Informal inductive definitions to define the

relation proves. We will say that p is a proof of a in the formal system FS,

If proves(p, a, FS) holds. We write:

p h-FS a for proves (p, a, FS)

We will say that a Is a theorem In FS If proves (p, a, FS) holds for some p, and

will use the notation:

\-PSa
for It.

2,2

As an example of informal Inductive definition, let us define the relation

member (x, L) which means that x is a member of L:

THEORY OF SYMBOLIC EXPRESSIONS, II 461

(Ml) => member(x, _x, L])

(M2) member(x, L) =^> member(x, [y , L])

(Ml) means that the relation member(x5 [x.L]) holds unconditionally for any

sexp x and L, and (M2) says that if the relation member(x, L) holds then the

relation member(x, \y . L]) also holds for any sexp x, L and y. We have omitted

the usual extremal clause which states that the relation member(x9 L) holds only

when it can be shown to be so by finitely many applications of the clauses (Ml)

and (M2).

Let us now consider about the nature of (informal) inductive definitions in

general All inductive definitions which we consider in this paper consist of a

finite set of clauses (or, rules) of the form

CO 7i»- . . ,y»=>y

where n^O and F is the name of the clause which is used to identify the clause.

For example, in (Ml) n is 0 and in (M2) n is 1. Suppose we have a finite set of

inductive clauses like above, and we could conclude that a certain specific relation

holds among specific sexps from these inductive clauses. Let us write our

conclusion as a. (If our set of inducitve clauses consist only of (Ml) and (M2)

above, then a is of the form member(x, L) where x and L are certain specific

sexps such as orange or [apple, orange].) We now show that we can associate

with a an informal proof II of a. According to the extremal clause, a is obtained

by applying our inductive clauses finitely many times. Let (F) be the last applied

clause. Since the clause (F) is schematic, when we apply (F) we must also

specify for each schematic variables xt a sexp vt as its value. Let xlv.., xk be

an enumeration of schematic variables occurring in (F) and let

By substituting vt for xi9 we can obtain the following instance of (F) :

CTd) <*!, . . . , <*n =$®

Note that the conclusion of (FA) must be oc by our assumption that oc is obtained

by applying (an instance of) (F). That (FA) is applicable also means that each

af has already been shown to hold by applying inductive clauses finitely many

times. Since the number of applications of inductive clauses which was used to

show Qcf is smaller than that was required to show a, we may assume, as induction

hypothesis, that we have an informal proof II t of at for each l^i^n. Using

462 M ASAHIKO SATO

these data, we can construct a proof II of a as the figure of the form :

2.1.

From (Ml) and (M2), we can conclude that memfoer(orange3 [apple9

orange]) holds, and we have the following proof associated with this.

(Ml)<*: = orange, L: = []>_
(M2) <* : = orange, y : = apple, L : = [orange] >

203o off the ffelatiom proves

Based on this Intuitive Idea of Informal proof, we define the relation proves

etc. as follows. First we define ne (for wot equal) which has the property that

ne(x9 y) holds Iff x and y are two distinct sexps0

(Nl) =*ne(*9[u.v])

(N2) =>Fw(*,(ti.i,))

(N3) => m<0. *],*)
(N4) =»n*((s.O,*)

(N5) =>ne(0. *], («.»))

(N6) ==»n<(5.0, [«•»])
(N7) nc(5,ii)=»/ig(0.0>[ii.i;])

(N8) ne(t,v)=*ne(ls.tl,[u.vD

(N9) H£?(S, M) => ne((s . 0, (M . t>))

(N10) ne(r? i?) =» ne((s . 0, (w - f>))

We next define assoc which is used to get the value of a variable from a given

environment.

(Al) => assoc(x, [[x . 0] . L], v)

(A2) «e(x, j), assoc(x, L, i?) => assoc(x, l£y , w] . L], v) .

assoc(c, [[a.apple], [b.banana], [c.carrot]], carrot) D

The relation get Is used to extract the i-th member of a list L.

(Gl) =* get(*} [v. L], v)

(G2) get(i, L, t?) => ^er([*. i], [w. L], t;)

203o

i=, *], [lisp, prolog, qute], qute) Q

THEORY OF SYMBOLIC EXPRESSIONS, II 463

The following relation eval gives a simple evaluator of a sexp under a certain

environment. Substitution of values to variables can be simulated by eval.

(El) assoc((var. t), Env, v) => eval((var. f), Env, v)

(E2) =$eval(*9 Env, *)

(E3) eval(s, Env, u), eval(t, Env, v) ==> eval(^_s. f], Env, [u . t;])

(E4) eval(s, Env, u), eval(l, Env, v) =$ eval((snoc. [s, f\), Env, (u . v))

(E5) => eval((* . t), Env, (* . 0)

(E6) => eu<2/((quote. f)9 Env, i)

We will use the following abbreviations for atoms whose cbr is snoc or quote.

(: s. t) for (snoc. [s, t])

(: t) for (snoc. [t, *])

'f for (quote. t)

eval([x, of, y? and9 z9 is, '(apple . orange)] ,

[[x . snoc], [y . apple], [z . orange]] ,

[snoc3 of, apple, and, orange, is, (apple . orange)]) D

In terms of these relations we can now define proves ans Iproves.

(LI) =*lproves(\:], [], FS)

(L2) proves(p, a, FS), lproves(P, A, FS)

=^> lproves([p . P], [a . A], FS)

(PI) assoc(Prd, FS, K), get(i, R, \c . C]), eval(c9 Envs a),

eval(C, Env, A), lproves(P, A, FS)

=> proves([[Prd, i, Env] . P], IPrd . a], FS)

We can also define the relation |— FS a by the following inductive definition.

(Tl) proves(p, ay FS) =$ theorem(a, FS)

We show by an example how our intuitive idea of proof has been formalized,

Recall that the relation assoc was defined by the two clauses (Al) and (A2) and

that Its definition depends also on the relation ne. Since ne has 10 clauses

((Nl)-(NlO)), we need 12 clauses to define assoc. We formalize these 12 clauses

in two steps. In the first step we formalize clauses (Al) and (A2) Into a sexp

Assoc and clauses (Nl)-(NlO) into a sexp Ne. In the second step we obtain a

formal sytem _Assoc, Ne] as a formalization of assoc and ne. The sexp Assoc,

which Is the translation of clauses (Al) and (A2), is defined as follows:

464 MASAHIKO SATO

[assoc

?[[x,[[x.v].L],v]]

3[[x, [[y.w].L],v]

, ne[x, y]

, assoc[x, L, v]]

]

We explain the general mechanism of our translation of clauses. We translate

clauses that are used to define a same relation into a single sexp. We therefore

translate (Al) and (A2) into Assoc and (Nl)-(NlO) into Ne. Recall that each

clause is of the form:

and that the general form of y or yt is:

We translate Prd into corresponding symbol. For instance assoc is translated

into 6assoc?. Arg's are translated as follows. Since Afg is a schematic exp-

ression for sexp it has one of the following forms: (i) a schematic variable, (ii)

*, (iii) [a. /?], (iy) (a • /?)• In case of (i) we translate it into corresponding (formal)
variable. Thus x is translated into sx'. If Afg is * then it is translation into

. If Afg is of the form (iii), its translation is [a. /?*] wherea* (/?*) is the trans-

lation of a ()8, resp.). Similarly, but slightly differently, case (iv) is translated

into (: a* ./?*) if a in not * and it is translated into itself if a is *. (Since the

translation must be one to one, we cannot translate (a. /?) into (a*. /?*) because,

then, (ii)-(iv) will leave no room for the translation of schematic variables.)

By extending this translation naturally we obtain the above translation of (Al)

and (A2). For the sake of readability we introduce the following abbreviation

for the above sexp Assoc.

+ assoc

|x, [[x.v].L],v

|x, [[y.w].L],v

- ne[x, y]
— assoc[x, L, v]

2«5o By the similar idea as above we can translate the informal

proof in Example 2.1 into the following formal proof p:

THEORY OF SYMBOLIC EXPRESSIONS, II 465

[[member, [*], [[x . orange], [y . apple], [L . [orange]]]] ,

[[member, *, [[x. orange], [L.[]]]]]]

Let Member be the following sexp:

+ member

|x,[x.L]

|x,[y.L]
— member[x, L]

3

Then we can easily verify that

P^iMemben member[orange, [apple, orange]]

holds and hence

\~iMemben member [orange, [apple, orange]]

holds. D

2o40 nmSYersml formal system

By translating the relations we have defined so far we obtain a formal system

Umfiv which Is universal among all the formal systems. We thus define
as the sexp :

IMv = [Ne, Assoc, Get, Eval, Lproves, Proves, Theorem]

where Ne, Assoc, Get, Eval, Lproves, Proves and Theorem are respectively:

+ ne

1 *, [u.v]

| * , (: u . v)

| [s- t] ,*

[s.t],[u.v]
- ne[s, u]

[s.t],[u.v]

- ne[t, v]
(: s . t) , (: u . v)

- ne[s, u]

466 MASAHIKO SATO

| (: s . t) , (: u . v)

- ne[t, v]

3

-h assoc

|x,[[x.v].L],v

I x, [[y.w].L], v

- ne[x3 y]

— assoc[x3 L, v]

3

+ get

[*, [v.L],v

|[*.i],[w.L],v

- get[i, L, v]

3

+ eval

| (: var. t), Env3 v

— assoc[(: var. t), Env, v]

| #3 Env, *

| [s.t],Env,[u.v]

— eval[s3 Env, u]

— eval[t, Env3 v]

1 (: snoc.[s, t]), Env, (: u.v)

— eval[s, Env, u]

— eval[t, Env, v]

|(: *. t)3Env,(: *.t)

| (: quote.t), Env, t

3

+ Iproves

I C], C], FS
|[p.P3], [a.A],FS

— proves[p, a, FS]

- lproves[P, A, FS]

3

+ proves

| [[Prd, i, Env].P], [Prd.a],FS

- assoc[Prd, FS5 R]

THEORY OF SYMBOLIC EXPRESSIONS, II 467

- get[i,R, [c.C]]

— eval[c, Env, a]

- evai[C5 Env, A]

- lproves[P? A, FS]

3

+ theorem

I a, FS

— proves[p, a, FS]

?

The following theorem establishes that Urn!? Is In fact a universal formal system.

(I) ne(x} y) <==$ h-Univ ne[x, j;]

(ii) assoc(x, L, v) <^=> \— Un!v assoc[x5 L, v]

(III) get(i, L, y)<^=> KUniv get[i, L5 u]

(iv) eval(t, E, y)<^=» h-Univ eval[f, E5 i;]

(v) lproves(P, A, FS) <^=^ h-Univ lproves[F, ^3

(vi) proves(p, a, FS)<=> h-Univ proves[p3 a, FS]

(vii) theorem(a, FS)4=^> Huniv theorem[as FS]
We omit the simple but tedious combinational proof of this theorem. The

following corollary is simply a restatement of the last two sentences of this

theorem.

(i) P I-FS a <=> h-uniY proves [/?, a, FS~\
(ii) h-FS a 4=» l-Univ theorem [a,

§ 30 Formal Theory off Symbolic Expressioms : BS A

In this section we introduce a formal theory of symbolic expressions which

we call BSA (for Basic Symbolic Arithmetic). The theory is a first order In-

tuitlonistic theory which is proof theoretically equivalent to HA (Heyting

arithmetic).

Traditionally, metamathematical entities such as terms, wffs and proofs

have been considered as concrete figures which can be displayed on a sheet of

paper (with some kind of abstraction which Is necessary so as to allow finite

but arbitrarily large figures). Our standpoint is, however., not like this but to

468 MASAHIKO SATO

regard these entities as symbolic expressions. By taking this standpoint we can

define SA formally in terms of a formal system. It is also possible to define

USA in this way, but for the convenience of the reader who is perhaps so accus-

tomed to the traditional approach we first define USA in the usual way and will

then explain how IBS A so defined can be isomorphically translated into S. We

reserve BSA as the name for the system which we will define as a formal system

in Section 3.7, and use BSA to denote the theory which we now define by a

traditional method.

The language of BSA consists of the following symbols.

o individual symbols: mil

0 function symbols: cons,

o pure variables: varf for each sexp t

o predicate symbols: eq (equal). It (less than)

© logical symbols: or, Imply, all,

© other symbols: (,), 6, ' (comma), free

3o20 variables, and wffs

Using the language introduced above, we define syntactic entities of BSA.

We first define variables as follows.

1. For each sexp t, the pure variable varr is a variable.

2. If x is a variable then free(jc) is a variable.

For a variable x we define its pure part as follows.

1. If x is a pure variable then its pure part is x itself.

2. If the pure part of x is y then the pure part of free (x) is also y.

The definition of terms is as follows.

1. A variable is a term.

2. nil is a term.

3-4. If $ and t are terms then cons(j, t) and §noe(s, i) are terms.

We define wffs (well formed formulas) as follows.

1-2. If s and t are terms then eq(s3 t) and It(s, t) are wffs.

3-4. If «!,..., an (n^O) are wffs then and(alv..9 «„) and or(#lv.., «„)
are .wffs.

5. If «!,..., an (n^O) and i are wffs then imply^^,... «„), A) is

a wff.

THEORY OF SYMBOLIC EXPRESSION II 469

6-7. If *!,..., xn (n^O) are distinct pure variables and a is a wff then

all((*!,..., jcn), fl) and exist((jcl9... *„), «) are wffs.

A wfF is called an atomic wffif it is constructed by the clauses 1-2 above, and

a wff is called a quantifier free wjfjfif it is constructed by the clauses 1-5 above.

We will call both a term and a wff as a designator.

We will use the following symbols with or without subscripts as syntactic

variables for specific syntactic objects.

x, j, z for variables

2% s, t, w, 0 for terms

«, b, c for wffs

d, <g for designators

We Introduce the folowing abbreviations.

$ x for free(x)

5 = ^ for eq(j, £)

j<* for It($, 0

•s-^z? for or (It(s9 t), eq(s, t))

a1 A ••• A an for aiM&(<$1?...? ^w)

«! v •-- v an for or(«1,..., «„)

«!,..., ®n-»b for imfly((^l3...? ^n)5 A)

for and(!raiply((fl), A), imply ((A),

(z l9..., acn ; «) for all((*!,..., xn), a)
!,..., xn; a) for

We assume that the binding power of the operators A , v and -» decrease in this

order, and we insert parentheses when necessary to Insure unambiguous reading.

Let t be a term, x be a variable and d be a designator. We then define a

designator e which we call the result of substituting t for x in d as follows.

The definition requires one auxiliary concept, namely, the elevation of a term

respect to a finite sequence of pure variables, which we also define below.

1.1.1. If d is jc then e Is t.

1.1.2. If d is a variable other than x then e Is d.

470 MASAHIKO SATO

1.2. If d is nil then e is nil.

1.3. If d is cons(*l9 t2) and e± (e2) is the results of substituting t

for x in t1 (t2, resp.) then e is cons^, e2)-

1.4. If d is §a0e(£l3 f2) and #i (#2) i§ tne result of substituting £
for jc in tl (t2>9 resp.) then e is snoc(£l9 02).

ILL If d is eq(*l9 #2) and ev (e2) is the result of substituting t for

x in tl (H29 resp.) then e is eq(^l9 £2).

II.2. If <7 is lt(f !, *2) and ^ (e2) is the result of substituting t for

j£ in tl (t29 resp.) then £ is It(el9 e2).

II. 3-4. If d is and(0l9..., or) (or(fll9..., «„)) and et (i^i^n) is the

result of substituting t for x in a,- then c is and(0l5... O

11.5. If d is impfly(((gl5...9 ^n)5 ft), ^f (l^ i^w) is the result of sub-
stituting tf for x in mi and c is the result of substituting t for

x in ft then e is Smply((^l5...? £„), c).

11.6. If d is all((jrl5...5 xn)9 a)9 u (j) is the elevation of t (x, resp.)

with respect to the sequence of pure variables x x , . . . , xn and b is

the result of substituting u for y in a then e is all((jclv.., xn), ft)

11.7. If d is exist((jic !,..., xn)5 a)9 u (y) is the elevation of t (x, resp.)

with respect to the sequence of pure variables xl3..., xn

and ft is the result of substituting u for j in m then e is exist

((*lv.., *B, A)
Let £ be a term and x l5...? xn (n^O) be a sequence of distinct pure variables.

We define a term u which we call the elevation of t with respect to xl9...9 xn

as follows.

1.1. If t is a variable whose pure part is xt for some i (i^i^n)

then u is free(tf).

1.2. If I is a variable whose pure part does not appear in the se-

quence xl9...9 xn then u is t.

2. If t is ml then u is nil.

3. If tf is a term cons(^l9 t2) and m1 (u2) is the elevation of t±

(t2, resp.) with respect to the sequence xl9...9 xn then u is

4. If 2? is a term seoe(ll5 t2) and MX («2) is the elevation of tl

(£2, resp.) with respect to the sequence jCi,..., jcn then » is

THEORY OF SYMBOLIC EXPRESSIONS, II 471

That the result of substituting a term for a variable In a designator Is a

designator of the same type can be proved easily by induction. (To prove this,

one must also prove that the elevation of a term with respect to a sequence of

distinct pure variables Is also a term.)

Example 3.1.

(I) Let x and y be distinct pure variables and let m be the wff 3(jc; x = y).

Let us substitute x for y in m. To do so, we must first compute the elevations of

x and y with respect to x. They are fa and y respectively. Now the result of

substituting fa for y In x = y is x = $x. Thus we have that 3(x; x = fa) Is the

result of substituting x for y In a. Let us call this wff ft. Then the reader

should verify that the result of substituting y for x In b Is a.

(II) Let z be a variable distinct from jc and y above and consider the wff

3(x5 j; £ = e<D!ffl§(j:9 y)). Then the result of substituting the term c€>ia§(j:5 y)

for z In this wff Is calculated similarly as above and we obtain the wff 3(x3 j;

oo>m§(fa3 fl» = co]m§(#, y)). D

Remark, As can be seen In the above examples we have avoided the pro-

blem of the collision of variables by Introducing a systematic way of referring to

a non-local variable that happens to have the same name as one of the local

variables. We remark that our method Is a generalization of the method due

to de Bruijn [3]. D

We can define simultaneous substitution similarly. Let tl9...9tin be a se-

quence of terms, xl9...9 xn be a sequence of distinct variables and let d be a

designator. We will use the notation dxi,...9 X ^ _ t l 9 . . . 9 £„] to denote the result

of simultaneously substituting tly..., tn for xl9...9 scn in d.

We say that a variable x occurs free in a designator d if ^[mfil] is distinct

from d. A designator Is said to be closed If no variables occur free In it.

We need the following concept in the definition of proofs below. Let t

be a term, x be a variable and d be a designator. We then define a designator e

which we call the result of bind substituting t for x in d as follows. The

definition goes completely in parallel with the definition of substitution except

for the clause 1.1.2. We therefore only give the clause 1.1.2 below.

1.1.2. If d is a variable other than x then:

if the pure parts of d and x are the same then:

If d Is a pure variable then e is rf;

If x Is a pure variable then e Is defined so that d = %@;

472 MASAHIKO SATO

if jt=ifjr1 and d = $d± then e is %e± where el is the result of

bind substituting t for x1 in d1;

if the pure parts of d and x are distinct then g is d,

Let *!,...,*„ be a sequence of terms, Jt lv.., jrn be a sequence of variables whose

pure parts are distinct and if be a designator. We can define the result of

simultaneously bind substituting tl9...9 tn for xl9...9 JCB in rf similarly as above,

and we use the notation *f» l f... f jB| I Pi,..., fj for it.

305o proofs

We formulate our fromal theory 5S^ in natural deduction style. Since

we eventually give a precise definition of BSA using a formal system, we give

here an informal definition in terms of schematic inference rules. Namely an

inference rule is a figure of the form:

ttl . . •A n ^ A—l *- n>0

where ai9 a are formulas. at may have assumptions that are discharged at this

inference rule, and we show such assumptions by enclosing them by brackets.

We call «!,..., an the premises and a the consequence of the inference rule.

We first collect logical rules. The logic we use is the first order intuitionistic

logic with equality.

(A /) gl ... gn (*E)t g i A - . . A a n

[«!]...[«„]

(V/) a,tJji?...9 jj (VE)"

In the above rules the variables xl9...9 xn must be distinct pure variables. The

THEORY OF SYMBOLIC EXPRESSIONS,, II 473

variables yi9...9 yn must be distinct and must satisfy the eigen variables con-

ditions. That is, in (VI), they must not occur free inV(#l5... xni a) or in any

assumption on which axltmm,tllBnly\9...9 ynl depends, and in (3E), they must not

occur free in 3(jt1,..., xn; a\ b or any assumption other than #»!,„.,»„ [^i,.--, jj
on which the premise b depends,,

Note that we may regard the wffs ami() and or() as representing the truth
values true and false respectively by letting n to be 0 in (A!) and (vE). For

this reason, we will use J_ as an abbreviation for OT(), a ~ifor m-> JL and s^t

for ~\(B = i).

The remaining rules are specific to the theory BSA. First we consider the
rules for equality.

(cons ^ nil) com§(.y, t)=mM (snoc ^ nil) smoc (s, t)=mil
JL _L

(cons ^ snoc) corns (s, £) =smoc (gg, a?)
1

(snoc = snoc)i §E@c(g l9 52)=sifl@c (*i, g2) -_i
I — 1,

^i — ftj

Next we collect rules for < (leass than),

(<snoc)___ _

- = 1 2 j s<ti - =
?
 l3 f 2)

(< con j Jg) / < corns (g,

As the final rule of inference for BSA we have the induction inference^

(1/2 d) @z[m!I] mz [corns (jg, j)] €g[§Hiec (jg, j)]
«.w

The assumptions discharged by this rule are called induction hypotheses. In

this rule, the variables x and y must be distinct and must satisfy the eigen

variables condition. Namely, the variables x and y may not occur in
183 [mil] or in any assumption other than the induction hypotheses on which the
premises ^s[com§(^, j)] and (®s[§M€)c(x, j;)] depend.

474 MASAHIKO SATO

3o6o Interpretation

We now explain the intended interpretation of the theory BSA. The in-

tended domain of interpretation of our theory is S. We first define the

denotation [tf J of a closed term t as follows.
1. [nfl]=*

2. [cons(ff, O I = [W I . W]

3. [snoc(j, *)I=(IM1. W)
It should be clear that each closed term denotes a unique sexp, and for each

sexp t there uniquely exists a closed term t which denotes t.

We next assign a truth value (true or false) with each quantifier free closed

wff. We first define the set of descendants of a sexp as follows.

1. The descendants of * is empty.

2. The descendants of [s. r] is the union of the descendants of s and t

and the set {s, t}.

3. The descendants of (s. t) is empty.

Thus, for instance, the descendants of [[*].(*.*)] is the set {*, [*],(*.*)}.

We say that s is a descendant of t if s is a member of the descendants of t,

Let s and t be closed terms and let s and t respectively be their denotations.

Then the closed wff s = t is true if 5 and t are the same sexp, and it is false if 5

and t are distinct. The closed wff s<t is true if s is a descendant of t and is

false otherwise.

Let a be any closed quantifier free wff. Since it is a propositional combina-

tion of the atomic wffs of the above form, we can calculate its truth value by

first replacing each atomic sub-wff by its value and then evaluating the resulting

boolean expression in the usual way.

We now define the class of primitive wffs for which we can also assign truth

values if they are closed.

1-2. If s and t are terms then s = t and s<t are primitive wffs.

3-4. If &l9...,an (n^O) are primitive wffs then ^A — A^ and

«! v ••• v an are primitive wffs.

5. If «!,..., an (n^O) and b are primitive wffs then al9...9 mn-»b

is a primitive wff.

6-7. If x!,..., xn is a sequence of distinct pure variables, tl9...9 tn is a

sequence of terms, mt (1 ̂ i g n) is the elevation of tt with respect

to *!,..., xn and a is a primitive wff then V(xl9..., xn; XI<MI,

THEORY OF SYMBOLIC EXPRESSIONS, II 475

w-^m and 3(*lv.., *

primitive wfFs.
The primitive wfFs defined by the clauses 6 and 1 above will respectively be

abbreviated as :

VC*!*:*!,..., xn<tn\ a)
3 (x ! < t l 9 . . . 9 %n<tn; a)

(We will use this abbreviation for any wff m as well.) Since for each sexp t we
can calculate the set of its descendants which is a finite set5 it should be clear

that we can uniquely assign a truth value for each closed primitive wff.

Next, we define Z-wffs as follows :

1 . A primitive wff is a Z-wff.
2-3. If al9...9 mn (n^O) are Z-wffs then ml A ••• A ®n and a± v ••• v mn

are Z-wfTs.
4, If #!,...,&„ (w^O) are primitive wffs and b is a Z-wff

<0 l 5 . . . , &n->b is a Z-wff.
5. If jc !,..., xn is a sequence of distinct pure variables and m is a

Z-wff then 3(jclv.., xn\ a) is a Z-wff.
We can define the truth of a closed I1- wff inductively. The definition for the

cases 1-4 is given similarly as for primitive wffs. For the case 53 we give the
following definition. A closed Z-wff 3(#lv.., xn; m) is defined to be true if we
can find a sequence of closed terms t1,...9tn for which &xii_sienltfl9...9iinl

becomes true.

We may say that BSA is correct if any closed Z-wff which is provable in
BSA is true. In this paper we assume the correctness of BSA without any
further arguments. In particular we assume that BSA is consistent in the

sense that there is no proof of the wff J_ .

3o70 BSA as a formal system

We now define BSA as a formal system and then define an isomorphism from

BSA to BSA. It is possible to regard this isomorphism as an (symbolic)

arithmetization of BSA. Here we will not define the concept of proof in BSA
since we give a full description of BSA as a formal axiom system in the next
Section.

Let Nonjnember, Pure_variable, Pure_variable_list9 Variable, Term,

W2f and Wffjist respectively be the following sexps.

476 MASAHIKO SATO

+ non_member
|x, []
|x, [y.X]

- ne[x, y]
— non_member[x, X]

3

+ pure_variable
|(:var.t)

3

+ pure_variable_list

i []
I [x.X]

— pure_variable[x]
— non_member[x9 X]
— pure__variable_list[X]

5

+ variable
|x

— pure_variable[x]
| (: free.x)

— variable[x]

3

+ term

I *
|x

— variable[x]
|[s.t]

— term[s]
— term[t]

| (: snoe.[s51])
— term[s]
- term[t]

3

+ wff
I eq[ss t]

— term[s]

THEORY OF SYMBOLIC EXPRESSIONS, II 477

- term[t]

I lt[s, t]
— term[s]

- term[t]

| and[.A]

- wffJist[A]

|or[.A]
- wffJist[A]

| imply[A, b]

- wff_list[A]

- wff[b]

|all[(:abs.[X5a])]

— pure_variable_list[X]

- wff[a]

|ex[(:abs.[X,a])]

— pure_variable_list[X]

- wff [a]

3

+ wffjist

I E]
I [a.A]

- wff[a]
- wff_Hst[A]

3

Then the formal system:

BSA0 = pVe, Non_member, Pure_variable, Pure_variable_list., Variable,

Term, Wff, Wffjist]

defines basic concepts in BSA. Thus, for instance,, we say that (a sexp) a is a

wff [a] holds.

(:*.*) is a term since we have kB§A0 term[(: *. *)]. D

In this way we can continue to give a complete definition of BSA as a formal

system. But as we said earlier we will not do so here because we will give a

complete definition of BSA in the next Section.

We now explain that the concepts which we defined formally here are es-

478 MASAHIKO SATO

sentially the same as the corresponding concepts which we defined for MSA.

To this end we define a translation from syntactic objects like terms or wfFs in

BSA into S. We denote the translation of d by d^.

Terms in BSA are translated as follows.

1.1. varj is (var.f).

1.2. ffree(jr)t is (free . *T)-

2. mil1" is *.

3-4. snoc(ff, f)f is [V, ^f] and snoc(£, I)1" is (: ST, I1").

The translation of wffs in BSA is defined as follows.

1-2. eq(s, z?)1" is eq[sT
5 ^] and It(s, *)r is lt|V, *T].

3-4. and($l5... ^n)
f is and[u[3... uj] and or(«l5..., <KII)

T is

5. imply((a !,..., «„), $)f is imply [[>!,..., «J], AT].

6-7. all((xl3..., xj, $)* is all[abs. [[jcf,..., ^J]5 ^r])] and exM((jr1?

..., xj, m)^ is ex[(abs. [[*!,..., jrl], «T])].

It is then easy to verify that this translation sends each syntactic entity in

BSA into corresponding entity in BSA. Thus if a is a wff in the sense of ^^^4

then m^ is a wff in BSA, that is, we have h-BsA0 wff[«T]. Moreover for each

wff a in BSA we can uniquely find a wff a in MSA such that aT is a. A similar

correspondence holds also for terms. It is also obvious from our definition that

the translation is homomorphic with respect to the inductive definition of syn-

tactic entities. We may thus conclude that both ESA and BSA give definitions

to the abstract concepts such as terms or wffsr in terms of their respective re-

presentations. For this reason we will use the same abbreviations which we

used for syntactic entities in BSA as abbreviations for the corresponding objects

in BSA. We will also use syntactic variables to make our intention clear. Thus

for instance if in some context we wish to refer a certain sexp as a wff, we will

use syntactic variables «, b or c for it.

V(x; 3(x; x = #x)) is an abbreviation of the sexp

all[(abs. [[x], ex[(abs. [[x], eq[x, (free. x)]])]])]

which is a wff in BSA. D

THEORY OF SYMBOLIC EXPRESSIONS, II 479

In this section we introduce the formal systemFOT (for First Order Theory).

In FOT one can define a general class of first order theories including BSA and

its extensions or restrictions. The basic idea is that any sexp S when viewed as

a formal system can be used to define a formal theory in countable first-order

language. We first introduce the concept of quasi-quotation which provides a

convenient notation for various syntactic entities. We then define FOT using

this notation.

When one makes a statement about an object one must use a name for that

object to refer to that object. If that object is linguistic it is possible to use that

object directly as the name of that object and such usage of linguistic object is

called autonymous. Autonymous usage of an object as the name for it is

harmless provided the symbols appearing in that linguistic object are not included

in the vocabulary of the meta language, that is the language in which the state-

ment is made. Another method of obtaining a name for a linguistic object which

is applicable to most cases, is to quote that linguistic object. (Still, there is a

problem of how to quote quotation marks. This problem is solved by com-

puter scientists in many ways.)

The mechanism of quotation is so restrictive, and it is often desirable to be

able to unquote part of the quotation. Quasi-quotation is such a mechanism

and Quine used it in his book [9] extensibly. Let us give an example of quasi-

quotation. The fourth clause of our inductive definition of terms in 3.3 is as

follows.

4. If s and t are terms then §noc(5, i) is a term.

Using corners which are Quine's notational device for quasi-quotation, the

above clause will look like this:

4. If s and t are terms then r§iffloc(s, t)~\ is a term.

The difference of quasi-quotation from ordinary quotation is this. Within quasi-

quotation marks (corners 'in this case) one can embed meta variables (V and

V9 in this case) among the symbols of the object language. Such a quasi-

quotation designates an expression that result from the content of the quasi-

quotation by replacing each meta variable by what it designates. Thus if both

480 MASAHIKO SATO

s and t designates 6eiF then rcons(£, t)~l designates the expression 6£

mil)9. This is the basic idea of quasi-quotation. However, with a slight danger

of falling into the trap of use and mention confusion (Quine [9], pp. 23-26.),

we have avoided the use of quasi-quotation nor quotation for the ease of re-

adability.

Quasi-quotation is a familiar idea among users of computers who use editors,

text-formatters etc. (See, e.g., Bourne [2].) Some LISP languages like Maclisp

have a mechanism of quasi-quotation as an input macro known as back quote

macro. For example, if the variables S and T both has NIL as its current value

then evaluating the expression:

X , S . , T)

will return the value (NIL. NIL). Since in LISP the same symbols are used both

in the meta language and the object language, a comma is placed within the scope

of back quote to tell the input routine that the following expression should be

evaluated (rather than quoted).

We will introduce Maclisp like quasi-quotation mechanism as a convenient

notational device for referring to various syntactic objects within a formal

system. In connection with this, we note that we have incorporated the mech-

anism of quotation as a part of evaluation mechanism. (Recall (E6) of the

definition of eval.) We define our quasi-quotation mechanism formally by the

formal system [Quasi_quote, Ne], where Quasi_quote is the following sexp and

Ne was defined in Univ:

+ quasi_quote

— quasi_quote[s, u]

— quasi_quote[t, v]

(: s.t), (: snoc.[u, v])

- ne[s, *]

— ne[s, eval]

— quasi_quote[s, u]

— quasi_quote[t, v]

(:* . t) , (:* . t)

(: eval.t), t

THEORY OF SYMBOLIC EXPRESSIONS., II 481

We can easily verify that for any sexp t there uniquely exists a sexp v such

that:

i-iQuast-quae.Nei quasi_quote[f, v]

In this case we call v the quasi-quote expansion of t. We introduce the fol-

lowing abbreviations.

"t for the quasi-quote expansion of t

It for (eval. f)

X:/s./t)=Xsnoc.[/s,/t])
= (snoc.Csnoc.x[/s. /t]))

= (snoc . (snoc . [x/s3 '/*]))
= (snoc . (snoc . [s, t]))

= (:snoc.[s5t]) D

We can therefore rewrite the sexp Term in the formal system BSA0 as follows,,

+ term

— variable[x]

|[s.t]

— term[s]

- term[t]

ro/s./t)
— term[s]

- term[t]

3

The reader should compare this with the definition of terms in 3.3 and consider

the reason why quasi-quotation is not necessary for cons in this formal definition

of terms. Q

Note. We have introduced the mechanism of quasi-quotation as a part of

evaluation mechanism in our former programming languages for the domain

SoW. (See [10], [11].) Edinburgh LCF [6] also uses quasi-quotation as

convenient notation for its PPA objects. D

482 MASAHIKO SATO

4.2. FOT

We define the formal system FOT as a list of 39 sexps of which first 7 are

taken from the formal system UHIY and the remaining sexps are the following

32 sexpSo

+ member

|x5[x.X]

|x,[y.X]

— member[x3 X]

3

+ non_member

| x , []
U, [y.X]

- ne[x, y]
— non_member[x, X]

?

+ pure_variable
|(:var.t)

9

+ pure_variable_list

I E]
|[x.X]

— pure_variable[x]

— non_member[x3 X]

— pure_variable_list[X]

3

+ variable

|x

— pure_ variable [x]

|(:free.x)
— variable[x]

3

+ pure_part

| (:var . t) , (:var . t)
| (: free,x)3y

THEORY OF SYMBOLIC EXPRESSIONS, II 483

— pure_part[xs y]

3

+ length

I * , *
|[X.X],[*.n]

- lenglh[X, n]

3

+ symbol

|(:*.t)

3

+ term
I Y ^I x, 5

— variable[x]

K S

— theorem[special[nil], S]

|[s.t],S
— theorem [special [cons], S]

- term[s3 S]

- term[t, S]

ro/s./t),s
— theorem [special [snoc] ? S]

— term[s, S]

- term[t, S]
|(:apply.[Fun.T])3S

— symbol[Fun]

- term_list[T? S]

- length[T? Arity]

— theorem[function[[Fun. Arity]], S]

| (: quote .t), S

— theorem [special [quote], S]

| (:* . t) ,S
— theorem[speclal[symbol]3 S]

?
+ term_list

| [] ,s
|[t.T],S

484 MASAHIKO SATO

- term[t, S]
- termJist[T, S]

5

+ admissible

I P
— symbol[p]

— ne[p3 and]

- ne[p9 or]

- ne[p3 imply]

- ne[p3 all]

- ne[p3 ex]

3

+ wff

I eq[s51], S
— term[s, S]

- term[t, S]

|[Prd.T],S
— admissible[Prd]
- term_list[T, S]

- length[T3 Arity]

- theorem[predicate[[Prd 0 Arity]], S]

|and[.A]?S

- wff_list[A3 S]

|or[.A],S
- wff_list[A3 S]

| imply[A3 b], S

- wfiF_list[A? S]

- wff[b, S]

|aU[(:abs.[X,a])],S
— pure_variableJist[X]

- wflF[a, S]

|ex[(:abs.[X3a])]3S

— pure_variable_list[X]

- wff [a, S]

3

+ wff list

THEORY OF SYMBOLIC EXPRESSIONS, II 485

| [] , s
|[a.A],S

- wff[as S]
- wff_list[A, S]

3

+ find
I [],[], x, x
|[t.T], [x.X],x,t
|[t.T], [y.X],x,v

- ne[x, y]
- find[T, X, x, v]

3

+ rename
I xs y, x

— pure_ variable [x]
[(: f r ee .x) ? y 9 x

— pure_ variable [y]
| (: free.x), (: free.y), (: free.z)

— rename[x, y3 z]

9

+ free
| *, X, *
| y 9X, (: free.y)

— variable [y]
— pure_part[y? x]
— member[x, X]

I y, x, y
— variable[y]
— pure_part[y9 x]
— non_member[x3 X]

|[s.t],X,[u.v]
— free[s, X, u]
- free[t, X, v]

r(:/s./t),X/(:/u./v)
— free[s, X, u]
- free[t, X, v]

486 MASAHIKO SATO

| (:* . t) ,X, (:* . t)
| (: quote.t), X, (: quote.t)
[(: apply. [f.T]),X,(: apply. [f.V])

- free[T, X, V]

|(:eval.t), X,(:eval.t)

3

+ subst
| T3 X3 x3 v

— variable[x]
- find[T3 X, x3 v]

I T3 X3 *3 *

|T,X,[s.t],[u.v]
- subst[T? X, s5 u]
- subst[T3 X31, v]

|T,X/(: / s . / t) ,X: /u . /v)
- subst[T3 X3 s, u]
- subst[T3 X31, v]

|T ,X, (:* . t) , (:* . t)
| T3 X3 (: quote. t), (: quote. t)
| T? X3 (: apply. [f.U]), (: apply. [f.V])

- subst[T3 X3 U3 V]

|T3X3(:abs0[Y3 t])3(:abs.[Y5v])

— pure_variable_Hst[Y]

- free[T3 Y3 V]

- free[X3 Y3 Z]

- subst[V3 Z31, v]

3

+ subst 1

] t, X3 S3 V

- subst[[t], [x], s3 v]

?
+ bind_find

i c i c], x, x
][t .T],[x.X],x,t

|[t.T], [y.X],x,v

THEORY OF SYMBOLIC EXPRESSIONS, II 487

- ne[x3 y]

— pure_part[x3 u]

— pure_part[y? u]

— rename[x3 y, v]

| [t .T] ?[y.X] 3x,v

- ne[x3 y]

— pure_part[x3 ul]

— pure_part[y3 u2]

- ne[u!3 u2]

- bind_find[T3 X3 x3 v]

5

+ bind_subst

| T3 X9 x, v

— varlable[x]

- b!nd_find[T3 X3 x3 v]

| T3 X3 *3 *

|T ,X,[s . t] , [u .v]
— bind_subst[T3 X3 s3 u]

~ bind_subst[T3 X31, v]

|T,X/(:/s. / t)/(: /u,/v)
- bind_subst[T3 X3 s3 u]

- bind_subst[T, X31, v]

] T3 X3 t, t

— symbol[t]

| T, X, (: quote .t), (: quote, t)
| T3 X3 (: apply.[f.U]), (: apply [f.V])

- bind_subst[T3X3U3 V]

|T 3 X 3 (:abs 0 [Y 3 t]) 3 (:abs 0 [Y 3 v])

— pure_variable_list[Y]

- free [T, Y3 V]

- free[X3 Y3 Z]

- bind_subst[V3 Z31, v]

3

+ append
I [1 Y, Y
| [x.X],Y,[x.Z]

488 MASAHIKO SATO

- append[X3 Y, Z]

5

+ addend

I [], Y, Y
| [x .X],Y 3Z

- addend[X3 Y3 Z]
— member[x3 Z]

|[x.X],Y,[x.Z]
- addend[X3 Y, Z]

— non_member[x3 Z]

3

+ vars

I x, [x]
— variable[x]

KE]
|[s.t],V

— vars[s, S]

- vars[t, T]

- addend[S3 T3 V]

I X : / s - / t) , V
— vars[s, S]
- vars[t, T]

- addend[S3 T3 V]

I 0 * . t) , []
| (:quote . t) , []

|(:apply.[f.T]),V
- vars[T3 V]

|(:abs0[X3a])3V
— vars[a3 U]

- down[X, U3 V]

5

+ down

I X, [], []
|X3[x.tJ]3V

— pure_variable[x]

— member[x? X]

THEORY OF SYMBOLIC EXPRESSIONS, II

- down[X3 U3 V]

|X3[x.U]3[x.V]

— pure_ variable [x]

— non_member[x3 X]

- down[X3 U9 V]

|X3[(:free.y) .U]3[y.V]

- piire_part[y, z]

— member[z3 X]

- down[X3 U, V]

|X 5 [(: f ree e y) .U] 3 [(: f ree .y) 0 V]
- pure_part[y? z]

— non_member[z3 X]

- down[X? U? V]

3

+ new

| x , t
- vars[t? X]

— non_member[x3 X]

3

+ new_list

I *,t
| [x .X],t

— new[x31]

- new_list[X31]

3

+ eq_pr
I S, E, [] , [] , []
|S,E, [p.P],[u.U], [v.V]

- pr[S, E, p, u = v]
- eq_pr[S, E, P, U, V]

3

+ Ipr
I S, E, [], []
|S,E, [p.P], [a.A]

- pr[S, E, p, a]
- lpr[S, E, P, A]

490 MASAHIKO SATO

+ upr

I S, [], E, [], c
|S, [a.A],E,[p.P],c

-pr[S,[a.E],p,c]
- upr[S, A, E, P, c]

3

+ axiom

| a 3 S

— proves[p3 axiom[a]3 S]

- wff[a, S]

3

+ pr
| S, E3 [a, axiom[]], a

— axiom[a, S]

- wff_list[E, S]

| S3 E3 [a, assumption[]], a

— member[a? E]

- wff_list[E5 S]

| S3 E, [and[.A], and_I[.P]], and [.A]

- lpr[S, E, P3 A]

| S3 E, [a, and_E[p]]5 a

- pr[S,E,p,and[.A]]
— member[a, A]

|S,E,[or[.A],orJ[p]],or[.A]

- pr[S, E? ps a]

— member[a3 A]

- wff_list[A3 S]

| S 3 E 3 [a5or_E[p.P]]3a

- pr[S3 E3p, or[.A]]

- upr[S3 A3 E3 P3 a]

| S, E3 [imply[A3 b], imply_l[p]]3 imply[A? b]

— append[A3 E3 F]

- pr[S3 F3 p, b]

| S3 E3 [a, Imply_E[p, P]], a

- pr[S3 E3 p, imply[A? a]]

THEORY OF SYMBOLIC EXPRESSIONS, II 491

- lpr[S, E3 P3 A]

| S, E, [all[(: abs. [X, a])], all_I[[X5 Y], p]], all(: abs. [X3 a])]
- new_Hst[Y3 E]

- new_iist[Y3 (: abs. [X, a])]
— pure_variable_list[X]
- wff [a, S]

- bind_subst[Y3 X3 a, b]

- pr[S5 E3 p3 b]

1 S3 E, [a, all_E[T5 p]], a

- pr[S,E,p,all[(:abs.[X,b])]]
- term_list[T, S]
- bind_subst[T3 X3 b, a]

| S, E3 [ex[(: abs. [X3 b])], ex_I[T5 p]], ex[(: abs. [X, b])]

- term_list[T, S]
— pure_variable_list[X]

- wff[b, S]
— bind_subst[T? X, b? a]

- pr[S3 E, p, a]
| S, E, [a, ex_E[Y, p, q]], a

- new_list[Y, E]

— new_list[Y3 a]

-pr[S3E3p3ex[(:abs.[X?b])]]
- bind_subst[Y3 X3 b, c]

-pr[S3[c.E]3q3a]

| S, E, [t = t, axiom_id[]], t = t

- term[t, S]
|S 3 E 3 [a 3 subs t [[U 3 V 3 X 3 b] 3 p.P]] 3 a

- wff [b, S]

- subst[U3 X, b, c]

- subst[V3 X3 b3 a]

- pr[S3 E3 p, c]

- eq_pr[S3 E3 P9 U3 V]

5

+ thm

| a 3 S

], p3 a]

492 MASAHIKO SATO

Let us briefly explain the intended meanings of some important concepts

defined in FOT. We will call any formal system an axiom system. Then term[f,

5] means that t is a term in the axiom system S. Similarly, wff [a3 S] means

that a is a wff in S. Note that here S is used to specify the language.

The operation of substitution is defined by the predicate 'subst3. Namely,

subst[T3 X, t, v] menas that v is the result of simultaneously substituting

members of the list T for the free occurrences of the corresponding members

of the list X in t. The uniqueness of the result of substitution is guaranteed

by the following easily verifiable fact :

hFOTsubst[T3 X, t, vj, h-FOTsubst[T3 X, t, v2J =$vl=v2

Let T=[tl3...3y and X = [xlv.., xj. If h-FOTsubst[T, X, t, v] holds for

some v then such a v is unique by the above fact. We will denote this v by :

The meaning of vars[£3 X~\ is that X is the list of variables occurring free in t.

We will say that x is new to t if new[x3 f] holds where new[*, f] means that x

does not occur free in t. Finally, pr[S, E, p, a] means that p is a proof in the

axiom system S of a from the assumption E.

It should be clear that arbitrary formal theory with countable first-order

language over intuitionistic logic (or classical logic) can be treated in this frame-

work. As the first concrete example of an axiom system we now define the

axiom system USA as follows :

MSA = [Special, Predicate, Axiom, Bas_term, Bsa_wff, Bsa_wff_Hst,

Variable, Pure_variable, Pure_variable_list, Non_member, Ne,

New, Vars, Addend, Member, Subst, Find, Free, Pure_part,

Substl]

where we have defined the last 14 sexps already and the first 6 sexps are respec-

tively as follows.

+ special

| nil

| cons

| snoc

3

+ predicate

THEORY OF SYMBOLIC EXPRESSIONS, II 493

i it[*. *]
?

+ axiom

rV(s,t;[s.t]* *)

l 'V(M;(: s . t)* *)
rV(s,t ,u,v;[s.t] *(:u.v))

| 'V(s, t, u3 v; [s.t] = [u.v] -» s = u)

| 'V(s , t ,u ,v; [s.t] = [u.v] -»t = v)

| 'V(s, t, u5 v; (: s.t) = (: u.v) -» s = u)

| 'V(s, t, u, v; (: s.t) = (: u.v) -> t = v)

| 'V(r; -i(r < *))

| 'V(r 3s 3 t ; - i (r <(:s . t)))

| 'V(s , t ; s < [s.t])

| 'V(s , t ; t < [s.t])

| 'V(r, s31; r < s -> r < [s.t])

| 'V(r, s, t; r < t -> r < [s, t])

| 'V(r, s 3 t ; r < [s . t] - » r = s v r < s v r = t v r < t)

| X/a05 V(/x, /y; /IHx, /IHy -> /al), V(/x, /y; /IHx, /IHy->/a2)
-,/b)

— pure_varlable[x]

— pure_variable[y]

— pure_variable[z]

- ne[x, y]

— bsa_wff[a]
— new[x, a]

- new[y5 a]

— bas_term[t]

— substl[t, z3 a? b]

— substl[*3 z, a3 aO]

— substl[x3 z3 a, IHx]

— substl[y, z3 a, IHy]

— substl[[x.y], z3 a3 al]

- substlC(:/x./y)3z?a3a2]

+ bsa_term

|x

— variable [x]

494 MASAHIKO SATO

— bsa_term[s]

— bsa_term[t]

I X : / s . / t)

— bsa_term[s]

— bsa_term[t]

5

-f bsa_wff

I eq[s? t]

— bsa_term[s]

— bsa_term[t]

I lt[s, t]
— bsa_term[s]

— bsa_term[t]

|and[.A]

- bsa_wff_list[A]

|or[.A]

- bsa_wff_list[A]

| imply[A3 b]

- bsa_wff_list[A]

- bsa_wff [b]

- pure_variable_list[X]

— bsa_wff[a]

|ex[(:abs.[X,a])]

— pure_variable_list[X]

— bsa_wfF[a]

3

+ bsa_wff_list

1 C]
I [a. A]

— bsa_wff[a]

- bsa_wff_list[A]

3

We now introduce notations for some concepts which we defined in FOT.

THEORY OF SYMBOLIC EXPRESSIONS, II 495

Let & be an axiom system. We will say that p is a proof of a from the

assumptions E in S if

', E, p, a]

holds, and we use the notation

Si p\-a for h-FOTPr[^ E]> P. 0]

Similarly we will say that a is a theorem of S if

S: pl-fl

holds for some p and use the notation

S\-a

for it.

We are now using the provability sign 6 h ~ 5 for two purposes. Namely,

one usage is for the provability in formal systems and the other is for the pro-

vability in axiom systems. However, these usages can always be distinguished

syntactically by the presence or absence of a subscript for the provability sign.

Let S and Tbe axiom systems. We say that Tis an extension of S if for

any sexp a we have :

(i) if h-FOT wff[a, S] then j-FOT wff [0, T] and
(ii) if S 1-0 then T\-a.

(The condition (i) is, in fact, redundant since it follows from (ii).) Tis said to

be a conservative extension of S if:

(i) T is an extension of S and

(ii) if HFOT wff[a, S] and T\-a then S\-a,

S is said to be consistent if for no p

S:p\-±

holds. It is clear that if S is consistent and T is a conservative extension of S

then T is also consistent.

In this Section we introduce an axiom system SA which is a conservative

extension of BSA. The motivation for the extension of the system is to obtain

a system which is powerful enough to let one work actually within the system

496 MASAHIKO SATO

comfortably. Our final goal is to get a system in which one can formally carry
out all the mathematical and metamathematical arguments we are informally
doing in this paper. The introduction of SA is a first step toward this goal.

The axiom system SA is defined as the sexp :
SA = [Special, Predicate, Axiom, Sajerm, Sa_wff, Sa_wffjist,

Variable, Pure_variable, Pure_variable_list, Non_member, Ne,
New, Vars, Addend, Member, Subst, Find, Free, Prue_part,
Substll^

where the last 14 members of SA are already defined elsewhere and the first 6 are
listed below. The number enclosed between 6%' symbols are comments, and we
will use this number as the number of the axiom defined by the corresponding
clause.

+ special
| nil
| cons
| snoc
| quote
| symbol

3

+ predicate

I lt[*, *]
3

+ axiom
|'V(s,t;[s.t] * *) % ! %
| ' V (s , t ; (: s . t) ? 4 *) % 2 %
| 'V(s, t ,u ,v;[s . t] * (: u . v)) % 3 %
| 'V(s, t, u, v; [s.t] = [u.v] -* s = u) % 4 %
| 'V(s, t, u, v; [s.t] = [u.v] -* t = v) % 5 %
\ 'V(s, t, u, v; (: s.t) = (: u.v) -» s = u) % 6 %
| 'V(s, t, u, v; (: s.t) = (: u.v) -» t = v) % 7

'V(r, s, t ;-i(r < (: s.t))) % 9 %
'V(s , t ; s< [s . t])%10%

THEORY OF SYMBOLIC EXPRESSIONS, II 497

'V(s,t;t < [s . t])%ll%
' V (r 3 s 3 t ; r < s - » r < [s . t]) % 12 %

'V(r ,s , t ; r < t -> r < [s.t])%13%

'V(r, s 3 t ; r < [s . t] - » r = s v r < s v r = t v r < t) % 14 %

'((quote. *) = *)% 15%

'((quote . [/s . /t]) = [(quote . /s) . (quote . /t)]) % 16 %

'((quote . (/s . /t)) = (: (quote . /s) . (quote . /t))) % 17 %

'((*.*) = (:* .*))% 18%

X/a03 V(/x, /y; /IHx, /IHy ^ /al),
V(/x, /y; /IHx, /IHy -> /a2) -> /b) % 21 %
— pure_varlable[x]

— pure_varlable[y]

— pure_ variable [z]

- ne[x, y]

— sa_wff[a]

— new[x, a]

— new[y5 a]
— sa_term[t]

— substl[t, z, a, b]

— substl[*3 z, a, aO]

— substl[x3 z3 a, IHx]

— substl[y3 z, a9 IHy]

- substl[[x.y],z9 a3 al]

- substir(:/x./y),z,a,a2]
XV(/z; V(/w; /w < /z -> /al) -^ /a) ^ /b) % 22 %

— pure_varaiable[z]

— pure_variable[w]

— ne[z, w]

— sa_wff[a]

— new[w3 a]

— sa_term[t]

— substl[ws z3 a3 al]

498 MASAHIKO SATO

- substl[t, z, a5 b]

3

+ sa_term
| x

— variable [x]

i *
I [s.t]

— sa_term[s]

— sa_term[t]

| ' (: /s . / t)
— sa_term[s]

— sa_term[t]

| (:* . t)
| (: quote ot)

3

+ sa_wff

I eq[s, t]
— sa_term[s]

— sa_term[t]

I lt[s, t]
— sa_term[s]

— sa_term[t]
| and[.A]

— sa_wff_list[A]

|or[.A]
— sa_wif_list[A]

| imply[A, b]

- sa_wff_list[A]

— sa_wff [b]
|all[(:abs.[X5a])]

— pure_variable_list[X]

— sa_wff[a]

]ex[(:abs.[X?a])]

— pure_variable_list[X]
— sa_wff[a]

THEORY OF SYMBOLIC EXPRESSIONS, II 499

+ sa_wff_list

1 C]
I [a.A]

— sa_wff[a]

— sa_wff_list[A]

Axiom 22 is the induction schema with respect to the ordering < and we will

refer to it as the <-induction

In this subsection we show that SA is conservative over 1BSA. To prove

this we consider an intermediate axiom system SA0 which results from SA by

simply deleting the <-induction schema (that is, axiom 22). We first show that

SA0 is conservative over BSA and then prove that SA is conservative over SA0.

We prove the first part in the following form. We first define a mapping

(—)* which sends a wffin SA0 to a wffin BSA and then prove that this mapping

has the following properties which are sufficient to prove that SA0 is conservative

over BSA.

(i) If SA0: p\-m then BSA: q\-a* for some q.

(ii) If a is a wff in BSA then a* is m.

(We will use p and q as syntactic variables for proofs.)

We first translate terms in SA0 to terms in BSA. The translation sends

variables to the same variables, * to * and is homomorphic with respect to

cons and snoc. The rest of the translation is defined as follows.

5.1. (quote. *)* = *

5.2. (quote. [> . I])* = [(quote. j)* . (quote. *)*]

5.3. (quote. (s . t))* = (: (quote. s)* . (quote. *)*)

6.1. (*.*)* = (: *.*)
6.2. If (* . s)* = (: *. «) and (* . t)* = (: *. v)

then (*.[>. *])* = (: * . [« . vj).

63. If (* . s)* = (: * . ») and (*. t)* = (: * . 17)

then(*.(j.*))* = (: * . (: ».«?)).
We then extend (—)* homomorphically to wffs. It is easy to see that if m is a

wff in SA0 then m* is a wff in BSA and that this mapping has the property (ii)

above. We now prove (i) by the (informal) <-induction on p. More precisely,

500 MASAHIKO SATO

we prove the following proposition by the <-induction on p.

HFOT pr[SA0? E, p, a}

=> KFOT pr[BSA3 E*3 q, a*] for some q and

HFOT lpr[§A03 E, p, a]

=$ HFOT lpr[BSA3 E*3 q, a*] for some q and

F-FOT upr[SA03 A, E, p, a]

==> H-FOT upr[3BSA3 ^4*3 E*3 g3 a*] for some q and

I-FOT eq_pr[SA0s E5 p9 U, F]

=> ^-FOT eq_pr[BSA9 £*3 g9 C/*3 7*] for some q,

In proving this proposition we may assume the proposition for any sexp which

Is a descendant of p. Since this proposition Is a conjunction of four propositions

we must prove each of them. To prove the first proposition let us assume:

I-FOT pr[SA0? E, p, a\

Then according to the definition of pr in FOT we have 14 cases to consider.

(Case 1) In this case we have for some p0:

p = [a, axiom[p0]] C1-1)

proves[|?0j axiom[a], SA0] (1.2)

wff[a, SA0] (1.3)

and

HFOT wff_Hst[£3 SA0] (1.4)

Since Theorem 2.1 still holds even if we substitute FOT for Unly In it, we have

by (1.3):

PO h-SAoaxiomM C1-5)

We will prove that we can either find a qQ for which we have

%o H-BSA axiom[a*] (1.6)

or find a q0 for which we have

HFOT pr[BSA3 E*3 q0, a*] (1.7)

According to the definition of axiom in SA0 we hkve 21 cases to consider. For

the first 14 cases, a* Is Identical to a and we may take q0 as _p0 to get (1.6). We

next consider the remaining cases.

(Case 1.15) In this case a is ((quote = *) = *) and a* is (* = *). Putting q0 as

THEORY OF SYMBOLIC EXPRESSIONS, II 501

[* = *3 axiom_id[]] we get (1.7).

(Case 1.16) In this case a Is ((quote . [s . t]) = [(quote . s) . (quote . f)J) for some

s and t and a* Is (T = T) where T Is [(quote. s). (quote. *)]• Putting qQ as
[T = T3 axlom_id[]] we get (1.7).

(Case 1.17) Is similar to (Case 1.16) and we omit It.

(Case 1.18) Is similar to (Case 1.15) and we omit It.

(Case 1.19) In this case a is:

(* . s) = (: * . u), (* . 0 = (: * . i;) -> (* . [s . f]) = (: * . [M . u])

and a* Is:

(*. s)* = (: * . 11), (*.0* = (:* .w)-^(* . [s . t])* = (:* . [i i . t;])

By the definition of (—)* we can find S and Tsuch that:

(* .s)* =(:*. S) and (* . 0* s (: * . T)

We can now rewrite a* as:

(:* .S) = (: * . u) , (: * . T) = (: * . ! ?) - > (: * . [S.T]) = (:*.[u.t;])

Using axioms on equality we can construct a ^0 for which we have (1.7).

(Case 1.20) Is similar to (Case 1.19) and we omit It.

(Case 1.21) In this case a is:

^os V(x> y\ IHx, IHy -» flj), V(x3 j; Jlfx, IHy -» a2) -> b

and a* is:

aJ5 V(x, y;

Then by modifying j?0 suitably we can construct a q0 for which we have (1.6).

(We omit the details of the construction.)

We thus found a q0 for which we have (1.6) or (1.7). In case we have (1.7)

we are done, so let us assume that we have (1.6). Then by Theorem 2.1 (with

FOT replacing Umiv) we obtain:

I-FOT proves[^03 axiom[a]3 ISA] (1.8)

Since a is a wff in SA0 and £ is a wffjist in SA0 we have:

I-IOT wff[a*, BSA] (1.9)

wff_Hst[E*3 (1.10)

502 MASAHIKO SATO

By (1.8X1.10) we have:

HFOT pr[BSA, E*, [a*, axiom[g0]], a*]

This completes the proof of the proposition for (Case 1).

(Case 2) is easy and we omit it.

(Case 3) In this case we have for some P and A:

(3.1)

(3.2)

and

HFOT lpr[SA0? E, P, A\ (3.3)

From (3.2) we have:

fl*=and[.^*] (3.4)

By (3.1) we see that P is a descendant of p. Hence we may apply the induction

hypothesis to (3.3) and obtain:

HFOT lpr[BSA, E*, Q, 4*]

for some Q. From (3.4) and (3.5) we can conclude:

KFOT pr[BSA, E*, [>*, and_I[. Q]], fl*] (3-6)

We omit the proof of the remaining cases since they can be proved similarly

as above. We have thus proved the first conjunt of our target proposition.

We leave the proof of the remaining three conjunts as an exercise for the reader.

By these arguments we have shown that SA0 is a conservative extension of BSA.

We next show that SA is conservative over SA0. Since the wffs in SA and

SA0 are the same, we have only to show that:

SA I- a =^SA0 \-a

To show this it is sufficient to prove that:

HFOT pr[SA, E, p, a\ => KFOT pr[SA0, E, q, a] for some q

In fact, as in the previous proof, we must prove a stronger proposition involving

Ipr, upr and eq_pr by the < -induction on p, but since the essential point lies in

the proof of the above proposition (which is a conjunct of the stronger pro-

position) let us pretend that this is our target. So assume that:

I-FOT pr[SA, E, p, a\

THEORY OF SYMBOLIC EXPRESSIONS, II 503

As before, we have 14 cases to consider, but the crucial case is (Case 1). Now

(Case I) produces 21 subcases depending on which axiom is actually used and

the only nontrivial case is (Case 1.22) where (formal) < -induction is applied.

In this case a is a wff in SA and we have for some p03 w, z3 al, b, aO, t:

p = [a, axiom[p0]] (1)
a = V(z; V(w; w < z -> a I) -> aO) -> b. (2)
f-SA pure_ variable [z] (3)

h- SA pure_ variable [w] (4)

h-SA ne[z? w] (5)

h-SA new[w3 aO] (6)

HSA wff[afl] (7)

h-SA termW (8)

HSA substl[w, z3 a 0, al~\ (9)

and

h-SA substl[r? z3 aO, bj (10)

We show that a is provable in SA0 by using induction axiom in SA0. Let us

choose two distinct pure variables x and y which are new to al and put:

A = V(z; V(w; w < z -> al) -> aO) -> V(w; w < z -> al)

B = ^

^0 =

Jffx =
Ilfj =

Al ^

Then we have :

HSAoaxiom[C] (11)

where

C = AO, V(x3 y\ IHx, IHy -> Al), V(x3 j; JUx? JUj; -> 42) -> 5 (12)

Thus for some p0 we have :

I-FOT pr[SA03 [], [C, axiom[>0]]3 C] (13)

This means :

SA0 |- C (14)

504 MASAHIKO SATO

By direct computation we have:

AO = V(z; V(w; w < z -> al) -> aO) -> V(w; w < * -> al) (15)

Now to prove the wff a in SA0 let us work in §A0. We first prove AO,

Assume that:

V(z; V(w; w < z -> a/) -* aO) (Al)

(In fact, this assumption will not be used.) Assume further that:

w < * (A2)

Then we get al by axiom 8 and (IE). By discharging (A2) and then applying

(VI) we get:

V(w; w < * -» al)

We then get (15) by discharging (Al).

Next we prove:

V(x5 y; IHx, IHy -> Al) (16)

Assume IHx5 thai is:

V(z; V(w; w < z -» al) -> afl) -> V(w; w < x -» al) (A3)

and JHj;, that is:

V(z; V(w; w < z -» al) -» aO) -> V(w; w < j; -^ al) (A4)

Now to prove Al we assume (Al) as before. Then we have:

V(w;w<x-^al) (Cl)

and

V(w; w < y -> al) (C2)

By specializing z to % and y in (Al) we get

V(w; w < x -> al) -> aOz[x] (C3)

and

V(w; w < 3; -» al) -> aOz[j;] (C4)

Using (C1)-(C4) we have:

aOz[x] (C5)

and

THEORY OF SYMBOLIC EXPRESSIONS, II 505

aO,[y-] (C6)

Our goal Is the conclusion of Al, that Is:

V(w; w < [x.y] -^ al} (Gl)

To prove this assume:

w < [x.y] (A5)

Then by axiom 14 we have 4 cases to consider. We will prove al In all cases,

(Case 1) In this case we have w = x. Then by (C5) (= subsf) we have

<*0z[w], that is, al.

(Case 2) In this case we have w < x. By specializing (Cl) to w we have al.

(Case 3) and (Case 4) can be proved similarly,,

From these we can deduce (Gl). By discharging (Al) we get (16).

We can also prove:

V(x, y; IHx, IHy -» A2)

quite similarly.

Now In view of (12) we may conclude B that is:

V(z; V(w; w < z -> al) -> aO) -» V(w; w < [f. f] -> al) (17)

On the other hand noting that t < [t . t] and b = alw[f] we have:

V(w; w <[t.i]-+al)->b (18)

By (17) and (18) we get a. We have thus proved the most crucial the only

nontrlvlal case. D

5=3o modification! om FOT

The formal system FOT we Introduced In Section 4.2 provided a general

framework for defining arbitrary first order theories. We defined two first

order theories, namely, IBSA and SA In this framework and showed that these

theories are equivalent. In the rest of the paper we will formally work In SA

and will develop elementary mathematics in It. For this purpose, we find It

better to modify FOT so that this enterprise will become easier to carry out.

Roughly speaking, we will modify FOT so that all the theories defined by It will

contain the language and axioms of SA. This means that In the modified FOT

the empty list [] will define the axiom system SA. This modification prevents

us from treating the systems not containing SA, however, for us this Is not a

506 MASAHIKO SATO

problem since we are not Interested in such systems at the moment. On the

other hand, the modified FOT can be used to define any extension of SA whose

language and axioms are recursively enumerable.

We now modify FOT as follows. We replace the definitions of the predi-

cates 'term', 6wfT and 'axiom9 by the following three sexps Term, Wffand Axiom,

We also define the predicate ssa_axiom' by the fourth sexp Sa_axiom. From

now on we will call thus obtained formal system as FOT.

+ term

U, S

— variable[x]

i * , S

J [s - t] , S
- term[s, S]

- term[t, S]

ro/s./t),s
- tenn[s, S]

- term[t, S]

](: apply. [Fun. T]), S

— symbol[Fun]

- term_list[T3 S]

- length[T5 Arity]

— theorem[function[[Fun. Arity]], S]

| (: quote. t), S

+ wff

I eq[s, t], S

— term[s, S]

- term[t, S]

1 lt[s, t], S
— term[s, S]

- term[t? S]

|[Prd.T],S

— admissible[Prd]

- termJist[T, S]

THEORY OF SYMBOLIC EXPRESSIONS, II 507

- length[T? Arity]

- theorem[predicate[[Prd. Arity]], S]

|and[.A], S

- wffJist[A, S]

|or[.A],S

- wff_list[A, S]
| imply[A? b], S

- wffJist[A, S]

- wff[b, S]

— pure_variable_list[X]

- wff[a, S]

|ex[(:abs.[X,a])]5S
— pure_variable_list[X]

- wff [a, S]

3

+ axiom

| a ,S
— sa_axiom[a, S]

| a ,S
— proves[p, axiom[a], S]

- wff[a, S]

3

4- sa_axlom

'V(s,t;[s.t] 9* *) , S % 1 %

'V(s, t, u, v; [s.t] * (: u.v)), S % 3 %

'V(s, t, u, v; [s.t] = [u.v] -> s = u), S % 4 %

'V(s, t, u, v; [s.t] = [u.v] -> t = v), S % 5 %

'V(s, t, u, v; (: s.t) = (: u.v) -* s = u), S % 6 %

'V(s, t, u, v; (: s.t) = (: u.v) -+ t = v), S % 7 %

'V(r; -i(r < *)), S % 8 %

'V(s, t; s < [s, t]), S % 10 %

'V(s, t;t < [s.t]), S % 1 1 %
'V(r ,s , t ; r < s ^ r < [s. t]), S % 12 %

508 MASAHIKO SATO

'V(r ,s , t ; r < t -* r < [s.t]),S%13%

'V(r,s5 t ; r < [s.t] ->

r = s v r < s v r = t v r < t) 3 S % 1 4 %

'((quote. *) = *) ,S%15%
'((quote . [/s . /t]) = [(quote . /s) „ (quote . /t)])5 S % 16 %

'((quote . (/s . /t)) = (: (quote . /s) . (quote . /t))), S % 17 %

(* - C/s - /t]) = (: * . [/u . /v])), S % 19 %
X(*-/s) = (:*./u),(*./ t) = (:* . /v) ->

(*.(/s./t)) = (: *.(: /u./v))), S % 20 %

X/aO, V(/x, /y; /fflx, IHy -> /al),

V(/x, /y; /IHx, /IHy -> /a2) -* /b), S % 21 %

— pure_variable[x]

— pure_variable[y]

— pure_variable[z]

- ne[x? y]

- wff[a, S]

— new[x? a]

- new[y? a]

- term[t, S]

— substl[t, z? a, b]

— substl[*? z, a, aO]

— substl[x, z, a, IHx]

— substl[y, z, a, IHy]

- substl[[x.y], z? a5 al]

- substl[x(:/x./y),z,a,a2]
XV(/z; V(/w; /w < /z -> /al) -> /a) -> /b), S % 22 %

— pure_variable[z]

— pure_variable[w]

— ne[z3 w]

- wflf[a, S]

— new[w, a]

- term[t, S]

— substl[w, z, a, al]

— substl[t? z, a, b]

THEORY OF SYMBOLIC EXPRESSIONS, II 509

3

Let us refer to the old FOT as FOToW. Then It Is easy to see that:

HOT,,,* pr[§A9 E, p, a] for some p

<==» I-FOT pr[[], E5 p5 a\ for some q

We therefore redefine SA as the empty list []. The notation

S h- a

Is an abbreviation of

KFOT pr[S, [], P, 0] for some p

where FOT now refers to the modified one.

In this section we will formally work In the axiom system SA and will develop

elementary mathematics within it.

6.L elementary properties of SA

To begin with, let us prove some simple theorems In SA, We will display

a formal theorem in SA in the following formu

Him 6.1.1. sgt <->s < [t.t]

Proof. Although this Is a formal theorem, we give Its proof informally. We

prove the <- part first. Assume s < [t.t]. Then by axiom 14, we have

s=tvs<tvs=tvs<t

From this, by Ioglc3 we have s < r v s = t as deslredo For the -> part, assume
s ̂ t, that is s < t v s = t. Then we have two cases.

(Case 1) s<t. In this case we have s<[t.t] by axiom 12.

(Case2)s = t. By axiom 10, we have t<[t.t]. Since s = t, we have

s<[t.t]. D

We give one more example that uses ordinary Induction.

Tim 6.1.2o s < t 3 t < u — > s < u

Proof, We prove this theorem by Induction on u,

(Basis) Assume s < t and t < *. From the second assumption we can
derive a contradiction by axiom 8,

510 MASAHIKO SATO

(Step cons) We prove the theorem for [ul .u2], assuming the theorem for

ul and u2. So assume s < t and t < [ul. u2]. By the second assumption and

axiom 14, we have four cases to consider.

(Case 1) t = ul. In this case we have s < ul by the first assumption. From

this by axiom 12 we have s < [ul .u2].

(Case 2) t < ul. In this case we have s < ul by induction hypothesis. From

this we have s < [ul. u2] by axiom 12.

Cases 3 and 4 are proved similarly.

(Step snoc) We prove the theorem for (: ul.u2). Assume s < t and

t < (: ul. u2). By the second assumption and axiom 9, we get a contradiction.

From this we can deduce the desired result. D

In SA mathematical concepts are expressed in terms of wffs. For instance

the concept of an atom is expressed in SA by the wff 3(x, y ; z = (: x . y)) which

means that z is an atom. As such mathematical concepts become more sophi-

sticated the wff representing these concepts also become very complicated. We

therefore need a systematic way of giving names to wffs in SA. We define the

concept of an abstract for this purpose. Let jclv.., xn be a sequence of distinct

pure variables and let d be a designator, i.e., wff or a term. Then the sexp:

abstract[(abs.n>l5. ..,<], rf])]

will be called an abstract of arity n. This sexp will also be written as:

Let A be an abstract of the above form and let tl9..., tn be a sequence of sexps.

Then

will denote the sexp :

d,l,...,,n Plv.. ,U

It is a wff .(term) if tl9...9 tn are terms and d is a wff (term, resp.).

Example 6.1.

A(z; 3(x, y ; z = (: x . y))) (apple) = 3(x, y ; apple = (: x . y)) D

An abstract A is called closed if A (*,...,*) is closed. A closed abstract will also

THEORY OF SYMBOLIC EXPRESSIONS, II 511

be called a predicate If It is abstracted from a wff. We will allow to give a name

to a closed abstract. We will use strings of alphanumeric characters whose first
characters are uppercase letters as names of abstracts. For instance, if we wish

to assign a name 6Atom' to the abstract:

A(z; 3(x, y; z - (: x.y)))

we do it as follows:

1.1.1. Atom(z) = 3(x, y; z = (: x.y))
Similarly we define an abstract (whose name is 'Mole5) by:

S.1.2. Mole(z) = 3(x5 y; z - [x.y])

The general format of the definition of an abstract Is as follows. Let d be a

designator and let xl9..., %tl be a sequence of distinct pure variables. Then:

Beff n Name(xi,...9 xn) = d

gives the name Name to the abstract A(x l9..., xn; d). (This abstract must be

closed.)

Let us define one more abstract.

Bef 6.1.3. Null(z) = (z = *)

Using these abstracts we can state some simple theorems whose proofs we do

not give here.

Tflim 6.2.1. Null(x) v Mole(x) v Atom(x)

Thm 6o2o2Q Null(x), Mole(x) -> 1

Tim OoSo Null(x), Atom(x) -> 1

Thm 6o2o4o Mole(x), Atom(x) -> JL

These theorems are useful in proving the following theorems.

Tim 6o30lo x = y v x ^ y

Tlim 6.3.2. x < y v -i(x < y)

We will also allow to give a name to a specific closed term In the following
form:

6.2.1. FOT = TOT

By this definition, FOT will denote the term TOT. This definition also has the

effect of making FOT a reserved string, thereby prohibiting the use of. FOT

as a variable. Let us give one more definition.

512 MASAHIKO SATO

Def 6.Z2,, SA = SA

This definition simply makes SA a synonym for *.

6o30 off Univ in SA

In order to formalize in SA what we have been doing informally in this paper,

we must be able to formally define predicates whose informal counterparts have

been given by inductive definitions. In view of Section 2, this will be accom-

plished if we can define the concept of a formal system in SA, or equivalently,

if we can define the predicate proves in SA. By Theorem 2.1 we can reduce this

problem to the problem of representing the single formal system Umiv in SA. We

can solve this problem by defining an abstract Univ_tree such that Univ_tree(T)

means that T is a proof in the formal system Univ. (For technical reasons,

proof trees represented by Univ_tree are slightly different from the actual proof

trees in Univ.)

Let us now define Univ_tree. * We first define Pnode as auxiliary concept.

Deff 6.3.1. Pnode(t) = 3(x, y; t = [(: x). y]))

Using Pnode, Univ_tree is defined as follows.

Def 6.3.2.
UnivJree(T)

= Pnode(T) A

V(q ^ T; Pnode(q) ->

3(u,v;q = [(:ne[*,[u.v]])])
v3(u, v; q = [(: ne[*, (: u.v)])])

v3(s, t ;q = [

v3(s, t ;q = [
v3(s, t, u, v; q = [(: ne[[s.t], (: u.v)])])

v3(s, t, u, v; q = [(: ne[(: s.t), [u.v]])])

v 3(s t, u, v, Q; q = [(: ne[[s. t], [u. v]]), [(: ne[s, u]). Q]])

v 3(s, t, u, v, Q; q = [(: ne[[s. t], [u. v]]), [(: ne[t, v]). Q]])
v3(s, t, u, v, Q;

q = [(: ne[(: s.t),(: u.v)]), [(: ne[s, u]
v3(s, t, u, v, Q;

q = [(: ne[(: s.t),(: u.v)]), [(: ne[t, v]
v3(x, v, L; q = [(: assoc[x, [[x.v] .L], v])])

v3(x,y, w, L, v,Ql, Q2;

THEORY OF SYMBOLIC EXPRESSIONS, II 513

q = [(: assoc[x, [[y.w].L], v]),
[(:ne[x,yJ).Ql],
[(:assoc[x,L,v]).Q2]])

v3(v,L;q=Ct:get[*,[v.L],v])])
v3(i, w, L, v, Q;

q = [(: get[[* - i], [w. L], v]), [(: get[i, L, v]). Q]])
v3(t, E, v, Q; q = [(: eval[(: var.t), E, v]),

[(:assoc[(:var.t),E,v]).Q]])
v3(E;q = [(: eval [*, E, *])])
v3(s,t, E,u,v, Ql, Q2;

q=[(:eval[[s.t],E,[u.v]]),
[(: eval[s, E, u]).Ql],
[(:eval[t,E,v]).Q2]])

v3(s, t, E, u, v, Ql, Q2;
q = [(: eval[(snoc. [s, t]), E, (: u. v)]),

[(:eval[s,E,u]).Ql],
[(:eval[t,E,v]).Q2]])

v3(t, E; q = [(: eval[(: *. t), E, (: *.t)])])
v3(t, E; q = [(: eval[(: quote.t), E, t])])
v3(Prd, FS, R, i, c, C, Env, a, A, P, Ql, Q2, Q3, Q4, Q5;

q = [(: proves[[[Prd, i, Env] .P], [Prd.a], FS]),
[(: assoc[Prd, FS, R]).Q1],
[(:get[i,R, [c.C]]).Q2],
[(:eval[c, Env, a]).Q3],
[(:eval[C, Env, A]).Q4],
[(:lproves[P,A,FS]).Q5]])

v3(FS;q=[(:lprove8[[],[],FS])])
v3(p, P, a, A, FS, Ql, Q2;

q = [(:lproves[[p.P], [a.A],FS]),
[(: proves[p, a, FS]).Q1],
C(:lproves[P,A,FS]).Q2]])

v3(a, FS, p, Q; q = [(: theorem[a, FS]),
[(:proves[p,a,FS]).Q]])

)
Let us examine the basic structure of a sexp defined by Univ_tree. We

first prove the following lemma.

514 MASAHIKO SATO

Tfam 6.4.1. UnlvJree(T), Pnode(q), q < T -> Univ_tree(q)

Proof. Assume that:

UnIv_tree(T) (1)
Pnode(q) (2)

and
q < T (3)

By the definition of Univ_tree we have :

UnivJree(T) = Pnode(T) A V(q ̂ T; Pnode(q) -> «)

where a is a disjuction of 24 wffs. Hence by (1) we have:

V(q ^ T; Pnode(q) -> «) (4)

By (3) and (4) using the transitivity of < we have :

V(q ^ q; Pnode(q) -> a) (5)

(Recall that (5) is an abbreviation of V(q; q ^ $q -> (Pnode(q) -» «)).) From
(2) and (5) we get Univjree(q). D
The lemma we just proved is useful in proving the following theorem which
characterizes Univ_tree. To state the theorem we introduce the following
abstract.

Def 6.4.1. Der(T3 c) = UnivJree(T) A 3(Q; T = [(: c) . Q])

Tfam 6A20

UnivJree(T) <->
3(u,v;T=[(:ne[*,[u.v]])])
v3(u ,v ;T = [(:ne[*,(:
v3(s , t ;T = [(:ne[[s.t],
v3(s, t ;T = [(:ne[(:s.t
v3 (s , t , u ,v ;T = [(:ne[
v3(s? t, u, v; T = [(: ne[(: s.t), [u.v]])])
v3(s, t, u, v3 Tl; Der(Tl, ne[s, u]) A

T=[(:ne[[s.t],[u.v]]),Tl])
v3(s, t, u, v, Tl; Der(Tl, ne[t, v]) A

v3(s, t, u, v, Tl; Der(Tl, ne[s, u]) A
T = [(:ne[(:s.t),(:u.v)]) ;T

v3(s, t, u, v, Tl; Der(Tl, ne[t, v]) A

THEORY OF SYMBOLIC EXPRESSIONS, II 515

v3(x, v, L; T = [(: assoc[x, [[x.v].L], v])])

v3(x, y, w, L, v, Tl, T2;
Der(Tl, ne[x, y]) A Der(T2, assoc[x, L, v])

A T = [(: assoc[x, [[y. w] .L], v]), Tl, T2])

v3(v,L;T = [(:get[*, [v.L],v])])
v3(i, w, L, v, Tl; Der(Tl, get[i, L, v])

v3(t, E, v, Tl; Der(Tl, assoc[(: var.t), E, v])
AT=[(:eval[(:var . t) ,E,v]) ,Tl])

v3(E;T = [(:eval[*, E, *])])
v3(s, t, E, u, v, Tl, T2;

Der(Tl, eval[s, E, u]) A Der(T2, eval[t, E, v])
A T = [(: eval[[s, t], E, [u.v]]), Tl, T2])

v3(s,t, E, u, v,Tl,T2;
Ber(Tl, eval[s, E, u]) A Der(T2, eval[t, E, v])
A T = [(: eval[(: snoc. [s, t]), E, (: u.v)]), Tl, T2])

v3(t, E; T = [(: eval[(: *.t), E, (: ..t)])])
v3(t, E; T = [(: eval[(: quote. t), E, t])])
v 3(Prd, FS, R, i, c, C, Env, a, A, P, Tl, T2 T3, T4, T5;

Der(Tl, assoc[Prd, FS, R]) A Der(T2, get[i, R, [c.C]])
A Der(T3, eval[c, Env, a]) A Der(T4, eval[C, Env, A])
A Der(T5, lproves[P, A, FS])
A T = [(: proves[[[Prd, i, Env].P], [Prd.a], FS]),

Tl, T2, T3, T4, T5])

v3(FS;T = [(:lproves[[],[],FS])])
v3(p,P, a, A, FS, Tl, T2;

Der(Tl, proves[p, a, FS]) A Der(T2, lproves[P, A, FS])
A T = [(: lproves[[p.P], [a. A], FS]), Tl, T2])

v3(a, FS, p, Tl; Der(Tl, proves[p, a, FS])
A T = [(: theorem[a, FS]), Tl])

Proof. We first prove the -» part. Assume that Univ_tree(T). Then we have
Pnode(T) and

V(q ^ T; Pnode(q) -» a) (1)

By specializing (1) to T and using the fact that Pnode(T), we get b where b is

516 MASAHIKO SATO

«g[T] . Since b is a disjunction of 24 wffs, we let bt be the i-th disjunct of b.

We now have 24 cases to consider where in the i-th case we may assume i>t.

Since these cases may be treated rather similarly we only consider the case 17 as

a typical case.

(Case 17) In this case we may assume b17, that is:

3(s, t, E, us v5 Ql, Q2;

[(:eval[s,E,u]).Ql],
K:eval[t,E,v]).Q2]])

Let s3 t, E, u, v, Ql and Q2 be such that:

T=[(:eval[[s.t],E,[u.v]]),
[(:eval[s,E,u]).Ql],
[(:eval[t,E,v]).Q2]] (1)

We put

c = eval[[s.t], E, [u.v]],
Tl = [(:eval[s,E,u]).Ql]

and

T2 = [(:eval[t3E3v]).Q2]

Then by (1) we have:

T = [(: c), Tl, T2]. (2)

Now it is easy to see that Pnode(Tl) and Tl < T hold. Then by Thm 6.4.1
we have :

UnivJree(Tl) (3)

Similarly we have :

Univ_tree(T2) (4)

From (3) and (4) we get :

Der(Tl? eval[s, E, u]) (5)

and

Der(T25 eval[t, E3 v]) (6)

Using (2), (5) and (6) we obtain :

THEORY OF SYMBOLIC EXPRESSIONS, II 517

3(s3 t, E3 u3 v3 Tl, T2;

Ber(Tl3 eval[s3 E3 u]) A Der(T25 eval[t, E3 v])
A T = [(: eval[[s.t], E3 [u.v]]), Tl, T2])

From this we obtain the desired result by (v I),

We next prove the converse by the < -Induction on T. We have 24 cases to

consider but we only treat the following case :

(Case 17) In this case we can take s3 t, E3 u3 v3 Tl and T2 for which we have:

Der(Tl9 eval[s3 E3 u]) (1)

Ber(T23 eval[t, E, v]) (2)

and

T = [(: eval[[s3 t], E5 [u . v]]), Tl, T2] (3)

By (3) we have :

Pnode(T) (4)

Now take any q such that q^T and Pnode(q), Then by (3), using the rules con-

cerning < , we have :

We have therefore three cases. First assume q = T, Then by (1), (2) and (3)

we have:

3(s3 1, E5 u3 v, Ql, Q2;

[(:eval[s?E3u]).Ql]3

[(:eval[t,E,v]).Q2]])

From this we have m by (v 1). Next assume q ^ Tl. In this case we can easily

derive m from (1)= In case q ^ T23 we obtain m similarly by using (2). We

therefore have :

V(q ^ T; Pnode(q) -> a) (5)

From (4) and (5) we obtain UnlvJree(T). D

By Thm 6.4.2 we see that a Univ_tree has a structure very similar to a proof in

the formal system Unniv.

518 MASAHIKO SATO

6o40 formal In SA

Using the predicate Univ_tree we can now define the predicate Proves and

related predicates as follows. By these predicates we can describe formal

systems in SA.

Def 6.5.1. Ne(x, y) = 3(T; Ber(T3 ne[x3 y]))

Def 6oS82o Assoc(x5 L3 v) = 3(T; Der(T3 assoc[x3 L3 v]))

Def 6oSo3e Get(i, L3 v) = 3(T; Der(T3 get[i, L3 v]))

Def 6o5o4, Eval(t, Env3 v) = 3(T; Der(T3 eval[t, Env? v]))

o5o Proves(p3 a3 FS) = 3(T; Der(T3 proves[p, a, FS]))

o60 Lproves(P3 A5 FS) = 3(T; Der(T3 lproves[P3 A, FS]))

Def 6.5.7. Theorem(a, FS) = 3(T; Der(T3 theorem[a3 FS]))

The following theorems show that these predicates have the desired pro-

perties.

Tfam 6.5.1. Ne(x3 y) <-* x ^ y

6o5o20

Ne(xs y) <«>

3(u3 v;x = * A y = [u.v])

v3(u, v; x = * A y = (: u.v))

v 3(s31; x = [s. t] A y = *)
v 3(s3 t;x = (: s . t) A y = *)

v3(s31, u, v; x = [s.t] A y = (: u.v))

v3(s31, u, v; x = (: s.t) A y = [u.v])

v3(s, t, u, v; x = [s.t] A y = [u.v] A Ne(s3 u))

v3(s3 t, u, v; x = [s.t] A y = [u.v] A Ne(t, v))

v3(ss t, u, v; x = (: s.t) A y = (: u.v) A Ne(s3 u))

v3(s31, u, v; x = (: s.t) A y = (: u.v) A Ne(t, v))

Assoc(x3 L, v) 4-*

3(L;*L=[[x.v].L])
v3(y3 w9 L; SL = [[y.w].L] A Ne(x9 y) A Assoc(x3 L3 v))

Thm 6o5o4o

Get(i, L3 v)<->
3(L;i = * A SL= [v.L])

THEORY OF SYMBOLIC EXPRESSIONS, II 519

v3(is w3 L; *i = [*.i] A *L = [w.L] A Get(i, L9 v))

Him 6o§05e

Eval(t, Env3 v)«-»
3(t; *t = (: var.t) A v = (: var.t))
V(t = * A V = *)

v3(s3t, us v; St = [s.t] A Sv = [u.v]
A Eval(s? Env3 u) A Eval(t, Env3 v))

v3(s3 t, u, v; #t = (: snoc.[s3 t]) A Sv = (: u.v)
A Eval(s? Env3 u) A Eval(t, Env3 v))

v3(t; *t = (:*.t) A v = (:*.t))
v3(t; #t = (: quote .t) A v = t)

Lproves(P9

(P = C] A A = [])

v3(p3 as P? A; SP = [p.P] A JA = [a. A]

A Proves(p, a, FS) A Lproves(P5 A3 FS))

B5070

Proves(p, a, FS)«-»

3(Prd, R3 i, c5 C, Env, a, A3 P;
p = [[Prd51, Env].P] A #a = [Prd.a]

A Assoc(Prd3 FS9 R) A Get(i, R5 [c.C])
A Eval(c3 Env3 a)

A Eval(C3 Env3 A) A Lproves(P3 A3 FS))

Thm 6.5.8. Theorem(a, FS) <-> 3(p; Proves(p3 a, FS))

All of the above theorems can be proved without much difficulty. As an

example let us sketch the proof of Thm 6.5.L
Proof of Thm 6.5.1. We first prove the -» part We prove the following by
the < -induction on T0

Der(T3 ne[x3 y]) -» x =£ y

So assume Der(T3 ne[x, y]), that is:

UnivJree(T) A 3(Q; T = [(: ne[x3 y]).Q])

Then applying Thm 6.4.2 we get b which is a disjunction of 24 wffs i?t (1 ̂ f ̂ 24).

Thus we have 24 cases and in (Case i) we may assume bt. But for i > 10 we can

520 MASAHIKO SATO

derive a contradiction by computing the cbaar of T. We therefore have only

to consider (Case 1) - (Case 10).

(Case 1) Assume bl that is 3(u3 v; T = [(: ne[#, [u.v]])]). Let u and v

be such that

Then we have x = * and y = [u.v]. By axiom 1, we have x ^ y.

(Case 2) - (Case 6) can be proved similarly as (Case 1).

(Case 7) In this case we have:

Ber(Tl3 ne[s5 u]) A T = [(: ne[[s.t], [u.v]]), Tl]

for some s3 t, v and Tl. Then we have x = [s . t] and y = [u.v]. Also we have

T1<T and since Ber(Tl3 ne[s, u]) we may apply induction hypothesis to con-
clude s 7^ u. Then by axiom 4 we have [s.t] ^ [u.v], that is, x =£ y.

(Case 8) - (Case 10) can be proved similarly as (Case 7).
Next we prove the <- part by induction on y.
(Basis) Assume x 7^*. Since Null(x) v Mole(x) v Atom(x) we have three

cases. If Null(x) we have a contradiction. If Mole(x) we have s3 1 such that

x = [s.t]. Then we can prove:

Der([:ne[[s.t,*])],ne[[s.t],*])

Hence we have Ne([s . t]3 *), that is, Ne(x3 *). The case Atom(x) can be treated
similarly.

(Step cons) We prove our target for [yl . y2] assuming it for yl and y2.
Assume x^[yl.y2]. As before we can classify x into three cases. If x = *,
we can prove Ne(x, [yl . y2]) similarly as above. If Atom(x) then we have
x = [xl .x2] for some xl and x2. By the decidability of =, we have xl=yl

v xl ^ yl. In either case we can prove easily that:

[xl . x2] 7* [yl . y2] -> xl ^ yl v x2 ^ y2

Now, in case xl ^ yl, by induction hypothesis we have Ne(xl, x2). We can then
construct a T3 for which we have

Der(T)ne[[xl.x2],[yl.y2]])

From this we have Ne(x, [yl . y2]).

(Step snoc) can be proved similarly. D

Using the predicates Proves, Theorem etc. we can formally talk about formal

THEORY OF SYMBOLIC EXPRESSIONS, II 521

systems. Let us give an example. Any closed in SA denotes a unique sexp,

and this relation can be defined by the formal system {JDenote} where Denote

is defined as follows :

+ denote

— denote [s, u]

— denote [t , v]

(: / s . / t) , (:u .v)
— denote[s, u]

— denote [t, v]

(: quote. t),t

For instance, the closed term 'x denotes the sexp x, since we have :

^Denote-} dcnOte['x, X] (1)

by the following reasoning. Let

p = [[denote, [*, *, *], [[t.x]]]]

Then after some simple computations we have :

proves(p, denote['x, x], Denote)

From this we have (1). We can formalize this by the following definitions:

,1. Denote = 'Denote

>o6.2. Denote(t, v) = Theorem(denote[t, v], Denote)

Then corresponding to (1), we can prove the following formally in SA.

Theorem(denote["x, 'x], Denote) (2)

A formal proof of (2) can be obtained by translating the informal proof of (1).

Namely, in SA we can prove :

Proves('p, denote["x, 'x], Denote)

and from this we have (2).

We can prove a more general theorem similarly. To state the theorem we

introduce the following notation for any sexp x :
nx stands for (: quote . x)

5.1. Denote(vvx? x)

522 MASAHIKO SATO

In this section we develop elementary metamathematics within SA by

formalizing what we have done so far informally.

7.1. universality of FOT

We will prove that a formal version of Theorem 2.1 holds for FOT. In

one direction, we have the following:

7.1.1.
(Der(T, ne[x, y]) -* Theorem(ne[x, y], FOT))

A (Der(T5 assoc[x, L, v]) -» Theorem(assoc[x, L, v], FOT))

A (Der(T, get[i, L, v]) -> Theorem(get[i, L, v], FOT))

A (Ber(T, eval[t, E5 v]) -» Theorem(eval[t, E, v], FOT))

A (Der(T, lproves[P, A, FS]) -> Theorem(lproves[P, A, FS], FOT))

A (Der(T5 proves[p, a, FS]) -> Theorem(proves[p, a, FS]5 FOT))

A (Der(T, theorem[a? FS]) -> Theorem(theorem[a3 FS], FOT))

This theorem is proved by the <-induction on T. For the other direction, we

have the following:

Tfam 70lo2o

(Proves(Q, ne[x, y], FOT) -> Ne(x, y))

A (Proves(Q, assoc[x, L, v], FOT) -» Assoc(x, L, v))

A (Proves(Q, get[i, L, v], FOT) -» Get(i, L, v))

A (Proves(Q, eval[t, E, v], FOT) -» Eval(t, E, v))

A (Proves(Q, lproves[P, A, FS], FOT) -> Lproves(P, A, FS))

A (Proves(Q, proves[p, a, FS], FOT) -> Proves(p, a, FS))

A (Proves(Q, theorem[a, FS], FOT) -» Theorem(a, FS))

This theorem can be proved by the <-induction on Q. Combining these

theorems we have the following theorems.

Thm 7oL30 Ne(x, y) «-> Theorem(ne[x, y], FOT)

Thm 7olo40 Assoc(x, L, v) <-> Theorem(assoc[x, L, v], FOT)

Thm 7olo50 Get(i, L9 v) 4-> Theorem(get[i, L, v], FOT)

Thm 7olo6o Eval(t, E, v) ++ Theorem(eval[t, E, v], FOT)

Thm 7olo70 Lproves(P, A, FS) <-> Theorem(lproves[P, A, FS], FOT)

THEORY OF SYMBOLIC EXPRESSIONS, II 523

Tflim 7.1.8. Proves(p3 a, FS) ̂ Theorem(proves[p3 a, FS]3 FOT)

Ttai 7.1.9. Theorem(a3 FS) «-» Theorem(theorem[a5 FS], FOT)

Let us study the axiom system SA within SA. First we give definitions

concerning FOT.

1.1. Member(x, L) = Theorem(member[x3 L], FOT)

Bef 7.1.2. Non__member(x, L) = Theorem(non_member[x3 L], FOT)

Bef 7olo30 Pure_variable(x) = Theorem(pure__variable[x], FOT)

Def 7.1.4. Pure_variabIe_Iist(X) = Theorem(pure_variable_list[X]3 FOT)

Bef 7.1.5. Variabie(x) = Theorem(variable[x]3 FOT)

Def 7.I.6. Pure_part(x, y) = Theorem(pure_part[x9 y], FOT)

Bef 7.1.7. Length(X3 n) = Theorem(length[X, n], FOT)

Beff 7.1.8. Symbol(t) = Theorem(symbol[t], FOT)

Bef 7.1.9. Term(t3 S) = Theorem(term[t, S], FOT)

Bef 7.1.10. Term_list(T3 S) = Theorem(term_list[T, S], FOT)

Bef 7J.Ho Admissible(p) = Theorem(Admissible[p]3 FOT)

Bef 7.1.12. WflF(a, S) = Theorem(wff[a, S], FOT)

Bef 7.1.13. Wff_list(A3 S) = Theorem(wflF_list[A, S], FOT)

Bef 7.1.14. Find(t3 x3 y3 v) = Theorem(find[t, x3 y3 v], FOT)

Bef 7ol=15o Rename(x3 y3 z) = Theorem(rename[x3 y, z], FOT)

.1.16. Free(t3 X3 v) = Theorem(free[t9 X3 v], FOT)

' 70L170 Subst(T3 X, a3 b) = Theorem(subst[T3 X3 a3 b], FOT)

Bef 7olol8o Substl(t, x3 a, b) = Theorem(subst 1 [t, x, a, b], FOT)

Beff 7oL19o Bind_find(T3 X, x3 v) = Theorem(bind_find[T3 X3 x3 v], FOT)

Bef 70L200 Bind_subst(T3 X31, v) = Theorem(bind_subst[T5 X3 t, v], FOT)

Bef 7.1.21. Append(X3 Y3 Z) = Theorem(append[X, Y3 Z], FOT)

Bef 7.1.22. Addend(X3 Y3 Z) = Theorem(addend[X3 Y3 Z], FOT)

Bef 70L23o Vars(a3 X) = Theorem(vars[a, X], FOT)

0L24 Down(X, U3 V) = Theorem(down[X3 U, V]3 FOT)

' 70L25e New(x, t) = Theorem(new[x31], FOT)

Bef 7oL26o New_iist(X31) = Theorem(new_list[X31], FOT)

Bef 7oL270 Eq_pr(S? E, P5 U, V) = Theorem(eq_pr[S3 E3 P3 U3 V], FOT)

Bef 70L280 Lpr(S3 E3 P3 A) = Theorem(lpr[S5 E3 P3 A], FOT)

Bef 7oL290 Upr(S3 A3 E, P, c) = Theorem(upr[S5 A3 E3 P3 c], FOT)

524 MASAHIKO SATO

7.1.30. Axiom(a? S) = Theorem(axiom[a3 S], FOT)

Deff 70lo310 Sa_axlom(a, S) = Theorem(sa_axiom[a3 S], FOT)

Deff 7.1.32. Pr(S5 E3 p, a) = Theorem(pr[S, E3 p, a], FOT)

Bef 7.1.33. Thm(a, S) = 3(p; Pr(S3 [], p, a))

We can prove the following theorems that characterizes these predicates.

TSim 7o2oL

Member(x, L)<->

E(X;L = [x.X])
v3(y3 X; L = [y.X] A Member(x, X))

Non_member(x3 L)«->

(L = [])
v3(y3 X; L = [y.X] A Ne(x3 y) A Non_member(x3 X))

7o2o3o Pure_variable(x) <-> 3(t; x = (: var. t))

7.2.4.

Pure_variable_list(X)«-»

(X = [])

v3(x? X; $X = [x.X] A Pure_variable(x)

A Non__member(x3 X) A Pure_variable_list(X))

TSim 7o2o5o

Variable(x) «->

Pure_variable(x)

v3(x; $x = (: free.x) A Variable(x))

Pure_part(x3 y) <->

3(t; x = (: var.t) A y = (: var.t))

v3(x; Sx = (: free.x) A Pure_part(x, y))

TSim 7o2o7o

Length(X3 n) <->

(X = * A n = *)

v3(X3 n; ttX = [x.X] A *n = [*.n] A Length(X3 n))

o2oeo Symbol(t) ^-> 3(t; *t = (: *. t))

THEORY OF SYMBOLIC EXPRESSIONS, II 525

Term(t3 S) <^

Varlable(t)

v(t = *)
v3(s 3 t ; t t t = [s.t])

v3(s, t ;*t = '(:/s./t))
v3(Fun? T; t = (: apply . [Fun . T]) A Symbol(Fun)

A Terai_Hst(T3 S) A Length(T3 Arlty)

A Theorem (f unction [[Fun . Arlty]] , S))

v3(t; ttt = (: quote.!))

v3(t; *t = (: *.t))

Him 7o2olOo

Term_list(T, S) <-»

(T = [])
v3(T; »T = [t.T] A Term(t9 S) A Term_list(T3 S))

Admisslble(p) <->

Symbol(p) A Ne(p? and) A Ne(p, or) A Ne(p3 Imply)

A Ne(p3 all) A Ne(p5 ex)

0120

WflF(a, S) ^

3(s, t; a = eq[s3 1] A Term(s3 S) A Term(t3 S))

v3(s? t; a = lt[s, t] A Term(s, S) A Term(t3 S))

v3(Prd? T; a = [Prd.T] A AdmlssIble(Prd)

A Term_list(T3 S) A Length(T3 Arity)

A Theorem(predIcate[[Prd.ArIty]]3 S))

v3(A; a = and[.A] A Wff_ltst(A3 S))

v3(A; a = or [.A] A WffJist(A, S))

v3(A3 b; a = Imply [A, b] A WflF_list(A, S) A Wff(b, S))

v 3(X3 a; tta = all[(: abs . [X, a])]

A Pure_varIable_list(X) A WflF(a, S))

v3(X3 a; tfa = ex[(: abs. [X3 a])]

A Pure_varIable_list(X) A WflF(a, S))

526 MASAHIKO SATO

Wff_list(A, S) <->

(A = [])
v3(a3 A; $A = [a. A] A Wff(a3 S) A WffJist(A, S))

7.:
Find(T3 X, x, v) <-»

(T = [] A X = [] A V = X)

v3(t, T3 X; ttT = [t.T] A $X = [x.X] A v = t)

v3(t, T, y, X; *T = [t.T] A ttX = [y.X]

A Ne(x3 y) A Find(T, X3 x, v))

Thm 7020150

Rename(x? y, z) <->

(Pure_variable(x) A z = x)

v (Pure_variable(y) A x = (: free. z))

v3(x? y, z; Sx = (: free.x) A tfy = (: free.y)

A Sz = (: free.z) A Rename(x, y, z))

Thm 7o20160

Free(t? X, v) <->

(t = * A V = *)

v3(x; v = (: free.t) A Variable(t) A Pure_part(t, x)

A Member(x3 X))

v3(x; v = t A Variable(t) A Pure_part(t? x)

A Non_member(x, X))

v3(s51, u, v; Jft = [s.t] A Jv = [u.v]

A Free(s, X, u) A Free(t? X, v))

v3(s51, u, v; ttt = \: /s./t) A Sv = '(: /u./v)
A Free(s, X, u) A Free(t, X9 v))

v3(t; *t = (: *.t) A v = (: *.t))

v3(t; *t = (: quote.t) A v = (: quote.t))

v 3 (f , T , V ; t = (: apply.[f.T])
A v = (: apply. [f. V]) A Free(T3 X5 V))

Thm 702817o

Subst(T? X3 a3 b) «-»

(Variable(a) A Find(T3 X, a, b))

THEORY OF SYMBOLIC EXPRESSIONS, II 527

v(a = * A b = *)

v3(s? t, u, v; a = [s.t] A b = [u.v]

A Subst(T3 X, s3 u) A Subst(T3 X31, v))

v3(s3 t, u3 v; a = \: /s./t) A b = \: /u./v)
A Subst(T3 X, s3 u) A Subst(T3 X3 t, v))

v3(t; a = (: *.t) A b = (: *.t))
v3(t; a = (: quote.t) A b = (: quote.!))

v 3 (f 3 U 3 V ; a = (:apply.[f.U])

A b = (: apply. [f.V]) A Subst(T3 X, U, V))

v 3(Y51, v; a = (: abs. [Y, t]) A b = (: abs. [Y, v])
A Pure_variableJist(Y) A Free(T, Y, V)

A Free(X3 Y3 Z) A Subst(V? Z31, v))

.2.18. Substl(t, x3 s3 v) <-> Subst([t], [x], s5 v)

02019o

Bind_find(T3 X3 x3 v) <-^>

(T = [] A X = [] A X = V)

v3(T3 X; ST = [v.T] A ttX - [x.X])
v3(t, T3 y3 u; #T = [t.T] A ttX = [y.X] A x ^ y

A Pure_part(x3 u) A Pure_part(y3 u) A Rename(x3 y3 v))

v3(t3 T, y3 ul, u2; ttT = [t.T] A ttX = [y.X] A x ^ y

A Pure_part(x3 ul) A Pure_part(y3 u2) A ul ^ u2

A Bind_find(T5 X3 x, v))

hm 7020200

Bind_subst(T, X3 t, v) ^

(Varlable(t) A Bind_find(T? X, t, v))

V(t = * A V = *)

v 3(s3 t, u, v; #t = [s. t] A Sv = [u. v]

A Bind_subst(T? X3 s, u) A Bind_subst(T? X, t, v))

v3(s, t, u, v; #t = (: s.t) A ttv = (: u.v)

A BInd_subst(T3 X3 s, u) A Bind_subst(T3 X31, v))

v (t = v A Symbol(t))

v3(t; «t = (: quote.t) A *v = (: quote.t))

v3(f, U3 V; t = (: apply. [f.U]) A v = (: apply. [f.V])

A BInd_subst(T3 X3 U3 V))

v 3(Y3 t, v, V3 Z; *t = (: abs. [Y, t]) A #v = (: abs. [Y, v])

528 MASAHIKO SATO

A Pure_variable_list(Y) A Free(T, Y5 V)

A Free(X3 Y5 Z) A Bind_subst(V? Z, t, v))

o2o21o

Append(X3 Y5 Z) <->

(X = [] A Z = Y)
v 3(x3 X3 Z; #X = [x . X] A 9Z = [x . Z] A Append(X3 Y, Z))

Thm 782o22o

Addend(X3 Y, Z) <-»
(X = [] A Z = Y)

v3(x, X; ffX = [x.X] A Addend(X3 Y3 Z) A Member(x? Z))

v3(x? X Z; SX = [x.X] A SZ = [x.Z] A Addend(X3 Y5 Z))

Vars(t, V) <->

(Variable(t) A V = [t])

V(t = * A V = [])

v3(s? t, S, T; *t = [s.t] A Vars(s, S) A Vars(t, T)

A Addend(S5 T? V))

v3(s3 1, S, T; #t = \: /s./t) A Vars(s, S) A Vars(t9 T)

A Addend(S3 T, V))

v3(t;*t = (: * . t) A V = [])
v3(t; #t = (: quote. t) A V = [])

v3(f , T; t = (: apply. [f.T]) A Vars(T3 V))

v 3(X3 a, U; t = (: abs . [X3 a]) A Vars(a3 U)

A Down(X3 U, V))

024

Down(X3 U3 V) «-»

(U = [] A V = [])
v3(x, U; «U = [x.U] A Pure_variable(x)

A Member(x3 X) A Down(X3 U3 V))

v3(x?U3 V; tfU = [x.U] A W = [x.V]
A Pure_varlable(x) A Non_member(x? X)

A Down(X3 U, V))

v3(y3U3 V ; S U = [(: free.y).U] A #V = [y.V]
A Pure_part(y3 z) A Member(z3 X) A Down(X3 U3 V))

THEORY OF SYMBOLIC EXPRESSIONS, II 529

v 3 (y , U , V ; * U = [(: free.y).U] A ttV = [(: free.y).V]
A Pure_part(y3 z) A Non_member(z3 X)

A Down(X3 U3 V))

7o202S0 New(x31) <-> 3(X; Vars(t? X) A Non_member(x3 X))

7020260

New_Hst(X31) <->

(X = [])

v3(x3 X; ttX = [x.X] A New(x31) A New_Hst(X31))

7020270

Eq_pr(S3 E3 P3 U3 V) <->

(P = [] A U = [] A V = [] >

v3(p? P3 u3 U3 v3 V; ttP = [p.P] A ttU = [u.U]
A fiV = [v.V] A Pr(S3 E3 p5 u = v)

A Eq_pr(S3 E3 P3 U3 V))

Lpr(S3 E3 P3 A) <->

(P = [] A A = [])
v3(p? P3 a? A; tfP = [p.P] A *A = [a. A]

A Pr(S? E3 p5 a) A Lpr(S3 E3 P3 A))

Upr(S3 A3 E3 P3 c) ^

(A = [] A P = [])
v3(a? A3 p, P; ttA = [a. A] A #P = [p.P]

A Pr(S3 [a.E]3 p3 c) A Upr(S3 A3 E, P5 c))

Axloni(a3 S) <->

Sa_axiom(a3 S)

v3(p; Proves(p3 axlom[a]3 S) A Wff(a3 S)

Ttom 7o2o31c

SA_axiom(a3 S) <-»

(a = / V(s 3 t ; [s a t]^ .))

v (a = 'V(s , t ; (: s . t) **))
v (a = 'V(s , t ,u ,v; [s . t] ^ (: u.v)))
v (a = 'V(s, t, u, v; [s.t] = [u.v] -> s = u))

530 MASAHIKO SATO

v (a = 'V(s, t, u, v; [s.t] = [u.v] -> t = v))
v (a = 'V(s, t, u, v; (: s.t) = (: u . v) -» s = u))
v (a = 'V(s, t, u, v; (: s.t) = (: u.v) -» t = v))
v (a = 'V(r; -i(r < *)))
v (a = 'V(r , s , t ; - i (r<(: s . t))))
v (a = 'V(s , t ; s< [s.t]))
v (a = 'V(s, t ; t<[s . t]))
v (a = 'V(r, s, t; r < s -» r < [s . t]))
v (a = 'V(r , s 5 t ; r < t -> r < [s.t]))
v (a = 'V(r, s , t ; r < [s . t] - > r = s v r < s v r = tvr
v (a = '((quote . *) = *))
v3(s3 1; a = '((quote . [/s . /t]) = [(quote . /s) . (quote . /t)]))
v 3(s3 1; a = '((quote . (/s . /t)) = (: (quote . /s) . (quote . /t))))
v (a = '((*•*) = (:*.*)))
v 3 (s 3 t 3 u 3 v ; a = %((*-/s) = 0 *./u),(*./t) = (: * . / v) ->

(*.[/s./t]) = (:*.[/u./v])»
v3(s, t ,u, v; a = '((*./s) = (: * . /u) , (*- / t) = (: *./v) ->

v 3(a03 x, y? IHx, IHy, al, a2, b, a;

fta = X/aO, V(/x, /y; /IHx, /IHy -> /al),
V(/x ? /y ; / IHx 3 / IHy^/a2) ->/b)

A Pure_variable(x) A Pure_variable(y)

A Pure_variable(z)

A Ne(x9 y) A New(x5 a) A New(y, a) A Wff(a, S)

A Term(t, S)

A Substl(t, z, a, b) A Substl(*? z, a3 IHx)

A Substl(y, z, a3 IHy)

A Substl([x.y], z, a3 al) A Substl(v(: /x./y), z3 a3 a2))
v3(z3 w, al, a, b;

a = v(V(/z; V(/w; /w < /z ̂ /al) - /a) ̂ /b)

A Pure_variable(z) A Pure_variable(w)

A Ne(z3 w) A New(w3 a)

A Wff(a, S) A Term(t? S) A Substl(w3 z3 a3 al)

A Substl(t, z, a, b))

THEORY OF SYMBOLIC EXPRESSIONS, II 531

Thm 7.2.32.

Pr(S? E, p, a) <->
(p = [a, axiom[]] A Axiom(a3 S) A Wff_list(E, S))

v (p = [a, assumption[]] A Member(a, E) A Wff_list(E9 S))

v3(A3 P; p = [and[.A], and_I[.P]] A a = and[. A]

A Lpr(S, E, P, A))

v3(p? A; Sp - [a, and_E[p]] A Pr(S3 E, p? and[. A])

A Member(a3 A))

v3(A5 p; ftp = [or[. A], or_I[p]] A a = or[. A]

A Pr(S, E, p, a) A Member(a3 A) A Wff_list(A, S))

v3(p3 P3 A; #p = [a, or_E[p.P]] A Pr(S3 E3 p, or[.A])

A Upr(S, A, E3 P5 a))

v3(A3 b, p, F; ftp = [imply[A3 b], Imply_I[p]]

A a = imply[A3 b] A Append(A3 E3 F) A Pr(S3 F3 p, b))

v3(p3 P3 A; ttp = [a, imply_E[p, P]]

A Pr(S3 E3 p3 Imply[A3 a]) A Lpr(S3 E3 P3 A))

v3(X3 a3 Y3 p3 b; #p = [all[(: abs. [X3 a])], all_I[[X3 Y], p]]

A tta = all[(: abs.[X, a])]

A New_Hst(Y, E) A Pure_variable_Hst(X) A Wff(a, S)

A Subst(Y3 X, a3 b) A Pr(S3 E3 p3 b))

v 3 (T ? p 5 X 3 b ; t t p = [a?all_E[T3p]]

A Pr(S3E3p3all[(:abs.[X3b])])

A Term_list(T3 S) A Subst(T3 X5 b, a))

v3(X? bp T9 p; Sp = [ex[(: abs. [X3 b])], ex_I[T3 p]]

A a = ex[(: abs. [X, b])] A Term_list(T3 S)
A Pure_variable_Hst(X) A Wff(b3 S)

A Subst(T3 X, b, a) A Pr(S3 E3 p3 a))

v3(Y3 p3 q3 b3 c; #p = [a, ex_E[Y3 p3 q]] A New_Hst[Y3 E]

A New_list(Y3 a) A Pr(S3 E3 p, ex[(: abs. [X, b])])

A Subst(Y3 X3 b, c) A Pr(S3 [c. E], q3 a))

v3(t; p = [t = t, axiom_id[]] A Term(t3 S))

v3(U, V3 X3 c, p, P3 b; ttp = [a, subst[[U3 V3 X, c], p. P]]

A Wff(c, S) A Subst(U, X3 c, b) A Subst(V3 X, c3 a)

A Pr(S9 E3 p5 b) A Eq_pr(S, E3 P3 U3 V))

Using these theorems we can study about SA and its extensions within

532 MASAHIKO SATO

SA. For example corresponding to the simple metatheorem:

S\-a-+b,S\-a ==> S h- b

we have the following theorem:

Tflim 7o3oie Thm(a -> b, S), Thm(a? S) -» Thm(b? S)

Proof. Assume Thm(a -» b, S) and Thm(a3 S). Then we have p and q such

that:

Pr(S5 [], p, a -> b) (1)

Pr(S, [], q, a) (2)

From (2) and Thm 7.2.28 we have:

Lpr(S, [], [q], [a]) (3)

By (1), (3) and Thm 7.2.32 we have:

Pr(S? [], [b, imply_E[p? [q]]], b) (4)

Then by applying (31) to (4) we have Thm(b, S). D

We can similarly prove the following theorems and much more similar

theorems which we do not list here.

. 7.3,2. Thm(a? SA) -» Thm(a, S)

. 7o3030 Wff(a, S) -> Thm(l -» a, S)

. 7o3A ThmCxt = "t, SA)

Thm 7.3.5. Thm("[s. t] = [us. "t], SA)

i 7o30£ Thm(X/"(: s. t) = (: /"s. /"t))? SA)

Next we will prove that SA is inductively complete in the sense that if

Theorem (a, FS) then we can formally prove it in SA. (We borrowed this

terminology from Feferman [4].) We can state this formally as follows:

Theorem(a? FS) -» Thm(xTheorem(/ua, /"FS), SA)

We first prove the following key lemma.

i 7o3870 UnivJree(T) -» Thm(vUniv_tree(/vvT), SA)

Proof. We prove this theorem by the < -induction on T. Assume Univ_tree(T).

Then by Thm 6.4.2 we have 24 cases to consider of which we treat only (Case 17)

as a typical case.

(Case 17) In this case we have some s, t, E, u, v3 Tl and T2 such that:

THEORY OF SYMBOLIC EXPRESSIONS, II 533

Der(Tl9 eval[s3 E3 u]) (1)

Der(T25 eval[t, E3 v]) (2)

and

T = [(: eval[s. t], E5 [u. v]), Tl, T2] (3)

From (!) we have:

IMvJree(T) (4)

and

3(Q;Tl = [(:eval[s,E,u]).Q]) (5)

By (3) we have Tl <T and we can apply induction hypothesis to (4) and get:

ThmCUniv_tree(/uTl)3 SA) (6)

Now by (5) we can take Q such that:

Tl = [(:eval[s,E,u]).Q] (7)

By Thm 7.3.4 we have:

ThmCTl = "Tl, SA) (8)

We can rewrite (8) using (7), Thm 7.3.5 and Thm 7.3.6 as follows:

ThmCCrTl = [(: eval[/"s, /"E, /"u])./"Q]), SA) (9)

From (6) and (9) using Thm 7.2.32 we get:

ThmCDerCTTl, eval[/"s, /"E, /"u]), SA) (10)

From (2) we have the following similarly:

ThmCDer(/-T2? eval[/ut, /V VE ? /-v]), SA) (11)

We can also prove the following by using (3):

Thm(X/uT = [(: evalC/WU /"E, [/uu.rv]), /"Tl, /"T2]), SA) (12)

From (10), (11) and (12) we can prove:

Thm(v3(s, t, E5 u, vs Tl, T2;

Der(Tl5 eval[s? E, u]) A Der(T23 Eval[t, E3 v])

A T = [(: eval[[s. t], E, [u. v]]), Tl, T2]), SA) (13)

Now let b be the right hand side of the equivalence of Thm 6.4.2. Then applying

(vl) to (13) we have:

534 MASAHIKO SATO

ThmCAT[TT], SA) (14)

On the other hand, repeating the proof of Thm 6.4.2 within SA, we obtain:

Thm(v(Univ_tree(/"T) <-» ̂ T(/VT]), SA) (15)

By (14) and (15) we have:

Thm(XUniv_tree(/xvT)), SA)

D

Using Thm 7.3.7 we can easily prove the inductive completeness of SA:

Thm 7.3.8. Theorem(a5 FS) -> Thm(xTheorem(/"a3 /
UFS), SA)

We also have the following theorem as a corollary to this theorem.

Thm 73J0 Thm(a, S) -> ThmCThm(/"a, /"S), SA)

§Bc Incompletness Theorem

In this section we prove some of Godel's incompleteness theorems

(G6del[5]) including the second incompleteness theorem formally in SA.

8.1. reiectlon principle

Let us make some observations about what we are doing by looking at it

from outside. We have been developing our informal theory of symbolic ex-

pressions only using constructively acceptable arguments. We also claim that

our formal theory SA reflects faithfully part of our informal mathematics.

This means firstly that each wff in SA can be translated into an informal state-

ment that is meaningful to our informal mathematics, and secondly that each

formal proof of a wff in SA can be translated into an acceptable informal proof of

the corresponding informal statement. We may call this translation process as

informalization. Since the translation process should be almost clear, we only

explain how terms in SA are translated into informal expressions denoting sexps.

We denote the translation of a term t by I. If t is a variable then we translate

it into an informal variable. E.g., if t is 6x' then we translate it into V. We

translate * into *. The translation of [s. f] is [s. T} and the translation of (: s. t)

is (s. I). The translation of 't is t and the translation of (*. f) is (*. t).

Let us consider the translation of formal developments in Section 6 and 7.

The corresponding informal developments considerably overlaps with our earlier

developments in Sections 1-5. But there are minor differences which we now

THEORY OF SYMBOLIC EXPRESSIONS, II 535

explain. In Section 2 we defined the concept of a formal system using informal

inductive definitions. Namely, we defined the informal predicates ne, assoc,

get, eval, Iproves, proves and theorem by Informal Inductive definitions. On

the other hand, by translating Def 6.1.1-7 In Section 6.4 we have the explicit

definitions of the Informal predicates Ne, Assoc, Get, Eval, Lproves, Proves and

Theorem. It is, however., easy to see Informally that these two groups of con-

cepts are equivalent. From this observation, it follows, for instance, that the

concept defined by the translation of Def 7.1.32 In Section 7.2 Is equivalent to the

notion of the provability in a formal theory which we defined in Section 4.2.

We can thus conclude that each formal theorem of SA yields as by-product

an Informal theorem which is Its Informal counterpart. Such an informal

theorem may sometimes be used to produce another formal theorem. We give

two Important examples of this.

By Informalizing Thm 7.3.8 we have the following theorem:

a => SA H Theorem('a, TS)

The logic programming language Qute [12] can be used to verify \-FS a auto-

matically, so that this theorem will be useful when we Implement a proof checking

system for SA on a computer.

The following theorem can be obtained by reading Thm 7.3.9 Informally.

020 S\-a =>SA |-Thm(X fS)

This theorem Is the first Lob derivability condition and Thm 7.3.9 Is the second.

We have already proved the third derivability condition as Thm 7.3.1. (See, e.g.,

Feferman [4] for these derivability conditions.)

We prove the diagonalizatlon lemma in this subsection. To state the

diagonallzation lemma, we need some definitions.

:.!.!. Sub(t, a, b) = 3(x; Vars(a, [x]) A Substl("t, x, a, b))

Beff 8.1.2. A(x, S) = 3(X; Sub(x, x, X) A -iThm(X, S))

..1.3. B(S) = xA(x, rS)

A. C(S) = A(B(S), S)

S.1.5. D(S) = XrB(S), /"S)
Using these predicates, we can state the diagonallzation lemma as follows.

536 MASAHIKO SATO

Thm(D(S) «-» -VThm(/uD(S)3 /US)3 SA)

To prove this we prepare some auxiliary lemmas. We can easily prove the

following two lemmas:

Thm 8.1.1. Sub(t3 a, bl), Sub(t, a3 b2) -> bl = b2

Tfam 8.1.2. Sub(B(S)3 B(S), D(S))

Then we can prove the following lemma.

Thm 8.1.3. C(S) <-> -iThm(D(S), S)

Proof. We first prove the -> part. Assume C(S) and let X be such that:

Sub(B(S)5 B(S), X) A -iThm(X, S)

This implies:

Sub(B(S)5 B(S), X) (!)

and

-iThm(X, S) (2)

Then by (1), Thm 8.1.2 and Thm 8.1.1 we have:

X = D(S) (3)

By (2) and (3) we have -iThm(D(S)3 S).

Next, we prove the «- part. Assume Thm(O(S)3 S). Then by Thm 8.1.2 we

have:

Sub(B(S), B(S), D(S)) A -iThm(D(S)3 S)

From this we have C(S) by (31). D

We have the following by applying (VI) to Thm 8.1.3.

SA h- V(S; C(S) «-> -iThm(D(S), S))

From this by Theorem 8.2 we have the following:

SA h- Thm(/V(S; C(S) <-> -iThm(D(S), S)), SA)

We therefore have the following theorem.

Thm 8.1.4. Thm(/V(S; C(S) « -iThm(D(S)3 S)), SA)

We can now prove the diagonalization lemma as follows.

Tfiim 00§0 Thm(D(S) <-» -iNThm(/"D(S)3 /"S), SA)

Proof, By a simple but tedious computation we have:

THEORY OF SYMBOLIC EXPRESSIONS, II 537

'V(S; C(S) «-* -iThm(D(S)? S)) = NV(S; C(S) ^ -iThm(D(S), S)) (1)

By (1) and Thm 8.1.4 we have:

Thm(vV(S; C(S) «-> -iThm(B(S), S)), SA) (2)

By formally specializing 6S9 to the term NVS we obtain:

ThmC(C(/"S) ^ -]Thm(D(/"S), /US))? SA) (3)

On the other hand we have the following by a simple calculation:

ThmCD(/"S) = "D(S), SA) (4)

By (3) and (4) we have the following as desired:

Thm(D(S) «-> -VThm(/"D(S), /nS), SA)

D

Remark. The method we used to obtain Thm 8.1.5 from Thm 8.1.3 is

general and applicable to similar cases. We will call this method as formal-

ization. Thus, e.g., we say that Thm 8.1.5 is obtained by formalizing

Thm 8.1.3. D

We first define the concept of consistency,

Beff 8.2.1. Consis(S) - ~i Thm(1, S)

ConsIs(S) says that S is consistent.

We will prove the following theorems.

Tlim 8.2.1. Thm(D(S)? S) -> Thm(_L? S)

.2.2. Consls(S) -> -iThm(D(S), S)

02o30 Consis(S) -» C(S)

Tim ThmCConsis(/"S) -» D(S), S)

Thm OA Thm(vConsls(/"S)? S) -> Thm(D(S)5 S)

Tim §0207o Consis(S) -*• -iThmCConsis(/XNS)5 S)

Proof of Thm 8.2.1. Assume:

Thm(D(S), S) (1)

538 MASAHIKO SATO

By Thm 7.3.9 and (1) we have:

ThmCThm(/"D(S), /US), SA) (2)

By (2) and Thm 7.3.2 we have:

Thm(Thm(rD(S)? /"S), S) (3)

On the other hand by Thm 8.1.5 and Thm 7.3.2 we have:

Thm(D(S) -> -TThm(/uD(S), /VVS)3 S) (4)

By (1), (4) and Thm 7.3.1 we have:

Thm(-i NThm(/"D(S), /VXS), S) (5)

By (3), (5) and Thm 7.3.1 we have Thm(_L3 S). D

Thm 8.2.2 is a logical consequence of Thm 8.2.1. Thm 8.2.2 says that if

S is consistent then the 'formula' D(S) which states its own unprovability is in

fact unprovable. Here we note that S must be an extension of SA according to

our definition of FOT, and that Thm 7.3.2 states this fact formally.

Thm 8.2.3 follows from Thm 8.2.2 and Thm 8.1.3.

We can obtain Thm 8.2.4 by formalizing Thm 8.2.3. (Recall the remark

we made after the proof of Thm 8.1.5.) Thm 8.2.5 then follows from this

theorem by applying Thm 7.3.2.

Thm 8.2.6 is a logical consequence of Thm 8.2.5 and Thm 7.3.1.

Finally, we get Thm 8.2.7 as a logical consequence of Thm 8.2.2 and Thm

8.2.6.

Thm 8.2.7 is the formalized second incompleteness theorem, and we can

obtain the informal second incompleteness theorem by informalizing Thm

8.2.9. We therefore have the following two metatheorems.

Theorem 8.3. (Second Incompleteness Theorem)

If S is consistent then S J^ Consis('S)

Theorem 8A (Formalized Second Incompleteness Theorem)

SA h- Consis(S) -> -iThm(xConsis(/NVS), S)

8o4o

The purpose of the present paper was to provide a formal axiomatic theory

in which one can actually work without resorting to metamathematical argu-

ments. We have set the task of proving Godel's (formalized) second incom-

pleteness theorem to test the adequacy of the theory in this respect.

THEORY OF SYMBOLIC EXPRESSIONS, II 539

It is obvious that the existing theories like PA (Peano arithmetic) or

(Heyting arithmetic) are good for studying them but are not good for actually

working within them (especially when one has to prove rnetamathematical
theorems like incompleteness theorems). To work within them is as difficult

as programming in Turing machines. (We note that Beeson[l] has made a

similar remark.)

Since the basic entities one studies in metamathematics are syntactic objects

like wffs or proof, and since one must develop some metamathematics within a

theory to prove Incompleteness theorems, it Is desirable that such a theory can

handle syntactic objects naturally. It has long been known In computer science

that pairing structures provide a natural framework for representing these

syntactic objects as a tree structure. These pairing structures are known as

McCarthy's symbolic expressions, and are basic objects of the programming

language LISP (McCarthy[8]). Feferman[4] noticed the usefulness of

McCarthy's symbolic expressions and developed two formal theories of symbolic

expressions, FM and FM0, based on second order classical logic. Despite the

differences in the logics used and the differences in the basic objects (Feferman

uses McCarthy's sexps and we use our sexps), the present work and Feferman's

seem to have succeeded in providing workable formal theories In a fairly similar

manner. We think that the success owes very much to the mathematical ele-

gance of symbolic expressions.

Another Important reason for our choice of sexps as the basic objects In our

formal theory SA is that they are Implementable on a computer. This Is essential

because this makes It possible to constuct a proof checking system for SA on a

computer. Such a proof checking system will not only check If an alleged proof

(which Is a sexp) Is In fact a correct proof, but also will assist in constructing a

formal proof. We believe that without such assistance by a computer, It will

be impossible to actually construct a formal proof of a reasonably interesting

theorem. The proof checking system will be implemented on Qute. As we

have remarked In Section 2.1, Qute Is a pROLOG-like language which computes

functions and relations on sexps, and we can use Qute as a theorem prover for

formal systems. Moreover, we can define the semantics of Quto formally within

SA, so that It will be possible to prove properties of programs written In Qute0

These topics, however, we leave for future publications.

540 MASAHIKO SATO

The author is Indebted to Dr. Susumu Hayashi for conversations on the

material presented In this paper and to Mr. Takafumi Sakurai for implementing

Qute.

[1] Beeson, M. J., Proving programs and programming proofs, Abstracts of the 7th
International Congress of Logic, Methodology and Philosophy of Science, vol 1, (1983).
3-65,

[2] Bourne, S. R., The Unix System, Addison-Wesley, 1982.
[3] de Bruijn9 N. G., Lambda calculus notation with nameless dummies, A tool for

automatic formula manipulation, with application to the Church-Rosser theorem,
Indag. Math., 34 (1972) 381-392.

[4] Feferman, S., Inductively presented system and formalization of meta-mathematics,
Logic Colloquium '80, North-Holland, 1982.

[5] Godel, K., Uber formal unentscheidbare Satze der Principia Mathematica und ver-
wandter Systeme, Monatshefte f. Math. u. Physik, 38 (1931) 173-198.

[6] Gordon, M., Milner, R. and Wadsworth, C, Edinburgh LCF, Lect. Notes in Comp.
Sci. 78, Springer 1978.

[7] Hayashi, S., Extracting Lisp programs from constructive proofs: A formal theory of
constructive mathematics based on Lisp, Publ. RIMS, Kyoto Univ. 19 (1983) 169-191.

[8] McCarthy, J., Recursive functions of symbolic expressions and their computation by
machine, Part I, Comm. ACM, 3 (1960) 184-195.

[9] Quine, W. V., Mathematical Logic (revised version), Harvard University Press, 1979.
[10] Sato, M., Theory of symbolic expressions, I, Theoretical Computer Science, 22 (1983)

19-55.
[11] Sato, M. and Hagiya, M., Hyperlisp, in: J. W. de Bakker and J. C. van Vilet, Eds.,

Algorithmic Languages, North-Holland, (1981). 251-269.
[12] Sato, M. and Sakurai, T., Qute: A Prolog/Lisp type language for logic programming,

Proceedings of the Eighth International Joint Conference on Artificial Intelligence, 507-513.
1983.

[13] Smullyan, R., Theory of Formal System, Annals of Mathematics Studies, 47, Princeton
University Press, Princeton, 1961.

