A Remark to 'Global Regularity and Spectra of Laplace-Beltrami Operators on Pseudoconvex Domains'

By

Kensho Takegoshi*

Let $D \in M$ be a pseudoconvex domain with smooth boundary ∂D on a complex manifold M and let $B \rightarrow M$ be a positive holomorphic line bundle on M. In the previous paper [6], we proved the following statement which is inspired by Kohn's work [3] (cf. [6] Theorem N_s and Corollary).

For every non-negative integer s, there exists a positive integer m(s) such that if $m \ge m(s)$, for every $v \in C^{p,q}_{\infty}(\overline{D}, \mathbf{B}^{\otimes m})$ with $\overline{\partial}v = 0$, there exists $u \in C^{p,q-1}_{\infty}(\overline{D}, \mathbf{B}^{\otimes m})$ with $\overline{\partial}u = v$.

Here $C_s^{p,q}(\overline{D}, \mathbb{B}^{\otimes m})$ denotes the space of $\mathbb{B}^{\otimes m}$ -valued differential forms of type (p, q) and of class C^s up to boundary $(0 \le s \le \infty)$. With respect to this statement, it is natural to ask whether we need to take the tensor product of \mathbb{B} so many times actually. In this connection, we give here the following example as a partial answer to this question.

Assertion. There exist a pseudoconvex domain $D \in L$ with smooth boundary ∂D on a complex manifold L and a positive holomorphic line bundle $B \rightarrow L$ satisfying the following properties:

- i) D is Stein,
- ii) there exists $v \in C^{0,1}_{\infty}(\overline{D}, B)$ with $\overline{\partial}v = 0$ such that any solution $u \in C^{0,0}_{\infty}(D, B)$ of $\overline{\partial}u = v$ satisfies sing. supp. $(u) \neq \phi$.

Here sing. supp. (u) denotes the singular support of u with respect to the closed domain \overline{D} . More precisely, the complement of sing. supp. (u) consists of all points $x \in \overline{D}$ such that x has a neighborhood U with the property that the

Communicated by S. Nakano, July 13, 1984.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

restriction of u to $U \cap \overline{D}$ is in $C_0^{0,0}(U \cap \overline{D}, B)$. The above example tells us that even when s=0, we need to take the tensor product of B sufficiently many times in order to gain the boundary regularity of the $\overline{\partial}$ -solution. On the other hand, we do not know whether the integer m(s) can be taken bounded or not as s tends to infinity. With respect to the propagation of singularities for the $\overline{\partial}$ -operator, the reader is also referred to [2], [3] and [4].

The author thanks to Professor S. Nakano and Dr. T. Ohsawa for their kind advices.

Construction of $D \in L$ and $B \rightarrow L$.

According to [1], Appendix, we construct $D \in L$. Let A be a non-singular compact curve whose genus is ≥ 2 and let $L \xrightarrow{p} A$ be a holomorphic line bundle with deg (L) = 0. Let $\{a_{ij}\}$ be a system of transition functions of L with respect to a trivializing covering $\{V_i\}$. Then we can find non-constant harmonic functions h_i on V_i such that $a_{ij} = \exp(-\sqrt{-1}(h_i - h_j))$ on $V_i \cap V_j$. Let $w_i = 0$ be the local defining equation of the zero section in $p^{-1}(V_i)$ such that $w_i = a_{ij}^{-1} w_j$ on $p^{-1}(V_i \cap V_j)$. Then D is defined as follows:

$$D \cap p^{-1}(V_i) = \{(z_i, w_i): |w_i|^2 + \text{Re}(w_i \exp(-\sqrt{-1}h_i)) < 0\}.$$

Then D is a pseudoconvex domain with smooth real analytic boundary ∂D which contains the zero section of L and ∂D is strongly pseudoconvex outside the zero section of L.

Next we take a holomorphic line bundle $E \to A$ with $\deg(E) = 1$. Using the global function $\Phi = |w_i|^2$ on L, we can assume that the pull back of E by the mapping $p: L \to A$ is a positive line bundle on L. We set $B = p^*E$.

Proof of i) and ii).

Since D does not contain any compact curve, by [1], D is Stein. By the choice of A and E, we obtain $\dim_{\mathbf{C}} H^1(A, \mathcal{O}(E)) \ge 1$. Hence we can take a $\bar{\partial}$ -closed E-valued differential form of type (0, 1) and of class C^{∞} which is not $\bar{\partial}$ -exact, say f. We set $v = p^*f$. Then it is clear that $v \in C^{0,1}_{\infty}(\bar{D}, B)$ and $\bar{\partial}v = 0$. Since D is Stein, there exists $u \in C^{0,0}_{\infty}(D, B)$ with $\bar{\partial}u = v$ on D. If sing supp. $(u) = \phi$ in the above sense, then we can restrict u to the zero section of E and so E is $\bar{\partial}$ -exact. This contradicts to the choice of E. This means that any solution $u \in C^{0,0}_{\infty}(D, B)$ of $\bar{\partial}u = v$ satisfies sing. supp. $(u) \neq \phi$.

References

- [1] Diederich, K., Ohsawa, T., A Levi problem on two dimensional complex manifolds, *Math. Ann.*, 261 (1982), 255-261.
- [2] Diederich, K., Plug, P., Necessary conditions for hypoellipticity of the $\bar{\partial}$ -problem, Ann. of Math. Studies, 100, P. U. Press, (1981), 151-154.
- [3] Kohn, J. J., Global regularity for $\bar{\partial}$ on weakly pseudoconvex manifolds, *Trans. Amer. Math. Soc.*, **181** (1973), 273–292.
- [4] ——, Subellipticity of the $\overline{\partial}$ -Neumann problem on pseudoconvex domains: sufficient conditions, *Acta Math.*, **142** (1979), 79–122.
- [5] ——, Boundary regularity of \overline{b} , Ann. of Math. Studies, 100, P. U. Press, (1981), 243–260.
- [6] Takegoshi, K., Global regularity and spectra of Laplace-Beltrami operators on pseudoconvex domains, Publ. RIMS, Kyoto Univ., 19 (1983), 275–304.