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On Central Limit Theorems in
Probability Gage Spaces

by

G. O. S. EKHAGUERE*?

Abstract

Some limit theorems in probability gage spaces over semifinite /¥ *-algebras are proved.
In particular, a Levy-Khinchine type of representation for the Fourier transforms of limit
probability gages is established. The results are obtained by exploiting some of the algebraic
and topological properties of certain sets of operators, called the decomposability algebraic
structures, associated with probability gages. This work has a number of points of contact
with aspects of (Euclidean) Quantum Field Theory.
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§0. Introductiom

The Centrai Limit Problem is itself a central problem in Probability Theory.
This is the problem of characterizing the limit distributions of sums of triangular
arrays of uniformly infinitesimal, not necessarily identically distributed,
stochastically independent random variables [1]. In the case of real-valued
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random variables, a complete characterization of all nondegenerate such limit
distributions was accomplished by Levy [2].

In recent times, attempts have been made to solve the Central Limit Problem
in the more general contexts of group-valued [3] and Banach-space-valued [4]
random variables. In Ref. [5], Urbanik provides a complete description of a
wide class of nondegenerate limit distributions of sums of Banach-space-valued,
stochastically independent, random variables by means of a certain semigroup
of linear operators associated with each such limit distribution. QOur present
work extends the results of Ref. [5] to the case where the random variables are
densely-defined, stochastically independent, self-adjoint linear operators on
a separable Hilbert space.

Other authors [6-10] have also discussed the Central Limit Problem in
cases involving various specialized classes of linear operators on Hilbert spaces.
In this paper, we provide a fairly general approach to the discussion of the
Central Limit Problem for a class of densely-defined, self-adjoint linear operators
on separable Hilbert spaces. Our presentation exploits various techniques
introduced by Urbanik [5].

The organisation of this paper is as follows. In Section 1, we discuss the
fundamentals of a noncommutative integration theory on W*-algebras of linear
operators on separable Hilbert spaces. Our discussion involves tensor algebras
over W¥*-algebras. A number of concepts and structures, and some of the
notation which we require in the sequel, are also introduced there. In particular,
we isolate a state on a W*-algebra which plays the same role as the Dirac point
measure in ordinary integration theory. Section 2 deals with the basic notions
of the decomposition of a probability gage [11] relative to operators and of
the decomposability algebraic structure of a probability gage. Some properties
of certain operators with respect to which a given probability gage is decom-
posable are described there. In Section 3, the problem addressed in the rest of
the paper is formulated. An analogue of this problem had been formulated
and solved by Urbanik [5] in the case of Banach-space-valued random variables.
In this section, we also introduce the notion of a limit pair and of a norming
sequence corresponding to such a pair. In Section 4, we describe some of
the properties of norming sequences which correspond to certain limit pairs.
These are the limit pairs which are nondegenerate in a sense to be found in
Section 3. In Section 5, we introduce the notion of an infinitely divisible
pair (u, x), where u is a probability gage on a tensor algebra over a W*-algebra
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and x is a self-adjoint operator on the Hilbert space associated with the tensor
algebra. We prove that if the decomposability algebraic structure associated
with u contains a certain type of one-parameter semigroup of linear operators,
then (u, x) is an infinitely divisible pair. In this section, we also characterize
limit pairs by means of their associated decomposability algebraic structures.
In Section 6, we characterize those one-parameter semigroups of linear operators
which can be associated with limit pairs. In Section 7, we obtain a Levy-
Khinchine type of representation for nondegenerate limit pairs. This is done
by means of the Choquet theory of barycentric decomposition on compact,
convex spaces.

As is well known [12], Quantum Theory is a noncommutative Probability
Theory. Consequently, a number of problems in Quantum Theory have
sometimes been discussed [13-17] within the context of noncommutative
Probability Theory. In particular, the papers [6-10] discuss the Central Limit
Problem for certain types of operators occurring in Quantum Theory. Since
the Central Limit Problem is intimately related to the Problem of Infinite
Divisibility, it is pertinent to note the references [18-20] which discuss the
latter problem by means of certain techniques of Quantum Field Theory. Our
own discussion of the Central Limit Problem in this paper has several features
in common with aspects of Euclidean Quantum Field Theory [21]. In fact,
the transformation I' introduced in Section 1 is a generalization of the second
quantization operator [22] and the positivity-preserving one-parameter semi-
group {e'f:te R} occurring in Section 5 may easily be interpreted as the
evolution operator. Therefore, it appears to us that our presentation and
results should be of interest not only to mathematicians and probabilists but
also to Quantum Theorists.

§1. Gage Spaces and Some Associated Structures

If #, is a W*-algebra with identity, then in the sequel, €3, ¥1, €¥, %1
S(%,) and 1, denote the self-adjoint portion, the positive portion, the topo-
logical dual, the pre-dual, the state space, and the identity, respectively, of
%,. For two W*-algebras #{> and %, the notation ¥{’®% 2 stands for
their W*-tensor product and for any two linear spaces £ and £ (?, the symbol
FZORZLP denotes their algebraic tensor product. We refer to Ref. [23,
§1.22] or Ref. [24, Chapter IV] for the notion of W*-tensor product and to
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Ref, [34, VL. 3] for the concept of algebraic tensor product.
Throughout this paper, X, is a fixed complex separable Hilbert space
and %, is a fixed semi-finite W*-algebra of linear operators on Xj.

The spaces X and z

For any positive integer n, let X, (resp. Z,) denote the n-fold W*-tensor
product) of X, (resp. ;) with itself. Then &?,, is a semi-finite W*-algebra
[23 Theorem 2. 6 6] of linear operators on the Hilbert space X,. We write
(—B X,=X and (—B .%" = for the Hilbert space direct sum of {X,: n=0, 1, 2,...},
and the W*-dlrect sum [23] of {3{' n=0, 1, 2,...}, respectively. Here X O_C
and X, O_Cl , where C denotes the complex numbers. A member a of x
may be written as follows: a= G—) a,, where a, lies in 33' and only a finite number
of the members of the sequence {a n=0, 1, 2,...} is nonzero.

The pre -dual & « of the W*-algebra & consists of linear functlonals v of the
form v= @ v,, where v, lies in the pre -dual Et”,,* of ﬁl”,,, Ivlis.= Z [1Vall 345
vl 4. and I|v|[3,"* denote the norms of 32”* and .%”,,*, respectively, and Vo is a
scalar multiple of the function on PXO which is 1dentlcally 1. Moreover, 3?!'*
is a Banach subspace of Z* in the norm-topology of z* [25].

The algebraic temsor algebra &
In the sequel we write %, for the n-fold algebraic tensor product of Z

with itself and G—) Z,=% for the algebraic tensor algebra [26] over Z.
Ev1dent1y, Z is dense inZ. The multlphcatlon in & is defined as follows. For
a-(—B a, and b= (—B b, in Z, with a, —® a,; and b, —® b,;, then

Jj=1

a-b= @_ﬁo(a-b)n

where

(a . b)"= kio an_k® bk’ and
an®bm=an1®"'®ann®bm1®"'®bmm-
Observe that 3?1 =Z.

Noncommutative integration on W *-algebras

Several versions of a noncommutative integration theory on W*-algebras
have been developed in the literature [11, 27-31]. In this paper, we employ
the formulation due to Irving E. Segal [11, 32, 33].
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Suppose that y, is a faithful, normal, semi-finite trace on 52“,,, n>0. Set
{aye &, pla*a)<oo}=Z, and Z, -&, =ZP n>0. Then, there is [23,
247 a unique linear functional, denoted again by u,, which coincides with the
original u, on z (un) 2+, n>0. The linear functional , is called a gage [11]
on é’,,, n>0.

We write G(S&A”,,) for the set of all gages on 5&7,,, n>0. A member y, of G(Etc,,)
such that u,(1z)<oo and p,(13)=1 is called a probability gage. We denote
the set of all probability gages on 33’,, by Gl(fg‘n), n>0. Furthermore, we define
the sets G(%A“ ) and Gl(EZA‘ ) as follows:

6@ ={u= @ t: k€ G(&), 10}, and
GiE)={u= & peG(E): w(lz) <00 and u(l)=1}

Suppose that p,e G(%A',,). For 1<p<oo, let LP(X,, SZA",,, u,) denote the
completion of z {#n) in the norm-topology given by

@y 118yl 5,0, =(WallanP))7,
where |a,| is the positive part of the canonical polar decomposition of a, 7 (),
We denote the pair (.5%,,, I le,u,)> Where |- ,. is the operator-norm on QA”,,,
by L*(X,, Z> thn)-

The Banach spaces LP(X,, 92',,, U)s Uy € G(Z&A“,,), 1<p< oo, have properties
which are analogous to those of ordinary LP-spaces of functions [32, 33].
However, in the present noncommutative setting, each member of L?(X,, %A”,,,
W), 1<p<oo, n>0, is an operator which is affiliated [11] to 3?,,. We remark
too that if u, e Gl(é‘f',,), then Li(X,, fg",,, u,) may be identified as a Banach sub-
space of LP(X,, 32",,, U, for g>p, n>0. In this case, L®(X,, 53”,,, W) is a
Banach subspace of L?(X,, .%A”,,, U), 1<p<oo, n>0.

For pue G(B&” ), with p= (-D Upy WE deﬁne Lr(X, .%’ 1) as the Banach space
completion of the algebralc dlrect sum (—B Lr(X,, Q’n, u)=L*(X, .”I Wa, In
the norm-topology furnished by the norm || |! p.u SPecified thus:

ar—lalf,= 3 16,05, =& a,eL/X, £, Wap 1<p<c.

A member a of LP(X, &, ) will be written as a= @ a,, where N,={0, 1, 2,...}.
nelN,
We remark that if F(X) denotes the completioﬁ) of X in the norm given by

¢ —Rlzon= 3 160}, ¢=@ &ieX,
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then each member of L?(X, z , ) is a densely defined operator on F(X).
Furthermore, F(X) is analogous to Fock space.[22].

Convergence in G(ﬁ»? )

For pe G(.%’ ), with u= @ U, denote the self-adjomt portion of L?(X, 3&” )
by LE(X, %” w. In the sequel we write LI(X, 3&” Way, Tor the set of all finite
real linear combinations (using the strong sum operatlon in LP(X, 38“ w) of
members of LP(X, .”[ u) of the form a= (—B a,, with a,= ® a,j, n=0, 1,2,.

HEO

For u, e G(HZ",,) LA(X,, 5&” . My, and LI(X,, 5{,,, ,u,,),,lg are analogously defined.
For ueG(.%“) aeLX(X, 5‘2" Wa,» With a= (—B a,, Ap= ® a,j, and any set
0,=1{0,;:j=1, 2,..., n} contained in R, we deﬁne the exponentzal eionan of

a, as follows:
(11) eiontan — é eionjanj

(1.2) Definition and Notation: Let pe G(El’ ) with u= @ Un, and ae LE(X,
Z, Wag 1<p< o0, with a= né?vo ,® a,;. Denote the formal sum E IR CALED)
by pu(eie'®), where o={0,;:j=1,2,...,n;n=0,1,2,.}. Then we write
G(Z) for the set: GO(Z)={(y, a)e G(ei) x LA(X, %, Wy |u(ei=®)| < oo for
all c={0,;: j=1, 2,...,n; n=0,1,2,...} < R}

Using G,(%) in place of G(Z), we define GPX(Z) in an analogous fashion.

Remark: Incaseo,;=cforallj=1,2,...,n; n=0,1,2,..., then we denote
u(eie’?) simply by u(e’(®-¢). The notion of convergence in G(f ) employed by
us is induced by the following concept of convergence of pairs.

(1.3) Definition: Let uoeG(gé‘\ ) and .« be a directed set. Suppose that
(WU {u®:aeo}cG@) and {a}U{a®:ae}cLUX, Z, u°),, Wwith
(1, a) e GPN(Z) and (u@, a®)e GP(Z), ae /. Then, we shall say that the
net {(u®, a®): ae o} of pairs converges to the pair (u, a) if, and only if,
(1.9 u@(ei@)-a) converges to u(e’(@):9), for each g € R.

The algebras 2°(R, 5’2’,,, &,) and 27(R, .%A’, 2)

Let 2(R), denote the complex-valued bounded Borel functions on R.
We write 2(R), for the n-fold algebraic tensor product of 2(R), with itself
and set éI—S 2(R),=2(R), an algebraic direct sum. Here, 2(R),= Cf,, where
fois thenfltl)nction on R which is identically one. Of course, 2(R) is a tensor
algebra in a natural way.
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Let ,ueGl(.%”), with p= (-B u, and (a, g)eL”(X 3&" ,u)algx Q(R) with a=
@ an’ an_ z /’{ (® an])’ AIIJER and g @ gm gne Z ﬁk(® gi(Jj)) 91(113)
€ =@(/R)l, B € (C Then define g,(a,) and g(a) as follows
k’

gn(an) Z !g.‘: )"nlﬁnk( ® g(k) Sllj))) n=0’ 15 29---, and

k=

9(0)= @ g.(ay).

It is evident that the maps a,~g,(a,), of LE(X,, 32‘,,, M)y into Z,, n=0, 1, 2,...
and aw—g(a), of LE(X, 3@”, Wa, into the tensor algebra %, are well-defined.
(Functions of self-adjoint operators are defined throughout the paper by means
of the spectral theorem [34].)

Next, we define 27(R, 5’?,,, w), n=0,1,2,... and 27(R, 52‘, u) as follows:

97(R, EZ’,,, u,) =subalgebra of %, generated by {g.(a,):g.,€ 2(R), and a,
GL?(X,,, '%ﬁm .u'n)alg}

and

27(R, %, )= ® D¥R, %y, 1), l<p<oo, peGy(%).
n=0

Evidently, 27(R, .%A", u) is an algebraic tensor subalgebra of Z.

Remark:

(i) Incase @ is a W*-tensor subalgebra of Z and é U, lies in Gl(@), we define
97(R, @,,, u), n=0,1,2,..., and 27(R, @,"78, 1<p< o0, analogously
as above.

(i) Observe that (1.4) implies the following:

(1.5) pn(g(a)) converges to u(g(a))
forallg= @ g, in 9(R).
n=0

The transformation 7°

Let ,u,,eGl(fg,,). Then, we denote the Banach algebra of all continuous
linear mappings of L?(X,, &;,,, u,) into itself by B(L?(X,, 53,,, U,)) and write
B(LA(X,, 32”,,, )+ for the subset of B(L?(X,, 3?‘,,, 1)) consisting of all positive
maps, i.e. maps which send positive members of LP(X,, .%’A',,, U, to nonnegative
members. The norm of B(L?(X,, 5?,,, 4y)) will be designated by |[ - |l,,,., #=0,
1,2,...

For u= éo Uy, in Gl(ﬁ?), we put
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A

B(LX(X,, Z,, u,))=B(L*(X, &, 1)), and

@3

0

 BLAX,, Zyy 1))+ =BILA(X, &, 1))+ -

3
8 1

n

We denote the norm of BL?(X, &, 1)) by [|- Il o 1 <P< 0.
Corresponding to each 4, € B(L?(X,, Z,, 4.)+, We associate an operator

T(4,): D7(R, &,, 1) — D2(R, X, 1)

specified by
AL 3 aghio(@in)- g2 (a@h) gk (@)
i=11=1 )
=5 5 2g00(4,a10)- g 2D (4,a80) gD (A,alk)
k=11=1
where g¢V e 2(R),, k=1, 2,..., k', 1=1,2,...,I',n=0, 1, 2,...
Furthermore, for u= @ ,u,,eGl(Ec; ) and A= @ A4, in B(L?(X, z 7)) R
n=0 n=0

we define I'(4) by

I(4)= & I,(4).

Then, I'(A): 27(R, &, ) —> D?(R, &, 1), 1<p<oo.

It is clear that the operator I',(4,), n=0, 1, 2,..., and I'(4) are linear on
9P(R, QA",,, uw), n=0,1,2,..., and 92?(R, 3&7, u), respectively, 1<p<oo.
Moreover,

I'(A,B)=T(A)(B,), n=0,1,2,.., and
T(AB)=T(A)I'(B)

for A,, B,eB(L!(X,, %, 1))+, n=0,1,2,..., and 4, B in B(L*(X, %, 1)).
Hence, I', (resp.I') is a representation of the multiplicative semigroup
B(Lr(X,, ﬁ?‘n, U)) 4+ (resp. B(LP(X, z , W))4+) in the multiplicative semigroup of
all bounded linear transformations of 2?7(R, %A",,, u,) into 27(R, 32",,, ), n=0,
1, 2,... (resp.of 27(R, z , W) into 2P(R, Z , W), 1<p<oo. The operator
I'(4,) (resp. '(4)) may be extended to a map on all of LP(X,, é‘,,, Uy,) (resp.
Lr(X, Z , W). In the sequel, we always assume that the extension has been done.

The set Dj( g, EZ'A), HE Gl(ff)
For each pe G{(Z) and nonzero A e B(L?(X, z » W4, write p4 for poI'(4).
Then, define DE(y, &) by

D, Z)={AeB(L/(X, %, 1)), : A+0 and pA(1;)=1}, l<p<ow.



CENTRAL LimiTs IN PROBABILITY GAGE SPACES 549

The degenerate state e,

Let Den (X,), denote the collection of all densely-defined self-adjoint linear
operators on X,;. Equipped with the operation of strong sum, Den (X,), is a
real vector space. We write Den (X 1), for the n-fold algebraic tensor product
of Den (X,), with itself and put @ Den (X,),=Den (X,), and algebraic direct
sum. Members of Den (X), act on dense domains in X,; a similar remark is
valid about Den (X ).

In the sequel, R(X,) denotes the set of all linear mappings of Den (X,),
into R.

For each n, let 9,(R), be the subalgebra of 2(R), consisting of tensor
products whose components are complex-valued continuous functions with
compact support on R. We put (—B 2{R),=2/(R), an algebraic direct sum.

Fro g,€ 2(R), and a, e]Den_(X Ons We define g,(a,) in the same way as
members of 2°(R, .%’,,, u,) were previously defined. We let Den(R, X,),
denote the subalgebra of %, generated by {g.(a,):9,€ 2(R), and a,
€ Den(X,),} and put néo Den (R, X,),=Den (R, X,), an algebraic direct sum.
We remark that Den (R, X,),=Cl;,.

For a€ R(X,), introduce the map &: Den (X,);— R1;, defined by

R if a;=1g,
&ay)= { a(ay)lz,, otherwise
If (A, o, y)e Rx R(X,)x R(X,), then we put: o?+?.=.of{>y and Ad=Ja. Next,
we define the map I';(8): Den (R, X 1)—»35” , in precisely the same way that the
map Iy(A): DXR, , p)>D7R, &1, 1), A € BUA(X,, &, 1))y, Was
previously defined. More explicitly,

kU
Fi@(Z, E b P@0) (0@ -+ £ (k)
kU
=3 ¥ b f (@) [ EP@@R)- £ #0(@a)

where A€ C, a*PeDen(X,);, f{ea(R),, k=1,2,....k",1=1,2,..., I,
ae R(X,). Again, I')(4) is linear from Den(R;, X,); to Clgz, for each
e R(X,).

For any u, € Gl(ﬂ?’ 1), the linear functional p,°I'{(&) is a central state on Den
(R, Xy),, for each ae R(X,). This state clearly does not depend on which
Hq in Gl(.%A’ 1) is used to define it.
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In what follows, we set uol';(8)=s¢,, a€ R(X,), where u, is an arbitrary
member of Gl(.%”A 1), and write ¢, for the algebraic tensor product Q:) &,,,» Where
{a,:0=1,2,...,n}=a,= R(X ). :ol'hen, &,,is also a central state on ]5en (R, X)),
n=0,1,2,... Finally, put @ s, =¢, where a={a,;:j=1,2,.,n;n=
=0, 1, 2,...} = R(X,), and ¢, is ntzhoe function on Den (R, X,), which is identi-
cally one. In case a,;=0, the zero function on Den (X,), for all j=1, 2,..., n,
n=0, 1, 2,..., then we denote g, and a by 0, and 0, respectively.

Nondegenerate gages in Gl(%?)

Let uc G, (32” ), with u= @ U,. Then, we say that u is nongenerate provided
that p, is not of the form A Sa , 4,=0, for any a,={a,;: j=1, 2,..., n}c R(X,),
n=0,1,2,....

Remark:

In the sequel, we frequently encounter sequences of pairs of gages in G§")(52:)
of the form {(u™-I'(A™), a™)},~,. For our purposes, the following sufficient
conditions for their convergence are adequate.

(1.6) Proposition:
Let u°=® e Gl(%:), with sup [u(13)]VP <00, and {u}U{u™:n=
k=0 k=0

=1, 2,...}CG1(38A"), with {u}u{u™:n=1,2,.}cLr(X, 53’, u%*, the topo-
logical dual of LP(X, .?ZA", u®). Suppose that {a}U{a™:n=1,2,..} and
{A}Uu{4d™:n=1,2,...}. are subsets of LY(X, %, u°),, and BL*(X, Z, u%)),
respectively, such that (uoI'(A), a)e GP(Z), (uMeI(A™, am)e GP(Z),
(U™eI'(AM), a)e GPNZ), n=1, 2,... and

|e(ei @B bEY — i@ BBy < C (o) | BB — BRIOP|E o,

k=0, 1, 2,..., where C(6)>0 depends only on o€ R, BY) denotes either A or
A™, and b)) denotes either a or a™, j=1,2; n=1,2,.... Suppose, moreover,
that
(i) {a™},~( converges to a in the norm-topology of L*(X, .S'EA’, uo);
(ii) {u™},>, converges to u in the norm-topology of L?(X, .%A’, 1oY*;
(iii) {A™},s, is contained in a bounded subset of BLL*(X, &), 1°); and
(iv) {A"WM},5. converges to A in the norm-topology of B(LP(X, 3}', 19)).

Then {(u™I'(A™, atm)} -, converges to (u-I'(4), a) in GY’)(EAG").

Note: 1In the statement of the Proposition, ug, u, and u{® are the com-
ponents of u° pu and u™, respectively, and B/’ are the components of B(),
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respectively. Furthermore, (0),={0y;:j=1,2,..., k}, with o,;=0 for all k
and j.

Proof: By (1.3) and (1.4), we need to show that (uoI'(4(™)) (ei(®)-a™)
converges to (uel'(A))(e*(9)°9), for each oe R, under the stated hypotheses.
But the assertion follows from the trivial estimate:

[(umoI (AM)) (' a™) — (uol (A)) (e )|

=| 3 | (P (AP ) - (e dier))|
k=0

AN

X (n) (o) A g EPVICHS ()AL a
31— p) (AT 4 Ty (A0 i Al e

I ]

A

< (sup [H(1e)17) 11 = Bl 1o o 3,00, +
+C(0) (sup 1 4P 15, 10) 4™ ~allf, o+
+C(@) al, ol A = AI[E 0. 0

(1.7) Remark: In the sequel, if A is the zero operator on LP(X, 33” ), we
define uoI'(A4) to be €+-) Sonto, for all pe Gl(ﬁl’), where §, is the Kronecker delta.
In this way, we have 0 € Di(u, z ), for each ue GI(EK ).

§2. Decomposability Algebraic Structures of Probability Gages

In this section, we introduce the notion of operator-decomposition of
probability gages. Then, we study certain properties of some operators which
feature in such decompositions.

We employ the following notation in the rest of this paper.

Notation: Let @ be a W*-tensor algebra contained in Z and Y be the
Hilbert space contained in X on which members of @ act. We remark that
the identity 1; of @ may not coincide with 13, the identity of z.

For peG,(%) and Ae BILYX, &, 1)), let pz, Ay and I';(A) denote the
gage induced on @ by u, the restriction of A to L?(Y, 7 , Ug) and the restriction
of I'(4) to 27(R, @, Uz), respectively. Furthermore, we denote the subalgebra
of functions in 2(R) which are used in generating 27(R, @ Uz) by Q(R)g
Notice that I';(A4) f(a)= f (4za), for a e LE(Y, 7, U3 )ay> and A e B(LP(X, Z, y))+

We shall write (Y, @)C(X x ) if Yis a Hilbert space contained in X, Zisa
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W*-tensor algebra contained in Z , and @ acts on Y. We denote Uzel' 7(A) by
Mfﬂﬁ Ae B(LP(X, -é;’ ”))+'

(2.1) Definition: 1. Let ue 61(33') and A4eB(Lr(X, é‘)u))+, 1<p< .
Then, we say that u is A-decomposable if, and only if, there are (X, z )
<X, Z), (XD, £P)=(X, ) and v, € G,(Z?) such that

(0) ,u.g'(ix)(lé.’(lx))=1

(i) Te(d) and Téo(A) leave 2°(R, ZP, pr) and 22(R, ZP, v,)
invariant, respectively; and
(i) u(T=p(Af(@)-gb)=psa(f(@)va(g(b)), for all (a, b) eLIXP, &P,
e >)arg X LAXP, 2,V )y and fe 2(R);, g€ D(R); .
2. We call the probability gages ,u;}in and v, the factors or components
of u with respect to 4 in B(LP(X, &, w))., I<p< 0.

Remark:

EquatioP (2.1) (ii) is eqliivalent to LA(X 4, &4 pz,) = LP(XP, P, HEw)
QL/(XP, P, v,), where &, is the linear hull of all elements of the form
T'30(A)f(a)) - g(b), with a, b, f, g as in (2.1) (ii) and .‘%A acts on X ,.

Notation: Let ue Gl@” ). The set of all members of B(L?(X, ‘5@", W)+
with respect to which p is decomposable will be denoted by D?(u, %A”), 1<p<oo.

(2.2) Remark :

1. Let ,ueGl(fz”). Then Dr(u, .%A‘) contains the zero 0 and the identity 7
of B(LP(X, Z, 1).. Furthermore, D?(yu, Z ) is closed in the weak operator
topology on B(L?(X, EE’\', ). But unlike the prevailing situation in the Banach
space theory described in Ref. [5], D?(u, Z ) is not a semigroup in the multi-
plication operation of B(LP(X, z , ). Consequently, some of the techniques
developed in Ref. [S] cannot be directly applied here.

2. We shall refer to D?(u, ‘%A’) as the decomposability algebraic structure
of pe Gy(%).

3. In what follows, we study some properties of certain members of
Dr(p, Z ), ueGl(é; ), 1<p<o. First, we note the following straightforward
assertion whose proof we omit.

(2.3) Proposition:
Let pe Gl(.%A”). Then, the set of all mutually commuting members of DP-
(1, &) is a semigroup which is closed in the weak-topology of B(LP(X, é‘, w).
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(2.4) Proposition:
Let ueGI(EZ'A) and P be a projection operator (i.e. P2=P) lying in DP.
(u, 5&7). Then, Pr=I1—P also lies in DP(u, Z) and we have

(2.5) M(Tz,(P)f (@) Tz, (PHg®))) =pE (f @)uk, . (9(b))

Jfor some (Xp, .Q’A'P)C(X, 32‘), (Xps, ‘%A’PJL)C(X, .Zz?) and all (a, b) e LE(Xp, EZA'P, Uzp)
X LY X pt, Zp; lhgps) and (f, 9) € D(R)z, X D(R)g ..

Proof: Since P lies in D?(y, z ), by hypothesis, it follows that there are
(Xp, Zo)=(X, ), (Yp, ¥p)=(X, Z) and vp € G,(@) such that

(2:6) M(T,(P)f(a))- g(B) =g (f(@)ve(g(D)),

for all ae Lg(XP’ '%,'Pa .u.’fp)alg’ be Lg(YP’ dJ/P: vP)alg’ fG Q(R)fp’ ge @(R)@pw
Equation (2.6) implies

2.7) u((T3,(P)eiorf @).gio2a®))

= UE_(eirr @)y p(eine®),
for (¢4, 0,) € R?, where for any tensor algebra Z° contained in 52‘,
e =1z+ Y n'.cn, forany ceZ%cx.
n=1 .

Furthermore, we infer from (2.1) (i) that 27(R, Z P Hgp) and ZP(R, 7 P> Vp)
are invariant under I'y (P+) and I'j.(P*), respectively. Hence, (2.7) remains
valid for o, =0 and ei®29(%) replaced by I'; (P1)ei*2¢(®»). Hence

2.8) VB H(elr29®) = u((F3,(P)13,)-(T5 (PL)eiw29(®))
= uBr(eir29®), since u is

central on & , for all be LE(Yp, ?VAP, vp), 4 € 2(R)s,, 0, € R. By differentiating
both sides of (2.8) with respect to o, and evaluating o, at zero, one gets

vEH(g9(B)) =uE. (9(b))
for all be LE(Yp, @P, Vp)a, and ge D(R);,. So, we may identify Z pL and
ugi L in (2.5) with @, and vp, respectively. O
Remark:
The following generalization of Proposition (2.4) will be employed below.
(2.9) Proposition
Let pe G(%). Let {PM,P?,. ., PM} be a set of commuting projection
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operators contained in DP(p, .%‘A) and satisfying POP® =6, P®. Then Q™
=] i P qlso lies in DP(y, 3?“) and we have

i=1
210) AT zpw(PD) fD@D)) (I (PP) fO(a®))--
(L (P®) fP(@))-(F0n(Q)g M (™))
=2 (f“’(a‘”))uﬁ"(’z)(f‘z)(a‘”))-~-
£ (P (@))HGe0, (g™ (B™)

for some (XPU), .%"P(“)C(X .95') j=1,2,...,n, (Xgm, E&"Q(,.,)C(X .%”) and all
aD e LA Xpur, Lo, bépags J=1, 2,0, m, bW e LY Xgem, Towm, Howm)ug
fPe2(R)gpinj=1,2,..,9Me ‘Q(R)EQ(")'

Proof: We prove (2.10) by mathematical induction. To this end, first

observe that the case n=1 is precisely Proposition (2.4).
Now, suppose that for some k<n, we have

@11) (T g0 (PD) fO@D))-(Tg,(PP) f O (@?))--
---(rA a0 (P®) £0(@))-(L400(Q®)g® (b))
=20, (fO@D))EER, (£ P (a®))---

u;;"’k (f®@R))ug . (g® (™))

for some (Xpun, Zpn) (X, £), j=1, 2,000, ky (Koo, Zouo)=(X, £) and all
aD € LA(Xpivy Zps Hepatgr J=1r 200ier ky B® € LA(X gaiors grQ(k,, B q00),
f(l)e.@(R)me,J 1,2,...,k, g“‘)e@(R)g,Q(k), with Q) =1— Z P, Since
PU+D) e DP(u, z ), by hypothesis, we also have, by Proposition (2 4), that

(2.12)  A((T #p00s0(PU+D) fFD(@U+D)). (T3, vy o PAFDY) g (D (plDY))

4
= BB, (f D@ L (gD (b)),

for some (XP(k+l)-%‘P(k+1))C(X, %),and (Xp(k+l)-]-, .%'P(kn)J-)C(X, %') and all
a(k+1)GLg(XP(k+1), %‘P(k+1), ﬂ_;g‘,(kﬂ))alg,

b® e LI Xpar1t, Zpace ity B pernrL)arg fFEDE D(R) g, erny,

gFtDe P(R) s x+0t. Let 1 be the linear hull of the set

{(I 3 poery(PEFD) fEFD (@R DY) (T g iy s (PEFDT) gD (plIHD) ) :
FEDD(R) 2, vy,

g Ve D(R) g, 0oL, A% D€ LE( Xpoes 1y, Lparn, g pciss)) atgs

bV € L Xpacs ity Tpaesirt, Bgpwern L aty-

Since PWP® =P0PI=45,P®), j k=1,2,..,n, equation (2.12) holds, in
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particular, for a®*1 and b®*+1) replaced by Q% ,,,,a®*" and Q%) ., b**D,
where

A A
a®* Ve LP(Xpwsn, Zpwsn, .uf“p(k*l))alg and b(kH)eLf(XP("“)J‘S'%‘P“‘“)L’
Mg ,x+n,) are arbitrary. Hence

(2.13) w(F5as(QE)(T 3 porsny(PEFD) fEFD (g4 1)),
(T paeryL(PEFDL) g RTI(HEHD))T)
= u((T'g paiern(PEFD) FEED(UFDY. P (o vy 1 (QUHD) gD (DY),

from the right hand side of (2.12),

=pL, G B(f (@D UGETD L(gFFD(b*D)), from the left hand side of
(212), for all atk*V e LE(XP("“)’ g‘P(k+l), ﬂfp(k+1))n1g,

b(k‘l‘l)eLé’(XP(k,l)_L, Zpu+nt, /L‘Q’;P(kn)i-), f(k+1)E.@(R)§P(k+1)J~

and g**Ve 2(R)s,x+nt and with Q("“)—I Z PW,  The right hand side
of (2.13) shows that we may 1dent1fy z puctnL w1th .%’Q(km and the left hand
side of (2.13) shows that @G ® cf}fQ(k). Finally, one has

H((T 3, r(PD(@ D)) (T'z 0 (PP) f P (@)
-'-(FQP(m(P(k))f(k)(a(k)))'(F§P(k+1)(P(k+1))f(k+1)(a(k+1)))'
(Fzgacrn (@) g+ D(b+D)))
=u((Tg, 0 (PW) fD(@D)) (T3, (PP) fP(a?))---
+(I200(P®) f®(a19)) - Tgo00(QW) (I gm0 (PETD) fUFD(@ETD)) -
(T3 poernyr(PETDL) gEED (DY) T)
—-.ua“’ (f(l)(a(l)))ug‘z()z)(f(Z)(a(z))) #;Lk()k)(f(k)(a(k))).

Q(Qk()k)((Fel‘p(k+l)(P(k+1))f(k+1)(a(k+1)))

(T4 pocs syt (PETDL) gD (b))
by (2.11),
= 5 (f D@D B, (£ P (a®))-
S (S O@INESD, (D@ H0))- gD, (b)),
by (2.13). This concludes the proof. |

Remark:

We can now prove the following result. In doing so, we employ the
notation of Proposition (2.9).
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(2.14) Proposition:

Let ,ueGl(é‘). Let {PM, P@, .., PM} be a set of commuting projection
operators contained in D(u, 3?) and satisfying POP® =5,P® j k=1, 2,...,
n. Suppose, furthermore, that {AMW, AP),..., A™} is a set of members of
Do(u, &) satisfying ADPWO=PWAW, j=1,2,.,n. Put 3 POAD=B.
Then B also lies in D?(y, g?'). =

Proof: Since the set {4M), A2),..., A™} is contained in D?(u, Z ), there are
X400 Za)<=(X, &), Y40y Yq)<=(X, ) and vy € G(¥ 400), j=1, 2,...,
n, such that

(T 2, (APYuD D)) - 0D (YD)
=14, (D ED))Y 4 (0D (3D)),

for al]. x(j)ELg(XA(j), .%.A(J'h :uzA‘A(f))alg’ y(j)eLg(YA(f)s
Y4, vA(J))aly’ u(f)e.@(R)ggA(j), u(f)e@(R)@A(,-), j=L2,..,n

Hence, in view of the assumed commutatity of A¢) and P(), and the idempotency
of P, j=1, 2,..., n, the last equation remains valid for x> and y(/) replaced
by P}’}O)x(i) and Pé’:“)y”), respeetively, j=1, 2,..., n. Then we get

1((T'g ;i (PDADY D (xD))-(Tg (PO (y(D)))
=pE A WD (xDNVEB D (D)),

or, equivalently,

(2.15) w530 (POY(T 3, (B)ut (x(1)) -0 (y(1)])

=pLIB " O xMWEG P (yD)),

for all xWeLl(X w, E?A(J')s Hg  ))algs y(j)ELf(YA(f),”Z-/AA<1>, VA(J'))alg’ ut)
e D(R)z,w, V€ D(R)3 v, j=1, 2,..., n, where Z() is the linear hull of all
elements of the form (I'g,»(B)u(x))-vW(yt). It is clear that Z0 is
contained in Z p, j=1,2,...,n. Furthermore, since PUWAU) =AU P, we have
HEDAP U (x ) = u;’z;:‘“(u(fxx(ﬂ», for xDeLE(Xar, Zains Hé 4n)atg
and uWeP2(R)g,wm,Jj=1,2,...,n. Hence, replacing f)(a”) in (2.10) by
(T3, BV (x)).v(y), and taking account of the foregoing remarks, one
gets

(2.16) u([T 3, (POY(T 3 ,r(B)u®(xM)) -0 (y1))]-..
[Tz (PMz o0 (B)u®(xM))-pM(y™))]-
(I3, (QM) g™ (6™)))
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=10 (T2, (B)uD @) - 0O (y D)) uB 7 (T 4w (Bu ™ (x))-
(n)
DO (y™))- g, (g7 (B™))
= it WO D)) pg 0 AT (O (VIS D (y D))

VEm @My g, (g™ (5™)), by (2.15), for all

Zo (n)

xWe LI (X4, gAuu#éﬂAm)azg,
YDeLI(Y 40, Uawrs Vaw)arg U ED(R)z 0, vV € D(R) 5,0,
g(”)EQ(R)é‘»Q(n),j=1, 2,...,n,and b(")ELg(XQ(n), -%‘Q(n), :us?g("))alg-

Let & s be the linear hull of all elements of the form (I'z,«,(PM)uM(xM))
oLz pe(PEYu™(xm)), with xU) e LA(X 405, E4w» B4 40 )algs ue 2(R)s s
j=1,2,...,n. Then arguing as above, one readily shows that

@17)  p(Te (BT o (PUYUDED)) o (g i (PO (x))])
= BB O () B (D (x)

for all x(j)ELf(XA(,-), %‘A(J)y .ué\‘A(j))alga u(j)e‘@(R)g'z\‘A(J)a j=19 27"" n

Using (2.17) in (2.16), one sees that the right hand side of (2.16) may be written
as follows:

(2.18) right hand side of (2.16)
=pE ((Fz,0(PD)u®(x M)+ (Lo (PO u™(xM)WVEE (0D (y1))--
vAi"i(u<")(W’))uﬁ("(’m(g(")(b(")))
This shows that the elements
[T 250 (PO (D)) (L (POYUO (x5 0D (yD) 51115 00 ()
; g(n)(b(n))
are stochastically independent [35] for all

xWNeLl( X4 m, 33"4(1), ,ugr,,(n)a;g,
yPDeLi(Y 0, @Am, V4 args D™ ELE(Xgm, ‘%.Q(")s Bzom)aigs
u(J)EQ(R)zA(n, U(J)E.@(R)@A(,), g( )EQ(R)‘%«Q("), —1, 2,...,

Hence, the left hand side of (2.16) may be expressed thus:
(2.19) left hand side of (2.16)

= W2, (B)[(T o (POYuO (xD))-+ (T g o (P (xM))])
(3., (PO () (T, (PD)o (30) (T g Q) g (5™)))

From (2.18) and (2.19), we conclude that B indeed lies in D?(u, x ). O



558 G. O. S. EKHAGUERE

§3. Statement of the Problem

In this section, we describe the problem which we tackle in the rest of the
paper.

If a, is a self-adjoint operator on X, affiliated to £, we write spec(a,)
for the spectrum of a, and a, = e,,(d2)A for its spectral representation.

X X spec(ay)
We require the following notion.

(3.1) Definition: A triangular array (i4,;); <<, n>1 Of members of Gl(.?lA' )
will be called uniformly infinitesimal with respect to some subset {a,;: j=1,
2,.... k,; n=1, 2,...} of self-adjoint operators on X, affiliated to %, if, and only
if,

3.2) lim sup ,u,,,(eam(A =0

n—»o 1<j<
for every neighbourhoud A of zero in R with complement A’'.

(3.3) Remark: Condition (3.2) is easily seen to be equivalent to the
following requirement

lim sup |, j(etoami) —1|=0

n—»o 1<<

for each o contained in a compact subset of R. Hence, a triangular array
(Unj)1<j<kn, n=1 < G1(%}) is uniformly infinitesimal with respect to {a,;: j=1,2,...,
k,; n=1,2,...} if, and only if, the measures Ay, ;_ (e,,"]."(/l)) converge weakly
to the Dirac measure concentrated at the origin, as n— o0, for each choice of j,,
with 1<j,<k,.

(3.4) Notation: We employ the following notation in the sequel.

1. Let ,ueGl(.%’) with u= (—B Uy, and a,€Ll?(X,, Zp Un), m=0, 1,
2,.... Then, we define the 1mbedd1ngsz and i, of L?(X,, 3&’,,,, Un) and G(ﬁ%"m)
in Lr(X, z , 1) and G(.%” ), respectively, by

i(@n)= @ Sputyi and
l;m(lum) = n<_=BO 5mmu,,, m= 0, 1, 2,. e

2. Forpue Gl(.%’; ) and & < B(L?(X, z , W), we write Sem (£) for the norm-
closed, multiplicative subsemigroup of B(L?(X, Z, 1)) generated by £.



CENTRAL LiMITS IN PROBABILITY GAGE SPACES 559

3. Let peG,(Z), with u= @ 1, Suppose that A, e B(LA(X, &, poiy)),
issuchthat 4, ®A4;®---® A4, (J-fold) lies in B(LP(X ;, 5{,, “1))’ =1,2,.... Then,
we denote 4;®4,®---®A, (j-fold) by [4,]; and put (—B [A1]1~[A1] Here,
[A,], is the identity operator on Cl, . Notice that [Al][BI] [4,B{]

(3.5) The Problem: We describe next the problem which we address in
the rest of the paper.

Let U EGI(%)’ with 'uO_ @ “n and Sup [,ng(l )] 1/p< 0, and {Aln}nzl <
B(LA(X, &y, p0i)))+, with [4; J] lying in B(L"(X Z, 1), j=1,2, Let
Witz Xt e < LE(X s 3’1, %) be such that

MO 1 (T 1(A41,) f(ll)(x11)®F1(A1n) f(12)(x12)®"‘®r1(141n)fg")(xln)®
®9{” (1))

= 3a,,(91 (1a) H :uAln(f(lj)(xij))

for some {,ulj}jZICGl(El”l), with A4, € D§(uy;, !221) j=1,2,..,.n, n=1,2,...,
and {o;} = R(X,), and for all (f{”, g{))e 2(R), x 2(R),, j=1, 2,.... This
means that the set {x,;, y{;: j=1, 2,...} consists of stochastically 1ndependent
members relative to the gage u°.

Denote £n+1(y1n®( ® xl])) and £n+ 1(801,.@( ® Aqu")) by x(™ and .u(")
respectively.
We make the following assumptions.

(3.5.1) A,;is invertible for each j=1, 2,...;

(3.5.2) Sem({[4:.J [41nl:n=1,2,...,m; m=1,2,...}) is compact in the
norm topology of B(L?(X, . » 19);

(3.5.3) the gages {ufi":j=1,2,...,n;n=1,2,.} form a uniformly infini-
tesimal triangular array with respect to {x,;:j=1, 2,...}, and there is
(4, x)e G{PX(Z) such that the sequence {(u™, xM)} o, of pairs in
G$"X(Z) converges to the pair (4, x).

In the sequel, we answer the question: What are the characteristics of the
limit pair (u, x)?

Notation: In the sequel, we denote the set of all limit pairs (u, x), which
arise as described in (3.5.3), by lim (G{?X(Z)).

(3.6) Definition: A sequence of operators {A4,;:j=1,2,...} satisfying
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(3.5.1) and (3.5.2), and such that (3.5.3) holds, will be called a norming sequence
corresponding to the limit pair (&, x) € lim (G®)(Z)).

(3.7) Definition: We say that (u, x)elim (GP(Z)) is nondegenerate

provided that p is nondegenerate and x is not of the form x= ® ® Inilz,s
lj€R,j=1,2,...,n;n=1,2,...

(1)

(ii)

(iif)

n€Ng j=1

Remarks:

In the sequel, we deal mainly with the nondegenerate members of lim (G{»-
(@), 1<p<co.

An analogue of the problem considered here was solved by Levy in the
case of real-valued random variables. He showed that the limit prob-
ability measures are the so-called self-decomposable probability measures
([2], p. 195; [36], p. 319). In Ref. [5], Urbanik considers the case of
Banach-space-valued random variables and furnishes a characterization of
the limit probability measures by means of a certain semigroup of linear
operators associated with such probability measures. We also mention
the work of N. V. Thu [37] which further generalizes the considerations
in Ref. [5].

In this paper, we work within the framework of noncommutative
probability theory. Consequently, our random variables are noncom-
muting self-adjoint operators. In providing an answer to the problem
posed in this section, we exploit some of the techniques introduced by
Urbanik [5].

The problem considered in this paper is a Central Limit Problem [36]
in a noncommutative setting. Such a problem (in a noncommutative
setting) had previously been considered only in very specialized situations
[6-10]. Here, we provide a fairly general formulation and solution.
Finally, we refer to Refs. [18-20] which deal with the problem of infinite
divisibility.

The gage uoeGl(ﬂ’”\) which occurs in (3.5) is called the common gage
of the set {x;, y;;:j=1,2,...} cLI(X,, 321, u%i;). This gage features
repeatedly in the rest of the paper.

§4. Some Properties of Norming Seguences

In this section, we describe some properties associated with the norming
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sequences corresponding to the nondegenerate members of lim (G(I")(Ef" )).
We employ the notation and assumptions introduced in (3.5), unless we
explicitly state otherwise.

(4.1) Proposition: Suppose that (u, x) € lim (G(I")(.%"A)) is nondegenerate.
Let {A;;};>; be a norming sequence corresponding to (u,x). Then {[A;;]} ;>
converges to zero in B(LP(X, z > 19).

Proof: By (3.5.3), um(ei@*™) converges to u(ei(®)'*), for each o€ R.
Furthermore, it suffices to assume that the assumptions of Proposition (1.6) are
fulfilled and that {x(},., converges to x in L?(X, 3&7, u%), {u™} -, converges
to u in LA(X, &), u)* and {[4,,]},>, converges to A in BLA(X, Z, uO).
We show that A =zero.

Let n<n,. Then

'u(”k) (ei(“)'x("lc))

= (8“"k® (®#f}nk))(eiay1nk @(jn@kl eioxn))
=[G & )T ([Ain ) (G =) x
X [“ink—n(sank@(j:@jiﬂ T (A1, 1) G- n(ei7 17 @(jch?: @],

Taking limits of both sides of the last equation as n,— 00, we get

(LD (@) =[G, 1) T ()G ef*r))] x u(ei @)

Next, by condition (3.52), Sem ({[4;,, 1 '4:k=1,2,...}) iscompact in the
norm-topology of B(L? (X, z , 419)). Let B be an accumulation point of the
sequence {[A4;, 1 'A4};>;. Passing, if necessary, to a subsequence, we may
assume without loss of generality that [4,, ] 14 converges to B, as n,— 0.
Hence

4.1.2) A=AB
From (4.1.1), we get

He @)
— (UM ([ Ay, ] A)) (40X ) @[ Brnim] X (et %)

where Bln=A;r}A°in+ in+1-

Taking (3.5.2) and Proposition (1.6) into account and going to the limit as
n— oo of both sides of the last equation, we get
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('@ *)=(ueI'(B)) (€' *)u(e’( *)e™7 .,
for some yj , € R, since {e"ioé(Binyin)} . is precompact in €. Hence
(ueI'(B)) (€' %) =€ 5, x.
But (g, x)elim (G(l")(BlA”)) was nondegenerate, by hypothesis. Hence, yp =0
and B=0. By (4.1.2), these give A=0. Hence, the claim is established. O
(4.2) Proposition: Let n,<m,, k=1,2,... and n,—oo. Suppose that
(1, x) €lim (GP(%)) is nondegenerate. Then, for every norming sequence
{Ain}n=1 corresponding to (u, x), all accumulation points of the sequence
{[41, ] ' [A1m}x>1 belong to DP(u, ), 1< p< co.
Proof: By hypothesis, u((ei(@)-x") converges to u(ei(®*), for each o € R.
Now,
'u(mk)(ei(a')'x("‘k))
= (koL ([ AT, Ay 1)) (€40 7)]

mk N . a a
X [ H+1 uf}mk(ewxu):l x [eio@mi(yimy)=n, (A7L Aimyyin,))]
J=nk

where we have used [A4,, 17 [4,,1=[47L41m]-

Let A be an accumulation point of {[A;L Ay, J}>1- Then, by (3.5.2),
some subsequence of {[A7} A, 1}i>1, denoted again by {[A7) A1mI}i=1, COD-
verges uniformly to 4 in B(L?(X, 32‘, 1), 1<p<oo. Hence, taking limits of
both sides of the last equation as n,— oo and invoking Proposition (1.6), we get

“2.1) B(EHD ) = (e = D)y y(Hx)
for some x™, x) e L(X, Z, U%)u, and v, € Gl(ﬂ:).

Let (X9, Z9) < (X, &), where £ is the algebra contained in & generated
by {gW(xW)e 2(R)}, j=1,2. Then, using the spectral theorem [34], (4.2.1)
may be expressed as follows:

#((Fz,(AgP(xD))-gP(xP))=pg (gD (xD))v4(gP (x?)),

for all gV e 2(R); ,», j=1,2 and v € Gl(.%”AEf)). Hence A lies in DP(u, %), as
claimed. O

(4.3) Notation: Henceforth, we denote the set of all accumulation points
in B(LP(X, %A', %) of the sequence {[4714;,.]:n=1,2,..,m; m=1,2,.}
by F. If (i, x)elim (G(lp)(ﬁf)) is nondegenerate, then by Proposition (4.2),
Fe DXy, ).



CENTRAL LiMITS IN PROBABILITY GAGE SPACES 563

(4.4) The semigroup D? (g, %), peG,(Z), 1<p<w:

Let ,ueGl(ﬂ? ). Write D?,,.(u, Z ) for the maximal set of mutually com-
muting members of D?(u, Z ), 1<p<oo. Then, in the sequel, we denote by D?-
(u, z ) the subset of DZ,, (1, z ), 1<p< oo, consisting of all A with the property
that the factor v, of u with respect to 4 (using the notation in (2.1) (2)) satisfies
v4oiy =¢,, for some a, € R(X;). By Proposition (2.3), D(u, z ) is a semigroup
which is closed in the norm-topology of B(L?(X, z , 19)), and the identity 7 of
B(LP(X, &, 10) lies in D?(u, %).

(4.5) Propesition: For each norming sequence {A,;};>; corresponding to
some nondegenerate (u, x) € lim (G(Z)), the set

(4.6) D?(u, )0 Sem (F), 1<p<co,

is a compact group containing all the accumulation points of the sequence
{[A1s A1+ 1 D=1

Proof: The set in (4.6) is evidently compact, being a closed subset of a
compact subset Sem (F) of the normed space B(LP(X, z > 19).

Let A be an accumulation point of {[A7}A4;,+11}i>- Without loss of
generality, assume that [A7!A4,,,,] converges to A in B(L?(X, z , 19).  Let
(4, x) elim (G‘l”)(ﬁg)). Then p(ei(@)x") converges to u(e!®)'*), ce R. Now,

P+ (@)= D)y

nt1
= eio8n+1(y1n+1) H1 ﬂf}n+l(ei(°’)'xlj)
j=

= [T ([A7 A1y D) ()] % [ufyri(eioin)] x
X [€i7(@n+101n+D)=8n (A  din+171m)]
Hence, taking limits of both sides of the last equation, using Proposition (1.6)
and the uniform infinitesimality of {ufi~:j=1,2,..., n},>,; with respect to
{xy;:7=1,2,...}, we get

e ) = (e e, (e17)

for some o e R(X)), xWeLl(X,%, 10, yieLl(X,, 1, uoeiy).
From the last equation, we readily infer that A4 lies in D?(y, z ) N Sem (F).

To complete the proof, it remains to show that the set in (4.6) is indeed a
group. To this end, suppose that B is an arbitrary member of the set in (4.6).
Since the monothetic semigroup Sem ({B}) is compact, the sequence {B"},~; of
the iterates of B forms a group ¢, say, which coincides with the minimal ideal
of Sem ({B}) and the unit P, say, of ¢ is its sole idempotent member ([38],
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Theorem (3.1.1)). Hence, there is C € ¢ such that BC=P=CB. We want to
show that C coincides with B~!, where the inverse is evaluated in B(LP(X,
Z, 1), )

Observe that C and P lie in the set (4.6). Hence, there are (Xp, Zp)<
(X, &), (Xpt, Zpr)=(X,, Z,) and ape R(X,) such that

W((T3(P) £ (@)-g1(5)) = uE. (f(@))een(g1(51))
for all aeLl(Xp, &p, i, g b1 € LUXpt, Zpt, p0eiy), feD(R)z, and g,

€ 9(R);. Since 2(R), .%A”Pi, €2,,) is invariant under I'z, (P1), by (2.1), the last
equation gives

w(Lz.(P) f(a)-(T'z, (PH)g1(b1)))
=l (F(@)e2,(T3,.(PHg1 (b)),

which implies,

p((T 3, (P) eiof@).([g, (PL)eitarbn)
=#gp(eiaf(a))(gaPoF{PJ_(Pl))ei}.gl(bl)) )
forall aeLf (X,, %p, ugp), byeLP(Xpt, Z p, pi,),
f€e2(R);, and g, € 2(R),.
Now set 6=0 in the last equation. Then we get
H((T3,(P)12,) (Tgpy (PH)ei*9100)) = (g, 0L 5,, (P1))(e'491P0)

or
HELL(19:00) = (80, T 4,1 (P)) (e4:)

for all b, e L2(Xpt, Zps, u%i;) and g, € 2(R);. But (& x) in Lm(GPA(Z))
was nondegenerate, by hypothesis. Hence, we must have ap=0 and P+=0.
Thus, P=1, the identity of B(L?(X, z , u9), whence C=B"1. Hence ¥ is
indeed a group. O

(4.7) Proposition: Let (4, x) be a nondegenerate member of lim (G(l")(.éé; ).
Then, there is a norming sequence {Ay,},~, corresponding to (u, x) with the
property that {[A1,1 '[A1n+11}s>1 cOnverges to the identity I of B(LP(X, 5%’, %)
in the norm-topology.

Proof: Let {B,,},~; be an arbitrary norming sequence corresponding to
(u, x)',\ Then, by (3.5), there are {Iillj}j21CG1(£A'1)a {1}z Wi Ly
(X1, &y, p0%i;) and {aj}jn; S R(X,), with {g8: j=1,2,...,,n;n=1,2,..}
being uniformly infinitesimal with respect to {x};: j=1, 2,...}, such that
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W M(ei@ =" ™Yy converges to u(e!(@)*), where
n
B =i,,(e, ®( ® pi)) and x' =i, (¥1,&( ) x15))-
j=

Denote D?(u, 38:) N Sem (F) by (1, .9?, F). By Proposition (4.5), %4,(u, fg', F)
is a compact group containing all the accumulation points of the sequence
{[B1iBin+11}s=1- Hence, we can choose a sequence {[C,,]1},»; of members
of g,(u, T , F) with the property:

(4.8) [Cil]—[BilB,,]—0 in the norm-topology of B(L?(X, %, u°)).

Define {Aln}nZI by
A11=B11, A12=B12C11,..., A1n=BlnC11C12"'C1n—15 n=2, 3,-.. .

Evidently, A4,, is invertible for each n and Sem ({[47i4,.1: n=1, 2,....m

m=1,2,...}), being a closed subsemigroup of the norm-compact semigroup
Sem ({[B71B,,]: n=1,2,....,m; m=1, 2,...}), is compact in B(L?(X, %, u°)).
Since [Al,,]=[Bl,,][CnClz---Cl,,_l], it is clear that the sequence {[C,,C,, -
-+-C,1},>1 1s a precompact sequence of members of ¢,(u, z , F). Furthermore,
since {u8:j=1,2,...,n; n=1, 2,...} is, by hypothesis, uniformly infinitesimal
with respect to {x};:j=1, 2,...}, one sees that {u4i~: j=1,2,...,n;n=1,2,...}
is uniformly infinitesimal with respect to {x};:j=1, 2,...}

Next, observe that the precompactness of {[C;C;,-:-Cy,1},>, implies the
precompactness of {(u ™ol'([C;;C s+ Crpe 1 DNeH@ >N o in C. This is
equivalent to the precompactness of the sequence {u((ei(@* ™) _ = where
u )_ln+1(8an®(® uyf), oy € R(Xy), and @,(a;)=8,(C11C12-Cy,-1a4), as€
LA(X,, &, 1 ozl) F urthermore, since u'(M(e*(® > ) converges to u(ei(®):x), it
follows, by Proposition (1.6), that the accumulation points of {u((e@ )} |
are of the form u€(e*(*)'*), where C is an accumulation point of {[C;,C;,---C;,]}
1. ButCliesin Z,(u, %A” F). Hence, we can choose {f,},>1 = R(X 1) such that
{w'™(ei@ =" converges to u(ei(?*), where p"™M=i,, 1(80,”@( ® Kig).
Consequently, {4,,},-; IS a norming sequence corresponding to (u, x)e
elim (GP(Z)).

Finally, since the norms of the members of the compact group %,(u, 33?, F)
are uniformly bounded by a positive number k, say, we have

NCAT: Aines] =1l 5, po

= I[C1A-1Cri—2---C7} CTI1[B1iB 151 —C1I1[C11Cia - Ci, 1, o5
using the commutativity of the set %,(u, z , F),
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<k*[I[BT3B1n+1—Cinlllppo, IS p< 0.

Hence, [A714,,+,]1~I in the norm-topology of B(LP(X, &, u9%), 1<p<oo:
thanks to (4.8). O

§5. A Characterization of Nondegenerate Members of lim (G{? 103)

In this section, we characterize the nondegenerate members of lim (GP(Z))
by means of the decomposability algebraic structures of their associated
probability gages.

Let (u, x) be a nondegenerate member of lim (Gﬁ")(fz”)). Then, by Propo-
sition (4.7), we may choose a norming sequence {A,},»; corresponding to (i, x)
such that [A714,,+:]1—1 in the norm-topology of B(L*(X, .%A”, u%): we fix
this norming sequence throughout this section.

Let F be as in (4.3). For each projection operator P in Sem (£), define
&p by

Fp={AeSem (F): AP=A=PA}.

Then, & is a. compact subsemigroup of Sem (#). Set
{Aesp: Ae DXL | 2=, s(u, %, F)
where (Xp, z ) = (X, z ), with 5?,, being the support of uf in Z.
(5.1) Proposition: G, p(u, é", F) is a compact group with P as its identity.

Proof. 1t is clear that %, p(u, 33’”\, F) is a closed subsemigroup of &p: there-
fore, &, p(u, 3??', F)is compact. Furthermore, by the definition of ¥, p(u, Z, F),
P is the identity of &, p(u, Z, F).

Let Ae %, p(u, Z , F). Then, Sem ({4}) is compact. By ([38], Theorem
3.1.1), Sem ({A}) contains a projection operator Q and an operator B such that

AB=BA=(Q.
Since Q€ &p, we have PQ=QP=Q. Hence, @ lies in &, p(u, z , F). We

prove next that Q=P whence one concludes that &, p(y, .%Q, F), is a group.
Now, since Qe %, p(u, 33, F), there are (X, é”Q)c(X, 33’), (Xo. .?&A”QL)
(X, 3:?1) and oy € R(X,) such that
13 (F'35(Q) £(@)-(T0.(2Y) g1(b.))=ug (f(@))(esgT 35.(2))(91(61))

or, equivalently,
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W2 (PQ)f (@) (T30, (PONG1 (b)) =15 (f(@))(ExoT 20.(24)(9:(b1))
for all aeL¥(Xo, Zo 4§ Jupp b1 € LiXg., Zous 1o0r), fe D (R)z, and g,
€ 9(R),. The last equation gives

U((T 3,(Q)e#T @) (T3, (P—Q)eicn®n))
=M%Q(eiﬂf(a))(gmof%l(Ql)) (eio'gl(bl)), (5, a)eij,

since PQ=Q=QP. Setting =0 in the last equation, we get
W((T2,(D12,) (Fzo (P—Q)e V) =(g,,0T 3, (@) (e'79:PV)

for all ceR, byeLl(Xy,, Zp., u%i;) and g,e2(R);. But (g, x) in
lim (G{?)(%)) was nondegenerate, by hypothesis. Hence, we must have ap=0
and P=Q. Thus &, p(u, z , ) is indeed a group. O

(5.2) Proposition: If Ae %p and PeSem ({4}), then Ae %, p(u, 3&:, F).
Proof: This is straightforward.

Remark: The following result will be employed in the characterization of
the nondegenerate pairs in lim (G{"(Z)).

(5.3) Theorem: For each nonzero projection operator P e Sem (F),
the semigroup &p conlains a one-parameter semigroup {P exptH: te [0, c0)},
He B(Lr(X, fZ‘A, u°®)), with the property PH=H=HP. Moreover, ¥p contains
a projection operator Q with the properties P+Q, QH=HQ and }Lrg P—-90)-

exp tH =0, where the limit is taken in the norm-topology of B(L?(X, 32”, u%).

Proof: The proof is completely analogous to that of Lemma (4.3) in Ref
[5]. Therefore, we only sketch the underlying arguments, for the sake of
completeness.

By Proposition (5.1), . p(u, z , F)is a compact group. Put

}'n,m=min {|“P_K[AI}1A1m]PI”p,u°: K € gﬁ,P(H’ '%‘5 F)} .
Then

5.3.1) Inn=0, n=1,2,..
and by Proposition (4.1),
5.3.2) lim 4, , =[Pl 0>1, n=1,2,..

Using Proposition (4.7) and the compactness of Sem (F), one shows that for
m>n,,
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(5.3.3) limsup (4,,, nyi = Anpm, m) =0.

m—>o

Given any number o satisfying 0<o <1, there is, as a consequence of (5.3.1) and
(5.3.2), an index m,(6)>n such that a,,, <0 and a,,, +1<0, n=1,2,....
Then, applying (5.3.1), (5.3.2) and (5.3.3), as well as the precompactness of the
sequence {[A7241m, (o))} mno)=nn=1 and the compactness of &, p(u, Z , F), we
can choose an accumulation point A of {[A7:4 1. ()] mu(0)2nn=1 @and D
€Y, p(l, Z , F) such that

(*) IP—D@A@P]|, o=0=min {|[P—CA® P, 0: C€F, st Z, F)}.

By Proposition (4.2), A e Sem (F). Hence, defining B(®) by B(® =D 4P,
it follows that B e &, and

(5.34) [|P—B®@]|, 0o=c=min {||P—CB®@||,,0: Ce¥,p(u, Z, F)},
whence
(5.3.5) B@ed, (u, Z, F).
Put
Lo=min {[|P—CBO)||, 00 CEF, o, &, F)}.
It follows from (5.3.4) that
(5.3.6) ¢y .=0.

By ([38], Theorem 3.1.1), the semigroup Sem ({B(®}) contains a projection
operator P(®), Furthermore, we have

(5.3.7) lim sup {, , >min {[|P—CP©||, .o: Ce %, p(u, 52‘, F)}.

Since P e &, it follows that P—P( is also a projection operator and, by
Proposition (5.2), P& P. Hence

(53.8) |P—P@], 0> 1.
Set

inf {[|[P—CP@||: Ce %, o(u, Z, F), 0<c<1}=A4.
Then, one can show that
(5.3.9) hnﬁgp {no=4>0, foreach oe(0,1),

and also that

(5.3.10) lim sup (Cp, + 1,0, — Smp0) =0
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for any sequences {m,},>; and {0,},>;, wWith 0,—-0. Given a number Q satis-
fying 0<Q< 4, then by (5.3.6) and (5.3.9), there is an integer m,(£2) such that
Con),en <L and b,, o)+ 1,,,> R, Where {0,},>, is any sequence with the property
0,—0. From (5.3.10), we infer that {,, )., converges to Q. Let E() denote
an accumulation point of the evidently precompact sequence {(B(m))m(} .,
of members of &. Then

(5.3.11) min {||P— CE®@||, o: Ce¥, J(u, &, F)} =2,
where 0 <Q< 4, whence
(5.3.12) E®eg, (4, Z, F), 0<Q<4.

The net {E®:0<Q<4}=9, x(u, E@\”, F) is precompact. Let E© denote its
accumulation point as Q tends to zero. Then using (5.3.11), the compactness
of &, p(u, z , F) and ([38], Theorem 3.1.1), one shows that there is an integer g
such that

1P =Bl 0<%
Put
(5.3.13) W=(E©@o)a

where 2, is a positive number with the property

IE®)e— (E@)ell, o<

Then

(5.3.14) 1P =W Il <~

and, from the definition of the operators E(, it follows that
(5.3.15) (B*w)r»— W in the norm-topology of B(LP(X, Z , 1)

as r,—~00. From (*) and (5.3.14), it follows that the operators B~ and W
admit representations of the form ([39, Theorem 9.6.17)

(5.3.16) Ben=Pexp H™ and W=Pexp H where

H®, He B(L?(X, &, 1°), PH=HP=H, PH® =HMP=H®,
(5.3.17) WH=HW,
and by (5.3.15)



570 G. O. S. EKHAGUERE

(5.3.18) r,H™— H in the norm-topology of B(Lr(X, z , 1%).

Let ¢t be a positive number. Then, by (5.3.16) and (5.3.18), (B(en)rat]
—PexptH in the norm-topology of B(LP(X, z , u9); here [r,t] denotes the
integral part of r,t. Since B(°») € &p, we infer that {Pexp tH: 1 >0} < F.

Consider the semigroup Sem ({W?}). By ([38], Theorem 3.1.1), Sem ({W})
contains a projection operator Q. Using (5.3.17), (5.3.12), Proposition (5.2),
and arguing as in [ 5], we obtain that lim (P— Q) exp tH =0, in the norm-topology
of B(L¥(X, &, 1O)). o O

Remark: Before continuing the discussion, we introduce some notions
and concepts which we use in the sequel.

(5.4) Definition: We call a set .# cGl(!fi” ) shift compact if and only if,
for every net {u": ye o/} =.#, there are nets {a,: ye &} < R(X,), {b,,: ye«}
CLE(X, &, p0iy), {a®:yed}cLAX, &, 1), With (4, a®)eGPAT),
and (4, @) € GPX(Z) such that a subnet of {u(M(ei(®)'a™)eiots(b12): ye o} con-
verges to u(e*(9)'9), for each o € R.

Remark: Using Definition (5.4), one may verify that analogues of the
results for shift compact sets of probability measures [3,41] are again valid here.

(5.5) Definition: We call a pair (, a)e GP(%) infinitely divisible
if and only if, for each positive integer m, there are (X/™, .%A”l/'")c:(X , z ) and
(ul/m, al/mye G{P(Z1/m) such that

(et @ 8y =(pl/m(ei()-at™ym  for each o€ R.
The pair (u'/™, al/™) will be called a factor of (u, a).

Remark: In the next result, we characterize members of lim (G¥(Z))
in terms of their decomposability algebraic structures.

(5.6) Theorem: Let (u, x)elim (Gﬁ")(ﬁ? ). Suppose that DP(u, &) con-
tains a one-parameter semigroup {exp tH: t>0} with the property limexp tH
=0, where the limit is taken in the norm-topology of B(LP(X, .9?', uf’—)i] Then,
(u, x) is an infinitely divisible pair. Furthermore, exp tHgz:me DP(ul/m, £'/™),
t>0, for each factor (ut/™, x1™) of (u, x), m=1, 2,....

Proof: Let t>0 and put exptH=U(¢). Then, by hypothesis, there are
(XOXt), ZO(D) (X, ), j=1, 2, and v,€ G,(£> (1)), such that

(5.6.1)  UTs0UM)f(@)-gOOO)=pEE, (f(@)g@®),
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for all fe 2(R)swr ¢y, 9@ € 2(R)z(r), a € LE(X (D), ElA”(l)(t), UEw (1))ag and
b(o)eL”(X(z)(t) .%:(2)(0 Vag  Since  DP(R, (1), ugﬁﬂm) and 2°(R,

x (2)(t) v,) are invariant under the maps I'z ) (U(£)) and Iz (U(?)), respec-
tively, by definition, it follows from (5.6.1) that

BB (T (UM) £@)- g 6O) = w430, (F@)O (g (B™)),

for all fe Q(R)ﬂr(l)(t)a g(o)eg(ﬂ)xm(m GGLP(X(I)(Z) gf(l)(t) Hggg(,))azga
b® e LX(XPD(), & (2)(t), Voaygs t>0.  Let Z1:0 be the linear hull of all elements
of the form (I'z(U(D)f (@) - g@(b©®), with a € LA(XN(5), £N(1), R o ates

bO € LX), ZO(), Vg f€ 2Rz 9@ € X(R)sry. Then, from
(5.6.1), we get

BT 20,0 U (T 200 (U f@) gD BD)) - g O B))
— 1430, (F@)IWWO (gD By, (g B®)),

for all fe D(R)za (i 9@ gV € D(R) gy 2 LEXD (1), £ (1), WEEY) g

£ (r)

b e LE(X (1), £O(t), vW0),,, and b® e L2(X(t), £ (1), V,)argr t>0.

Iterating the foregoing argument, we obtain

W s (UMD f(@) - (I'z (n(U((n—1)))g = H(b"~1))...
(g (U®)gD(bM)) - g©O(b®))

n—1 . . .
= K50 (@) [T v7U0 (gD (b)),

for all fe2(R)swy, 9V €D(R)scr(y, j=1, 2,..., n—1, acLi(XN(1),
FO(), Pl Vagr BPLEXD (1), FO(1), W), j=0,1,2,..., n-1,
t>0. Hence

ﬂ((r.é’(l)(t)(U(t))ei(cr)-a)-(Fé(z)(t)(U((n — 1)1))9("‘1)(b("‘1)))-..
(T g (U@) gD (b)) g @ (b))
_('uUE?)t) ®(”®1 Vy(jt)))(ei(d).a®(nél ei(d).b(,))), G'ER,
(2) =0 2

for all ae LE(XM(z), £D(2), pdG0) Yargr B ELUXON(1), EO(2), VWD),
j=0,1,2,...,n—1,t>0.

Since (i, x) € lim (Gl(flA” )), by hypothesis, we may suppose, as we do hence-
forth, that {a bW: j=0,1,2,...,n—1},5; is such that (ug{ry ®(® YUUD)).

Z (1) (1)
(eito) "®(® i@ by converges to u(e!®)'*), e R, as n—oo. But Tim U(nt)

n—>»co

=0, by hypothes1s Hence, ,ugg')‘() (e*(®) @) converges to 1 as n—oco. Thus
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-1 -1
(5.6.2) n_®1 yuGn) (n.®1 ei(@) 59y converges to pu(ei®)¥), o€ R.
j= j=
Next, for each positive integer m, define ¥, .y by

n—1
ql(n,t,m) = ’@0 vPmD, 1>0.

Then

(5.6.3) ® U(Jt) = @ @ YUHEm)D) — ® youn,

j=0 Jj=0 k=0 j=0
and it follows from (5.6.2) that {¥, ;m}n>1 is shift compact. Hence, there is
a sequence {oc,,},,21 cR(X,) and {a;,}n.>1<LP(X;, Z;, 1u%i;) such that
{¥ (n,.m) (® el b P)eivtn(an)} o is precompact in C. Let ¥, m)(e‘(") b7y
be an accumulatlon pomt of the precedmg sequence, where ¥, m) € G (.%” (z, m)),
for some (X(t, m), Z (t, m)) = (X, 3&‘“), and be LE(X(r, m), z @ m), ¥um)aig-
Then, for some subsequence n; <n,<---<n;<---, we have the convergence
nj—1 . x s . ,
(5.6.4) T(nj,t,m)( J@O el(a‘)-b(J))eldﬁnj(ainj)__)ql(t’m)(el(ﬂ')-b ).
Now
(8 ¥t (® ® eior o)
j=0 e j=0 k=0
m—1 m—1 m—1
=(T1 et U023, WD) ((® (6, ®F (n,e.m) VUD) (® (eiasn
Jj=0 Jj=0 Jj=0
n—1
R (@ el P @)))).
k=0

Hence, invoking (5.6.2), (5.6.3) and (5.6.4), passing to a subsequence and then
taking limits, we get

m—1 . . m=-1 ,
(5.6.5) (€)= (6, m®(® PEGN)(®(® i)  for some

=0 j=0

%em € R(X,), @€ LE(Xy, &y, uOi;) and ble L (X(r, m), Z(r, m),
YI()‘,m))algs t>0.

Let r be an arbitrary positive integer. Then

r Uci Ulrme) r+n—1 Ui r+n—1 3
(5.6.6) (@ V/Im)@FGIIm= @ v/ImI=¥( . m@( ® vIU™).
Jj= Jj=

j=n
r+n—1 . r+n—1 | ™
Thus, the sequence {( ® V/Um))( ® i@ 2P must converge to 1.
j=n i=n

r—1 . . .
Therefore, the sequence { ® vVUmD} . is shift compact and, hence, for some
i=1
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Ordrzr = R and (o ho @ LUK, £, 00), the sequence {(2,@(®)
vU(J'"‘)))(e””'"®(® el )y} 4 is precompact. Let @, (ef(@¢), aeR
be an accumulatlon point of the preceding sequence where o, ,)eGl(ﬂ”[, )
for some (X, ., & [,,,])C(X , z ) and ¢® e LI(X}, 4, 32”[,,,], ®.1)ag Then, from
(5.6.4) and (5.6.6), we obtain

(56T)  im(@) =B (O) (1<),

with b e L2(X(t, m), Z (t, m), ¥ m) and c() as previously described.

Let {t,},>1 be a sequence of members converging to zero. From (5.6.5),
one sees that there are sets {0;},>; < R(X,) and {dq;}i>; = L2(X;, 33’1, 10i,)
such that the sequence {(g,® T(tk,m))(e”’dlk®e‘(") D}t converges to some
number ¥, (el y""’) where Yf[m]eGl(ﬂl‘[m]) for some (X, %'[m])c(X ),
and y™ e L{(X 3, EZ'[,,,], ¥imDay Letting t—0, one infers from (5.6.5) that
(5.6.8) p(eirx)

=(80®l11[m]®l:[][m]®,“®l:[l[m])(eia'dfm)®ei(a)-y(m)®ei(a')-y(m)®__.
~@ei@)yimy,
for some 0 R(X,) and dm e LX(X,, Z, u%i,). Furthermore, arguing as we
did above, (5.6.7) yields

(5.69) P €7 ) = P (O ) (1)

for some w, € Gl(%:(,)), with (X, 53:(,))C(X , z ), ¥ e LE(X ), 55'\(,), ®;)y, and
ym € L{(X s Zim1> W[m])uzg-
Finally, since the right hand side of (5.6.8) may be written thus:
RV (m®F (m® - @ ¥ () (€174 @'Y ™ Qi@ vy ™ Q...
S ®ei@ ™)

=gg(e’4™) (V@2 ™))™, then we have

we)

— ('ul/m(ei(a)-xl/m)))m

where ul/m=g;,,@¥p,; and x/"=d{™ ®y™. Hence, the pair (u, x) is infinitely
divisible, as claimed. Notice too that from (5.6.9), one readily infers that
U(f)31/m € DP(utim, Z1Im), 1<p< oo, where £Y/m=%;®%;,;. This concludes
the proof. O

Remark: The following corollaries, whose proofs we omit, may be readily
established.

(5.7) Corollary: Let (u, x)elim (G?’)(Eg ). If Dy, z ) contains a
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one-parameter semigroup {exptH:t>0}, HeB(LX(X,Z,u0), l<p<oo,

such that lim exp tH =0 in the norm-topology of B(L?(X, X, u°), then u(ei(®'x)
—©

*0, for all 0 € R.

(5.8) Corollary: Suppose that (u, x)€lim (GPX(%)) satisfies the hypoth-
eses of Theorem (5.6). Suppose, moreover, that for some (X(t), é‘(l))C(X, .%A")
and v, G(Z(1)), we have

#(ei(a)-x) = ‘uU(t)(ei(a')-x)vt(ei(a)-x(‘))

for some x" e LE(X(?), .%A”(t), Vag» OER, and t>0. Then (v, xV) is an inflnitely
divisible pair, for each t>0.

(5.9) Theorem: Let (u, x)eGE”’(é’) be nondegenerate. Then, (u, x)
lies in lim (GYXZ)) if and only if, the decomposability algebra structure
Dr(u, .%A”) of u contains a one-parameter semigroup {exp tH: t>0} with the
property that grg exp tH=0 in the norm-topology of B(LP(X, V”ZA", 19)).

Proof: The conditions of the theorem are necessary. To see this, we
argue as follows. Suppose that (u, x)elim (GPX(Z)). By Proposition (4.7),
there is a norming sequence {4,,},~,; corresponding to the nondegenerate pair
(1, x) with the property that [A714,,+,]1—1 in B(L?(X, QA”, u%). By Propo-
sition (4.2), I lies in Sem (F). By the repeated use of Theorem (5.3), we obtain
aset {PO=I, PW,..., P} of projection operators and a set {HV), H®,..., H"}
of operators with the following properties: %p¢,) contains the one-parameter

semigroup

P exp tHUD, >0, PO HUD = HU+D P() = HUHD,
PUD e Ppq,y, PUHDHU+D = HU+D | PU) 4 PU+D  and
lim (PYW) — PU*D) exp tHU*D =0, j=0, 1, 2,..., r—1.

t—0

Furthermore, in view of the compactness of Sem (), we may assume that
P =0. Now, the condition P(U~DeLp, implies PHIPU-D=PU-DPU)
=P, Hence, by Proposition (2.4), the projection operator Q()=PU~D
— PU)=PU~U(I — PU) lies in D#(u, £), 1<p<co. Set 3 QWHW =H. Then,
expt H= 3 QW exp tHW), and (again by Proposition (12_.2-)) exp tH eD?(u, flj),
t>0, 13}-; 0. Hence, the conditions are indeed necessary.

The conditions are also sufficient. To see this, assume that (u, x) € Gl(.@ )
x Lr(X, Z , u°) and that D?(u, Z ) contains {exptH:t>0}, HeB(Lr(X, z ,
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1), w1th 11m exptH=0 in B(L?(X, .%‘” u%). Then, in particular, I lies in
Dr(u, EX ), 1 < p <oo. We wish to demonstrate that (u, x) lies in lim (G¥ )(56' ).

Set exp(n"tH)=B®, n=1, 2,.... Since I € D?(u, X), it follows that there

are (X,,, £,,)=(X, Z1),j=1,2,..., k, and v, ;€ G,(Z, ), j=2, 3,..., k such that

(591) .u(ik(ré\‘“(B(l))eiax“®F§‘12(B(2))eioxu®"'®F§'1k_1(3(k—1))'
eioxlk_1®eia'x1k))
B(l)(ewx“)szz(ewxlz) ) ,1(( k- 1(ewx1k 1)V (em'xk)

for all xy; €LY (Xyy, &1, 20), x4, € LE(Xy o Zyjy vEF), j=2, 3,000, k3 0ER,
where B;; is the restriction of BY) to LP(X,;, EZA‘U, vij), j=2, 3,.., k; k=2,
3,.... Hence, {x,;};> is a collection of stochastically independent operators.
Evidently, we may choose {x;;};>; such that v, (e"*1)—1, as j—o0, for each
o € R, whence, by definition, {v,;};>; is uniformly infinitesimal with respect to
{x1}i21-

Next, put exp(z JIH)=AM, n=1, 2,... and set A}II)IEAw A:E?'i)n = A
n=2,3,.... Make the definitions:

(5.9.2) pz, ol (A7) =pg; and vy ol (A7) =py n=2,3,....
One readily checks that
{exptH: t>0}=Sem ({[4741.]: n=1, 2,...}).
Hence {4;};>, satisfies (3.5.1) and (3.5.2). Notice that A —0 in B(L?(X, 32",

u%) as n—oo. Hence, ufir(e'"*1in)—1, whenever {j,},>; is bounded. For j,<n
and j,—oo0, we have by (5.9.2) that ,uf‘"—vAl,nAl" and hence u’“"(e“”‘u )—1,
since {[A7},Ainl: u=1,2,..., n}pnq s precompact in B(L?(X, 38“ u%) and
vy;(ete*))—1. Hence, a part of (3.5.3) is also fulfilled.

Finally, we have

(®, 1)( & et
=z, (") v p(efohid Anxz) vy (P AT AinTinm )y (%)
__#(ln(ewx“@ewfl Al,.xu@ ®emAln 1A1"x1"_1®eio‘x1n)),

by (5.9.1) and (5.9.2), since exp tH e D?(u, 32:), by hypothesis, for each ¢>0.

It is clear that we may assume that the previous choice of {x,;};», assures the
convergence of the right hand side of the last equation to u(e!(®)*), for each
o eR. This ends the proof. - O



576 G, O, S, EKHAGUERE

§6. A Characterization of Certain Semigroups Contained in D?( g, z )

Let H € B(L?(X, &A” u9) and {ex ptH: t>0} be a one-parameter semigroup
of operators contained in B(LP(X, 3{ yo)) with the property that hm exptH=0
in the norm-topology of B(L?(X, .@” 1%). 1In this section, we answer the
question:

When is the semigroup {exptH:t>0} contained in DP(u, é’é:), UE Gl(fé'\),
1<p<oo?

In answering this query, we supply a characterization of the infinitesimal
generator H.

Notation: 1. Let L?(X, z , W* denote the topological dual of L?(X, z , 1).
We write -, ), for the canonical duality pairing of L?(X, z , ¥ and LP(X,
x , W). A

2. The adjoint or dual of an operator A e B(LP(X, %, ) relative to
(D Will be denoted by A%, i.e.

(@ AbY (=< A¥y, by, for all (ay, b)) L2(X, &, )* x LP(X, &, 1).
Evidently, A*: L2(X, &, p)*—Lx(X, &, p)*.

(6.1) Definition: Let (u, b)e G®(Z). Then, we say that (g, b) is a
symmetric Gaussian pair if and only if,
(1) there is a compact operator R: LP(X, 52”, w—-LP(X, z , ¥ with the
properties:
(i) <{Ra, cyy=<Rc, ay,, (symmetry), for all a, ce L?(X, .%”A, h)
(i) <Ra, ay,,=>0 (positivity), for all ae L*(X, BZ‘A, w); and
(2) p(eit@)b)=¢~1/20%<Rb,b>u for each o € R.

Notation: (i) We shall say that the operator R occurring in (6.1) is a
covariance operator corresponding to the symmetric Gaussian pair (u, b) e
e GP(Z).

(ii) We denote the collection of all R, such that R is a covariance operator
corresponding to some symmetric Gaussian pair, by Cov (P)(Eg”), 1<p<o.

(6.2) Definition: Let (u, b)eGg")(@). Then, we say that (u, b) is a
Poissonian pair if and only if, there is a normal positive trace [24] = on z 15
with n(1z)<oo, and (, by, ¢;)€ R(X,) X LA(Xy, &y, poiy) X LA(Xy, &y, poky)
such that
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#(ei(a)'b) = giof(b1) pn(x(o,c1))

where
ioc,

wloy e)=e —lg, =30

(e, ({0}))=0.

Remarks: (i) We call the functional 7 occurring in (6.2) a Poissonian

o€ R, and

exponent corresponding to the Poissonian pair (u, b). Furthermore, we refer
to the triple (y, by, ¢;) occurring in (6.2) as the Poissonian data for (u, b).

(ii) We denote the collection of all #, such that 7 is a Poissonian exponent
corresponding to some Poissonian pair, by Pos (QA” )

(iii) The following result is established as in Refs. [40-45].

(6.3) Theorem: Let (u, b)e Gﬁ")(&?‘) be an infinitely divisible pair.
Then, there are a symmetric Gaussian pair (Ug,, bg,) € Gﬁ”)(&"AGa) and Poissonian
pair (e, bp,) €GP &py), for some (Xop Z6)=(X, £) and (Xpy, &p,) <
(X, .92‘\) such that

(6.3.1) p(eHP) = pg (€' Poe) pp,(ei() Pro), geR.

(6.4) Remark: (i) It follows from (6.3.1) that (6.3.1) may be written
thus:

(6.41) #(ei(”)'b) = 'u(ei(ﬂ')'baaei(ﬂ')'b}’o) =#Ga(ei(“')'I-"Ga)'upn(ei(o')'bPo)9 o€ R_
(ii) Let mePos (53’ ). Then, 7 extends to a central positive linear func-
tional, denoted again by #, on Z.

(iii) If mwePos (32) and A4 e B(L?(X, 5:?, W)+, we write n4 for mol'z (A),
where as usual, I'; (4) is the restriction of I'(4) to 27(R, z 15 U3,)

(6.5) Proposition: Let (u, b)e GPZ) be an infinitely divisible pair
whose symmetric Gaussian pair (Ug,, bg,) has covariance R and Poissonian
pair (Upy, bp,) has Poissonian exponent n. Let Ae DP(u, .5%), with

(ei(9)b) = pA(ei@)b)y ,(ei(®)-ba)
for some (X 4, SZ?A)C(X, EZA"), V,E Gl(.%A”A) and bye LX(X,, é’A, Vag Assume,
moreover, that (v4, b,) is an infinitely divisible pair. Then, Az, € D"(ug, %64)
and Az, €D?(up,, Zp,), Where Zg, (resp. Zp,) is the W*-algebra contained

in & generated by the spectral projections of bg, (resp. of bp,). Furthermore,
R—A%;_ RA;., lies in Cov P %;,) and n—n4 lies in Pos (EZV'PO).

Proof: Let (Lyga buca) and (Luyp,> bap,) denote the symmetric Gaussian
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pair, with R g, as its corresponding covariance operator, and the Poissonian
pair, with m,p, as its corresponding Poissonian pair, respectively, of the pair
(v4, b,) which, by hypothesis, is infinitely divisible. Then, by (6.4.1), we have
(6.5.1) v (e1(@)ba) =y ,(ei(9) b acagi(e)baro)
=.uAGa(ei(a)‘bAGa).uAPo(ei(a)'bAPo)s

oe R. Also, by the assumed infinite divisibility of the pair (u, b), we have
(65.2)  p(ei()%) = p(e! baneh(0)Ben) = g, (1 bax) iy (1) bre),
oce R. Hence
(6.5.3)  pA(e!(Peagi(®bro) =y (e'(D Poa)up, (!9 Pre), o ER,
since 27(R, 9:”6,,, Ug,) and DP(R, Z p0> Upo) are invariant, by (2.1), under
I's..(A) and Iz, (A), respectively. But

#(ei(c)'bcaei(ﬂ')'bPo)

= i, (') bGe) up, (e1(Pro), by (6.5.2)

= (e b)y ,(eil) b4) by hypothesis

— BB P (VP (€1 P408) g (€50 Pa72),

by (6.5.1) and (6.5.3).

Identifying the Gaussian and Poissonian parts of the foregoing decomposition,

one gets

(6.5.4) Hga(€' P P0e) = pg, (' Pea) g, (€' P40a)  and
(6.5.5) Hpo (€' 0oy =g, (eH(DPre) ypg (€' Pare), gER.
From

UGa (ei(a)'bGa) = e—1/2¢2<RbGabea>(#Gu),
'uéa(ei(a')'b(?a) = 6—1/202<RA5?GabG"’AéGabGa>(#G¢), and

LaGa (ei(tf)'bAGa) =e‘1/262<RAbAGasbAGu)(MAGa),

where R, is the covariance operator corresponding to the pair (4464 b4gqs), One
gets R—A% RA;z,, lies in Cov ) Zga)
Finally, since
CED)
= gio? (1) gn(x(a,c1))

= (D7) g, (1O D472), GE R, by (6.5.5),
= (ei”?(Aé‘rl}’l)eﬂA(K(o',Cl)))(eiU?A(YA,1)eﬂA(K(U,CA,1))), where
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we have employed here self-explanatory notation,

= eiﬂ(?(Aévlyn)‘*'?A(YA,1))eﬂA(K(G,Cx))‘*"fA(K(G:CA,1))’

we have
LLap, (€1 haro) = gis (PN =94 Y1) (r=rA) (k(s,c1))
Hence n—n4 e Pos (Z5,), as claimed. |

Remark: There is now the following answer to the question we asked
at the beginning of this section.

(6.6) Theorem: Let HeB(L*(X, 3’2\”, 1%) and limexptH=0 in the
t—00

norm-topology of B(LX(X, %, 1%). Let (1, x) € lim (G®(Z)). Then, D?(y, &)
contains the one-parameter semigroup {exp tH: t>0} if and only if,

(6:6.1)  J(ee)%) = p(eH xen el xre) = g, (¢ <0n) up, (&1 r2),

for some symmetric Gaussian pair (lig,, Xg,), With corresponding covariance
operator R, and Poissonian pair (ip,, Xp,), With corresponding exponent m,
such that

(i) H;GGR+RH§,G“ is nonpositive in the sense of (6.1) (i) (ii); and

(i) m>mol'g (e'H), for all t>0.

(Here (Xg,, nga)C(X, 9:”) is as in Theorem (6.5).)

Proof: The conditions are necessary. To see this suppose that D?(u, Z )
contains {exptH:t>0}, with limexptH=0 in B(L?(X, z » ). Then, by
Theorem (5.6), the pair (i, x)€lim (G¥X(%)) is infinitely divisible and by
Theorem (6.3), the decomposition (6.6.1) holds. Moreover, by Proposi-
tion (6.5), R-(exp tHj;Ga)R(exp tH @Ga)Azo for all t>0 (in the sense of (6.1)
() (1)) and ©—mol' ¢ (e'®) is in Pos (%) for all t>0. Thus, (ii) is already esta-
blished. To demonstrate (i), notice that for arbitrary a € L?(X g, BfGa, UGa), WE
have ([R-exp tHg,Gu)R(exp tHz, Nla, a) e =<[R—{R+ t(H;‘?GaR +RHz,,)
+0(22)} ]a, a>(uca)=(—t(H;’?GaR+RH,AGa)a, @) (u6.) fOr t close to zero. Since
>0, we infer that Hy R+RHg,, is nonpositive relative to (-, >,q,), as de-
fined in (6.1) (i) (if). 'This establishes (i), whence we conclude that the conditions
are indeed necessary.

The conditions are also sufficient. To see this, let (u, x) €lim (Gg"’(.??‘ )).
Assume that = e Pos (32,,0), 0 =ng—molz (exptH)>0, for all ¢t>0, Re
eCov(P)(Z{A‘G,,) and H;‘;,GaR+RHg;G‘z is nonpositive using (6.1) (i) (ii), for some
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Poissonian pair (4p,, Xp,), With 7 as its exponent, and Gaussian pair (Ug,, Xga)s
with R as its covariance, and (Xp,, Zp,) = (X, &), X¢a Zea)<=(X, ). Then
7)) € Pos (Z'p,) for all >0 and, moreover,

(6.6.2) Hpo(€1()7570) = PO (1) 00) g, (1) 1)
where (ugP'H, xp,) and (wp,, X.p,) are Poissonian pairs with corresponding
Poissonian exponents neI's (exp tH) and n(9), respectively, ¢>0.
Next for arbitrary a € L?(X g, 52?6,,, Uga)s Put
§(O)=<[R—(exp tH} )R(exp tHz, )1a, ) (s,
Then

d
4 ()= —(exp tHY_ )(H, R+ RHz, )(€xp tHz,)a, @3,
=—<{(H}_ R+RHz,)(exptHz.,) a, (exp tHz, )a) .y t 20.

Thus, %2 0, since H ;,GAR+RH #5. 18, by hypothesis, nonpositive. But £(0)=0.
Hence, R—(exp tHj?Ga)R(exp tHgz ) is nonnegative relative to (-; Dluca)
This means that R(f)=R—(exp tH;‘?Ga)R(exp tHz_ ) lies in CovP(Z,), for
each t>0. Let (¢4 X:c.) be the symmetric Gaussian pair with R(f) as its

corresponding covariance operator. Then

(66.3) Haa(€1(0)"00) = BB (1) x0) g, (&) xe00),

where the symmetric Gaussian pair (uSP'H, x,) evidently has (exp tH;*;G )R-
(exptH3z,,), t=0, as its corresponding covariance operator. From (6.6.2) and
(6.6.3), we get

(6.6.4)  pga(e¥®)50) up, (ei(@)xr0)
= H‘gng(ei(d)'xca)‘utGa(ei(U)'x:Ga)'u?(gtH(ei(cr)-xpo)ﬂtPo(ei(a)'x:po)
= /v‘?;"ftH(ei(”)'xG“)Mfs"f’H(ei(")'“’“),ut(;a(ei(”)'xma)(ei(“)'xtpo),

But, since (4, x) € lim (G{*(%)) is such that

(6.6.1) R (%) = pga(€ (7o) up, (e *re), o € R,

then, (6.6.4) gives

(6.6.5) H(EHD ) = pet (1), (e1(r=)

where

V=lhca®Up, and



CENTRAL LIMITS IN PROBABILITY GAGE SPACES 581

X =X16.®Xpo,  £20.

We conclude from (6.6.5) that {exptH: t=0} =D?(u, Z ). Hence, the con-
ditions are indeed also sufficient. O

§7. A Representation for Nondegenerate Limit Parirs

Let (u, x)elim (Gl(Qﬁ )) be nondegenerate. It this section, we obtain a
representation for u(e'(?)'*), o e R. Our representation may be compared with
the one obtained by Urbanik [5] in the case of Banach-space-valued random
variables.

In the sequel, H € B(L?(X, z , %)) and U(t)=exptH, t>0, with lim U(¥)
=0 in the norm-topology of B(L?(X, &A”, u%). Furthermore, 7 is a fixed fﬁ?mber
of Pos (33) throughout the ensuing discussion.

(7.1) Defimition: A member h, ex t will be called a weight-operator
provided that

1. hJ{=Sw ey (d7)2 is invertible;
o+

2. h{<l|ho|? for some positive number / and some O==h, egz"lg

3. h, is separating for Pos (9:’), i.e. if 7y, 7, € Pos (5&:), with 7,(hy)=m,(h,),
then n; =n,; and

4. n(h,)< oo, for all 7 e Pos (Z).

(7.2) Notation: 1. We denote the set of all weight-operators in Q;J{ by
W(Z).

2. Let U be an arbitrary subset of Z;.

Then we define 2,(%) as follows: 2,(A)=W*-subalgebra of %, generated
by {I's (U(®)z: zeW and te R} (Here and hereafter, we use the notation of
(6.4) (ii).)

Remark: The following result is employed in the sequel.

(7.3) ]P’mp@sﬁltﬁ@ml For each mePos (3&’ ), there exists a sequence {Ql[ |

of subsets of EKI such that ﬂ”l(%m) n 5&”1(%,,) {0} if m%n, and n= Z ToPy
on %’1, where Py is the projection of .%”1 onto KI(QK,,) n>1.

Proof: Let h,e W(.%‘"l) Since 7(h;)<oo, by (7.1) (4), we can find a
subset U, of z 1 such that n(Pg h,)<1, where Pw1 is the pro_]ectlon of 7 1 onto
Z, 1(QIII) Now Py 3&”1 is a W*-subalgebra of 55'1 Set P§ %, =% 1(P(@l[l)) and
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noPg =7y, where P(,) is some subset of z 1. Then, my (h)<co. Hence,
there is a subset 2, of P(A,) such that z 1(A,) is a W*-subalgebra of z (P(2U))
and 7y, (P&,h,)<1/2, where Py, is the projection of 4,(P(2(,)) onto Z;(2,).
Since Pg, is the identity of B(&A”I(P(QI 1)), the Banach algebra of all mappings of
Z,(P(N,)) into itself, we have P =Pg —Py =I—Pyq —Py,. Evidently,
P%P%—O Py, Py, Continuing as above, we get a sequence {4,},-, of subsets
of & 1 such that Z (2, N 3&"1(91,,) {0}, for m=}= n, and 7n((I—Py, — Py,
— Py )hy) <7, where Py_is the projection of z L onto & 1(QI,,).

To complete the proof, put 7— i noPy, =m,. Then, n;(h1)<%, implying
k=1

that n,(h,)—0, as n—oo. But h, is separating for Pos (QA”). Hence, n= f i1
k=1
OP?Ik' D

(7.4) Remark Suppose that nePos (3{ ) and w>mol gl(U(t)), for all
1>0. Let 5&”10 be a W#*-subalgebra of ﬂ”l Evidently, if I fl(A)Zo‘“m 5&”10,
t>0, then the restriction 7z, of 7 to Z, 10 belongs to Pos (38" ) and satisfies 7z,
>72,0.002,,(U(®), for all t>0. Hence, from Proposition (7.3), we obtain the
following result.

(7.5) Proposition: Suppose that © € Pos (3??) and n>nel'z (U(1)), for all

0 A
t>0. Then, there is a decomposition n= Y, =n,, where n,€Pos (%), n,>=,
n=1

o z, ) (U(®) for all t>0, and the supports {91?1(91,,)},,21 of {m,}.>1 are disjoint
W*-subalgebras of &, corresponding to some subsets {3}~ of Z;.

(7.6) Remarks: 1. Observe that Proposition (7.5) reduces the problem
of characterizing the members of Pos (32 ) satisfying n>nol'z (U(t)), for all
t>0, to that of characterizing the central normal positive linear functionals
Ty ON z 1(2) satisfying oy >mgol g, o (U(1)), for all >0, where U is a subset
of 32"1.

2. In the sequel, Z(U, H) denotes the set of all positive central normal
linear functionals 7y on 3’2’1(91) such that my >myol ¢, o, (U(2)), for all >0, where
9 is a subset of & 1~ We shall characterize #(¥, H) by employing the theory
of barycentric decomposition of states on a W*-algebra.

3. Let U be a subset of QA“I and 33“1(%[) be as previously defined. Let
6(%1(91)) denote the state space of 5’2‘1(91). Then, S(.‘,QA”I(E!I)) is compact in
the o(S(Z,()), Z,(M))-topology.

4. Let R¥*=[—o0, o0] be the usual compactification of R. Let & be
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a compact subset of x %, Then & x R is, by Tychonov’s theorem, a compact
space in the induced product topology coming from x ¥ and R*. Define an
equivalence relation in & x R* as follows:

(@1, t)) ~(@,, ty) for ¢q, ¢, €S and t;, t,€ R* if and only if, there exists a
real number s such that

@1l (U(s))=¢, and t,=t,—s.
It is easy to show as in [5] that the relation ~ is continuous. Hence, the
quotient space (& x R*)/ ~, which we denote in the sequel by &~, is again com-
pact. The coset in &~ containing (@, ) € © x R* will be denoted by [o, t].

5. For each subset Qlcz??l and a compact subset Z(%) of 3?1(?1)’“, let
U(Z()) denote the set

{@oI'z (U®): o Z(N) and te R}.
Then, the mapping @oI's (U(t))—[o, t], where ¢ € Z() and te R, is an im-
bedding of U(#(A)) into a dense subset of #(AU). Hence #(A) is a com-
pactification of U(#()). In the sequel, we identify elements g@oI's (U()) of
U(#(W)) and [, t] of Z(A)~.
(7.7) Notation: 1. If cpeé ¥ and ¢>0, we shall denote @oI'z (U(f)) by
@U® in the sequel.

2. We extend the norm | -||#5 and the map p—@U®), >0, of U(Z(W))
into U(£(A)), onto Z(W)~ by continuity as follows:

Ilg, —oollzt=c0, [Le, o]lsr=0,
and
[(Pa - Oo]U(s) = [(pa - CX)], [(0, OO]U(S) = [¢’ OO] H]

where we have denoted the extensions of | - || 3* and @—@Y®), {>0, again by the
same symbols. With these extensions, we get

[p, V0 =[g, t+s], (1, 5)e R*x R*, g c U(B(W).

3. We also specify the actions of [¢p + 0] on Z, () as follows:
([p, ©D(2)=0 and ([o, —00])(Z)=”3i”131oo Pv(z).

(7.8) The set Gs#2(U, H)

In place of #(¥A), we now consider 6(33”1(91)) and its associated sets
U(&(z,(20)) and S(2,(W)™.

For each 1 e &(%,(W))~, define 7, by
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(7.8.1) n(2)=1(ht~12zh}"12), ze £,(A), hye W(Z,).

Then, 7, € 32‘1(9[)*‘“.
Define s# (¥, H) by

U, H)={1e S(Z,(W)~: 7,>7Y®, for all t>0}.

Evidently, s#(¥%, H) is a closed, convex subset of 6(52‘ ().
Next, for each ny € Z(U, H), define 1% by

(7.8.2) 13(2) = o (hY22h112), z€ %, (W), hye W(Z,).
Then, 7§ lies in f‘l(ﬂ)*“. From (7.8.2), we see that

na(z) =15 (hi~12zhi~112), ze Z,(4).
Hence, m e (¥, H) if and only if, 7% lies in s£(U, H).
Put {te S(Zy(W)~: t(12, @) =1} = S, (Z,(W)",

and denote s#2(2, H) n Sl(é‘% ()~ by ©(U, H). Then Ss(U, H)is a convex,
compact subset of &(Z(A))~. We proceed to determine the extreme points
of S (YU, H).

The extreme points of Sz# (A, H)
For each 5 € @1(91)*'*, the integral

(1.8.3) g: dt 7O (hy)=[e(hy, H, )]

is convergent for each h;e W(Eg“l). This observation follows from (7.1) (2)
and the compactness of {exptH: t>0} U {0} in the norm topology of B(L?(X,

%, uO)).
Now, for each ¢ € U(S(%(%))), define 7, as follows:

(1.8.4) t(2)=c(hy, H, go)S: di([p, 1T) (hi/22h112), ze Z\().

Then, 7, is a state on Zy(%) for ¢ e USZL(W)), ie. 1,€ S(Z,(MW)~. Sub-
stituting 7, for 7 in (7.8.1), we get
., (2) =14,(h1™12zh{12)

=c(hs, 7, 9)|” dt(Lo, DY (hT 22k~ ) i)

= (s, B, 9| di(lo, 1)(2), 26 £,(%).
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Analogously,
RO =<y, H, )| dilo, D@, 520, zed,®), ¢ UESED).
Hence, for each s>0, z>0,
., (2)— n}"‘fs’(z) = SZ di([e, t])(z)=0, forall ¢e U(S(QA” (D).

We extend the definition of 7,, to ¢ in S(Z;(%))"\U(S(Z,(2))) by assuming
that t,=¢,. Then, 7, again lies in GH(%, H). Furthermore, the map g1,
of G(ﬁf (W)~ into SH(WU, H) is continuous and injective. Hence, this map
is a homeomorphism of @(52’1(%))~ onto S (U, H).

Let Ext (6(5’1(%))) denote the set of extreme points of @(&’A‘l(%)). In the
sequel [S# (U, H)] denotes the set

(S(Z1(W)"\U(S(Z,(3))) U (S(Z(W))) -

The set Ext(Ss(U, H)) of extremsz points of S#(W, H) admits the
following description:

(7.9) Proposition: The set Ext(Ss2(U, H)) coincides with the set
{t,: e[S (U, H)}.

Proof: Let & be a subset of 6(3?1(%)). Then, the sets U(S), {[¢p, — 0]
: (peU(g(ﬁg"l(%)))} and {[¢p, c0]: (peU(G(fgl(ﬁI)))} are invariant under the
maps @—@U®, te R, of @(é’ (2)~ into itself. Hence, the members of
Ext (Ss£(U, H)) must be either of the forms {[¢, — 0]} and {[¢, 0]}, @€
U(S(#,(2))), or be contained in sets of the form U({Y}), ¥ e S(Z,(A). But
the positive linear functionals 7,, with ¢@e @(3? 1(%[))~\U(6(.9} (%)) are all
extreme points of S# (U, H). Hence, we need now only determine the extreme
points of sets of the form U({Y}), ¥ & &(Z,()).

For any interval 1< R, let 52”1(?1, I) be the W*-subalgebra of &?'1(@][) gene-
rated by {I'2,(U(®))z: ze W and tel}. Write P, for the conditional expectation
of 5’3‘1(%) given 52"1(%1, I); denote P _, ,; simply by P, t€ R.

Suppose now that te U({y}), Y € @(S&A”l(%)). Then, one readily sees that
t€ &s#(U, H) if and only if,

T° P('l: t2) = Tcy(S)oP(tx, £2)
or, equivalently,

nroP(tx,tz) > nTOP(thil"s)
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for all s>0, all ¢, t, € R, t;<t, and with =, as defined in (7.8.1). Since P, ,,,
=P.,—P,, forall t;, t, e R, t; <t,, the last inequality is equivalent to
(*) nr°(P<rz"P<t1)2nr°(P<tz—s—P<tl—s)
for all s>0, all ¢, t,e R, t,<t,. In particular, setting ¢t;=t and t,=t+s in
(#), we get
1

7'51:0P<t S?(”toP<t+s+nr°P<t—s)

for all te R and s>0. Hence, the function t—n(P..a,) is convex for all g, €

Z()*. Consequently, there is a nonnegative, monotone nondecreasing func-
tion t—1a,), a; € (W), such that

(+%) m(Pea)=| _dic @), seR, aed @)

Assuming, as we may, that the function t—n(P.,a,) is continuous from the
left, for each a; 6.92”1(91)+, then t—t,(a,) is uniquely determined by z, for all
ale‘%};l(QI)“. On the other hand, there is evidently a unique, nonnegative
function g% on R such that

t(a) =gy (¥, 1] (ay),
forall a, € Z,(W)* and te R. Hence, (++) may be expressed thus
(79.1)  w(P.a)= S_w dtgy, () (Y, 1) (ay), a; € Z,(W*, se R,
te U({Y}), ¥ e S(Z,(W). It follows now from (7.8.1) that
(1.9.2) (@) =mbiPanl?) =" de gi(o) (v, DY aihl?), hie WD
a, € Zy(A), whence
(719.3)  t(lg)=1= S: dtgy () (W, tD(hy), if TeCa (Y, H).

Conversely, any pair (g3, ¥), with gj: R—[0, c0) and ¥ € &(Z (%)),
such that (7.9.3) holds determines a state T on é’l(‘ﬂ) by (7.9.2). Moreover,
n(P.say), (s, al)eRxé"l(%I)*, defined as in (7.9.1) satisfies (*), indicating
that 7 lies in ©°(U, H). Hence, since { is the only extreme point of {Y}
cS(%‘Al(QI)) t in U({y'}) is pure if and only if, g} cannot be expressed as a
nontrivial convex combination of two nonnegative functions. But this is
possible only in the case g3(t)=0, if t<t,, and g3(1)=d(¥), if t>t,, for some
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to, and d() in R, depending only on . By (7.9.3), we see that

aw)={" ate, Mk, hye WE).

From the definition of t, in (7.8.4), it follows that the members of
Ext(Ss#(¥U, H)) are of the form 7, with y e [Es#(%U, H)]. This concludes
the proof. O

Remark: Each member of s#(%, H) is a positive scalar multiple of a
member of ©s#°(U, H). Hence, applying the Choquet theory of barycentric
decomposition on compact convex sets [46, 47], we get the following result.

(7.10) Proposition: A member wy of 6(3’8\"1(%))~ belongs io s# (¥, H) if
and only if, there exists a probability measure @“’m on S# (U, H) such that
wu(2)= Oug(d9)7y(2), 26 2:(2).

If wy € U(EE”I(Q[)), then @, is concentrated on G(E}l(%)).

[6# (U, H)]

Remark: From (7.8.2) and (7.8.3), and the considerations at the beginning
of (7.8), we get

my(z) =T5(A{"122h]71/2)

S . @a(do)T, (Wi 12zht-12), since 1§ e (3, H)
&(£1(%))

[, Ouldo)cth, H o) | "), zed,@),
&(Z1(W)) Y

since we identify [¢, t] with @V®, for (peU(S(EtA‘l(QI))). Hence, we have
the following assertion:

(7.11) Corollary: Let my be a member of Pos(f’}l), with ﬂe.%'l@l);.
Then, ne (U, H) if and only if, there is a probability measure 0.z on
&(2,(20) such that

@)= . Oudo)elh, B 9) | di9"0(), zed,®),
S(21(AW) 0

where c(h,, H, ¢) is as defined in (7.8.3).

Remark: Let us now characterize those members of Pos (3%' 1) which satisfy
the condition ©>znV®, for all t>0.

By Proposition (7.3), we have a decomposition of the form == i 7, Where
n=1
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7, € Pos (é‘ D, T, =Y ®, for all ¢>0, the support of =, is 32’1(91,,), Z () n Z (W)
={0}, n¥m, and {U,},>, cél\'l. By Corollary (7.11), there is a probability
measure &, on &(Z,(,)) such that

m@=_ . Oule)clth, H, o) di 9"0(2), 262, @), n21.

Hence

&(£1(%n))

n() = 3 7,(2)
>

[ Ouxdo)cth, 1 0) (" dt 9v0(), ze ..
n=1J8(Z1(An)) Y

Consequently, for i, € W(.?Al”l), we have
n=3 (.
#=1 J&(£1(%n))
=3 OS(F,(W) <o, since hye W(Z).
n=1 "

@t:(d(p) C(hl, H’ (P)C(hl, H9 (P)_l by (783)a

Thus, setting >, ©..=0,, we get a finite Borel measure on 6@?’1) such that
' n=1 "

7@ =|_ . 0.do)elh, H, 9) | di 9"(2), zed:.
(1) 0

Notation: For each ¢p € 6(@1), define ny, g , by
(1.12) oy m.0(2) =c(hy, H, @)1, (B~ 1220712), ze %y, hye W(Ty).
Then
7((@, ) =|_, Oulde) s o(k(c, c1)), TER,

Gz

where ¢, is as in (6.2).
From Theorem (6.6) and the foregoing considerations, we now have the
following assertion.

(7.13) Theorem: Let h,e W(EE’I), HeB(Lr(X, 5’2", 19) and limexp tH=0
t—00

in the norm topology of B(L?(X, z , U9). Let (u, x)elim (Gg")(.,”} ). Then,
Dr(p, 3?) contains {exp tH: t>0} if and only if, there exist a Gaussian pair
(UGa> Xga) With a covariance operator R for which H}GaR+RH§Ga is non-
positive in the sense of (6.1) (1) (ii), a Poissonian pair (ip,, Xp,) With Poissonian
exponent m and Poissonian data (y, y,, ¢,), and a finite measure @, on &S(Z),
such that
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(el xy=exp (ia9(y;) __;'_0-2<Rx6,17 xG,,>(,;G,,)
SIRCECOLIRCCEN)
&(z1)

where m, g , is as defined in (7.12), for each g € R.

Remark: Combining Theorems (5.9) and (6.6), we obtain the following
solution of the problem described in Section 3.

(7.14) Theorem: Let h,e W(%,). Then, a pair (4, x)eGPNE), with
U nondegenerate, is a member of lim (GPX&)) if and only if, there exists an
operator H in B(LP(X, 32" %), with hm exp tH=0, a Gaussian pair (Ug,, *¢,)

with a covariance operator R for whlch H“ R+RH is nonpositive in the

ZGa
sense of (6.1) (1) (ii), a Poissonian pair (up,,, Xp,) With Poissonian exponent

n and Poissonian data (y, y,, ¢,), and a finite measure @, on 6(.%”’\1) such that
i(o)x ; 1
p(ei @) =exp (la?(yl)_70-2<*RxGas X6a) (nca)

] Oude)n, (0, €))
TEN)
for each o€ R.

(7.15) Remarks: Results similar to Theorems (7.13) and (7.14) have
been obtained by Urbanik [5] in the case of random variables with values in a
real Banach space. See also [37].
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