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Central Limit Theorems In

by

G. O. S. EKHAGUERE*1"

Some limit theorems in probability gage spaces over semifinite J^*-algebras are proved
In particular, a Levy-Khinchine type of representation for the Fourier transforms of limit
probability gages is established. The results are obtained by exploiting some of the algebraic
and topological properties of certain sets of operators, called the decomposability algebraic
structures, associated with probability gages. This work has a number of points of contact
with aspects of (Euclidean) Quantum Field Theory.
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The Cmtrai Limit Problem Is itself a central problem In Probability Theory.

This is the problem of characterizing the limit distributions of sums of triangular

arrays of uniformly Infinitesimal, not necessarily identically distributed,

stochastically independent random variables [1]. In the case of real-valued
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random variables, a complete characterization of all nondegenerate such limit

distributions was accomplished by Levy [2].

In recent times, attempts have been made to solve the Central Limit Problem

in the more general contexts of group-valued [3] and Banach-space-valued [4]

random variables. In Ref. [5], Urbanik provides a complete description of a

wide class of nondegenerate limit distributions of sums of Banach-space-valued,

stochastically independent, random variables by means of a certain semigroup

of linear operators associated with each such limit distribution. Our present

work extends the results of Ref. [5] to the case where the random variables are

densely-defined, stochastically independent, self-adjoint linear operators on

a separable Hilbert space.

Other authors [6-10] have also discussed the Central Limit Problem in

cases involving various specialized classes of linear operators on Hilbert spaces.

In this paper, we provide a fairly general approach to the discussion of the

Central Limit Problem for a class of densely-defined, self-adjoint linear operators

on separable Hilbert spaces. Our presentation exploits various techniques

introduced by Urbanik [5].

The organisation of this paper is as follows. In Section 1, we discuss the

fundamentals of a noncommutative integration theory on W*-algebras of linear

operators on separable Hilbert spaces. Our discussion involves tensor algebras

over FF*-algebras. A number of concepts and structures, and some of the

notation which we require in the sequel, are also introduced there. In particular,

we isolate a state on a W*-algebra which plays the same role as the Dirac point

measure in ordinary integration theory. Section 2 deals with the basic notions

of the decomposition of a probability gage [11] relative to operators and of

the decomposability algebraic structure of a probability gage. Some properties

of certain operators with respect to which a given probability gage is decom-

posable are described there. In Section 3, the problem addressed in the rest of

the paper is formulated. An analogue of this problem had been formulated

and solved by Urbanik [5] in the case of Banach-space-valued random variables.

In this section, we also introduce the notion of a limit pair and of a norming

sequence corresponding to such a pair. In Section 4, we describe some of

the properties of norming sequences which correspond to certain limit pairs.

These are the limit pairs which are nondegenerate in a sense to be found in

Section 3. In Section 5, we introduce the notion of an infinitely divisible

pair (jj,9 x), where ft is a probability gage on a tensor algebra over a FF*-algebra
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and x is a self-adjoint operator on the Hilbert space associated with the tensor

algebra. We prove that if the decornposability algebraic structure associated
with PL contains a certain type of one-parameter semigroup of linear operators,

then (fjL, x) is an infinitely divisible pair. In this section., we also characterize

limit pairs by means of their associated decornposability algebraic structures.

In Section 6, we characterize those one-parameter semigroups of linear operators

which can be associated with limit pairs. In Section 7, we obtain a Levy-

Khinchine type of representation for nondegenerate limit pairs. This is done

by means of the Choquet theory of barycentric decomposition on compact,

convex spaces.

As is well known [12], Quantum Theory is a noncommutative Probability

Theory. Consequently, a number of problems in Quantum Theory have

sometimes been discussed [13-17] within the context of noncommutative

Probability Theory. In particular, the papers [6-10] discuss the Central Limit

Problem for certain types of operators occurring in Quantum Theory. Since

the Central Limit Problem is intimately related to the Problem of Infinite

Divisibility, it is pertinent to note the references [18-20] which discuss the

latter problem by means of certain techniques of Quantum Field Theory. Our

own discussion of the Central Limit Problem in this paper has several features

in common with aspects of Euclidean Quantum Field Theory [21]. In fact,

the transformation F introduced in Section 1 is a generalization of the second

quantization operator [22] and the positivity-preserving one-parameter semi-

group {etH: t e R} occurring in Section 5 may easily be interpreted as the

evolution operator. Therefore, it appears to us that our presentation and

results should be of interest not only to mathematicians and probabilists but

also to Quantum Theorists.

§ lo Gage Spaces Some Associated Sttraetares

If ^ is a W"-algebra with identity, then in the sequel, #f, <<g\, #f, <gr.9
5(<g7

1) and !Vl denote the self-adjoint portion, the positive portion, the lopo-

logical dual, the pre-dual, the state space, and the identity, respectively, of

#!. For two ff*-algebras %(l}- and tf{2\ the notation ^®c^(f) stands for

their W*-tensor product and for any two linear spaces &(1) and £*(2\ the symbol

&W&&™ denotes their algebraic tensor product. We refer to Ref. [233

§1.22] or Ref. [24, Chapter IV] for the notion of W*-tensor product and to
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Ref, [34, VI. 3] for the concept of algebraic tensor product.

Throughout this paper, X1 is a fixed complex separable Hilbert space

and #*! is a fixed semi-finite FF*-algebra of linear operators on X^.

For any positive integer n, let Xn (resp. &n) denote the n-fold W*-tensor

product) of Xl (resp. 3E^ with itself. Then 9£n is a semi-finite W*-algebra

[23, Theorem 2.6.6] of linear operators on the Hilbert space Xn. We write

ffi Xn = Xand © Xn = & for the Hilbert space direct sum of {Xn: n = 0, 1, 2,...},

and the JF*-direct sum [23] of {&„: n = Q, 1, 2,...}, respectively. Here X0 = C

and %0 = CI&19 where C denotes the complex numbers. A member a of 9C
00 xv

may be written as follows: a = © an9 where an lies in 3£n and only a finite number
n=0

of the members of the sequence {an: n = 09 1, 2,...} is nonzero.
XV XV

The pre-dual &# of the WK*-algebra #" consists of linear functional v of the
OO xv xv 00

form v= © vn, where vn lies in the pre-dual #"„* of #"„, ||v||^= X II vn !!<£*?

||v||^ and ||v||£n* denote the norms of #"* and ^n*, respectively, and v0 is a
XV XV

scalar multiple of the function on ^0 which is identically 1. Moreover, &%
XV *.

is a Banach subspace of ^* in the norm-topology of ,f * [25].

The #"

In the sequel, we write S£n for the n-fold algebraic tensor product of ^
00

with itself and © &n=9£ for the algebraic tensor algebra [26] over 3E.
n=0

Evidently, 3£ is dense in 3C. The multiplication in 9£ is defined as follows. For
oo oo n n

a= © an and b= © fon in ^, with an= ® an/ and 5n= ® fen/, then
n=0 n=0 7 = 1 7 = 1

00

n=0

where

Observe that ^ = ̂ .

Noncommutative on FF*-aIgebras

Several versions of a noncommutative integration theory on IF*-algebras

have been developed in the literature [11, 27-31]. In this paper, we employ

the formulation due to Irving E. Segal [11, 32, 33].
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xv.
Suppose that iin Is a faithful, normal, semi-finite trace on #"B, n>0. Set

Ke4:M«(«X)<oo}^^n and X^X^fc^ n>Q. Then, there is [23,

24] a unique linear functional, denoted again by jjLn9 which coincides with the

original IIH on ^^»} fl #+, n>®. The linear functional iin is called a [11]

on £„, n>0.

We write G(%°n) for the set of all gages on 3CW n > 0. A member iin of G(^n)

such that //n(l£n)<oo and /jB(l£n) = l Is called a probability gage. We denote

the set of all probability gages on %?n by G^S^), n>0. Furthermore, we define

the sets G(^) and Gt(&) as follows:

G(£) = {/i = © iin : iin e G(^), n > 0}, and
n=o

,(l^)<cx> and 0(1*) = 1}

Suppose that /xnEG(s;). For l<p<oo, let Lp(Xn, &n, ̂ n) denote the

completion of ^>^«) in the norm-topology given by

<*n\ - >\MP,,n=(Vn(

where \an\ Is the positive part of the canonical polar decomposition of ane^°jfrt).
/\ xv.

We denote the pair ($"„, || • || „,,„„), where || • ||00i^n is the operator-norm on ̂ "n,

by L°°(Xn, Xm ft,)-
XV. XV.

The Banach spaces Lp(Xn, &„, fj,n)9 /xneG(S°n), l<p<oo, have properties

which are analogous to those of ordinary Lp-spaces of functions [32, 33].

However, In the present noncommutatlve setting, each member of Lp(Xn, 9EW

Mn)9 l<p<oo, w>0, Is an operator which Is affiliated [11] to 9Cn. We remark

too that if fin e G!^), then Lq(Xn, 9£n, fj,n) may be Identified as a Banach sub-

space of Lf(Xn9 £n9 /ij, for q>p, n>Q. In this case, L°°(X, &w ̂  is a
xv.

Banach subspace of Lp(Xn, 9£n, /ij, l<p<oo, n>®.
xv 00 xv.

For jueG(^), with fj,= © /XB, we define LP(Z, ̂ , //) as the Banach space
n=0 oo x\ xv.

completion of the algebraic direct sum © Lp(Xn, 2En9 fin)=Lp(X, 3£9 ii)alg In
n=0

the norm-topology furnished by the norm || - \\ptfl specified thus:

. .
n=0

A member a of I/( X, ^", //) will be written as a = © aM, where 7¥0 = {0, 1,2,...}.
we2V0

We remark that If F(X) denotes the completion of X In the norm given by

n=0 n=0
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>v.

then each member of LP(X, &, fj) is a densely defined operator on F(X).

Furthermore, F(X) is analogous to Fock space* [22].
<<v

Convergence In G(3E)
* CO *

For //e G(#"), with /* = © /*„, denote the self-adjoint portion of I/(X, #, //)

by LftX", , 0). In the sequel, we write L*(X9 S£9 fi)alg for the set of all finite
,*.

real linear combinations (using the strong sum operation in LP(X, 3E9 fj)) of
^ * n

members of L*(X, SE9 //) of the form a= © an9 with an= ® anj, n = Q, 1,2,....
ne-ZVo J=l

For pn e G(f „), Lf(Xn, £, /O and LJ (Zn, £, ^)fl/, are analogously defined.

For i*eG(&), aeLp
s(X, &, n)al with a= © an, an= (g) a ., and any set

neN0

an = {anj: j = l, 2,..., FI} contained in J?, we define the exponential eiffn'an of

an as follows :

(1.1) eian>an= 0 eianjanj

(1.2) and Notation-0 Let p e G(S") with fi= ® /xn, and
^ n «=0 oo

^ A*W !<P<oo5 with a = © ® «„/. Denote the formal sum X jLLn(e
iffn'an)

neN0 7 = 1 «=0
by ii(el^'a), where o;={(jW7-: j = l, 2,..., n; n = 0, 1, 2,...}. Then, we write

for the set: G^S1) = {(//, a) 6 G( ) x Lf (A", , ̂ : |X^'fl)|<oo for
aU ff = {e7Bi/:j = l, 2,..., n;n = 0, 1,2,.. .}<=«}

Using Gx(^) in place of G(^), we define G(/}(^) in an analogous fashion.

Remark: In case (TnJ = (T for all j = l, 2,..., «; w = 0, 1, 2,..., then we denote
^v.

li(eiz-'a) simply by ii(ei(a^'a). The notion of convergence in G(#") employed by

us is induced by the following concept of convergence of pairs.

(1.3) Definition; Let jLL°eG(£) and j* be a directed set. Suppose that

{/4 U {/i(a) : a e j^} c: G(£) and {a} U {a^> : a G j^} cLf(Z, £, ^0)fll0, with

Ox, fl)eG<^(^) and (^(a>, a^)e G^>(^), aej^. Then, we shall say that the

net {0*(a), a(a)): ae j/} of pairs converges to the pair 0*, a) if, and only if,

(1.4) ^(e^'"^) converges to X^(ff) 'f l)» for each ^ e ̂ »

The &P(R, Xw /£„) and ®p(R, , p)

Let ^(^)1 denote the complex-valued bounded Borel functions on R.

We write &(R)n for the n-fold algebraic tensor product of &(R)± with itself

and set ffi &(R\ = &(R\ an algebraic direct sum. Here, &(R)0=Cf09 where
«=o

/0 is the function on R which is identically one. Of course, &(R) is a tensor

algebra in a natural way.
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Let jueG^f), with /*= © /*„ and (a, g)eL*(X, &, jJi)algx ®(R) with a =

- © flB, aB = E ^( ® « B ! / ) e *> and ̂ = © 0n3 0ne £*(
«e2V0 / = ! j = l n = 0 k=l j

e &(R)i9 pnk e C. Then, define gn(an) and 0(a) as follows:

9n(an)= £ Z ^rt( ® flfSy(fl.!/)X ̂  = 0? 1, 2, . . . , and

/s

It Is evident that the maps an*-»gn(a^9 of Lp
s(Xn, %?n, fin)alg into &n9 n = Q, 1,2,...

XV

and a*-»g(a), of Lf(X, S"3 ii)alg into the tensor algebra ^°3 are well-defined.

(Functions of self-adjoint operators are defined throughout the paper by means

of the spectral theorem [34].)

Next, we define ®P(R, %?n, [in), n = Q, 1, 2,... and ^^(J^3 3T3 /x) as follows:

, „, /O=subalgebra of ^n generated by {^(flj : ̂ B e ^(Jf)n and aB

and

n=0

Evidently, @p(R, 9£, \£) Is an algebraic tensor subalgebra of #\

Remark :
* *. 00 yv.

(I) In case ^ Is a FF *-tensor subalgebra of «3T and © fin lies in G^W), we define

@p(R,&n,tiJ, n = 0 3! 32 3 . . . 3 and &p(R,&,nt$, l<p<co, analogously

as above.

(ii) Observe that (1.4) implies the following:

(1.5) /^°%(a(a))) converges to ft(g(a))

for all g = © gn in

Let jiin e G!(&„). Then, we denote the Banach algebra of all continuous

linear mappings of LP(Xn, £n, ^ into itself by B(LP(Xn, <%?n, /^)) and write

B(LP(Xn, £„, /O)+ for tne subset of B(LP(Xn, <Tn, /jj) consisting of all positive
maps, i.e. maps which send positive members of Lp(Xn, %n, juj to nonnegative

members. The norm of B(LP(Xn, £n, fjj) will be designated by ||| - |||pf|ln, n = 0,

1,2,....
00 ^

For p= © ^ In G!^), we put



548 G. O. S. EKHAGUERE

0 B(D>(Xn, „, nn))=B(L"(X, X, }i)l and
n=0

® B(L"(Xn, ym
n=0

We denote the norm of B(U(X9 £9 //)) by ||| - |||pfB, 1 <p< oo.

Corresponding to each AneB(Lp(Xn9 9Cn9 jO)+, we associate an operator

rn(An):

specified by

k=l 1=1

where g™ e &(R)n, k = l, 2^.? fc', / = !, 2,..., /', n = 05 1, 2,...

Furthermore, for fi= © iineG^(3f) and ^= © ^n in B(LP(X,
n=0 n=0

we define r(A) by

Then, r(4): ^^(JR, , ̂ ) - > ^p(^? 5 //), 1 <|?< oo.
It is clear that the operator Fn(An)9 w = 0, 1, 2,...3 and F(^4) are linear on

&p(R, £w /O> ^ = °3 1> 2
?-"9

 and ®P(R, £9 fi)9 respectively, I<p<oo 0

Moreover,

F^A) = a^)a^)5 n = 0,i;2,..., and

for 4,, ^e^L^C^, n, ^n))+, n = 0, 1, 2,..., and X, 5 in

Hence, Fn (resp. r) is a representation of the multiplicative semigroup

B(lP(Xn, Kn9 finj)+ (iQsp.B(LP(X, £9 fi))+) in the multiplicative semigroup of

all bounded linear transformations of &*(R9 £w nn) into @P(R, &n9 /^n), n = 0,

1,2,... (resp. of 9*(R9%9[i) into ®*(R9 % 9 ti))9 l<p<oo. The operator

F(An) (resp. r(^4)) may be extended to a map on all of Lp(Xn, 3£n, /^J (resp0*.
LP(X, 3F9 fj)). In the sequel, we always assume that the extension has been done.

The set D%(p9 &)9 peGi(X)

For each fieGi(&) and nonzero AeB(Lp(X, 3C9\i)+9 write \JLA for fi°P(A).

Then, define Dg(/i, 3f) by

and (1^) = 1?
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Let Den (X1)1 denote the collection of all densely-defined self-adjoint linear

operators on Xt. Equipped with the operation of strong sum, ~DGn(X1)1 Is a

real vector space. We write Den (X^ for the n-fold algebraic tensor product
00

of Den.(X1)1 with Itself and put © ~Ben(X1)n = 'BQn(X1), and algebraic direct
n=0

sum. Members of D&n(X1)n act on dense domains In Xn; a similar remark Is

valid about Den

In the sequel, ^(X^ denotes the set of all linear mappings of

Into R.

For each n, let &C(R\ be the subalgebra of &(R)n consisting of tensor

products whose components are complex-valued continuous functions with

compact support on R. We put © &c(R)n = @c(R)9 an algebraic direct sum.
n=0

Fro gne@c(R)n and aneDen(X1)n3 we define gn(an) in the way as

members of ®P(R, &„, fj,n) were previously defined. We let Den(^, X^

denote the subalgebra of £„ generated by {gn(an) : gn e &(R)n and an
00

EDQn(X1)n} and put © Den(^? X^n = DvoL(R9 X^9 an algebraic direct sum.
n=0

We remark that Den (R, X^g = Cl^.

For ae R(Xl)9 Introduce the map a: Den(X1)1->^l^1 defined by

otherwise

If (A, a, 7) e R x R(XJ x ̂ (X^ then we put: ̂  + y=a + y and A£=Aa. Next,

we define the map F^a): Den(^? Xi)-*^1! In precisely the same way that the

map ACA): ®*(R, fl5 /O->^p(«, ̂ i, Mi), ^i e^(L^1? f1? ^))+5 was
previously defined. More explicitly,

ACaXZ Z A^/i1^^1

k=l 1=1

= £ £ ^//^"(M

where AweC, a^^eDenCXi)!, f(kl>e@c(R)i, fe = l, 2,..., Jk', 1 = 1, 2,..., f,

ae^ZJ. Again, F^) Is linear from Den(5?l9 XJi to Cl$l9 for
a e ̂ (Zi).

XV.

For any /it e G^^), the linear functional n^r^A) Is a central state on Den

(R, X1)l5 for each oceR(X1). This state clearly does not depend on which
/^

Hi in G!^) is used to define It.
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In what follows, we set /^F^o^e^, aeJRpfj) , where /^ Is an arbitrary

member of GI(#\), and write s^n for the algebraic tensor product ® &an , where
7 = 1 nJ

{anj.: j = 1, 2,..., n} = aBcr ̂ (A^). Then, e^ is also a central state on Den (1?, X±)n,
CO ~

/i = 0, 1, 2,.... Finally, put © ea =ea, where a = {an/: j = l, 2,..., n; n =
n=o ~n

= 0, 1, 2,...}cj?(Jr
1), and s^0 is the function on Den(R9 Jf1)0 which is identi-

cally one. In case awj- = 0, the zero function on Den(X1), for all j = l, 2,..., n,

n = 0, 1, 2,..., then we denote an and a by On and 0, respectively.

Nondegeeerate In C
/«, CO

Let fjLdGiffi), with //== © jMn. Then, we say that /i is nongenerate provided
n=0

that i^ is not of the form Ane^n, An>0, for any an = {anj-: j = l9 25...5 wj

n = 0, 1,2,....

Remark:

In the sequel, we frequently encounter sequences of pairs of gages In G[p

of the form {(/^n)oF(yi(w)X ^(fl))}«^i- F°r our purposes, the following sufficient
conditions for their convergence are adequate.

Let /LL°= ® /igeGiCT), with sup M(
k=0 k>Q

logical dual of D>(X, 9 if). Suppose that {a} U {a^: n = l, 2,...}

{̂ 1} U {^.(">: n = l, 2,...}. are subsets of LP
S(X, &, ^°)alg and B(D>(X9 9C, //°))+,

respectively, such that (jJL°r(A), a)eG[p\&), QjiM<>r(A<n\ aW)eG(p\£),

(nW°r(AW), d)eG(p\&), n = 1, 25... and

^(eWt'rt^P-eW*'*™

fc = 0, 1, 2,..., where C(cr)>0 depends only on ere J?, J5^'> denotes either A or

A^n\ and b ( j ) denotes either a or a(n), j = l, 2; n = l, 2, ____ Suppose, moreover,

that
.A.

( i ) {a(n)}n^i converges to a in the norm-topology of LP(X, &, ju°);

(n) {^(n)}n^i converges to ju in ffcg norm-topology of LP(X, SE, /J°)*;

(n'O {v4(">}w>! is contained in a bounded subset ofB(Lf(X9 #), ^°)); an d
/^

(iy) {^4(n)}n^i converges to A in the norm-topology of B(LP(X, 5°, if)).

Then {(ji^or(A^n\ a™)}^ converges to (ji°r(A), a) in G(p\&).

Note: In the statement of the Proposition, /j%, fj,k and a(^ are the com-

ponents of u°, fi and ^, respectively, and B(
k
j} are the components of
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respectively. Furthermore, (d)k = {akj°. j = l, 2,..., fc}, with akj = a for all k

and j.

Proof: By (1.3) and (1.4), we need to show that (/^n>°F(.4<n>)) (eW'*™)

converges to (/ioF(v4))(ef(ff)°a)5 for each crei?, under the stated hypotheses.

But the assertion follows from the trivial estimate :

= I Z I 04" V(<T)k^'0afcC'0) -f
k=0

k=Q k=0

+ Z \jLLk(e
i(a^k'A^ak — ei^k°Akak)\

k=Q

-^nij.ll.. a
,*.

(1.7) Remark: In the sequel, If ^4 is the zero operator on Lp(X, SE, //), we
00 /v

define jj,°F(A) to be 0 ^o»£on f°
r a^ A4 G ^iC^)> where (5yfc Is the Kronecker delta.

n=0 ~n * ^
In this way, we have 0 e D$([JL, &), for each ju e

In this section, we introduce the notion of operator-decomposition of

probability gages. Then, we study certain properties of some operators which

feature in such decompositions.

We employ the following notation In the rest of this paper.

Let ^ be a W*-tensor algebra contained in #" and Y be the

Hilbert space contained in X on which members of ^ act. We remark that
.A XV

the identity 1^ of <3f may not coincide with 1^, the Identity of #".

For IJLEG^) and AeB(LP(X, &, n))+9 let ^, A$ and F^(^) denote the
xs. x\

gage induced on ®/ by /x, the restriction of A to Lp(7, ̂ 5 /^) and the restriction
x\

of F(A) to &p(R, <3f, 11%), respectively. Furthermore, we denote the subalgebra

of functions In &(R) which are used In generating &*(R, &, ^) by 2(R}%,

Notice that FSj(A)f(a)=f(As,a\ for a E LJ(7, ^, w)fljg, and A e 5(L^(Z, f, ^0)+.

We shall write (7, ^)c(X, ^), if 7 Is a Hilbert space contained In X, ®/ is a
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Jf^-tensor algebra contained in #, and ^ acts on Y. We denote /^°F^(v4) by

l4,AeB(LP(X, £,!*»+.

(2,1) : 1 . Let p e G^(X) and A e B(LP(X, #>)) + , 1 < p < oo .

Then, we say that \JL is ^.-decomposable if, and only if, there are (X(2\ &^)

c(X, &), (X%\ <ri2))c:(jr, &) and VAE G^p} such that

(0) 04a>(l*c») = l

(1) r*p(A) and rsp(A) leave &*(R, &%\ /a-<») and &*(R9 &%\ VA)

invariant, respectively; and

(ii) &(r*p(A)f(ay-gm^ for all (a, 6)eLf(^>, £<f>,

^c»U x L?(^2>
? ^i2)

5 ^U, and /e #(*)*«>, ^ e ̂ («)^«.
2. We call the probability gages /x4cn and v^ the factors or components/\ 5"^

of ^ with respect to X in B(LP(X, £9 ^))+, 1 <p< oo.

Equation (2.1) (ii) is equivalent to L'CX^, XA9 ^A) = Lf(X^\ %(J;\ ^|CD)

j, where ^ is the linear hull of all elements of the form

g(b\ with a, b, /, g as in (2.1) (ii) and <XA acts on XA.

Notation : Let ^ e G ) . The set of all members of B(D>(X, , fi))+
s\

with respect to which /i is decomposable will be denoted by Dp(/x, ^"), 1 <p< oo.

1. Let j w e G ) . Then Dp(^, ) contains the zero 0 and the identity /

of B(LP(X, &9 //))+. Furthermore, Dp(^, ̂ ) is closed in the weak operator

topology on B(LP(X, $, JLL)). But unlike the prevailing situation in the Banach

space theory described in Ref. [5], Dp(/^, &) is not a semigroup in the multi-
^

plication operation of B(Lp(X, &, /x)). Consequently, some of the techniques

developed in Ref. [5] cannot be directly applied here.
s\

2. We shall refer to Dp(#, #") as the decomposability algebraic structure

3. In what follows, we study some properties of certain members of

i9 JT), neGi(3E\ l<p<oo. First, we note the following straightforward

assertion whose proof we omit.

(2-3) Propositions
^

Let fieGiffi). Then, the set of all mutually commuting members of Dp°

(jti, %) is a semigroup which is closed in the weak-topology of B(LP(X, %°5 //)).
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(2.4) Proposition

Let jueGj^) and P be a projection operator (i.e. P2 = P) lying in Bp°

(ji, £\ Then, P1=I-P also lies in DP(JI, #) and we have

(2.5) M((r£p(P)/(a)).(F^

for some (XP5 £P)c:(X, #), (XP±, #>-»-) c(X, £) and all (a, b) e LP
S(XP, <TP, /^p)

x L*(XP±, £P±, f i f p j and (/, g) e @(R)zP x

Proof: Since P lies in Dp(^3 ^), by hypothesis, it follows that there are

(XP, &P)c(X, 3f)9 (YP9 &P)c(X, £) and vpe G^ such that

(2.6) M(^p(P)/(a)) - flf(&)) = A*|p(/(fl))vpG/(6)) ,

for all aeL?(XP,4?^W &eL?(7p3 ^P? vF)alg[3 /e
Equation (2.6) implies

(2.7)

XV. XS.

for (0-j, o-2) e ^2
3 where for any tensor algebra #*0 contained in S1,

e^c = l^o + f; -^- c"3 for any c e ̂ ° c ^.
n=i n\

Furthermore, we infer from (2.1) (i) that @P(R, %P, n$p) and @P(M, &P, vp)

are invariant under r^jp(P-L) and F^P1), respectively. Hence, (2.7) remains

valid for cr1 = 0 and eiff29^ replaced by r^p(P-Lyff2ff(6>. Hence

(2.8) v?(^^(&))

= r(eiff29(b)), since ^ is

central on for all b e L?(7P, ,, vp), ^ e @(R)&P, a2eR. By differentiating

both sides of (2.8) with respect to a2
 anci evaluating a2 at zero, one gets

for all beLf(7P, P, vp)alg and ge^(R)^p. So, we may identify pj. and

juj^j. in (2.5) with <&P and vp, respectively. D

The following generalization of Proposition (2.4) will be employed below.

(2.9)

Let iieGi(£). Let {P(1), P(2),..., P(w)} 6c a ser of commuting projection
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operators contained in D*(]i9 %) and satisfying pwpw = 5jkpw. Then

=1- £ P(->> also lies in DPO, 3f) and we have
j=i

(2.10)

/or some (XFa), &pUdc(X, #), j = l, 2,..., n, (XQ(n,, fQ(M))c:(X, ) and

),pW), 7 = 1, 2,. . . , ^(»> 6

Proof'. We prove (2.10) by mathematical induction. To this end, first

observe that the case n = l is precisely Proposition (2.4).
Now3 suppose that for some k < n, we have

(2.11)

for some (ZPu,, &Pu>)<=(X, &), j = l,2,...,k, (XQW, &QW)<^(X, £) and all

), 4>o), Mpu>\ig, J = l, 2,..., fc,

/<» e »(*)*,(«, j = l, 2,..., fc, ffc») 6 ^(U)^Q(k), with QW=I- Ex P">. Since
p(*+i) 6 Df(ji, &), by hypothesis, we also have, by Proposition (2.4), that

(2.12)

for some (A rp( f t+i)^*p(k+i))c(Z, ̂ ),and (Zp(((+uJ., ^p(fc+1)j-)c:(Ar, ) and all

+1)i. Let «rt*> be the linear hull of the set

Since pa)p(*) = p(*)pa) = 5^p(*), j, k = l, 2,..., n, equation (2.12) holds, in
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particular, for a<*+1> and &<*•»> replaced by ejg ( t t l )fl<*+1> and fig)(k+1J.Lft<*+1),

where

>, m^^aig and
j.) are arbitrary. Hence

from the right hand side of (2.12),

*+1)))/*?('+i)-L(fl(*+1)(6('t't'1))), from the left hand side of
(2.12), for all fl<

fc+1
and 0 (&+1)e^(^)£p(fc + i)-L and with g(fc+1) = J- £ po'). The right hand side

of (2.13) shows that we may identify S^^+o-i- with S"e(i<+i) and the left hand

side of (2.13) shows that <S/^ c ^Q(k). Finally, one has

by (2.11),

by (2.13). This concludes the proof. D

Remark:

We can now prove the following result. In doing so, we employ the

notation of Proposition (2.9).
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(2.14) Propositions

Let IJLEG^). Let {P<J>, P™,..., P<»>} be a set of commuting projection

operators contained in Dp(fi9 3f) and satisfying Pu^Pw = djkP
(k\ j, k=i, 2,...,

n. Suppose, furthermore, that {A(1\ ^4(2),...? A
w} is a set of members of

DP(JJL,&) satisfying AMpw = PWAU\ j = l,2,...,n. Put g P^A^=B.

Then B also lies in DP(JI, &).

Proof: Since the set {AM, AV\..., A^} is contained in/)*(/i, #), there are

(XAU>, £i«>)<=(*, X), (YAW, WAu^(X, #) and VAW e G^AU)\ j = l, 2,...,
n, such that

for %

&AU>, VA^)alg> UU) * ̂ (*)^AU), »('/) G ̂ (*)^W), J = 1, 2 , . . . , H.

Hence, in view of the assumed commutatity of A^ and P(j\ and the idempotency

of PV\ j = l, 25...5 n, the last equation remains valid for x^ and 3;^-) replaced

by P(J\nx^ and P(J\J}y
u\ respectively, 7 = !, 2,..., n. Then we get

or, equivalently,

(2.15)

for all
e^(^)^o-), »">6^(fi)jAW) ,y = l, 2,..., «, where (J'' is the linear hull of all
elements of the form (r£A^(B)u^(x^y)-v^(y^). It is clear that £<•» is

contained in £pw,,i = \,2,...,n. Furthermore, since P^A(i)=AU)P(-i), we have

and u<-J'>e®(R)fAU),j = l,2,...,n. Hence, replacing f<-»(aU>) in (2.10) by

(^^<M£)M(-/)(*O)))-I>O)G;O))> and taking account of the foregoing remarks, one
gets



CENTRAL LIMITS IN PROBABILITY GAGE SPACES 557

), by (2.15), for all

(„,,./ = 1,2, . . . ,«, and A<«>

Let <JTB be the linear hull of all elements of the form

-(rf,(.,(P<-))uW(x<"))), with x<;>eLf(J^(J), a,, /^u>)ai9, u<» e

j = l, 2,...,n. Then arguing as above, one readily shows that

(2.17)

Using (2.17) in (2.16), one sees that the right hand side of (2.16) may be written

as follows :

(2.18) right hand side of (2.16)

This shows that the elements

are stochastically independent [35] for all

, a?AW, At^w,)ai9,

>, »AU>, vAu>)ai,, b™

(n,,7 = l, 2,..., n.

Hence, the left hand side of (2.16) may be expressed thus:

(2.19) left hand side of (2.16)

From (2.18) and (2.19), we conclude that B indeed lies in D*(ji, 3f).



558 G. O. S. EKHAGUERE

§ 30 Statement of the Problem

In this section, we describe the problem which we tackle in the rest of the

paper.

If a l is a self-adjoint operator on Xl affiliated to ^\, we write spec (a ^

for the spectrum of a1 and a1 = eai(dfyk for its spectral representation.
Jspec (a i )

We require the following notion.
^v

(3A) Definitions A triangular array (^nj)i<j<kn,n^i of members of G^^)
will be called uniformly infinitesimal with respect to some subset {anj:j = l,

2,..., fcn; n = l, 2,...} of self-adjoint operators on Xl affiliated to ^ if, and only

if,

(3.2) lim sup /inj(eanJ(A'))=0
n->oo l^j<kn

 J

for every neighbourhoud A of zero in R with complement A'.

(3.3) Remark: Condition (3.2) is easily seen to be equivalent to the

following requirement

lim sup \}ini(e
iffa»j)-l\=0

n-»oo l^j<fen

for each a contained in a compact subset of R. Hence, a triangular array
/*.

(Mnj-)i<j-<fcnjn^ic^i(^i)is uniformly infinitesimal with respect to [anj: 7 = 1, 2,...,
kn; n = l, 2,...} if, and only if, the measures A*-+/j,nJn (ean. (A)) converge weakly

to the Dirac measure concentrated at the origin, as n->oo, for each choice of jn,

withl<jn<lcn .

(3.4) Notations We employ the following notation in the sequel.

L Let /xeGjOF), with 0= ftp an^ am 6 D>(Xm, m, iim\ m = 0, 1,
2,... . Then, we define the imbeddings im and |m of Lp(Zm, «fm, ̂ J and

in Lp(X, &9 n) and G(^), respectively, by

n=0
00

= © Snuifln* m = 0, 1 , 2, . . . .
n=0

2. For \JL E GI(&) and ^aB(LP(X, £9 /i)), we write Sem (^) for the norm-

closed, multiplicative subsemigroup of B(LP(X, &9 fj)) generated by 08.
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3. Let fjLGGt(^), with /*= © /*„. Suppose that AleB(Lp(X, &, A*°/I)),

is such that A^A^ — QA^ (/-fold) lies in B(LP(XJ9 £J9 ft)), j = 1,2,.... Then,

we denote A1®A1®~-®A1 (j-fold) by [A{\j and put © iAJj^iAJ. Here,

[^4i]0 is the identity operator on Cl^. Notice that [^4i][51] = [y4151].

(3.5) The Problem o We describe next the problem which we address in

the rest of the paper.

Let iSeG^), with V°= ®Q rf and sup [^(1^)] u*< oo, and {^J^ c

15 £, ^°oi1))+, with [ij] lying i?n°B(I/(Z, £ M°)) + 5 J" = l, 2,... . Let

^i, A*°°li) be such that

l)®rl(Aln)^

for some {^j^^G^l with X lBeDgOx17, XJ, j = l, 2,..., n5 n = l, 2,...,
and {a^cj?^), and for all ( f ( J \ g{»)e ®(R\ x ®C(R\, j = l,2,.... This

means that the set {xlj9 ylj:j = l9 2,...} consists of stochastically independent

members relative to the gage /i°.

n n
Denote in+i(yln®( ® xtj)) and £n+i(£an®( ® ^ijn)) by x<"> and /^(n)

3
j=i j=i J

respectively.

We make the following assumptions.

(3.5.1) Al7- is invertible for eachj = i3 2,...;

(3.5.2) Sem({[^ln]-
1[^lm]: n = l, 2,..., m; m = l, 2,...}) is compact in the

norm topology of B(L^(X, £, /x°));

(3.5.3) the gages {/ifjn: j = l, 2,..., n; w = l, 2,...} form a uniformly infini-

tesimal triangular array with respect to [ x l j : j = l, 2,...}9 and there is

(JJL, x) e G{p\&) such that the sequence {O(o)
5 *(?0)}n>i of pairs in

/s.

^ip)(^*) converges to the pair (IJL, x).

In the sequel, we answer the question: What are the characteristics of the

limit pair (JJL, x)l

K In the sequel, we denote the set of all limit pairs (jix5 x), which

arise as described in (3.5.3), by Km (G{p\&)).

A sequence of operators {A1J:j = l929...} satisfying
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(3.5.1) and (3.5.2), and such that (3.5.3) holds, will be called a norming sequence

corresponding to the limit pair GU, x) e Hm (G[P\%°J),

(3.7) Definition- We say that (/^, x) e lim (G(f\&)) is nondegenerate
/s. n

provided that ^ is nondegenerate and x is not of the form x = © ® /L.-ls.,
nZN0j=l J

,j = l, 2,..., n; n = l, 2,....

( i ) In the sequel, we deal mainly with the nondegenerate members of lim (G^p)-

(ii) An analogue of the problem considered here was solved by Levy in the

case of real- valued random variables. He showed that the limit prob-

ability measures are the so-called self-decomposable probability measures

([2], p. 195; [36], p. 319). In Ref. [5], Urbanik considers the case of

Banach-space-valued random variables and furnishes a characterization of

the limit probability measures by means of a certain semigroup of linear

operators associated with such probability measures. We also mention

the work of N. V. Thu [37] which further generalizes the considerations

in Ref. [5].

In this paper, we work within the framework of noncommutative

probability theory. Consequently, our random variables are noncom-

muting self-adjoint operators. In providing an answer to the problem

posed in this section, we exploit some of the techniques introduced by

Urbanik [5],

The problem considered in this paper is a Central Limit Problem [36]

in a noncommutative setting. Such a problem (in a noncommutative

setting) had previously been considered only in very specialized situations

[6-10]. Here, we provide a fairly general formulation and solution.

Finally, we refer to Refs. [18-20] which deal with the problem of infinite

divisibility.
^

(iii) The gage ifleG^) which occurs in (3.5) is called the common gage
*.

of the set {xlj9 ylj:j = l, 29...}aL*(Xl9 3Cl9 f*0°ii)- This gage features
repeatedly in the rest of the paper.

§ 40 Properties of Norming Sequences

In this section, we describe some properties associated with the norming
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sequences corresponding to the nondegenerate members of lim (G{

We employ the notation and assumptions introduced in (3.5), unless we

explicitly state otherwise.

(4.1) Propositions Suppose that (ju, x) e lim (G(p\&)) is nondegenerate,

Let {A1J}j^l be a norming sequence corresponding to (ju, x). Then {[.A1j]}J^.l
converges to zero in B(LP(X, &9 /i°)).

Proof: By (3.5.3), /x<B)(e'< f f) '* ( n )) converges to i^e1™'*), for each aeR.

Furthermore, it suffices to assume that the assumptions of Proposition (1.6) are

fulfilled and that {x^}n^l converges to x in LP(X, &, ju°), {^(/l)}^i converges

to 11 in LP(X, £)9 fi°)* and {[AJ}^! converges to A in B(U(X9 &, //°)).

We show that ^4 = zero.

Let n < nk. Then

Taking limits of both sides of the last equation as nk-> oo, we get

(4.1.1) ^(^(ff)") = [((£»(» Pij

Next, by condition (3.52), Sem ({[Alntf']-1A:k = l9 2,...}) is compact in the

norm-topology of B(LP (X, £, /i°)). Let B be an accumulation point of the

sequence {[.Alnk']~1A}k^1. Passing, if necessary, to a subsequence, we may

assume without loss of generality that [^j^]"1^. converges to By as

Hence

(4.1.2) A = AB

From (4.1.1), we get

'x(n))®ie-°*^

where Bln = A^Aoin+ln+l,

Taking (3.5.2) and Proposition (1.6) into account and going to the limit as

n->oo of both sides of the last equation, we get
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for some yBfXeR, since {e~i<r&n^Blnyin)}n^.1 js precompact in C. Hence

But (jt£, x) e lim (G[p\&)) was nondegenerate, by hypothesis. Hence, yB,x = ®

and B = Q. By (4.1.2), these give ̂ 4 = 0. Hence, the claim is established. D

(4.2) Proposition: Let nk<mk, fc = l, 2,... a/iJ nfc->oo. Suppose that

Qi, x) E lim (G$p)(^°)) is nondegenerate. Then, for every norming sequence

{^in}ii2>i corresponding to GU, x), a// accumulation points of the sequence

{[^ij'^lmj}**! &*/OH0 ^ Dlfy, f), l<p<CO.

Proof: By hypothesis, /j< |0(ei(ff)'*('l)) converges to /^(e^^'*), for each o- e J?.

Now,

x [ fl /iij'Me''""')] x [e'"(4-k()'i-k)-*-k^r,1/"»i«'"»i[»]
j = nie+l

where we have used [^ifIk]"
1[XlinJ = [ArB

1
k^lmfc].

Let A be an accumulation point of {[^4r»k^ii«J}k^i- Then, by (3.5.2),

some subsequence of {\_A^kAlmJ}k^ denoted again by {[^AmJ}^ con-
XV.

verges uniformly to A in B(LP(X, 9E, ^°)), l<p<oo. Hence, taking limits of

both sides of the last equation as ?ifc-»oo and invoking Proposition (1.6), we get

(4.2.1)

for some x™, x^ E L*(X9 £, n°)alg and VA e G^).

Let (X(J\ &W)c(X, 3f)9 where &JP is the algebra contained in X generated

by {^>(x^)e^(J?)}5 7 = 1, 2. Then, using the spectral theorem [34], (4.2.1)

may be expressed as follows :

for all 0U> e 9(R)yAw9 j = 1, 2 and VA e Gp). Hence A lies in DP(JJL, 9f), as

claimed. D

(43) Notation; Henceforth, we denote the set of all accumulation points

in B(L*(X, £, A*0)) of the ^sequence {lA^Alm]: n = l, 2,..., m; m = l, 2,...}

by F. If GU, x) E lim (G(!P)(^)) is nondegenerate, then by Proposition (4.2),
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(4.4) The Dl(p, #), p e GI
Let ju e Gi(9F). Write Dp

com(^, &") for the maximal set of mutually com-

muting members of Dp(^ S£\ 1 <p< oo. Then, In the sequel, we denote by Df •

0*, #) the subset of Dp
com(^^)9 l<p<oo, consisting of all A with the property

that the factor VA of fi with respect to A (using the notation In (2.1) (2)) satisfies
/\

vA°i1=s(XA for some aA E ̂ (X^. By Proposition (2.3), Dp([i, #") is a semigroup

which is closed in the norm-topology of B(LP(X, 3C, //°)), and the identity I of

B(Lv(X, &, 00)) lies in DP(JJL, %).

(4.5) Proposition o For eac/z norming sequence {A1j}j^1 corresponding to

some nondegenerate(jJL, x)elim(G{p\^J)y the set

(4.6) DP(JJL, 3C} n Sem (F), 1 < p < oo,

is a compact group containing all the accumulation points of the sequence

Proof: The set In (4.6) Is evidently compact, being a closed subset of a

compact subset Sem (F) of the normed space B(Lp(X, 3E9 /x°)).

Let A be an accumulation point of {D4r/Min+i]}i£>i- Without loss of^
generality, assume that \_A^Aln+l~\ converges to A in B(Lp(X, &, /i°)). Let

(ji9 x) e Mm (G(p\&)). Then ^n\el^'x(n)) converges to /^>'((T)°*)5 ® e R. Now,

n+1
) J~|

J = l

Hence, taking limits of both sides of the last equation, using Proposition (1.6)

and the uniform infinitesimality of {/^jn: j==l , 2,..., n},,̂  with respect to

{*!,.: 7 = 1, 2,...}, we get

for some o^

From the last equation, we readily infer that A lies In Dp(jU, #") n Sem (F).

To complete the proof, it remains to show that the set in (4.6) is Indeed a

group. To this end, suppose that B is an arbitrary member of the set In (4.6).

Since the monothetic semigroup Sem({B}) is compact, the sequence {5n}n .̂1 of

the Iterates of B forms a group ^, say, which coincides with the minimal ideal

of Sem({B}) and the unit P, say, of # is Its sole idempotent member ([38],
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Theorem (3.1.1)). Hence, there is Ce^ such that BC = P = CB. We want to
show that C coincides with B~l, where the inverse is evaluated in B(LP(X,

£, jx°».
/v

Observe that C and P lie in the set (4.6). Hence, there are (XP, ^°P)c

(X, %\ (XP±5 ^P±)ci(Xl9 #!) and aPeR(XL) such that

for all fl6L;(Xp,p,^p)^, &! e LJ(Xp±, Sp-L, /^o^), /e #(*)*, and ^

e ^(J?)i- Since (̂1?), Sp-s £ap) is invariant under r^pi(P
1), by (2.1), the last

equation gives

which implies,

for all

Now set a = 0 in the last equation. Then we get

(F^± (P>^
or

for all fojeLf^p-L, p-s ̂ o^) and gfi e^(^)le But Qx, x) in li

was nondegenerate, by hypothesis. Hence, we must have ocF = 0 and P1 = 0.

Thus, P = I, the identity of B(Lf(X9 £9 fi°))9 whence C = B~1. Hence ^ is

indeed a group. [U

(4.7) ProposltloiSo Let QJL, x) be a nondegenerate member of lim (G[p\&)).
Then, there is a norming sequence {yiin}n^i corresponding to (JJL, x) with the
property that {[A1J"1[^lB+1]}II^1 converges to the identity I of B(LP(X, &, fjf))
in the norm-topology,

Proof: Let {Bln}n^1 be an arbitrary norming sequence corresponding to

G*,x).^ Then, by (3.5), there are 04,}^ cG^), Mj}^, {/i^icLf-
(X^^jjfloQ and {a^iG^za with { -̂: j = l, 2,..., n; n = l, 2,...}
being uniformly infinitesimal with respect to {x^: j = l, 2,...}, such that
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-)-*' (n)) converges to ii(ei(a^'x)9 where

/^) = i n + 1 ( £ ® ( ® -)) and *'<">=/„+!(/!„»( ® *i-)).

Denote Df (/x, #) n Sem (F) by ^£(/*, , F). By Proposition (4.5),

is a compact group containing all the accumulation points of the sequence

{DBlJBiR+i]L;>i° Hence, we can choose a sequence {[C ]̂},,̂  of members
of &e(jjL, &9 F) with the property:

(4.8) [ClB] - lB^Bln]-+Q in the norm-topology of fl(L*(JST, f , 0°)) .

Define {AlB}nkl by

^-n — ̂ ii j ^12 — ̂ 12^11,..., ^4ln = JB lnC11C12...C ln_ l3 n = 2, 3,... .

Evidently, ^4lB Is invertible for each n and Sem({[A7j./4lm]: n== l , 2,..., m;

m = l, 2,...}), being a closed subsemigroup of the norm-compact semigroup

Sem({[BliJJ1J:n = l ,2 , . . . ,m;m = l,2,...}), Is compact In B(L?(X, £, n°)).

Since [^4lll] = [Bln][C11C12-"Cln_1], It Is clear that the sequence {[C-^Cj^-"
/*,

•••^in]}n^i i§ a precompact sequence of members of ^e(ju, ,f , F). Furthermore,
since {//i^ln: 7 = 1, 2,..., n; n = l, 2,...} Is, by hypothesis, uniformly infinitesimal

with respect to {x'lj-:7 = l, 2,...}, one sees that {/^ijln: 7 = 1, 2,..., n; n = l, 2,...}

Is uniformly Infinitesimal with respect to {xij.:j = l, 2,...}

Next, observe that the precompactness of {[_CliC12--Cin]}n:>l Implies the

precompactness of {(v'^^lCiiC^'-'C^J)}^^'*'^)}^ In C. This Is

equivalent to the precompactness of the sequence {^(n\el^'x'(n))}n^L, where

&l9n
0°im Furthermore, since p'^eW'*'™) converges to

follows, by Proposition (1.6), that the accumulation points of {^(n)(ei(ff)'x'(n))}n>l

are of the form nc(ei(a^'x), where C is an accumulation point of {LC11C12"°Clnj}**.
„->!- But C lies in &e(jji, &9 F). Hence, we can choose {fin}n>i c R(X^ such that

{//(«)(^)'*'("))L;>i converges to t^eW'*), where X / (B)=i»+i(fian®( ® ^ij1"))-
j=i

Consequently, {^iJ^i is a norming sequence corresponding to (JJL,X)E

Finally, since the norms of the members of the compact group &E(n, 2C, F)

are uniformly bounded by a positive number k, say, we have

/s.

using the commutativity of the set &e(jj,9 %°, F),
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oo.

Hence, \_A^Aln+l]-^I in the norm-topology of B(Lp(X, &9 ^°))> l<|?<oo:

thanks to (4.8). D

§5o A Characterization of Nondegenerate Members off Mm (G

In this section, we characterize the nondegenerate members of Mm (G{P

by means of the decomposability algebraic structures of their associated

probability gages.

Let (/*, jc) be a nondegenerate member of lim (G{p\&)). Then, by Propo-

sition (4.7), we may choose a nooning sequence {Ain}n>l corresponding to (//, x)
^

such that D4TMin+i]-^ m the norm-topology of B(LP(X,^, ^°)): we ^x
ffcis norming sequence throughout this section.

Let F be as in (4.3). For each projection operator P in Sem(F), define

Then, ^P is a compact subsemigroup of Sem (F). Set

{Ae^P: AeD'ditf9 fP)} = ̂ >P(^ f , F)

where (XP, &p)c:(X, £), with ^P being the support of y? in ^.
^

(Sol) Propositions G£>F(jU, ̂ *, F) is a compact group withP as its identity.

Proof. It is clear that &StP(jJi9 SE, F) is a closed subsemigroup of ^P: there-

fore, ^£jP(^, #", F) is compact. Furthermore, by the definition of ^£>F(jU, #", F),

F is the identity of ^£jF(A£, ^, F).

Let ^e ^£jP(/x, ^? F). Then, Sem ({>4}) is compact. By ([38], Theorem

3.1.1), Sem({^}) contains a projection operator Q and an operator 5 such that

Since 8e^P, we have PQ = QP=Q. Hence, Q lies in &BtP(n9 %, F). We
/s.

prove next that 2 = P whence one concludes that &EiP(ft, 3E, F), is a group.

Now, since Q e ^£jP(^, f , F), there are (JfQ, ,TQ)c:(X, ^), (ZQj_, ^QJ

cf^j, ^) and aee Jf^) such that

or, equivalently,
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)H^^

for all aeL*(XQ9£Q,$Q)alg, b, eL?(JTQi? £Q±9 ifoij, fe&(R)*Q and ^

e ^(J^)1. The last equation gives

since PQ = Q = QP. Setting /? = 0 in the last equation, we get

M(^Q(0i£QH^Qx(^-^^^
for all creJ?? b1ELp(XQ±9 &Q±, ^o/J and ^e^C^. But (/x, x) In

lim (G(p\&)) was nondegenerate, by hypothesis. Hence, we must have aQ = 0

and P = Q. Thus ^fi,FO? ^? ^) is indeed a group. D

(5.2) Proposition: IfAe^P and P e Sem ({A}), then A e ^£jP(/x3 ^ F).

Proof: This is straightforward.

Remark: The following result will be employed in the characterization of
s*.

the nondegenerate pairs In lim(G{p\^)).

(5»3) Theorem: For eac/i nonzero projection operator PeSem(F)3

ffce semigroup &>P contains a one-parameter semigroup {Pexp fjf : re [0, oo)}?

H<=B(LP(X, %, n°))9 with the property PH = H = HP. Moreover, &P contains

a projection operator Q with the properties P^Q, QH = HQ a nd lim (P — Q)-
t->00

XS.

exp tH = 0, where the limit is taken in the norm-topology of B(LP(X5 3£, /j°)).

Proof: The proof is completely analogous to that of Lemma (4.3) in Ref

[5]. Therefore, we only sketch the underlying arguments, for the sake of

completeness.
,*.

By Proposition (5.1), &SiP(n, X, F) is a compact group. Put

Then

(5.3.1) ;„,„ = (), n = l,2,...

and by Proposition (4.1),

(5.3.2) lim ;.„,„,= |||P[||py,>l, n = l, 2,...
m->oo

Using Proposition (4.7) and the compactness of Sem (F), one shows that for
m>nm,
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(5.3.3) lira sup (A n m i m + 1 -AH m iJ=0.
m-*oo

Given any number a satisfying 0<cr< 1, there is, as a consequence of (5.3.1) and

(5.3.2), an index mn(a) > n such that aHi1HnW<ff and animn(ff) + 1<(r, n = l,2,....

Then, applying (5.3.1), (5.3.2) and (5.3.3), as well as the precompactness of the

sequence {[^lMi^(ff)]}mn(<r);>^i and the compactness of #efp(|K, #, F), we
can choose an accumulation point A^ of {[^lMlmB(ff)]}mn(ff)^BfB^i and D^

e &E>P(H, £, F) such that

By Proposition (4.2), 4<*> e Sem (F). Hence, defining 5(ff> by

it follows that 5<ff) e &>P and

(5.3.4) |||F-Je^|||p5/io = o-

whence

(5.3.5)

Put

It follows from (5.3.4) that

(5.3.6) Cif. = *.

By ([38], Theorem 3.1.1), the semigroup Sem({5(ff>}) contains a projection

operator P(ff). Furthermore, we have

(5.3.7) limsupCn.^mindHP-CP^KI^o: Ce^jPfe ^ F)} .
n-*oo

Since P< f f>e«9*p, it follows that P — P^ is also a projection operator and, by
Proposition (5.2), P(ff) 4= P. Hence

(5.3.8) IHP-P ( f f )lllP,,o>L

Set

inf {||iP-CP^i|l: CeSr.iPG*, f, F), 0<cr<l} = zl0

Then, one can show that

(5.3.9) Mm sup Cn,ff > A > 0, for each a e (0, 1) ,
n-*cc

and also that

(5-3.10)



CENTRAL LIMITS IN PROBABILITY GAGE SPACES 569

for any sequences {mn}n>1 and {Gn}n^>l9 with <rn-*Q. Given a number O satis-

fying 0<O< A, then by (5.3.6) and (5.3.9), there is an integer mn(Q) such that

Cmn(o),<rn<^ and 6mB(0) + ifff |1>Q, where {&n}n^i is any sequence with the property

(7B->0. From (5.3.10), we infer that Cmn(n),<rn converges to O. Let £(0) denote

an accumulation point of the evidently precompact sequence {CB(ffn))mn(fl)}ns>i

of members of &>P. Then

(5.3.11) min{|||P-C£W|||Mo: Ce^£jPfe £ ^)} = ®,

where 0<O<zi, whence

(5.3.12) JE<°> e &StP(jji9 &, F), 0<Q<A.

The net {E<°>: 0<O< J}c^efp(^, S°, F) Is precompact Let £(°> denote Its

accumulation point as O tends to zero. Then using (5.3.11), the compactness

of ^fijP(^3 ^3 F) and ([38], Theorem 3.1.1), one shows that there Is an integer q

such that

Put

(5.3.13) fT

where O0 is a positive number with the property

Then

(5.3.14) \\\P- W\\\p,,0<^

and, from the definition of the operators E(0), It follows that

(5.3.15) (B(ff^y«^Win the norm-topology of B(LP(X, , //>))

as rn-»oo. From (*) and (5.3.14), It follows that the operators JB(ffn) and W

admit representations of the form ([39, Theorem 9.6.1])

(5.3.16) B^ =P exp H^ and W =P exp If where

(5.3.17)

and by (5.3.15)
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(5.3.18) rnHW-*H in the norm-topology of B(lP(X, &, 0°)).

Let t be a positive number. Then, by (5.3.16) and (5.3.18), (#»»))[••"']
^

-»PexprJJ in the norm-topology of B(LP(X, «f, JM°)); here [rnf] denotes the

integral part of rnt. Since #*»> e &P, we infer that {F exp rH : r > 0} c «^p.

Consider the semigroup Sem({W}). By ([38], Theorem 3.1.1), Sem({FF})

contains a projection operator Q. Using (5.3.17), (5.3.12), Proposition (5.2),

and arguing as in [5], we obtain that lim (P — Q) exp tH = Q, in the norm-topology

,ijp)). '"*G° D

Remark: Before continuing the discussion, we introduce some notions

and concepts which we use in the sequel.

(5.4) Definitions We call a set ^cG±(3f) shift compact if and only if,

for every net{f/ (y): yejafjc:^, there are nets {ay: y e <%?} c R(X^9 {bly:

cLJ(X, ^, AIO«II), {«(y) : 7 e ̂ } cLf(X, £, M°)fl^ with (M
( y>9 a<^) 6

and Qi, fl)6G(/}(^) such that a subnet of {^(y)(e'(')-« (v))e^*v(ftiv) : yejar} con-

verges to /i(el(<y)°fl), for each <re ^.

Remark: Using Definition (5.4), one may verify that analogues of the

results for shift compact sets of probability measures [3,41] are again valid here.

(5o5) Definitions We call a pair Qi, a) e G(P\3F) infinitely divisible

if and only if, for each positive integer m, there are (Xl/m, ,f 1/m)c(Z, 3f) and

Gu1/™, a1/"1) e G(p\&Vm) such that

fJ^ei^'a') = (jjLl/m(ei^'al/m)m
9 for each cre^.

The pair (/x1/m, a1/m) will be called & factor of (/i, a).

Remark: In the next result, we characterize members of ]im(G[p\^))

in terms of their decomposability algebraic structures.

(5.6) Theorems Let (JJL, x) e lim (G{p\&)). Suppose that Dp(jU, ^) con-

tains a one-parameter semigroup {exp tH: £>0} with the property lim exp tH
^ r->oo

= 09 where the limit is taken in the norm-topology of B(LP(X, &, p0)). Then,

(fi, x) is an infinitely divisible pair. Furthermore, exp tH^umEDp(^1/m
9 £l/m),

t >0, for each factor (/i1/'", x1/m) ofQi, x), m = l, 2,....

Proof: Let r>0 and put exp tH=U(t). Then, by hypothesis, there are

(X, f), j = l, 29 and vf e GJ$ <2>(f)), such that

(5.6.1) K(r*i,(0(C/(0)/^
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for all /e «&(*).?«.,(,), g™ e 9(K)£mM, a e L'.(XW(i), w(i), «<i>(0)Bto, and

&WeLKX<2>(0, #<2>(0, v,W Since <a*(lf, <? («(t), /$!><„) and <*>"(«,
^"(2)(0> v,) are invariant under the maps r£ww(U(t)) and r^(2)(0(l/(0), respec-
tively, by definition, it follows from (5.6.1) that

for all /
b<°> e Lf(X<2>(f), (2)(0, v,)fl/9, t>0. Let d-') be the linear hull of all elements
of the form (F^M(U(t))f(a)) • 0(0)(&(0)), with a E L'(XW(t), £W(t), ^{Ji(0W

&w € L?(X<2)(0, ̂ W(0, v,U, /e ^(«)f (,,(0, gr(0> e 0(*)*m(0. Then, from
(5.6.1), we get

Iterating the foregoing argument, we obtain

for all /e <*(«)*„(,„ &»)6^(U)f«Z ) ( 0 , 7 = 1 , 2 , .

r>0. Hence

>0

7=0, 1 , 2 , . . . , n-1, r>0.
/\

Since (//, x) e lim (Gj^)), by hypothesis, we may suppose, as we do hence-

forth, that {a, &<•»: j = 0, 1, 2,..., n-1}^ Is such that ^[^^(
(e{^'a®(® e '( f f)-ft ( j ))) converges to Xe'(ff)'*)> ^e J^ as n->oo0 But lim I7(nf)

= 0, by hypothesis. Hence, ^o/?f)(
ei(ff)'fl) converges to 1 as «-»oo. Thus
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(5.6.2) ®* vp<>)( "® e'OO-*"') converges to ^(el^°x\ a e R.
7=1 7=1

Next, for each positive integer m, define ¥%,*,„,) by

Then

(5.6.3)
7=0 ' ' 7=0 fc=0 j=0

and it follows from (5.6.2) that {^(n,t,m)}n^i i§ shift compact. Hence, there is
a sequence^ K}n>x c= R(X±) and {a^}^! c L*(Xl9 &19 ̂ o/O such that

{^^^(^e^'^e^^a^^ is precompact in C Let F(t,m)(^>'&')
7=0 >v

be an accumulation point of the preceding sequence, where F(t?m) e G^(3C(t, m)),

for some (X(t, m)9 (f, m))c=(Z, ), and 6eLf(X(r, m), (f, m), y(,fM))
Then, for some subsequence nl<n2<°~<nj<°~, we have the convergence

(5.6.4) y(i,,.M-)(V ^^•^O^ff^(fll--)-^^)m)(^(ff)-6') -

Now

(m®
j=0

w~l m — 1 m— 1
= (O ^-"(^(W)0-))^® (ean®1F (Wjfsm))

l7(^ ))( ®
7=0 j=0 j=0

Hence, invoking (5.6.2), (5.6.3) and (5.6.4), passing to a subsequence and then
taking limits, we get

(5.6.5) pL(ei^-x) = (s^t>m}®(m® Wft$))(eiff<®(m® e^'b')) for some

a(,§M) e*^), flleLf^, f1? ^o/J and 6^6 Lf (JT(r, m), ̂ (r, m),

Let r be an arbitrary positive integer. Then

(5.6.6) r+ 1
7=1 , . J=0 . , J=||

Thus, the sequence {(r+® 1 vf ̂ f))(r+® 1^(ff)lfe°"))}^i must converge to 1.
j=n j=n

r—1
Therefore, the sequence { ® ^jmt^}m^i is shift compact and, hence, for some
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r-l
i) and {hlr}r^1c:Lp

s(Xl9 ffl9 jj?4i), the sequence {(eyr®( ®
is precompact. Let a>(f%r)(^ff>'c(r)),=

be an accumulation point of the preceding sequence, where co(f%f) e

for some (X^, f [r.f])c(*, X) and c<'> e Lf (*[rff], %n, <»(r.oW Then, from
(5.6.4) and (5.6.6), we obtain

(5.6.7) ^)(^-^=nw^
XV

with b e LJ(X(f, m), #"(f , m), !F(f>m)) and c(r) as previously described.

Let {tk}k>i be a sequence of members converging to zero. From (5.6.5),

one sees that there are sets {SJ/c^i^^t^i) and {dlk}k^.1ciL^(Xly &19 jn0^)

such that the sequence {(£ek®^(tk,m))(eiadik®ei(a')'b)}k^i converges to some
number V[m{eW>™)9 where y[m] e G^w) for some (Z[m], f [m]) c (X, f),

and j;^> e LJ(X[m], f [m], ^[m])fl^. Letting f-»0, one Infers from (5.6.5) that

(5.6.8) /^(e£(ff)^)

for some ^e^Jfi) and d^eLf^i, ^, ^°°li). Furthermore, arguing as we

did above, (5.6.7) yields

(5.6.9) y[m](*'('r)';v(m))

for some o>t e Gx(f w), with (Z(0, f(0)c=(X, f ), /eLf(JT(0, f(f), o>,)aj, and

Finally, since the right hand side of (5.6.8) may be written thus:

^

= ee(e
itrdim>) (^[m](^ i(<T)<3;(m)))m

9 then we have

where ^1/m = se/m® ?P[m] and x1/m = dim)(g)j;^III>. Hence, the pair (^, x) is Infinitely

divisible, as claimed. Notice too that from (5.6.9), one readily Infers that

C/(0^i /- e Dp(/^1/m, ^1/m)? l<p<oo, where %llm = £l® £J.m]. This concludes
the proof. D

Remark: The following corollaries, whose proofs we omit, may be readily

established.

(5.7) Corollary : Ler GM, x) 6 Mm (G{p\£j). If DP(JJL, &) contains a
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ys.

one-parameter semigroup {exp tH: t >0}, HE B(Lp(X, SE9 /x
0)), 1 <p< oo?

such that Mm exp tH = Q in the norm-topology of B(LP(X, X, JJL°)), then ^(el^'x)

4=0, /or alTcreR.

(5.8) Corollary : Suppose that (JJL, x)elim(G{p)(&)) satisfies the hypoth-
xN /S

eses of Theorem (5.6). Suppose, moreover, that for some (X(f), ^(f))^(X, S£)

and vt e G1(^(0)3 we have

for some x^eLp
s(X(t), (i), vt)alg, aeR, and t>Q. Then (vt, x^) is an infinitely

divisible pair, for each r>0.

(5.9) Theorem: Let (//, x) E Gp\&) be nondegenerate. Then, (ft, x)

lies in ]im(G[p\&)) if and only if, the decomposability algebra structure
yv.

DP(JJL, 3?) of \JL contains a one-parameter semigroup {exptH: t>0} with the

property that limexp tH = Q in the norm-topology of B(LP(X, &, //°)).
f-K»

Proof: The conditions of the theorem are necessary. To see this, we

argue as follows. Suppose that (JJL, x) e Mm (Gj[p)(,f )). By Proposition (4.7),
there is a norming sequence {Aln}n^1 corresponding to the nondegenerate pair

0*, x) with the property that D4lMm+i]-^ in B(Lp(X, &, ft0)). By Propo-
sition (4.2), I lies in Sem (F). By the repeated use of Theorem (5.3), we obtain

a set {P<°> =1, P(1)
3..., P(r)} of projection operators and a set {H^\ H^2\..., H™}

of operators with the following properties: 5^p(J) contains the one-parameter

semigroup

exp tHU+1\ r>0 ? p

^po,, pu+»HU+u = HU+», pw)=t=pa+i ) and
lim (PO-PU+D) exp tH^+v=Q,j = Q, 1, 2,..., r-1.
J-^OO

Furthermore, in view of the compactness of Sem (F), we may assume that
P<r> = 0. Now, the condition pc-^e^po, implies pwpo-v =

= P<-/). Hence, by Proposition (2.4), the projection operator

_pa)=pa-i)(/-pU))liesinD^, f), l<p<oo. Set £ Q^H^ = H. Then,

JFf = Z 6(i/) C^P ^iT00, and (again by Proposition (2.4)) exp tHeDp(ji9

t>®, 1 <p< oo. Hence, the conditions are indeed necessary.

The conditions are also sufficient. To see this, assume that (/x, x) e G

xLp(X, £-, if) and that D*(n, X) contains {exp tH:t>®}, HeB(Lp(X,
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/*°)), with \imexp tH = Q In B(LP(X, &9 fi°)). Then, In particular, I lies In
xv f-»00 ^

D*0/, #"), 1 <p< oo. We wish to demonstrate that (/*, x) lies In Mm (G^^T)).

Set expCir1//)^"', n = l, 2,... . Since I e DP(JJL, 1), It follows that there

areCYu, X^^(Xl9 &l)J = l,29...9 k9a.ndv1JeGl(&lj)9j = 29 3,..., fc such that

(5.9.1) Mu(On(*
(1))*'"ll®O12(*

(^

for all jcueLf (X l l9 n, /if^), *ue^C^i;5 u? vfj j), 7 = 2, 3,..., fe; ae^ ?

where 5j7 Is the restriction of B<» to U(Xlj9 &1J9 v^.), j = 23 3,..., fc; /c = 23

3,.... Hence3 {x^-}^! Is a collection of stochastically independent operators.

Evidently, we may choose {xlj}j>l such that vlj(e
iffxij)-^l, as j-*oo3 for each

ae J^, whence, by definition, {v^}^ is uniformly Infinitesimal with respect to

Next, put exp(£ 7 lH)=A(n\ n = l, 2,... and set ̂  - =^i l l9 ^ • =/±in ,

n = 2, 3,.... Make the definitions:

(5.9.2) A^n^i^ri) =0ii and v^or^lJ) = ̂ lfl, n=29 3,... .

One readily checks that

Hence {^i^^i satisfies (3.5.1) and (3.5.2). Notice that A<">-»0 In B(L?(X, 3C,

/x°)) as n-* oo. Hence, ^]i(eiax^n)-»i, whenever { jj,^ Is bounded. For jn < it

and jn-»oo,we have by (5.9.2) that fifj^ = vAl}n
Aln and hence ^f]^'^1^)-^!,

1 j n n ^

since {[Ai}nAln]:jn=l, 29...9n}n^ Is precompact In B(LP(X9 ^, /x0)) and

v1_/(eiffXl-')->l. Hence, a part of (3.5.3) is also fulfilled.

Finally, we have

-^

by (5.9.1) and (5.9.2), since exp tHeDP(ji9 )9 by hypothesis, for each ^>0.

It is clear that we may assume that the previous choice of {x^}^^ assures the

convergence of the right hand side of the last equation to /4V(ff)°*), for each

a e J?. This ends the proof. • D
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§60 A Characterization of Certain Semigroups Contained

Let HeB(Lp(X, %, ju°)) and {exp tH: t>Q} be a one-parameter semigroup

of operators contained in B(LP(X, &, /j0)) with the property that lim exp tH=Q
^ f->00

in the norm-topology of B(LP(X, 2£, /*°)). In this section, we answer the

question:

When is the semigroup {exp tH: t>Q} contained in Dp(jji, &), ^eG1(tf)3

1<J?<00?

In answering this query, we supply a characterization of the infinitesimal

generator H.

Notations 1. Let U(X, &, p)* denote the topological dual of LP(X9 &, ft).

We write < •, • >(fl) for the canonical duality pairing of Lf(X9 9E9 p)* and LP(X,

£,&
XV

2. The adjoint or dual of an operator A e B(LP(X, &, //)) relative to

< •, • >(j[t) will be denoted by A*5 i.e.

<a*, Ab\n = (A*at9 6>(M), for all (a,, i)GL*(Ar, f, ^)*xL^(X5 X, fi).

Evidently, A*: U(X9 £5 $*^LP(X, £, n)*.

(6.1) Let O, 5) e Gip)(^). Then, we say that O, 6) is a

symmetric Gaussian pair if and only if,

(1) there is a compact operator R: LP(X, &, }i)-*Lp(X9 3E9 fi)* with the

properties:

(i) <i^a, c>(M) = <J^c, a>(^ (symmetry), for all a, c e L*(X, f, M)

(ii) <J^a, a>( / i )>0 (positivity), for all a eLp(Jf, ^, ^); and
(2) ij(etW'i>) = e-V2**<Rb,b>M9 for each aE R,

NotatSoms (i) We shall say that the operator jR occurring in (6.1) is a

covariance operator corresponding to the symmetric Gaussian pair (JJL, b)e

e G<f\£).

(ii) We denote the collection of all jR, such that .R is a covariance operator
XV.

corresponding to some symmetric Gaussian pair, by Cov (p)(^"), 1 <p< oo.

(6.2) Let (ji, b) e G*?\£). Then, we say that (ji, b) is a
>s,

Poissonian pair if and only if, there is a normal positive trace [24] n on ^\,

with 71(1 )̂ < oo, and (7, bl5 d) 6 J?(ZO x Lf(Zl9 f 15 Hi) x

such that
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where

fc(<7, Cl) = e^-l^- 2* ^e^ and

n(eci({0}))=0.

Remarks: (I) We call the functional n occurring in (6.2) a Poissonian

exponent corresponding to the Poissonian pair (fj,9 b). Furthermore, we refer

to the triple (y, bl9 cj occurring in (6.2) as the Poissonian data for (//, b).

(ii) We denote the collection of all n, such that n is a Poissonian exponent
^\

corresponding to some Poissonian pair, by Pos (#")

(iii) The following result is established as in Refs. [40-45] .

(6.3) Theorem:; Let (JJL, b) e G[p\^) be an infinitely divisible pair.

Then, there are a symmetric Gaussian pair (/%a, bGa) e G^\^Ga) and Poissonian

pair (i*Po,bPo)eG<f\£Po), for some (XGa9 ^Ga)a(X, X) and

G(X, X) such that

(6.3.1) n(eiW'b) = iJ,Ga(e
iW'bG") nPo(e

iW'b")

(6.4) Remark: (i) It follows from (6.31) that (6.3.1) may be written

thus:

(6.4.1) fi(ei^'b) = fi(ei^'b^ei^'b^) = fJLGa^^

(ii) Let n E Pos (#"). Then, n extends to a central positive linear func-

tional, denoted again by n, on ^

(iii) If TIG Pos (f") and AeB(Lv(X, £, /x))+, we write nA for noF^(A)9

where as usual, F^^A) is the restriction of F(A) to &*(R9 £19 /x^).

(6o5) Propositioiffl o L^^ (^, b) e G[p\&) be an infinitely divisible pair

whose symmetric Gaussian pair (/%a, bGa) has covariance R and Poissonian

pair (fjLPo9 bPo) has Poissonian exponent n. Let AeDp(fi, 3£)9 with

for some (XA, %A)^(X, X\ vAEG1(A) and bAeLp
s(XA, £A, vA)alg. Assume,

moreover, that (yA9 bA) is an infinitely divisible pair. Then, A$Ga E Dp(fiGa, &Ga)

and A^poeDp(jLLPo, 3£Po)9 where &Ga (resp. &Po) is the W*-algebra contained

in S£ generated by the spectral projections of bGa (resp. of bPo). Furthermore,

R-A*£GaRA#Ga lies in Cov^>(^Gfl) and n-nA lies in Pos(^Fo).

Proof: Let (fiAGa, bAGa) and (^APo9 bAPo) denote the symmetric Gaussian
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pair, with RAGa as its corresponding covariance operator, and the Poissonian

pair, with nAPo as its corresponding Poissonian pair, respectively, of the pair

(VAI bA) which, by hypothesis, is infinitely divisible. Then, by (6.4.1), we have

(6.5.1) VA(eW'i>A) = vA(eiW'b*°"eiW'b**°)

aeR, Also, by the assumed infinite divisibility of the pair (^, b), we have

(6.5.2) /^ff>!&) = ̂ (^>&«^^

a e R, Hence

(6.5.3) ^(e*(')-^aei( f f)-6po)=/ |A f l(g»(a).6Go)^o(ei( f f).6p0) j ae^5

.A. /s.

since @P(R, &Ga, ^Ga) and @p(R, «fpo, /xpo) are invariant, by (2.1), under

F£Ga(A) and F^o(A)9 respectively. But

(ei(^b*>°), by (6.5.2)
'b*), by hypothesis

(ei™'bf^

by (6.5.1) and (6.5.3).

Identifying the Gaussian and Poissonian parts of the foregoing decomposition,

one gets

(6.5.4) ^G f l(e^ f f>-& G f l) = ^f l(g^ff)-6G«)^Ga(^'(<T) '^Ga) and

(6.5.5)

From

where RA is the covariance operator corresponding to the pair (/^Gfl, bAGa), one

gets R-AlGRA$Ga lies in Cov

Finally, since

> by (6.5.5),
(K:((T,c^,i))^ where
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we have employed here self-explanatory notation.,

we have

Hence n — nA e Pos (#p0), as claimed. D

Remark: There Is now the following answer to the question we asked

at the beginning of this section.

(£6) Theorem: Let H E B(Lf(X9 #", /x0)) and limexp*H = 0 in the

norm-topology of B(L*(X9 %, /i0)). Let (JJL, x) e Mm (G{p\&)). Then, D*(n, &)

contains the one-parameter semigroup (expt/f: t>0} if and only if,

for some symmetric Gaussian pair (^LGa, xGa), with corresponding covariance

operator R, and Poissonian pair (fiPo, *Po), with corresponding exponent n,

such that

(i) H% R + RH$Ga is nonpositive in the sense of (6.1) (i) (ii); and

(ii) 7i>n°r^^(eiH),for all t>®.

(Here (XGa9 £Ga)<=:(X, 3f) is as in Theorem (6.5).)
XV

Proof: The conditions are necessary. To see this suppose that Dp(/z, 3£)

contains {exp rH: r>0}3 with HmexprJJ = 0 In B(L*(X, &, p)). Then, by

Theorem (5.6), the pair (ji, x) E Mm (G[p\&)) Is Infinitely divisible and by

Theorem (6.3), the decomposition (6.6.1) holds. Moreover9 by Proposi-

tion (6.5), R-(exptH*« )R(QxptH^Ga)>0 for all t>Q (In the sense of (6.1)

(i) (ii)) and n - wr^e*H) is In Pos(£) for all t>Q. Thus5 (II) Is already esta-

blished. To demonstrate (I), notice that for arbitrary a e Lp(XGa, #"Gfl, fiGa), we

have <[K-exp tH^G )J^(exp tH$Ga)y]a, a> (^Ga) = <[jR - {R + t(H*~G R + Rff£Ga)

H-0(?2)}]^3 a>(MGa) = < —^fl"! R + RH^Ga)a,ay^Ga^foi t close to zero. Since

t>0, we infer that fit R + RH^Ga Is nonpositive relative to < •, • >(MGa)3 as de-

fined In (6.1) (i) (ii). This establishes (I), whence we conclude that the conditions

are indeed necessary.

The conditions are also sufficient. To see this, let (jt, x) E Mm (G(p\&)).
XV

Assume that n e Pos (&Po), n^ = n — noF£.l(QxptH)>Q, for all £>03 RE

eCov<*>(£Ga) and H*«G R + RH£Ga is nonpositive using (6.1) (I) (ii), for some
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Poissonian pair (fiPo, xPo), with n as its exponent, and Gaussian pair (/%a, xGa),

with R as its covariance, and (XPo9 &Po)<=:(X9 %\ (XGa9 &Ga)c:(X9 #). Then
n(v e Pos (#"Po) for a l l r>0 and, moreover,

(6,6.2) l*Po(eWx**) = iff***(eW*»* )/W*'(<0'"p •)

where (jffStH9 xPo) and (jLLtPo, xtPo) are Poissonian pairs with corresponding
Poissonian exponents TioF^exp tH) and n^\ respectively, ̂ >0.

A.

Next for arbitrary a e LP(XGa, %Ga, //Gfl), put

Then

= -<(exp ̂ |Ga)(MG^ + ̂ ^Ga)(exp r^0>, a>(/iGa)

U^Ga) a, (exp r^0-)a>(|ICa),

Thus, 4^->0? since H|c R + RH$Ga is, by hypothesis, nonpositive. But f(0) = 0.

Hence, J^ — (exp^J?| )R(QxptH^Ga) is nonnegative relative to < - ? ° > o G a ) -
This means that l?(0 = -R-(exp^|Ga)l?(exp^Go) lies in Cov<*>(^Gfl), for
each ^>0. Let (/^rGa, ^cfGa) be the symmetric Gaussian pair with R(f) as its
corresponding covariance operator. Then

(6.6.3) ^Ga(^<(<r)"CB)

where the symmetric Gaussian pair (^GltH, xGa) evidently has (exp tH** )R-
&Ga

(exp tH£Ga), ^>0, as its corresponding covariance operator. From (6.6.2) and
(6.6.3), we get

(6.6.4) jiGa(e
i^'*^)iJLPo(e

i^'x^)

= /4yfH(gi(ff)°*Gfl^
__ .&ptHSei(<T)-xGa\ u^tH(ei(^'xPo\u (ei(a)-xtGa\(ei(a)-Xti>o\

But, since (ji9 x) e lim (G(/}(^)) is such that

(6.6.1) M

then, (6.6.4) gives

(6.6.5)

where

Vt = frGa®Vtpo and
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We conclude from (6.6.5) that {exp tH: t^O}cDP(jj,9 %\ Hence, the con-

ditions are Indeed also sufficient. D

§7, A
x«s

Let (ft, x) E llm (G^^1)) be nondegenerate. It this section, we obtain a

representation for ju(ei(ff)'*)j o"e^. Our representation may be compared with
the one obtained by Urbanik [5] in the case of Banaeh-space-valued random

variables.

In the sequel, HeB(LP(X, &, /*°)) and U(t) = exptH, r>0, with Mm 17(0
*. f->00

= 0 in the norm-topology of B(LP(X, S£, ju°)). Furthermore, n is a fixed member

of Pos (#") throughout the ensuing discussion.
/\

(7ol) Beffimidoins A member hlE^\ will be called a weight-operator

provided that
TOO

1. fej = \ eht(dX)h Is Invertlble;
Jo+

xS.

2. / i i<l |^iol2 for some positive number I and some Q=^h10E^°i;

3. fcj_ Is separating for Pos(^")9 i.e. i f n l 9 7r2ePos(,f)9 with 7r1(/i1) =

then 7C1 = 7T2; and
4. T^/ii) < oo, for all n E Pos (^).

A.
(7.2) NetatioM: 1. We denote the set of all weight-operators In 9C\ by

2. Let 31 be an arbitrary subset of &lm

Then we define £(31) as follows: (̂31) = W*-subalgebra of ^ generated

by {r^^(lJ(t))z\ zeSI and tER} (Here and hereafter, we use the notation of

(6.4) (Ii).)

Remark: The following result is employed In the sequel.
<*.

(7o3) PrepositlOTo For each 7rePos(«f°), there exists a sequence {^ln}n>i

of subsets of &! such that ^(31 J n ̂ i(3lll) = {0}, if m*n, and n= f 7ropWn

ow ^15 w/iere PWri is rte projection of ^ onto ^(WJ, n>l .

Proo/: Let ^ e F F ( ) - Since </i1)< oo, by (7.1) (4), we can find a

subset Sli of ̂  such that 7c(P^1h1)<l, where Pai Is the projection of ^ onto

^(SIJ. Now P^#i Is a PF*-subalgebra of ^. Set P^^ = ̂ 1(P(311)) and
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TToP^EETi^, where P(2IX) is some subset of W^. Then, n^l(h1)<co. Hence,

there is a subset 812 of P^) such that ^(^2) is a ^*-subalgebra

and 7r2ll(P^2^1)<l/2? where Pm2 is the projection of #i(P(2Ii)) onto
Since P^ is the identity of 5(^^(21 j))), the Banach algebra of all mappings of

#i(^(2li)) into itself, we have P^P^-P^^J-P^-P^. Evidently,
P2IlP2t2 = 0 = P2l2P9ri. Continuing as above, we get a sequence {An}n^l of subsets

of #\ such that ^(SIJ n^1(8ln) = {0}, for m=M, and _ n((I-P^ - P%2

----- P%n)
ni) < > where P^n is the projection of ^ onto ^(W,,).

n I
To complete the proof, put n— X ^°P^k = nn- Then, 7t/

n(/i1)< — , implying
^ 00

that TrJXfcJ-frO, as n-»oo. But /^ is separating for Pos(^). Hence, TT= X TT
/c=i

°^«fc- D

(7.4) Remark: Suppose that T r e P o s ( ) and TT> 7^^(1/0)), for all

t>Q. Let £10 be a Pf*-subalgebra of ^^ Evidently, if 0^)^10 ^ ^io>
A. ^

r>0, then the restriction TT^IO of TC to «f10 belongs to Pos(^) and satisfies n$10

>7if10oF^10([/(0)5 for all r>0. Hence, from Proposition (7.3), we obtain the
following result.

(7.5) Propositions Suppose that TrePos(^) and n>n°F^(17(1)), for all
00 /*v

£>0. Hien, £/zere is a decomposition n= X ^ where nnEPos(#"), nn>nn
n=l/^

°F£l(wn)(U(t)) for all t>0, and the supports {^'i(2ln)}n^1 o/ {TrJ^i are disjoint

W*-subalgebras of SC^ corresponding to some subsets {2ln}n>1 of ^.

(7.6) Remarks: 1. Observe that Proposition (7.5) reduces the problem
of characterizing the members of Pos(^) satisfying n>nor^l(U(f))9 for all
£>0, to that of characterizing the central normal positive linear functional

A.

7% on #'1(2I) satisfying Tr^^Tr^^^^C/^)), for all r>0, where 21 is a subset
of ^.

2. In the sequel, (̂21, //) denotes the set of all positive central normal
linear functional n^ on #'1(2I) such that Tr^^Tr^oF^^^^^O),^ all ^>0, where
21 is a subset of ^\. We shall characterize J^(2l, H) by employing the theory

of barycentric decomposition of states on a FF*-algebra.

3. Let 21 be a subset of ^ and (̂21) be as previously defined. Let

6(^(21)) denote the state space of (̂21). Then, 5(̂ (21)) is compact in
the (7(6(^(21)), ^1(2l))-topology.

4. Let ^* = [—oo, oo] be the usual compactification of R. Let S be
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/\
a compact subset of 2E*. Then (5 x R is, by Tychonov's theorem, a compact

.A.

space In the Induced product topology coming from S£\ and R*. Define an

equivalence relation in 6 x R* as follows:

(<pl9 t1)~(cp29 t2) for <pl9 (p2e^ and ti9 t2eR* If and only if, there exists a

real number s such that

= (p2 and t2 = t1-s.

It Is easy to show as in [5] that the relation ~ Is continuous. Hence, the

quotient space (6 x 1s*)/ ~, which we denote In the sequel by S~, Is again com-

pact. The coset In S~ containing (q>9 £) e S x R* will be denoted by [<p, f].

5. For each subset 91 c^ and a compact subset 0(91) of £(90* +, let

17(0(90) denote the set

{(p°r^(U(f)): <p e 0(91) and f e ^} .

Then, the mapping cpoF^1(l7(0)^->[^9 f], where <pe^(W) and feS, Is an Im-

bedding of 17(0(91)) into a dense subset of 0(9Q. Hence 0(90 is a com-

pactification of 17(0(91)). In the sequel, we Identify elements ^°r^1(C7(t)) of

17(0(91)) and [<p, r] of 0(90^.

(7.7) NotettaK 1. If c p e ? and ^>0, we shall denote 9°r^(U(f)) by

q>vw in the sequel.

2. We extend the norm || - 1|^* and the map (p*-+<pvw, s>0, of C7(0(9Q)

into 17(0(90), onto 0(9I)~ by continuity as follows :

and
[cp, - oo]uc-) = [^ - oo]? [9, oo]^> = [(p, oo] ,

where we have denoted the extensions of || • ||^f and cp^(pu^\ t>0, again by the

same symbols. With these extensions, we get

[>? f]vw = l(p9 t + s], (t,s)eR*xR*, cpe 17(0(90).
<«»

3. We also specify the actions of [9 + oo] on (̂91) as follows:

([9, oo])(z) = 0 and ([^, -oo])(z)= Mm

(7.8) The sett
x\

In place of 0(91), we now consider (3(^(91)) and Its associated sets

£7(6(^(90)) and 6(^(90)^-
For each i E ®(^i(90)~, define TTT by
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(7.8.1)

Then, TCT

Define jf(9l, H) by

jf(9l, fl) = {T e 5(£i(ffl))~ : TTT > rcj™, for all t > 0} .

Evidently, Jf(% #) is a closed, convex subset of ©(£(9l))~.

Next, for each T% E &(W9 H)9 define T| by

(7.8.2) Tl(z) = 7T2l(/Epzft}/2)? Z6^(a), Ai

Then, T§ lies in ^(91)* + . From (7.8.2), we see that

Hence, TC e jg?(9I, H) if and only if, T§ lies in jf (91, H).

Put {T

and denote jf(9l, H) n ̂ ((31))^ by S^(9l, H). Then 6jf (% H) is a convex,.̂
compact subset of ©( '̂1(9l))'w. We proceed to determine the extreme points

of

The of iSjf (91, H)

For each ^ e ̂ (91)* +, the integral

(7.8.3)

is convergent for each Ax e W(SEi). This observation follows from (7.1) (2)

and the compactness of {exp tH: t>®} U {0} in the norm topology of B(Lp(X,

Now, for each (p e £7(©(^1(9l))), define n9 as follows:

(7.8.4) T9(z) = c(fc1, H, q>) dt([<p9

Then, T^ is a state on (91) for q> e £7(®((SI))), i.e. T^ G S ( (9T))~ . Sub-

stituting TV for T in (7.8.1), we get
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Analogously,

n%°\z) = c(hi9H,<p)Fdt([.q>9tl)(z), s>0, z e £ (51), cp e 1/(
Js

Hence, for each s > 0, z > 0,

nX(p(z) - n^\z) = df([>, *]) (z) > 03 for all cp e 17(6(^(91))) .

We extend the definition of T^ to 9 In S?(,T1(W))^\ 17(6((81))) by assuming

that T<p = e(p. Then, T^ again lies In ©#(21, Jf). Furthermore, the map (p^t^
^^

of ©(^(Sl))" Into ©/f(8l, fl) Is continuous and injeetlve. Hence, this map

Is a homeomorphism of ©(^(ai))" onto ©jf (81, If).

Let Ext (S(#!(8l))) denote the set of extreme points of ©(£(81)). In the

sequel [©jf (81, If)] denotes the set

u
The set Ext (@^(W, fl)) of extrems points of © jf (81, H) admits the

following description :

(7.9) Propo§fi1ttom i The set Ext (S^f(8I, H)) coincides with the set

Proof: Let 6 be a subset of ©(^(81)). Then, the sets l/(S), {[9, - oo]

: ^ e [/(©(^(Sl)))} and {[>, oo] : ^ e [/(©(£ i(8l)))} are Invariant under the
>v

maps (p\-^cpv^\ teR, of ©(^f
1(8l))~ Into Itself. Hence, the members of

Ext(©e?f(8I, H)) must be either of the forms {[<p, — oo]} and {[<p, oo]}, ^E

^(©(^(ST))), or be contained In sets of the form U({\l/})9 i// e 6(SB
1(W)). But

the positive linear functional TV, with ^?e @(S;
1(W))~\t/(@(^1(W))) are all

extreme points of ©^f (81, #)• Hence, we need now only determine the extreme

points of sets of the form l/({^}), \l/ e ©(^(81)).

For any interval I^R, let (̂81, 1) be the If^-subalgebra of ̂ (81)

rated by (^^17(0)^ : z e 81 and f e J}. Write Pj for the conditional expectation

of (̂81) given ̂ (81, 1); denote F(-oo,r] simply by F^f, t e K.

Suppose now that T e U({\l/}), \jt e ©(^(81)). Then, one readily that

T e Jf) if and only If,

TT o P "*> TT^(s)n D
^^(ri.fa)^^ °^(ri5f2)

or, equlvalently,
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for all s>0, all tl9 t2 E R, ti<t2 and with nr as defined in (7.8.1). Since P ( f l j f2)

= P<t2 — Ptl, for all tl9 t2E R, tl < t29 the last inequality is equivalent to

for all s>0, all tl9 t2eR, t1<t2. In particular, setting t1 = t and t2 = t + s in

(*), we get

for all te R and s>0. Hence, the function r^7rT(P<fa1) is convex for all a1 E*.
#(91) +. Consequently, there is a nonnegative, monotone nondecreasing func-

tion t^xt(a^9 al E ̂ (91) +, such that

(**) n,(

Assuming, as we may, that the function fi->7rr(P<ra1) is continuous from the
/^

left, for each a1e^t
1(2l)+, then t\-+tt(a^ is uniquely determined by T, for all

>s

a1e^'1(2l)+. On the other hand, there is evidently a unique, nonnegative

function g\ on R such that

for all at e ^>
1(2l)+ and f e 1?. Hence, (**) may be expressed thus

(7.9.1) ;rt(^<s«1) =

T e U({\l/}), iA e 5(̂ (91)). It follows now from (7.8.1) that

(7.9.2) T(«1) = «I(Ai/2fl1Ap) =

ax 6^(91), whence

(7.9.3) T(l^) = l = d^OW, t])(fci), if

Conversely, any pair (g^9 ^), with ^J: ^-»[0, oo) and i^

such that (7.9.3) holds determines a state T on (̂91) by (7.9.2). Moreover,

7rt(P<sa1), (s, a1)e^xS'1(9I)+, defined as in (7.9.1) satisfies (*), indicating

that T lies in <5jf (91, If). Hence, since ^ is the only extreme point of {^}
^

c: 5(̂ (91)) T in U({\l/}) is pure if and only if, g\ cannot be expressed as a

nontrivial convex combination of two nonnegative functions. But this is

possible only in the case 0^(0 = 0» if t<tQ9 and g$(i) = d(\l/)9 if t>tQ9 for some
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t0, and d(\jj) In R, depending only on \l/. By (7.9.3), we see that

From the definition of T^ in (7.8.4), it follows that the members of

Ext(Sjf(2l, H)) are of the form T^ with t^e[@jr(2l, #)]. This concludes

the proof. D

Remark: Each member of (̂21, H) Is a positive scalar multiple of a

member of 6^f (21, H). Hence, applying the Choquet theory of barycentric

decomposition on compact convex sets [46, 47], we get the following result.

(7.10) Proposition: A member c% of 6(^(21))- belongs to Jf(2I, If) if

and only if, there exists a probability measure 0^ on @^f (21, H) such that

// c% 6 17((21)), fften ewsi is concentrated on

Remark: From (7.8.2) and (7.8.3), and the considerations at the beginning

of (7.8), we get

ri/2), since TlG^(2I3 H)

since we Identify [<p, f] with ^^0^ for 9 e 17(6(^(21))). Hence, we have

the following assertion :

(Toll) Corollary; Let n<% be a member of Pos^), with

Then, 7rej^(2I,U) if and only if, there is a probability measure 0^ on

i such that

0t*A(d(p)c(hi9 H, <p)
£i(8I)) JO

where c(hi9 H, <p) is as defined in (7.8.3).

Remark: Let us now characterize those members of Pos(3C^) which satisfy

the condition n>nv(t\ for all t>®.

By Proposition (7.3), we have a decomposition of the form n= ^ nn9 where
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nn e Pos (£), nn > n™9 for all j? > 0, the support of nn Is ̂ (fflj, l\ W n

= {0}, n = N m , and {SU^c^. By Corollary (711), there is a probability

measure 0t, on S^^WJ) such that

'1(Wn)5 n>L
®(#l(2tn)) 0

Hence

7T(Z) = f 7Tn(z)

n=l

/s.

Consequently, for hi e W(3E^)9 we have

Vr*(d<p) c(hl9 H9 <p)c(hl9 H9 (p)~l by (7.8.3),

3, since h* e FfT^).
ii^"i ••
00 ^

Thus, setting ^ 0X* = 0n9 we get a finite Borel measure on S(^) such that
n=l "

hlt H, <

ioii: For each q> e 6^), define nhl}Ht(p by

(7.12) 7u j k l i H i V(z) =

Then

where ct is as in (6.2).

From Theorem (6.6) and the foregoing considerations, we now have the

following assertion.

(7.13) Let hi E FFOTi), HeB(LP(X, f, jx°)) awd limexp rlf = 0
f-*00

in ffce norm topology of B(Lf(X9 %, fjfj). Let (ji, x) e Mm (G[P\^J). Then,
^

Dp(}i, 3T) contains {exptff: t>Q} if and only if, there exist a Gaussian pair

(jiGa, xGa) with a covariance operator R for which Jff|G R + RH^Ga is non-

positive in the sense of (6.1) (1) (ii), a Poissonian pair (/j,Po9 xPo) with Poissonian

exponent n and Poissonian data (7, yl9 cx), and a finite measure 0n on
such that
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=exp (lay(yi) -®\RxGa, *Ga>(,,Ca)

nhl}H,<p is as defined in (1.12), for each aeR.

Remark: Combining Theorems (5.9) and (6.6), we obtain the following

solution of the problem described In Section 3.

(7.14) Theorem: Let hleW(^l). Then, a pair (JJL, x) e G[p\£ ), with

li nondegenerate, is a member of Mm (G^(^ )) if and only if, there exists an

operator H in B(LP(X, SC, /x°)), with llm exp tH = Q, a Gaussian pair (jUGa? xGa)
t-»oo

with a covariance operator R for which lf| R + RH$Ga is nonpositive in the

sense of (6 A) (1) (if), a Poissonian pair (jiPo9 xPo) with Poissonian exponent
/v.

n and Poissonian data (y, ylt Cj), and a finite measure ©„ on ©(^"i) such that

for each ae R,

(7.15) Remarks: Results similar to Theorems (7.13) and (7.14) have

been obtained by Urbanlk [5] In the case of random variables with values In a

real Banach space. See also [37].
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