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On the Simultaneous Transformation of Density

by

Peter M. ALBERTI*

Let {o^,..., a)n] and {<TI , . . . , an] be finite sets of normal states over the bounded linear
operators acting over some infinite-dimensional separable Hilbert-space. In the paper
mutually equivalent sets of necessary and sufficient conditions are derived that there exists a
completely positive, unity preserving linear map Ttransforming 0-1, . . . , an simultaneously into
o ) i . . . , o)n: a)k = ak° T,k = l,...9n. Of particular interest is this 6'/z-tuple-problem" in case of
pairs of density operators (normal states), i.e. for n=2. In this situation possible connections
with the notion of "generalized transition probability" are analyzed, and at least in case of
normal states over the bounded operators a characterization of functionals of this type is
proposed and applied.

§ lo Main Results, Examples

Let jtf be a unital C*-algebra? with unit 7, topological dual jtf*, and group

of unitary elements <%(j&). To each Fe ^(j/) let us associate a bounded linear

operator Tv over the dual by T¥(a))(X) = co(VXV*) = cov(X), for all XEJ^

and any COG jtf*. On the set of bounded linear operators ^(j/*) over j/* we

may introduce the weak operator topology (w-topology) which is characterized

by the system of semi-norms {q^xi coe.s/*, X E J / } given by q(0,x(T) =

\T(a>)(X)\, with Te^(X*). Then, by %u(<xf} the weak closure of the convex

hull of the operators Tv will be denoted: ^M(j^) = conv{TF: VE<%(JZ?)}W. In

this paper as an essential result the following theorem is proved (proofs of most

of the assertions of this part are given In §§3-5):

LI Ttoeoremo Let 3? be an infinite-dimensional separable complex
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Hilbert-space. Let ft>1?..., c$n and crl3..., an be finite sets of normal states over

the bounded linear operators ^(Jf ) over 3F. The following conditions are

equivalent:

(i) there exists a completely positive (c.p.), unity-preserving (unital)

linear map T over ^(jf ) such that

ojk = akoT for k=l , . . . ,n ;

(ii) there is an irreducible l]H¥-algebra s£ of bounded linear operators

on Jf such that

for some (j) e ^u(«^), where (DJ^ indicates the restriction onto the

subalgebra s£ .

Moreover, if one of the conditions holds true then (ii) remains true for

every irreducible UHF-algebra $£ over ^f .

Throughout this paper, a unital C*-subaIgebra $0 of ^(Jf ) is referred to

as a UHF-algebra if there exists an ascending sequence ^l c ^2 c • • • c $£ of

finite type-I-factors jaffc over Jf such that ^ is the norm-closure of \J
k

Let £?(<$/) denote the convex set of all states over a unital C*-algebra

By ^(J^)M the n-fold product y(j^) x ••- x ̂ (j^) of «^(ja/) will be meant. Let

/: <$f(<$/)n3(oj i,..., con)^f(co1,..., con)ERl be a realvalued function. Let us

define a subset 2R(/; c) of &>(j*)n by

W/; c) = {(Q)1,...,a)n)E,y(j/)n: f(<D1,...,a)ld>c}, for every real c.

Then, the function /is called quasi-concave if 9K(/; c) is convex for every choice

of ceR1. Note that concavity of a realvalued function over ^(j/)n (which

is also often referred to as joint concavity) always implies quasi-concavity; the

converse, however, is false in general. The reader should also remember the fact

that a realvalued function /as above is w*-upper semicontinuous (w*-u.s.c. for

short) iff S0!(/; c) is w*-closed for Vce R1, where the product w*-topology is

referred to over ^(jtf)n. We call / unitarily invariant if f(a)\,...9co%) =

f ( o ) l 9 . . . } o j n ) for Va}yey(j/) and all Fe^(j^). With these notions in mind

we have :

1.2 Lemma, For states v l3..., vn and /^ l5..., un over the unital C*-algebra

j^ the following conditions are equivalent:

(i) there is 0 e &„(<%?) with vfc =
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(II) /(v l9...5vn)>/(> l5. ..,/O

for all quasi-concave, w*-u.s.c., unilarily invariant functions f over

Let £n(jtf) denote the set of quasi-concave, w*-u.s.c., unitarily Invariant

functions over y(j&y. One consequence of the equivalence given by 1.1 is

as follows: let tf be an irreducible UHF-algebra over 3f, and let g be a re-

al valued function over the n-fold product set &($?}% of the normal states

(identified with density operators, where a density operator over 3? Is a positive

operator of trace-class with trace one) over £%(£?} such that one finds /e Jn(

with

0(col9..., cDn)=f(o}if^.,., con/J/) for all (col5...? con)

then, g is unitarily invariant with respect to the unitary group ty(3F) over

We collect all quasi-concave, unitarily invariant, w*-u.s.c. functions over

)# which allow for such a representation (with respect to an arbitrary

irreducible UHF-algebra) into a set JB(Jf ). Thus, /e ^n(^) iff there is an

irreducible UHF-algebra j/ and g E £n(<stf) such that

Then, due to 1.2 and 1.1 we may take for established:

For finite sets co l3...,o)n anrf a 1?..., a 'n of normal states over

the bounded linear operators on a separable infinite-dimensional complex

Hilbert-space 3%* the following conditions are equivalent:

(i) there is a c.p., unital linear map T over &(#?) such that

ajk = ak°T Vfc;

(ii) f(a>l9...,a)j2>f(ffl9...9ffj for all

Assume we are given a particular unitarily invariant, \v*-u.s.c., quasi-

concave function / over ^(je )J. Then, the proof on /e Jn(^f ) is facilitated

considerably in numerous cases because only two general properties of the

C*-algebra jaf are really needed in these situations. This will be seen by the

examples below. The essential points in this context are irreducibility and the

fact that UHF-algebras intersect the compact operators ^^(^} over 3? only

trivially. From functions of J2n(«^) one can easily construct further unitary



620 PETER M. ALBERTI

Invariants over ^(^)| which show monotonous behaviour under the simulta-

neous transformation of their arguments by means of c.p., unital linear maps.

The case of tuples (n = 2) deserves special interest. Among other things the

following will be derived:

L4 Theorem. Let ^(j^) denote the set of realvalued functions over ^(^)^

x&(je)* characterized as follows: pe0>(3f) iff

(a) pej22(^);

(b) p(a)9 a) G [0, 1] Vcw, a E ̂ (3?)* ;
(c) p(co, a) = 0 iff o><7 = 0, i.e. CD, a are orthogonal states^

(d) p(co, <j) = l iff CO = CT;

(e) if a)x(j*): = (x, j*x)9 Vjtfe^G*7), withxe^e, \\x\\ = 1, then

p(ax9 o)y) = \(x, y)\2.

The following conditions are equivalent: suppose co, or, co', <j'e^(e?f%,

(i) p(w',a')>p((D,a) Vpe&W,

(ii) there exists a unital, c.p. linear map T over £§(3^) such that

cor = a>°T and a' = a°T.

1.5 Remark. Assume p is quasi-concave, unitarily invariant, (relatively)

w*-u.s.c. on y(3!f)\ and obeys conditions (b)-(e) of 1.4. If then, In addition,

p(co°T.> GoT)>p(aj, a) holds whenever T is unital and completely positive and

on, (7, co°T, <7oTe^(^f%, p will be referred to as a generalized transition

probability (over the normal state space of ^(^J) throughout this paper.

Let us collect all functions over ^(J^)l being generalized transition probabilities

in the sense explained into the set &"&(&). Then, the assertion of 1.4 is that the

increase p(co', a')>p(co9 a) of all pe^^Jf) is in fact equivalent to a)' = a)°T

and a' = <7°T for some c.p., unital linear map T.

Note that in the preceding definition of the term "generalized transition

probability" symmetry, i.e. p(co, a) = p(a9 co), is not required, although all known

explicite examples considered in literature (they all belong to ^^(^) as defined

above) possess this additional property. We shall discuss this in a somewhat

more general context throughout 5.5.

1.6 Example* Let cl9..., cn e C be complex numbers and assume v l9..., vnbe

states over the unital C*-algebra jaf. Then, /^(vls..., vn)= ||S cjvjl!i (Mil*

the functional norm in jaf *) is convex and w*-lower semicontinuous (w*-l.s.c.)

on ^(j^)". Since /^ is also unitarily invariant we have — /^ e Jn(j3f). Assume
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j£ acts irreducibly over the Hilbert-space ^f. Then, for normal states olv.., o}n

over 0(jf )/((»!,..., wn): = ||S^coJ-lli=/^(^i/^..-5^«/J? due to the fact that
j

the strong closure of the unit sphere of $£ gives the unit sphere of all bounded

operators by irreducibility and the Kaplansky density theorem. Therefore,

-/eJMpf). This means || £ cpfT\^< \ E^ylli for every c.p., unital
j j

linear map T3 by 1.3. Thus, we have demonstrated a function on ^(^)# to

be a member of •#„(«#* ). The decrease under the action of positive unital maps,

however, in this case is not surprising at all since every unital positive linear map is

a contraction, which fact is well-known since many years, see [14].

1.7 Example. Let n = 2, and col9 o>2 and al9 a2 be density operators such

that both CD1 + CQ2 and eJ1 + a2 are operators of rank 2, Then, by 1.6,

(*) Ik1o}1 + c2co2||1z||c1(j1 + c20-2||1 for all cl9c2eC

whenever o)j= 0fT9 7 = 1, 2, with a positive, unital linear map T. By [1] one

knows that (*) is not only necessary, it is also sufficient for the existence of a

c.p., unital T such that co~afT9 j = l, 2, so providing a special case for the

validity of the implication (ii)-»(i) of 1.3. Further examples where the impli-

cation mentioned is known to be true are given by [4], [20]. One can, of

course, the n-tuple problem consider for state spaces of an arbitrary C*-algebra.

For the commutative case and all n the general solution of this problem has

been given in [2], [3], see also the description of the problem in [9], [19].

Another illustration, now referring to 1.4 and 1.5, is given by the following:

Let J3f be a unital ^-algebra, and CD, a e £f(s&\ One then

associates to CD, a a non-negative real P^(co, a) by the following setting:

P^CGJ, <T):= sup \(xm9xff)\
2

9
VxcojXffVrc

where xm, xff E j^n run over all vector representatives of co, a within all possible

unital ^representations {n, J^n} of j/ on some Hilbert-space jj?n where both co

and a may be realized as vector states simultaneously. This definition is given

in [18], and is in case of normal states over ff^-algebras equivalent to another

definition given in [12] as it has been demonstrated in [10]. P^ fulfils

conditions (b)-(d) of 1.4 if considered on <^(jaf)2 and if "orthogonality" of two

states co, a is replaced by the general notion of this term: co_L0- iff ||co — cr||1 = 2.

For the special choice j/ = ̂ (jf) also condition (e) of 1.4 holds. Let us

show that P^ is quasi-concave. Assume 00,-, GJ e Sf(j4\ j = l, 2, and re[0,1].
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Define vj- = rcoj. + (l — r)ffj. LetceT, and assume P^(coj9 GJ)>C, j = l, 2. If
cZO, (vls v2)e9Pf!(Fiaf; c) by triviality. For c>0, and e>0 such that c — £>09

we argue as follows. Let {KJ, Jfj} be unital ^-representations of jaf such that

there are vector representatives xj9 yj e ^j of coj9 GJ with

(xj9yj)2>c-e9 ./ = 1 , 2 .

Such xi9 yt exist by definition of P^.

Let n = nl@n2 be the representation of jaf acting on the orthogonal sum

in tne usual manner. Putting z1=> /rx1+N / l — rx2 and z2

^ 3^2. we see vj(A) = (zj9n(A)Zj)9 j = 1, 2. Therefore, by
definition of P^ and (*): P^(vl3 v2)1/2^|(z1, z2)\ = \r(xl, yl) + (l-r)(x29 y2)\ =

ryc-s = c ~ e ' so

This has to hold for any e>0 sufficiently small, so P^(vl9 v2)>c, i.e. ^R(P^\ c)
is convex. The latter means quasi-concavity of P^. Furthermore, in [6.] one

shows P^(co, (j) = inf co^cr^"1), telling that P^ is the infimum of w*-continuous
A>0

functions. Hence, P^ is w*-u.s.c. on y(jaf)2. Since unitary invariance is ob-

vious we may take together all these facts and conclude that P^ is in J?2(j3f).

Let us assume now that ^ acts on a Hilbert-space 3?. By a result of [6] one
knows that for normal states co, (7 over stf" (the double commutant of ja^5 i.e.

the weak closure of jaf) always P^Cco, a) = P^(co/iaf, cr/jaf) holds true. Especially,

for an irreducible C*-subalgebra of &(tf\ i.e. j/" = ^(^f), we find for normal

states co, cr 6 ̂ (^f )Hs : P^(^}(cu, a) = PJlf(co/Jf9 07^). By our discussion above
P^e^2(^), hence we see that P^^ belongs to J2(^f) since for jaf every
irreducible UHF-algebra could have been chosen (once more again "UHF9' is
not important in the proof). Thus, P^(^} fulfils 1.4 (a)-(e). Applying 1.3 we

recognize that P^(^} is a generalized transition probability, i.e.
in the sense of 1.5. In [18] one finds an explicit expression for

if co, o- e &(#> )*, then Pa(^(o)9 (r) = (Tr. (co1/2^1/2)1/2)2 ,

where we identify normal states with density operators (Tr. means "trace of").

For later use, we give the following remarkable special case of 1.4 (see [5]):

Io9 Proposition,, Let co, ere^Jf)^., and be cox, coy the vector states given

by the unit vectors x,ye<%?. There exists a completely positive unital linear

map Tover &(jf) with co = cox°T, G = a)y°Tiff
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// this condition holds true the T in question can be chosen to be a normal

map,

1.10 Remark. For all questions relating operator algebras, positive and

completely positive linear maps over operator algebras and their applications the

reader is referred to textbooks, e.g. [17], [11] and their corresponding lists of

references. Concerning positive maps see also the review [16]. Concerning

"generalized transition probabilities95 and references to that subject see [5]-

[8], [10], [12], [13], [18], [19].

§20 Technical Preliminaries

Let j/ be a unital C*-subalgebra of 38(tf?\ where 3? is a separable infinite-

dimensional complex Hilbert-space. By j^, g$(tfP\, j&+, g$(3F)+ the selfad-

joint and positive portions of jaf , £8(3? ) will be denoted, respectively. Let n

be an arbitrary but henceforth fixed natural number (to be non-trivial n > 2 is

supposed).

2.1 Definition. Let o> l5..., oon e <9*(JF)*, Al9...9 AnE^(^)h, then

X(o>l9..., con; Al9...9 An): = sup
j=l

if (Dl9...9a)ne&'(j*)9Al9...9Anej*h9 then

K^(a)l9...9 ojn; A19...9 An):= sup 2 ^(Aj) ;
U£&(j*) j

i/col3..., o)n E y(3F)^ by convention we will agree to read

K^(coL,..., coni A19...9 AJ'.^K^co^,..., cott/J/'9 Al9...9 An)

whenever A e jtfh .

202

(i) K and K^ are continuous functions with respect to the uniform

product topology on 5%^) J x ^(^}n
h and &>(&)» x j^JJ(«^(jf )5 x jaf £),

respectively;

(ii) K(.,...,. m,Al9...,An) and K^(., ...,.; Al9...9 An) are convex and

wM.s.c. on c^(jf)J, ^(j/)"(^(^T)|), respectively;

(iii) in case of an irreducible <s$ i.e. jaf" = ^(jf), one has

K(coi9...9(DniAl9...9An) = K^((»l9...9<DniAl9...9AJ

and all A

Proof, (i) and (ii) are obvious from the definitions, (iii) follows from the

fact that <%(jtf) is strongly*-dense within ^(jaf"). In fact, the latter implies

{(UAiU*9...9 UAnU*): U e^(j/)} to be strongly dense in {(t/^t/*,..., UAaU*):
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U eW(j*")} for all choices {Aj}. For jf " = &(&) and normal states o> lv.., con

£&(&)* then follows K(col9...9 con; Al9..., A^<K^col9...9 a)n; Al9..., An\

from which fact together with ̂ (^) => <%(&?) the validity of (iii) can be seen.

Let «/^fc denote the full matrix algebra of complex k x fc-matrices. Assume

J£ is a unital C*-algebra. We should remember that a linear map T acting from

^ into ^ is said to be completely positive (see [15]) if T®idfc :

u^®u^ fcem = (my)i-^r®idk(m) = (r(my))6u^®^fc is a positive map for

fe=l, 2, 3,... . A linear map 0 acting from ^* into ^* is said to be

positive if 0(.^+) cz ̂ J, and will be referred to as a stochastic map if

0(«9*(uO) c y (u^), and is said to be completely positive (c.p.) if the adjoint

map $+ acting over the second dual ^** is c.p. . If 0 is stochastic and

c.p. we call (j) c.p. -stochastic', (/) is c.p.-stochastic iff $+ is c.p. and unital

over ^**. Each/e^®^)* is uniquely determined by a family (/y), with

/^ 6 u^*, via the relation f((mlj))= Z /i./0%)- A linear map over ^* is c.p.

iff for any positive linear form f=(flj) over Jt®Jtk always follows that

defines a positive linear form over the same algebra for

any natural k. In case of a W* -algebra ^, with predual u^, a linear map

over u^ is said to be: positive, if 0(u^|s+)c:uKls+; c.p. if 0+ is c.p. over u^;

stochastic if (})(^*r\&'(^))<=.^*r\&'(^). If ^ is c.p. and stochastic the

term c.p.-stochastic on u^# will be in use. In case of ^ = &(<%?), ^(3$?)* will

be identified with ^~(<%?), the operators of trace-class, in the usual manner.

It is not hard to see that a linear map 0 over &(jf)# is c.p. iff (a^) >0 within

^(e^)®c^fcc^(jf)®^fe (inclusion as sets of bounded operators over the

space J>^®Ck) always implies (^(oy)) > 0. One then easily sees that the

following is true :

2.3 Remark.

(i) Let Jt be a unital C*-algebra. If T is c.p. on u^, then T+ is c.p. on

J£* in the above-discussed sense;

(ii) let ^ be a W*-algebra. If $ is a c.p. linear map over Jt* and

0(-^*)c^*j then the restriction (fr^ onto the predual is c.p. Espe-

cially, if T is a linear map over ^ which is c.p. and normal, then

T+ : = T/"^ is c.p. on Jt*.

Let us take notice of the following very simple, but nevertheless very useful

technical results :

2o4 Leminao Let P be an or tho projection over 3? , and vl3..., vm states over
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^(^f). Suppose a linear map $ is defined over £%(<%*)* by <j)(co)(A)

= co(PAP)+ X ca{P^v^A)9for all co e «^(jf )* and all A e ^(^f ), with a finite de-

composition {Pi}i=ii...im of P-L = i — P into mutually orthogonal orthoprojections,

Then

(i) (j> is c.p.-stochastici

(II) for dim P<oo, and vl3...3vme^'(j^')^ (normal states)

(Hi) under the assumptions of(ii),for any c, p. -stochastic ¥ over

the composition map Q = ̂ )°W^(^^ is c.p, -stochastic on

and hence Q+ is a normal unital c.p. map over

Proof, The linear map T given by T(A) = PAP+ E vk(A)Pk, ^ e ^(jf ), Is

c.p. and unity preserving (since Pk>® and states are c.p.). Hence, T+ = (j) Is

c.p. -stochastic (see 2.3 (I)) and (i) is seen. To see (il) one notes that in case of

dim P< oo , P^S(j^)P Is finlte-dlmensionally, so has only normal states. There-

fore, o>(P(.)P) e ^(Jf% for all coG^(^f)*. Moreover, the v/s are supposed

to be normal, so the assertion follows. (Hi) Is a consequence of 2.3 (il).

205 Lemmao Let G)l9...,cDn be density operators over 3? „ There exist

sequences {colm},...? {o)nm} of density operators such that:

(i) all ojkm have finite rank, and || • ||1-llmcokm = cofc Vfc ;
m

(II) t/igre exist c.p.-stochastic maps $m over
0m(a>ftJ = fl>m Vfc, m;

(HI) (j)m(^(je)*) c 0(jf ), /or all m .

Proof. Assume cofc = X As^fcs? w^h {.Pfcs} a decomposition of 1 Into mu-
s=l

tually orthogonal, onedimensional orthoprojectlons, and $k 1 > f$k2 > - - - . Define
n m

pm= v v Pks. Let <2i m , . - - j 6nm be onedimensional, mutually orthogonal
k=l s=l

orthoprojectlons with Qjm<P^ Vj. We define finite-rank density operators by

setting ojkm= S /JfaPfc. + ( Z As)Sfcm- Then, (i) Is easily followed. Let Im be
s^m s>m

a set of indices defined as Jm={je {!,..., n}: X ]8/s = 0}. Let us fix m. If
s>m

Im= {!,..., w} we define ^m(o}) = a}(Fm(.)Fm) + co(P^)v with an arbitrarily chosen

normal state v. Since In this case PmQ)k = o)k Vfc, and a)km = ojk Vfc, we see $m(cofc)

= $m(a}km) = o)k and the chosen $m satisfies (ii) and (Hi), the latter following by

applying 2.4 (H). Assume IOT^ {!,..., n}. We may suppose n£Im. If j£Im,

let us define normal states vjm by
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v^MZ/y-'Tr.CZ^M, for Wle
s>m s>m

Then, applying 2.4 (i), (ii) once more again we see that

is c.p. -stochastic and satisfies (iii). If je/m , we have

so 0mK») = <»/. If J <£Im,j*n, then Pmcyym = cojmPm =

o if
, and o)^- S 6«J = 0.

( L ^.s)e;m if k=j \ffm
s>m

Hence, by definition of vjm : 4>m(<ajm) = Tr. ( £ Pj,PjJ (•) + (£ />7>j« = Tr. a)/ . ).
s^m s>m

Analogously 0m(co;jm) = con follows, so (ii) is seen.

2o6 LemmEo Let co^..., con 6e density operators over the separable

Hilbert-space 3? . There exist sequences {c0llfl},..., {conm} of density operators

and linear maps (j)m over &(3F)* such that:

( i ) all a)km are of finite rank and \\ • ||1-limc»fcm = cofc9 Vfe;
m

(ii) the c/)m are c.p.-stochastic over ^(Jf)* with cokm = ^m(ojk), V/c, m;

(iii) (j)^(®(3?Y}^@(^)* Vm.

Proof. Let 0);= X j8y5P.s, with PJS9 fijs and also Pm having the same
s=l

meanings as introduced in the proof of 2.5. Take an orthogonal decomposition
00

{Qsm} of P^ into onedimensional orthoprojections : P^= Z Qsm> Let us choose
s=l

an onedimensional orthoprojection Rm, with Rm<P^ and partial isometries

Fms e <8(JT) with 7*sFms - Qsm, VmsV*s = Rm,Vs. We define linear maps 0m over

^(jr)^ (in its identification with ^(jr)) by cj)m(A) = PmAPm+ f Fms^F*s,
s=l

Vy4 e 5r"(^f) = ^(^f)H:. Due to our assumptions 0OT is c.p.-stochastic

over &(JF)#. Let us define o}J-m: = ^m(coJ-). By construction of 0mJ

Q>jm= S fijSPjS + Bjm> with some Bjm>0. Since 0TO is stochastic, ojjm is a density
s< m

operator for all m. Now, || • l^-lim Z PjsPjs=Q)j, therefore limTr. Bjm = 0.
m s<m m

From this, together with Bym>0, Bjm—^ 0 follows for Vj. Hence o)^ tends

uniformly (functional norm) towards coj9 for all j. By construction ^m(^4) has

finite rank (<nm + 1) for each ^4 E &~(Jl?\ so o)ym has finite rank. This proves

(i) and (ii). Finally ^ = Pm(.)Pm+ f F*s(.)Fms. Due to our assumptions
5=1

V*sAVms = (Tr . RmA)Qsm (see the choice of Fms), so by 2.4 (ii) and since dim Pm < oo
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we follow (j)ln
+(a)) = a)(Pm(.)Pm) + a}(P^)Tr. Rm(.) to be a c.p. map satisfying

(iii).

2/7 Lemma, Let ty l 9 . . . ,<«„ and al,...,an be normal states over &(jj?).

Assume <p is a c.p.-stochastic linear map over £%(J3?)* such that o}k = (j)(cFk)

for all k. Then, there exists a c.p., unital linear map T on &(j^) such that
r-j-i \l

Proof. By 2.5 there is {okm} c y(3IF\ with akm-^ ok, V/c, and c.p.-stochastic

(j)m with (f)m(&(3t?)*)c:^(3e)* such that ok = <j)m(okn^k, Mm. By 2.6 there

Is {a)km} c=y(jf^ with o)km—^*a)k9 V/c, and c.p.-stochastic<$>'m over ^(^f% with

As a composition of c.p.-stochastic maps Qm is c.p.-stochastic, too. This Is true

for any m. Moreover, Om(^( Jf%) c ^(jf )„., so Sm: = Qm/ig(%?}, are c.p.-stochastic

maps on ^(«#%, with Sm(akm) = a}km, V/c, m. Let Tm be the unital, c.p. linear

map defined by Tm: = S^. Then, u}km = akm°TmMm, V/c. Since the unit sphere

of the bounded linear operators over &(<%?} is compact with respect to the weak

operator topology over the duality (&(j^), ^(Jf%> (see 1 for the definition of

a w-topology) there exists a weakly converging subnet {Tmp}\ w-lim Tmp = T.

Due to Tmp(l) = l, Vj8, also T(l) = l has to hold. It is clear that Tis a completely

positive map. For any AG&(JJ?) we have the following estimates:

\ffkoT(A) - (Jkm^Tm^(A)\ < \ak*T(A) - akoTnp(A)\ + \(ak- akm,) (Tmp(A)) \

<\ak(T(A)-Tm/i(A))\ + \\A\\\\ak--akmp\\. Since akmp tends uniformly towards

ak and since T is the weak limit of {Tmp} the left hand side of our estimation

tends to zero for any ^4 e &(j>f?) (remember that ak is normal). Hence

Gk°T=w*-\\makmf°Tmp in the w*-topology on ^(^)* with respect to ffl^jf).

We know, however, <rkmfl°Tm/i = Q)kmfi and cokmf}-j-* cok (even uniformly), so

®k°T=ojk, V/c, has to hold with a c.p., unital linear map T over &(jtf').

208 Lemma0 Let jj?0 be a finite-dimensional complex Hilbert-space, and

^f = ̂ fQ®^l with another complex Hilbert-space ^f\. Let 0 be a completely

positive, trace-preserving, linear map over &(jj?0). Assume xe^ is a unit

vector, and E denotes the one-dimensional orthoprojection corresponding to x.

There exists a unitary U e^r(jf) such that

0(y4) = Tr1C/(v4®£)l/* for VAE^(^0),

where TYI means the relative trace over 3?v with respect to «#*.

Proof. By the Stinespring-theorem (see [15]), and since Jf0 Is of finite
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dimen- sion, we find a representation n of ^(J^Q) on some finite-dimensional

Hilbertspace $f" , and a bounded linear operator Ffrom 3? ' into 3?$ with W* = 1,

such that (j)+(B)=Vn(B)V*, VBe&^o). It is known that we may identify

W with a factorization e*f' = Jf0®jri such that n(B) = B®lfoT all Be0(jf0)i

hence (^+(B)=Pf(B®/)Pf* for some bounded W, with WW* = L Let jf"

= ^f0®«^"i> witn ^f'[ = ̂ 'i®^2 for some separable Infinite-dimensional com-
plex Hilbert-space <tf"2. Assume ZE^'2 is a unit vector. We may Identify

je1 with ^r0®^i®Cz] within jf". Let P be the corresponding orthopro-
jection. Then, WP is a bounded operator acting from tf" into Jf0, WFF* = 1,

and (t>+(B) = WP(B®l)PW*, VBe&(jf0)9 where B®/ is understood to act on

^" = ̂ 0®^'. Since ^ is isomorphic to j^J, we might identify JT with

Jf" and have: there is R with RR* = 1 and (I)+(B) = R(B®1)R*9 VBe&(jP).

Let S be the isometry defined by S: ^Q3y^y®xE^. Then, S*(A®E)S

= A, and for VA e

(*) Tr0 A(j) +(B) = Tr. S*(A ® E)SR(B® 1)R* = Tr. fl*S%4 ®E)SR(B®1) .

The orthoprojection Q onto ^f0®[x] is dimensionally finite, so R*S*QSR = R*R

has finite dimension. Therefore, g1 is equivalent with R*R-L, i.e. there is a

unitary 17 with UQ = R*S*Q. From (*) one follows:

Tr0X0+(J3) = Tr. U(A®E)U*(B®1)9 VA, B

from which equality the assertion follows.

«13..., con and (T!,...,^ fee density operators over the

finitedimensional Hilbert-space J^0, Then, with ^f1? x, £ having the same

meanings as in the assumptions of 2.8, the following conditions are

equivalent:

(i) there exists a completely positive stochastic $ over ^(^f0)* (which

may be identified with ^(jf0)) with a}k = (/)(ak)) Vfc:

(ii) for every choice ofAl9...9 An€^(j^0)+ one has

, sup £Tr. (

Proo/ Let Wl(ffl9..., an) = {((j)(a1)9...9 ^(trn)): V^c.p.-stochastic}. This set

is convex and closed in ^(jf0)g. Assume (coi,..., co'n)^SDl(o- 19...9 (?„), and all co'fc
are hermitian. By a standard application of the separation theorem for convex

sets In real topological vector spaces we provide us with a continuous real linear

form /over ^>f0)X and real )B such that /(G>(,..., ^)
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V<£ c.p.-stochastic. Now, / is given by some Ai9...9 Ane^(jfQ)h through

the formula f(vi,..., vn) = £ Tr. vtAi9 Vj e &(Jf0)h, so £ Tr. w'jAj > j8 >

2 Tr. (j)(crj)Aj9 V^ c.p.-stochastic. Particularly

(*) sup X Tr. (j)(oj'j)Aj > sup ]£ Tr. (j)(®j)Aj,

where the "sup" extends over all c.p.-stochastic linear maps. Since all cof
j9 GJ

have equal trace, we may suppose ^-^O. By 2.8 we see that (*) means that

sup £ Tr. (a)'j®E)U(Aj®l)U*> sup £ Tr. (®j®E)U(Aj®l)U*

for some ^1?...3 AnE ^(^Q)+ if (a/l3..., co^)^9K(a1?...3 an) has been supposed0

Therefore, the implication (ii)-»(i) is true. Since the set of c.p.-stochastic maps

is a semigroup, with a view to 2.8 again, validity of the implication (i)->(ii) is

also easily justified.

2old PropDstttoiL Let co'l9...9co'n and a'l9...9G
f
n be density operators over

the separable infinite-dimensional Hilbert-space 3?» Suppose all ojj and

G'J have finite-dimensional range (i.e. are of finite rank). Then, the following

conditions are equivalent:

(i) there exists a c.p.-stochastic linear map $ over ^(^)^ with

<4 = 4>K) Vfc;
(ii) with ft defined in 2.1

K(cQ'l9..., Q)'n; A19...9 AJ^Kfa,..., a'n; Al9...9 An)

for every choice of Al9...9 Ane j/+, where <s/ is an arbitrary UHF-
algebra over 3?.

Proof. (i)-»(ii). Let ^ c: j/2 c • • • . j/= \j j^c? with finite type-I-factors
k=i

<s/k. Assume <s/k is of type Jnk. j& is UHF if nk-^oo. Due to 2.2 (i) it is enough
00

to show validity of (ii) for Al9...9 Ane \j jtfk+. Let us suppose the latter. Let
fc=i

m be the dimension of the joint range of the family o>i,..., co'n, aj,..., a'n. By

assumption m<oo. Now, there exists an index k such that nk>m and Al9...9
Since <z/k is a type-Jnk-factor over c^, we might identify tfP with
witjl dimjf0 = wk, and j^fc is identified with ^pf0)(x)/, i.e. ̂ 4/£

= Xk®l for some ^E«^(C^O)+. Let R be the orthoprojection onto the joint

range of Q)'l9...9ff'n. With the notations of the assumptions of 2.9, we find

Fe^(^r) with VRjf^jF0®[x]. There exist density operators coj9 <7j

such that Va)'jV* = a)j®E9 Var
jV^ = (ij®E. Therefore (see 2.1):
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where the "sup" runs over ̂ (jf). Assume (i) holds. Then $' =

is c.p.-stochastic on ,^(jf%, and (Dj®E = (j)'(Gj®E)yj. But then, T(y4): =

Trt 0'(4®-E) f°r a^ ^4e«^(jf0) defines a c.p.-stochastic linear map on

with o)j = T(oy), V j. 2.9 implies

sup E Tr. (co,® E)17(X,® 7)17* < sup £ Tr. (tr,®£)l7(X ,
t/6^(jr) j

from which inequality by means of (*)

K(co'l9...9 co;; ^13...5

follows. Therefore, (i)->(ii) is true.

To see the implication (ii)-»(i), let us suppose (ii) holds. Especially, (ii)

holds for all Al9...9 An E<z/k, with k such that nk>m. With the notations of the

first part of this proof (see (*)) we may conclude that 2.9 (ii) is valid. By 2.9

there exists a c.p.-stochastic 0" over &(JF0)9 with cDk = (j)"(a^), Vfe. Hence,

by well-known facts, there are VjE^(^0), with £ 7JK7 = 7, such that

0"( • ) = Z F/( • )^y- Let Wj e ®(tfv®tfd be defined by Wj = F;® 7. Then,

0'(-)=L Wy(-)^* is c.p.-stochastic over ^f0®<^i)*> due to £ WJWj = L

Finally, J$: = V*<I)'(V(')V*)V is a c.p.-stochastic map on &(<%?)* with a)- =

^JX v j.

3o Proofs of 1.1-1.3

3.1 Proposition,, Let o> l 3 . . . ,con a?t(7 <7 l 5 . . . , a,, 5g normal states over the

bounded linear operators on some infinite-dimensional separable complex

Hilbertspace 3? . The following conditions are equivalent:

( i ) there is a completely positive stochastic linear map 0 over &(j#*)*

with cofe = $((7fe), Vfc;

(ii) K(a> l5..., coni Al9...,AJ<K(al9...9an', Al9...9AJ for all

Al9...9 AnEj/+9 where j^ is an arbitrary UR¥-algebra over tf\

(iii) there exists a c.p.9 unital linear map T acting in 3$(3?) such that

cofc = (7feoT, Vfc.

Proof. The equivalence (i)<->(iii) is clear by 2.7. We show the implication
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(III)-»(ii). Again we identify normal states with density operators. By 2.5 there

are finite-rank density operators {®km}3 with ]] ° I11—lim0Y = OY, Vic, and c.p.-
m

stochastic maps 0m on <%(&)* with

0»(O = a* *mO»C*T)^ **(*}* Vm, Vfc .

By 2.6 there are another sequences {<%„} of density operators, all of finite

rank, with || - ||1-limo)fcm = cufc, and c.p.-stochastic maps $'m over 08(tff)* such

that ^+(@(^)*}^^(je)^ Vm, and ^+(^) = ̂ (o)fc) = co,m for all m, fc.

Let us define a c.p.-stochastic map Om on 38 (j^)* by

0» = ft,++°r + °6. (see 2.3).

Then, Om(crklll) = co/cm, Vm, fe. Moreover, by the above-listed properties of 0^

0m, we have Om(^(^f%)c: 38(39?)^ Vm, therefore Qm/a^^ Is a c.p.-stochastic

linear map on ^(jf% (see 23 (II)). Hence, all the assumptions for an application

of 2.10 are given and we may apply 2.10 with the result that

K(colm9...9 (Dnm\ Al9...9 An)<K(alm3..,5 ®nm; Al9...9 An)

for any choice of Al9...9 Ane j/+. With a view to 2.1(i) and since {cr/£m} and

{o)km} are sequences which approximate ak and o)k In a uniform sense, respectively,

the validity of (II) becomes evident. We show the Implication (ii)-»(iii). Assume

(II) holds for any choice of Al9...9 AnEj*?+y and 0m, (j)'m, (crfew)? (cokm) be the maps

and sequences, respectively, Introduced In the first part of the proof where we

have already seen that (III), which is equivalent to (I), implies (ii). Particularly,

this last-mentioned Implication applies to the situation ®&m = ^++(c%), Vm3

with the c.p.-stochastic $^++ on ^(jf7)*, and we get

(*) IC(cylm5..., Q}nm; A19...9 A^^K(coi9...9 con; Al9...9 An)

for all choices Al9...9 Ane<$/+. Since <pm Is c.p.-stochastic on &(jf)*9 too, by

the same argument and since 0m(o"/£m) = eJfc? Vfe,

(**) K(<rl9...9 ®n; A19...9 AJ<K(alm9...9 ffnm; Al9...9 An)

for all Al9...9Anej&+ has to hold. By assumption (ii), (*) and (**) may be

taken together and result In

K(colm9...9 conm; A19...9 An)<K(almy.a., anm; Al9...9 An)

By 2.10 we get a sequence {Qm} of c.p.-stochastic linear maps over

with Q)jm = Qm(0-jm), Vm, Vj. Defining the c.p., unital linear map Tm over

i by Tm = O+, we have cokm = (rkm°Tm9 Vic, m. Let Tbe a weak accumulation
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point of the sequence {Tm} with respect to the weak operator topology with re-

spect to the duality (&(<&), ^X%>. Arguing as in the proof of 2.7 we see

cok = ak°T, Vfc3 i.e. (iii) holds with a c.p., unital linear map T over ^(^).

3o2 Proposition., Let stf be a unital C*-algebra, and v1?..., vn and /*!,..., iin

be states over jtf. Then, the following conditions are equivalent (see 1. 1.2,

2.1):

( i ) there is Te &„(<$?) with vk = T(fik) Vie;

(ii) KJyi,..., vn; Al9...9 An)<K^(^..., nn\ A±,..., An) V^-e j/+;

(iii) /(v l3...5vn)>/(Ml3...5Mn) V/eJnCO.

Proof. Let WKjji) be defined as W(ji) = {(TOO, . . . , TOO) : Te ^u(j/)}5 which

is a subset of j/^n. 3Jl(jj) is convex and w*-closed. Therefore, an application of

the standard separation theorem for convex sets to the situation v}e«^(j^),

(v'l9...9v'n)&Wl(iJL) guaranties the existence of 6jEjtf+ such that K^(v'l9...9v
r
n
m

9

Bl9...9 Bn)>K^(fjLl9...9 [ini Bl9...9 Bn) (the argumentation running formally as in

the proof of 2.9 with obvious modifications, so we omit the details). Therefore,

(ii) implies (i). The ^-functions are w*-l.s.c., unitarily invariant and convex,

so the implication (i)-»(ii) is easily derived (we omit the details). ( — K^) is

w*-u.s.c., unitarily invariant and concave on ^(j^)". Since concavity implies

quasiconcavity, we have -K^(- ,..., •; Al9...9 An)E &&sf). Hence, the impli-

cation (iii)-»(i) is true. On the other hand,

is an intersection of convex, w*-closed, unitarily invariant sets (by quasi-con-

cavity, unitary invariance and w*-u.s. continuity for /e Jn(jaf)). Hence W(ii)

is w*-closed, convex, unitarily invariant and contains (/x1?..., //„). By the

already established equivalence (i)«-»(ii), yjlQj) is the smallest set of this specifi-

cation, so %Jl(ij) = W(ii). This shows (ii)->(iii).

Now, we are ready to prove even a sharpening of 1.1 :

33 Theorem* Let 3? be an infinite-dimensional separable complex

Hilbertspace. Assume col9...9con and 0l9...9crn are normal states over

The following conditions are equivalent to each other:

( i ) there is a completely positive, stochastic linear map 0 with

(ii) there is a c.p.9 unital linear map T over &(3F) such that ojk =

Vfc;
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(iii) there exists an irreducible UHF-algebra j& of bounded linear oper-

ators over 3? such that there is Te ^u(^) with o}k/J^=T(ak^\ V/c;

(iv) for all/6 &„(&) (see 1.2)

If one of the conditions (and so all of them) happens to be true, then (iii) is

true for every irreducible UHF-algebra over 3? '.

Proof. Let $£ be as in (iii). By 2.1, 2.2(iii) we have

(*) K(p±9..., pn; A19...9 An) = K^(ply...} pn; Al9...9 An)

for any choice of p1 , . . . , pn e ^(^)^ and all Aj e <x/+ . If (iii) is true, 3.2 and (*)

show equivalence of (iii) with

K(o)l9...9 (Dn; Al9...9 An)<K(aly...5 an; Al9...9 An)

for all Aj e j^+ . This, however, is equivalent with (i) and also equivalent with

(ii), which can be seen by means of 3.1. Therefore, (i)«-»(ii)«-»(iii) has been

established. From 3.1 follows that (iii) is true for any irreducible UHF-algebra

jaf if one of the conditions (i), (ii) is full-filled. Finally, from 3.2 and the de-

finition of £n(^) (see 1.2) follows equivalence of (iv) with (iii).

Let jaf be a UHF-algebra over the infinite-dimensional

separable complex Hilbert-space JF, and Al9...9 Ane<$/+. With the K-functions

defined in 2.1 we have:

(i) jK(o),.. . ,G);A1 , . . .M»)=ll Z^ j l l /o
(ii) i/ a?!,..., a)ne«9*(jf% are mutually orthogonal density operators,

i.e. o}j(Dk = Q VjVfe, then

K(o)i9...,a)n'9Al9...9AJ= ± \\Aj\\.
7 = 1

Proof. To see (i), we consider the linear <j) over £%(ffi )* defined by

= (Tr. p)co9 Vpe &(&)+. By 2.4, (j> is c.p.-stochastic on 38(3?}^ and co = 0(o)

for each density operator cr. Application of 3.1 yields K(co9...9co; Al9...9An)

= inf K(al9...9 0 n
m

9 A l 9 . . . 9 An). Especially , the value of K(co, ..., o)',Ai9...9 An)
V<rje&(ar)*

does not depend on the particular coey(jf)^ chosen. Taking an

one-dimensional orthoprojection E, with Ex = x for the unit vector xeJf, as
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a special case of a density operator, we see J£(co,..., co; Ai9..., An) = K(Es.,.5 E;

Ai,...,AJ= sup XTr.EUAjU*= sup (Ux, E AjUx)=\\ Z Aj ||.
Ve&W j Ve^(^) j j

To derive (ii), assume col9...9 can are mutually orthogonal density operators,

and {Pj} be an orthogonal decomposition of 1 into orthoprojections with PjCOj

= o)p Vj. Let {al9...9 <JB} be an arbitrarily chosen w-tuple of density operators.
n

We introduce a linear map over fflffi)* by $( •)= Z 0"/XV. Pj( • )„ $ preserves
7 = 1

the trace and is c.p. by 2.4, hence, it is c.p.-stochastic over 3$(3? )*. By con-

struction <l)(cOj) = (ij9 Vj. Applying 3.1 once more again, and having in mind

that the n-tuple {(TI,..., crj could have been chosen at will from the set of all

n-tuples of density operators, we see K(col9...9 G>B; Al9...9 An)= sup
Vo-je^C^r)

K(ff19...9ffn',Al9...9A^. Especially, the value K(col9...9 con; Al9...9 An) has

to be independent of the specific orthogonal family col9...9con chosen. Let

us take n mutually orthogonal one-dimensional orthoprojections El9...9En as

our special choice. Then,

(*) K(E19...9 En; A19...9 AJ = K(a>l9..., coni Al9...9 An)^ \\Aj\\ ,
j

the inequality being an obvious consequence of the definition of K. To see (ii)

we need some auxiliary construction.

4o2Lemma0 Let g, P be orthoprojections, with dimP=oo, dimQ<oo.

Then, dim P A g1 = 00.

Proof of 4.2. Let {uk} be a complete orthonormal system in P^. Then,

uk = Quk + QLuk. Let J = {kj°. Qukj ^ 0} . If card Jf\ J = oo (Jf means the natural

numbers), uk = QLukMkejf\J, and the assertion follows. Assume card

E>f\J<oo. Then, l_{Qukj}je^~\c.Q^, Let dim Q = m9 and let us consider the

systems ry of vectors given by rj = {Quk. (ro+1) + 1,..., 6«ku+1)(m+1)}, 7=0, 1, 2,... .
Each of these systems contains m + 1 non-vanishing vectors. Since dimg = m,

there exist nontrivial systems {^•/)}^=
+

1
1 of complex numbers such that

2( Z @rJ}ukj(m+i)+^ = ®> from which by means of the orthogonality of the uks
= rm+l

follows that 2 ^r %J (m+1)+,= : Wy^O, with wj- = 61wy, Vj. By construction,

the Wj are mutually orthogonal: (wj9 wfc) = 0, VjfVfe, and [wl5..., wfc,...]

On the other hand, since Wjejj^, u2,...], PwJ- = wJ-, so the infinite-dimensional

subspace [wl5..., wfc,...] of 3? is contained in both g1^ and P^f , and dim

Q-L AP=oo follows.

43 Lemma. Let Pls...Pn be orthoprojections over jf, withdimPj = oofor
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all j. There are mutually orthogonal unit vectors xl9...9xn such that

PjXj = Xj\ Vj.

Proof of 4.3. For x1 let us take a vector \\x^\\ = 1, P1x1=x1. Assume, we

have yet built a system (xlv.., xk} of vectors, being mutually orthogonal, with

PjXj = Xy, j = 1 , . . . , fc. We construct xk + 1 as follows : let Qk be the orthoprojectlon

onto [xj,..., xfc], then dimg/£ = lc<oo5 and 4.2 can be applied showing dlmg^

APk+1 = co. Take ||xk + 1|| = l, x fc+1 e Jf , with Qi AP f c + 1x l k + 1=x f c + 1 . Then,

{xl9...9xk+1} is an orthogonal system of unit vectors fulfilling Pjxj = xj Vj<

fe+ 1. Successive application of this procedure gives the result.

We continue in the proof of 4.1: due to 2.2(i) It Is sufficient to prove (il)
00

for Al9...9Ane W jtfk+9 Aj^Q. Hence, assume AjGjtfk+9 j = l,...,n, non-
fc=i

trivial. Since j/+ is a finite type-I-factor we may assume a spectral representa-

tion ofAj9 Aj=^ KjkPjk* with {-P/jJ tne corresponding orthogonal decomposition
k

of 1, and oc j-1>oc j-2>°">0 the points in the spectrum of Ajf Especially, \\Aj\\

= ay! 7*0. Since j*k n ̂ ^(Jf) = {0}, we must have dim P^ = 00, Vj. Then,

by 43 we provide us with an orthonormal system {x1?..., xn} such that PJ-1xJ- = xJ-,

j = l,..., n. Let us make a special choice for JE l9..., £„ in (*): take E7- as the

orthoprojectlon onto [x7-]. Then, by the choice of xy we obtain

Z 11^-11= ZTr.£^,< sup ZTr.£yl/^E7*
j J UeVW J

from which inequality together with (*) the assertion (il) follows.

44 Lemmsio Let jaf be a UH¥-algebra over jf. Let col9..., Q)n
n

Assume K(col9..., Q)n; Al9...9 An)= X Mjll holds for every choice of

Al9...9 Anej/+. Then, the a)j are mutually orthogonal.

Proof. Let E1?..., En be mutually orthogonal one-dimensional orthoprojec-

tions. By assumption and since X(vl9..., vn; Al9...9 An)< ^ \\Aj\\ for any choice

Vj, . . . , vn of density operators and every subset {Al9...9 An}ci^+ we may apply

3.1 to see the existence of a c.p., unital linear map T over ^(^} such that

E/c = ovT, Vfc. By 1.9 we then have Pm^)(Ei9 Ek)>P^^(^ o)k) Vf, fc, and

having In mind the expllcite formula for Pa^) (see 1.8) we might conclude as

follows: let iVfc, then 0 = (Tr.£iE02 = (Tr.(£^2EJ^i
1/2)1/2)2 = Ptf(^)(-Ei, £k)

^^(^)(^^ = (Tr.(Q)//2G}4Q)}/2)1/2)2^0, so (Oi(ok = Q for i^ fc has to be
followed.

L^ jaf fee a UHF-aigf^fera over JT, and col3..., G}



636 PETER M. ALBERTI

given. Assume K(col9...9 con; Al9...9A^)=\\^lAj\\ for every choice of

Al9...9 An£jtf+. Then a)1 = --=con.

Proof. The argumentations of the proof of 4.1(i) show that ||2^/ll i§

the minimal value of K(vl9...9 vn; Al9...9 An) for v l3...3 vne£f(3F)*. Therefore,

our assumption tells us that

K(vl9...9vn', Al9...,An)>K(cD1,...)a)n; Al9...,AJfor all

and an arbitrary choice of Vj e y(jf )*, j = l,..., n. Applying 3.1 once more

again gives a c.p., unital linear map Tv over &(3rif) with cok = vk°Tv Vk.

Making the special choice v^ = • • • = = vn we see col = •••=«„.

Let $£ be a UHF-algebra over 3? . Then, jaf is separable. Especially9

there is a normdense countable subset {Ak}™=1<^jtf+ for jaf+: {ylfc}^=1 = jaf+.

It is not hard to get convinced that we may choose {Ak} in such a way that

jCJIAJ>IIIM/cJ for any choice (Jc1?...5 IcJe.yTg, with

^n\{(m, m, . . . , m) : m e ̂ } . Let us define

for any k = (kl9...9 fcJe^Tg. By 4.1 we know that I^(G)l3...3 con)e [0, 1] for

all a)j ey(«^%? and Rk is concave and w*-u.s.c. over y(jj?)%. Let 3?n be the

set of sequences

and define

for

We then have :

4,6 Ler j/ feg an UHF-algebm over <%?; {P^(ja/; • • • )» ^ e «^"}
is a system of w*-w.s.c., quasi-concave and unitarily invariant functions

on c5^(jf)J3 wifft the following additional properties:

(i) P1(j/;a)1,...,Q)B)E[0, 1] Vco^
(ii) PA(J/; wl3...3a}n) = 0 ijgT

(iii) PA(j/;a) l3...9wn) = l zj^
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l9...9(iv) if s/ is irreducible, then P%e£n(jj?) and PA(jaf; col9

<rl9...9 an)for all 2e &n if and only if there is a c. p. -stochastic linear

0 over &(,&)* such that 0^ = ^(0^), Vk.

Proof. Quasi-concavity, unitary invarlance and (i) are obvious properties.

By definition, there exist p^eR]. and ake R^ such that PA(J/; col9...9 ft)n)

4fcn)}, where the infimum runs over all finite subsets Jt of Jf^. The

infimum of u.s.c. -functions is u.s.c., so PA(ja^; .,...,.) is w*-u.s.c. By

construction of PA, we have

This, together with density of {Ak} within the positive cone of s& implies

(ii), (iii) by 4.1, 4.4 and 4.5= Let ke */fg. Then, there is a sequence {/L<w>} c 3?n

such that limPA(m)(j/; vlv.., vn) = J?fe(v l3...3 vn) Vv,6^(jf)*. Hence,w
PA(j/;a} l90..5ww)>PA(j^; o1!,..., crj V 2ej^» implies ̂ (cOi ,...,

which is equivalent with

This implication holds for an arbitrarily chosen ^Gc/Tg. By 2.1(i), and

since {^4fc} is dense in jaf+ we may use 3.1 to see the existence of c.p.-stochastic

(j) over J*(^f)* with c% = ^(<jfe)? Vic, and the one direction of (iv) is proved,

The other way around follows by 3.3 and the fact that PJ,(J^; •••) e

case of an irreducible j^.

Throughout this part we specialize to n = 2. Let j^f be an arbitrary (but

throughout fixed) irreducible UHF-algebra over Jf. Fix A,Bej^+. If

x, y> %'* y' e 3? are unit vectors, with \(x9 y)\ = \(x'9 y')\9 then there is U e ^(^f)
such that x' = Ux9 yf = Uy (3? is a complex Hilbert-space). Therefore, if CDX

denotes the state cox = (x, (-)x)9 etc., we have ̂ (a} ,̂ coy; ̂ 4, B) = K(o)x,, o)r;A, B).

This shows that /4fB(0: = K(coJC, G)y; A, 5) with t=\(x, y)\2 is a weldefined
realvalued function.

For fixed A, Be£/+,f:=fA>B is a continuous and monoto-
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neously decreasing function over the unit interval

Proof. Having In mind that Pa^)(cox, coy) = \(x9 y)\2, an application of a

combination of 1.8 with 3.1 gives the decreasing behaviour. Let tG [0, 1], and

define xt = yjt x + ̂ /l — ty, with x, y unit vectors being orthogonal to each other:

(x, y) = 0. Assume {C/m}c^r(jf) have been chosen in such a way that, with

Am=UmAU*, Bm=UmBU*, the following limits exist (use a compactness argu-

ment repeatedly) :

/(O = K(cox9 coxt ;A,B) = lim {o}x(AJ + a)Xt(BJ}, a(t) = lim (x,

y(0= lim (y, Bmy), <5(f) = lim(x, Bmy), /?(»)= lim {(x, Bmx)-(y, Bmy)}.
m m m

A simple calculation shows that

(*) f(f) = a(0 + 7(0 + tft(t) + 2jt(l - i) Re 6(i) (Re-the real part) .

If 7(0 = |(5(OI exp iA, put z = <JTx + (exp-y ) Jl-t y. Then, |(x, z)|2 = r,

so X(o),, coz ; X, B) > lim {cox(Am) +

/(O? by (*). Therefore, d(t)>Q has to hold for f ̂ 0, 1, and can be supposed for
f = 0, 1. Now, the sequence { Um} c qi(3tf ) depends on the particular choice of

fe[0, 1]. Hence, in general for s=^: /(s)>lim {^(XJ + coXs (Bm)} =
m

a(0 + y(0 + sj5(0 + 2js(l-s) d(t\ Vs. We define a function F,(s) : =

a(0 + y(0 + sj8(0 + 2^/s(l — s)^(0 over the unit interval. For the second derivative

Ft(s)" we see Ft(s)"= - Js(l - s)-J(2 + (1 - 2s)2(2s(l - s))'1^) < 0, due to (S(0>0,

for s taken from the unit Interval. Consequently, Ft(s) is concave for s e [0, 1].

We take together all these informations and know: to every f e [0, 1] there Is a

concave continuous function Ft(s) over [0, 1] such that

(i) f(s)>Ft(s) Vs;

(ii) /(0=Ft(0;
(iii) Ft(s)>® Vs.

The function /is l.s.c. (the supremum of continuous functions by definition)

and decreasing so that it is continuous from the right. Let {tn} be an Increasing

sequence within [0, 1) and tn/t. From concavity of Ft(s) together with

(i), (II) and (iii) we close as follows: f(s)>Ftn(s)>(l-s)(l-tn)-
lFtn(Q +

(s-ai-O-1^(l)>(l-5)(l-g-1/(O for all se[X, 1). If te\tn, 1), for
s = t this yields

/(O > (1 - 0 (1 - ti-*f(Q > (1 - 0 (1 - O^/CO ,
where in the last step we also used monotonlcity of/. From the last written
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Inequality follows that Hmf(tn)=f(f). For t=i this follows from \Ftn(l)-f(ln)\

^ 0, since \fi(tj\, *5fe) are uniformly
bounded. In fact, since lim/(fn) exists (monotonicity), we have limf(tn) =

limFin(l). From Ftn(l)<f(l)<f(tm) (see (i) and monotonlcity) comes

lim/(fn)</(l)</(fm), so lim /(*„)=/(!) follows. Thus, / is also continuous
from the left.

We will have need for the following elementary, but very useful result :

5o2 Lemma,, Let g be a monotonously increasing continuous function over

an interval [a, j8]c Rl. Let h be a quasi-concave and u.s.c. function over a

convex subset 3E in a topological vector space. Assume /?(#") c: [a, /?].
Then, g°h is quasi-concave and u.s.c. over 3E.

Proof. Let ceR1, and define 9Kc = {xeS°: g°h(x)>c}. Assume h Is quasi-
concave and u.s.c. Let 9ftc = {re[a, /?]: g(r)>c}. 9lc Is closed. If !Flc = ^3

then 9KC = <£. If 9lc^0, by monotonlcity and continuity of g, there is c' E R1

with 9lc = [c', j8]. Since xe2F!c iff /i(x)e5Rc, we have mc = {xeX: h(x)>c'}.

By assumptions, 2FIC is convex and closed. Hence, g°h Is quasi-concave and
u.s.c.

Let us now specialize to the case of tuples within all constructions and

definition of 4, especially 4.6. By5AweknowthatfAkA(t) = K(cox,coy',Akl,AkJ,

with f=|(x, y)|2, is a decreasing and continuous function over [0,1].
Then, the function G^(f): = P^(j^'9 cox9 coy) as a uniform limit of Increasing,
continuous functions over [0, 1] has to be so, too. Combining 1.9 with 3.1 we
see for 1 e £>2 and t, s e [0, 1]

GA(0>GA(s)iff t>s,

so GA a strictly Increasing continuous function which maps [0, 1] Into Itself (see

4.6 (i)-(III)). Then, Gj1 exists and Is an increasing continuous function on

[0, 1] with range [0, 1]. We apply 5.2 with & = &>(&)* x &(&)*, <x = 0, /3= 1,
g = G^\ h = PA(jzf; .,..., .) and see that PA(o>, ^i-G^ol3/^; co, d) for

is a quasi-concave, unitarily Invariant, w*-u.s.c. function over tf'ffi)* x
with the additional property P^(cox, coy) = \(x, y)\2 for unit vectors

Since GA is strictly monotonous and continuous, PA(w5 a)>P^(a)', <r'), V2 e ^2

iff PA(J^; co, 0-)>PA(jaf ; co', a') Vie J^2. By construction, FAe J2(JT), VA
E ^2. With a view to 3.3, 4.6 we may take together the results of this section In
the following form :
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53 Proposition,, Let F0>{3? ) be the set of realvalued functions over

^(je)^ characterized by: pE&"0>(je) if and only if

( i ) P(CD, a) e [0, 1] VCD, a e <^(>f% ;

(ii) p is w*-u.s.c., quasi-concave and unitarily invariant;

(iii) p(co9 <7) = 0 iff CD, a are mutually orthogonal states;

(iv) p((o, a) = l iffco = cr;

(v) X^j °}
y) = \(x, y)\2 for all unit vectors x, yE3? ;

(vi) p(cD°T, ®°T)>p(cD, a) for any unital, completely positive linear map

T over &(£?) and all CD, a E &>(<%>)* such that co°T?

Then, for normal states CD, a, CD', a' E ̂ (3? )* we have:

'9 °'} for any

is equivalent with the existence of a completely positive, unital linear map

T over.^(j^) such that CD = CD'°T, o>=a'°T.

Proof. The P^'s constructed above belong to J?2(^) an(l $u^ (i)-(v)- %
4.6 (iv) and our discussions above all PA obey (vi), so the assertion is seen.

Note that in proving 5.3 we also proved 1.4. Finally, as the discussion of

1.8 shows, it is useful to take notice of the following fact:

504 Corollary, Let p(. , .) be a realvalued function over

with properties 5.3 (i)-(v). Then, pe J2(^) (see 1.2) implies p e

Proof. From p E J2(X) and 3.3 follows 5.3 (vi).

5.5 Remark. As we know from 5.3 each of the functions of

reduces to |(x, y)\2 if it is considered in restriction to the set of pure states [CDX:

XE3F, ||;G|| = 1}, i.e. P(CDX, oDy) = \(x9 y)\2 for all p E 3~0>(3e}. Hence, in context

of quantum statistical mechanics, one might think of each of the functions p with

properties 5.3(i)-(vi) as a "reasonable" extension of the notion of the quantum

mechanical transition probability (together with some of its properties) from pure

to mixed states in the sense of quantum statistics. Whether or not such an

extension is sound or useful cannot be decided or even discussed within this

mathematical treatment. This task together with a discussion of the physical

backgrounds of the search for such extensions is a matter of foundation of quan-

tum physics within the algebraic approach. This is to be done elsewhere.

Nevertheless, some heuristic and methodological aspects should be touched on.

The reader who is not willing to follow such speculations beyond mathematics
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might skip the rest of this point. In the literature on mathematical physics

several definitions for "generalized transition probabilities" exist. All of

which are known to the author fall into the class of functions described by 5.3 (i)-

(vi) if they are considered in restriction to normal states over $(&£). As an

additional property these examples are symmetic functions, i.e. p(co9 ®) = p(a, CD),

Veo, 0-6*9%^%. A really physical reasoning why such a symmetry should be

imposed is not known to the author (besides the simple fact that |(x, y)\2 is

symmetric). For a general element of &~&(3rif) such symmetry is not required.

Only in certain special cases the restriction onto the symmetric members of

&~&(2tif) exclusively will be sufficient to maintain the validity of both directions

of the assertion of 5.3 (see 1.9 for such an example). Ev.en the fact that for the

description of irreversible behaviour in quantum statistical mechanics one has

to deal mainly with dissipative (directed, non-reversible) motions (instead of a

description by means of groups and semigroups of automorphisms) seems to

indicate that also non-symmetric extensions of |(x, y}\2 should be meaningful.

Granting an interpretation for p in sense of a transition probability, one should

better refer to the number p(co, a) by convention as giving a transition pro-

bability from co into the one-point-set {a} of states than speaking merely of the

transition probability between CD and a (which suggests symmetry). The result

of 5.3 might be used to give mathematical support to the arguments in favour of

considering also non-symmetric extensions of |(x, y)|2. This gives, in a natural

way, an imbedding of the case of two states into the case of w-tuples (see 4.6)

and suggests to refer to the values of certain "canonical55 functions p(col9...9 CDn)

with properties as described in 4.6 as giving a "generalized transition probability

from CD^ into the convex set conv {t»_/-}5=2". In this case it is not clear, however,

how to impose "boundary conditions" on the pure states (compare 5.3 (v) in

case of tuples) without loosing the equivalence of p(cD1.)...,cDn)>p(al,..., an)

with the existence of a transformation T such that a)j = a>fT9 V j. Also, it seems

that there is no natural pendant of |(x, y)\2 in quantum mechanics for more than

two vectors, where generalizations to the general quantum statistical situation

could be based on in sense of the it-tuple-problem. Thus, these general con-

siderations don't seem to be as significant as in the case n = 2. These very

incomplete remarks are thought to serve as an impulse for further discussions

about generalized transition probabilities between mathematicians and physicists.
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§ 60 The Case of a Non-Separable Hilbert Space

Assume the Hilbert-space 3? is not separable. Let col9..., con and er l3...s an

be density operators over 3F. Let E9 P be the orthoprojections onto the joint

range of the family {col9...9con}9 {cr1?...3 aj, respectively. Since all operators

considered are of trace-class, Ejtf* and P^ are separable. U e ̂ (^) might

be chosen such that l/El/* = EM>P3 or EU<P holds. Assume T is a c.p.,

unital linear map over ^(^} such that CDj = afT, Vj. Then, coV^fffT", Vj,

with the unital c.p.-map T" = T(U- 1/*). Moreover, for MA e

Tr. or,7%4) = Tr. o>y4 = Tr. o^E^E^Tr. GjT'(EuAEu), i.e. Vj :

Tr. 0j(PT"(A)P - PT"(EUAEU)P) = 0 .

Especially, the latter holds for A=L Since T" is unital, we see B =

PT"1QP-PT"(EU)P>P-P = 0, so the equality above amounts to Tr.er^O

Vj, which implies 5 = 0, since P^-B = BP1- = 0. With other words, P = PT"(EU)P,

We define Q = EuvP. Then, Q^ is separable. Over @(Qje)^Q&(je)Q let

us define a completely positive linear map T by T' = PT"(EU(')EU)P +

(Q - P)( . ) (Q - P). We have T'(® = PT"(EU)P + (Q-P) = P + (Q-P) = Q,soT'

is unital on ^(g«Pf). Now, over Qje, we may write: Tr. o-J-T
/(^) = Tr.

ajPT"(EuAEv)P = Tr. ̂ "(JE^E17) = Tr. a^EuAEu = liT. a)VA, VA e a(Qjf)9 so

(af! = ajoT', Vj, if Q}^3 cr7. are thought of as density operators over gjf .

What we have shown is the following: if Q}k = ak°Tfor a c.p., unital linear

map T, then there exists a unitary [7 e ̂ (^f), an orthoprojection Q with g^f

separable, and a c.p., unital linear mapping T' over ^(g^f) such that {co^5 crj

cQ^(jf)*Q^0(Qjf% and a% = ak°T'9 Vfe. On the other hand, let CQ13..., cow,

(T!,..., crn be given density operators and an orthoprojection Q, with Qj#* sep-

arable, l/e^(jf) such that go>y = coy, Qaj = aJ} Vj. Assume, there is a

completely positive, unital map T over ^(Q^) such that cafj = afT9 Vj, if

coy, a,- are thought of as density operators on Qjtf. Let Fbe an unitary in ̂ (^ )

such that Fg1F* = 81, and define a linear map T by:

Then, T' is completely positive, and T/(7)

shows that27 is unital. Moreover, for MA e &(jf): Tr. cr^ r(A) = Tr. OjQT(A}Q

= Tr. <TQT(QUAU*Q)Q = Tr. (7.r(QEME7*® = Tr.
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= rYr.CQjA. Hence, a)j = a f T f , with a c.p., unital linear map T' on

Taking together all this we see that our restriction of the n-tuple-problem to

considerations over separable Hilbert-spaces throughtout §§1-5 Is not a severe

one. All results might be adapted to the non-separable situation by obvious

modifications as indicated above.
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