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On the Simultaneous Transformation of Density
Operators by Means of a Completely Positive,
Unity Preserving Linear Map

by

Peter M. ALBERTI*

Abstract

Let {wi,..., ,} and {oy,..., 0,} be finite sets of normal states over the bounded linear
operators acting over some infinite-dimensional separable Hilbert-space. In the paper
mutually equivalent sets of necessary and sufficient conditions are derived that there exists a
completely positive, unity preserving linear map 7 transforming ¢4,..., ¢, simultaneously into
Wyenry 0y we=0,° T, k=1,..., n. Of particular interest is this “a-tuple-problem” in case of
pairs of density operators (normal states), i.e. for n=2. In this situation possible connections
with the notion of “generalized transition probability” are analyzed, and at least in case of
normal states over the bounded operators a characterization of functionals of this type is
proposed and applied.

§1. Main Results, Examples

Let o be a unital C*-algebra, with unit /, topological dual /%, and group
of unitary elements (7). To each Ve #(«) let us associate a bounded linear
operator T, over the dual by Ty(w)(X)=w(VXV¥*)=w"(X), for all Xe o/
and any we «/*. On the set of bounded linear operators Z(/*) over o* we
may introduce the weak operator topology (w-topology) which is characterized
by the system of semi-norms {q, y: we«*, Xe/} given by g, x(T)=
| T(w)(X)|, with Te #(«r*). Then, by ¥, () the weak closure of the convex
hull of the operators Tj, will be denoted: %,(«)=conv{T,: Ve#(#)}¥. In
this paper as an essential result the following theorem is proved (proofs of most

of the assertions of this part are given in §§3-5):

1.1 Theorem. Let s be an infinite-dimensional separable complex
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Hilbert-space. Let wy,..., w, and 64,..., 6, be finite sets of normal states over
the bounded linear operators %(s#) over #. The following conditions are
equivalent:
(i) there exists a completely positive (c.p.), unity-preserving (unital)
linear map T over #(H#) such that

=0T for k=1,...,n;

(ii) there is an irreducible UHF-algebra o of bounded linear operators
on S such that

Wy = ¢(Uk/m), Vi

for some ¢pe %(F), where w/, indicates the restriction onto the
subalgebra <.
Moreover, if one of the conditions holds true then (ii) remains true for
every irreducible UHF-algebra <7 over #.

Throughout this paper, a unital C*-subalgebra o« of #(s#) is referred to
as a UHF-algebra if there exists an ascending sequence &/, c&/,c---c/ of
finite type-I-factors o, over s such that .« is the norm-closure of @ .

Let (o) denote the convex set of all states over a unital C*-algebrfl .
By #(«)" the n-fold product #() x --- x L(F) of L(/)will be meant. Let
[ L&) 3 (wy,..., 0)— f(®yq,..., v,)E R' be a realvalued function. Let us
define a subset M(f; ¢) of #()" by

(S o)={(wy,..., w,) e A(L)": f(wy,..., w,)>c}, for every real c.

Then, the function fis called quasi-concave if M(f; c) is convex for every choice
of ce R!. Note that concavity of a realvalued function over &(«)" (which
is also often referred to as joint concavity) always implies quasi-concavity; the
converse, however, is false in general. The reader should also remember the fact
that a realvalued function f as above is w*-upper semicontinuous (w*-u.s.c. for
short) iff M(f; c¢) is w¥-closed for Vce R!, where the product w*-topology is
referred to over L()". We call f unitarily invariant if f(@Y,..., 0})=
f(wy,..., w,) for Vo;e #(«) and all Ve#(s). With these notions in mind

we have:

1.2 Lemma. For states vy,..., v, and pUy,..., 4, over the unital C*-algebra
& the following conditions are equivalent:
(i) thereis ¢ € € (&) with v,=¢(u) Vk;
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() SO V)= (W55 1)

for all quasi-concave, w*-u.s.c., unitarily invariant functions f over
L(L)".

Let 2,(«) denote the set of quasi-concave, w*-u.s.c., unitarily invariant
functions over &(«Z)". One consequence of the equivalence given by 1.1 is
as follows: let & be an irreducible UHF-algebra over 5, and let g be a re-
alvalued function over the n-fold product set #(s#)% of the normal states
(identified with density operators, where a density operator over 5 is a positive
operator of trace-class with trace one) over #(s#) such that one finds fe 2,(«)
with

G(@ysenny @) =f(Dy)5 s Bpyy) for all (wy,..., w,) e LP(H)E;

then, g is unitarily invariant with respect to the unitary group #(s#) over J#:
g(@Y,..., oY)=g(wy,..., ) V¥ €U(H).

We collect all quasi-concave, unitarily invariant, w*-u.s.c. functions over
F(#): which allow for such a representation (with respect to an arbitrary
irreducible UHF-algebra) into a set 2,(s#). Thus, fe 2,(s#) iff there is an
irreducible UHF-algebra .« and g € 2,(«) such that

f(w1,~-~, wn)=g(w1/.n(""’ wn/.n() ijey('%)*'
Then, due to 1.2 and 1.1 we may take for established:

1.3 Theorem. For finite sets w,,..., w, and 04,..., 6, of normal states over
the bounded linear operators on a separable infinite-dimensional complex
Hilbert-space # the following conditions are equivalent:

(i) there is a c.p., unital linear map T over %B(s#) such that

=0T Vk;
(i) f(wgs..., 0)>f(015...,0,)  forall fe2,(#).

Assume we are given a particular unitarily invariant, w*-u.s.c., quasi-
concave function f over #(s#)%. Then, the proof on fe 2,(s#) is facilitated
considerably in numerous cases because only two general properties of the
C*-algebra o are really needed in these situations. This will be seen by the
examples below. The essential points in this context are irreducibility and the
fact that UHF-algebras intersect the compact operators #%(s#) over s only
trivially. From functions of 2,(s#) one can easily construct further unitary
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invariants over &(s#)% which show monotonous behaviour under the simulta-
neous transformation of their arguments by means of c.p., unital linear maps.
The case of tuples (n=2) deserves special interest. Among other things the
following will be derived:

1.4 Theorem. Let P(o#) denote the set of realvalued functions over (),
X P(#)s characterized as follows: pe 2(H#) iff

(@) pe2y();

(b) plw, 0)e[0,1] Vo, oceP(H#)ys;

© plw,0)=0 iff wo=0,i.e. w, o are orthogonal states;

@ po,0)=1 iff w=0;

(© if o ():=(x, ¥x), VL € B(#), with xe i, ||x| =1, then

o, ©,)=|(x, y)I*.

The following conditions are equivalent: suppose w, 6, @', ' € L(H# ),
(i) p(@', 6)>p(w, 0) VpeP(#);
(i) there exists a unital, c.p. linear map T over %#(#) such that

o' =woT and o' =0-T.

1.5 Remark. Assume p is quasi-concave, unitarily invariant, (relatively)
w*-u.s.c. on L (#)3 and obeys conditions (b)-(e) of 1.4. If then, in addition,
p(@°T, 6°T) > p(w, o) holds whenever T is unital and completely positive and
@, 6, woT, 6oTe P(#)y, p Will be referred to as a generalized transition
probability (over the normal state space of %(s#)) throughout this paper.
Let us collect all functions over #(#)3 being generalized transition probabilities
in the sense explained into the set 72(s#°). Then, the assertion of 1.4 is that the
increase p(w’, 0')>p(w, o) of all pe 72(+#°) is in fact equivalent to @' =w-T
and ¢'=0°T for some c.p., unital linear map T.

Note that in the preceding definition of the term “generalized transition
probability’’ symmetry, i.e. p(w, 6)=p(o, w), is not required, although all known
explicite examples considered in literature (they all belong to 7 2(#) as defined
above) possess this additional property. We shall discuss this in a somewhat
more general context throughout 5.5.

1.6 Example. Let cy,..., ¢, € C be complex numbers and assume v,,..., v, be
states over the unital C*-algebra /. Then, f, (vi,..., V=2 cvilly (I 11
the functional norm in #*) is convex and w*-lower semicontinilous (w*-ls.c.)
on ()" Since f,, is also unitarily invariant we have —f_, € 2,(«¢). Assume
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& acts irreducibly over the Hilbert-space s#. Then, for normal states wy,..., ,
over B(H)f(@1,..., 0,): =2 ¢;0;ll 1 =fA@1/s05+++» Dpyr), due to the fact that
the strong closure of the unit sphere of o7 gives the unit sphere of all bounded
operators by irreducibility and the Kaplansky density theorem. Therefore,
~fe2,(#). This means || ¥ c;w;oT| <[ Zc;m;]; for every c.p., unital
linear map 7, by 1.3. Thus, Jwe have demor{strated a function on FL(H#)%L to
be a member of 2,(s#). The decrease under the action of positive unital maps,
however, in this case is not surprising at all since every unital positive linear map is
a contraction, which fact is well-known since many years, see [14].

1.7 Example. Let n=2, and w,, w, and o, 0, be density operators such
that both w, +w, and o+ 0, are operators of rank 2. Then, by 1.6,

() c1w+cm,l £lle101+¢30,14 forall ¢y, c,eC

whenever ;= 0T, j=1, 2, with a positive, unital linear map 7. By [1] one
knows that (x) is not only necessary, it is also sufficient for the existence of a
c.p., unital T such that w;=0;°T, j=1, 2, so providing a special case for the
validity of the implication (ii)—() of 1.3. Further examples where the impli-
cation mentioned is known to be true are given by [4], [20]. One can, of
course, the n-tuple problem consider for state spaces of an arbitrary C*-algebra.
For the commutative case and all n the general solution of this problem has
been given in [2], [3], see also the description -of the problem in [9], [19].
Another illustration, now referring to 1.4 and 1.5, is given by the following:

1.8 Example. Let o/ be a unital ¥*-algebra, and o, 0 € #(«). One then
associates to w, o a non-negative real P_(w, o) by the following setting:

P (o, 0):= U (X X4)12,

wsXa

where x,,, x, € 5, run over all vector representatives of w, o within all possible
unital *-representations {n, ##,} of .« on some Hilbert-space 5, where both w
and o may be realized as vector states simultaneously. This definition is given
in [18], and is in case of normal states over W *-algebras equivalent to another
definition given in [12] as it has been demonstrated in [10]. P, fulfils
conditions (b)-(d) of 1.4 if considered on £(&7)? and if “orthogonality’’ of two
states w, o is replaced by the general notion of this term: w Lo iff |w—o|,=2.
For the special choice o =% (+#) also condition (¢) of 1.4 holds. Let us
show that P is quasi-concave. Assumew;, ;€ #(«), j=1, 2, and re[0, 1].
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Define v;=rw;+(1—r)o;. LetceT, and assume P_(w;, 6)>c, j=1,2. If
c£0, (v, v,) e P(P,,; c) by triviality. For ¢>0, and ¢>0 such that c—e>0,
we argue as follows. Let {rn;, 5#,} be unital *-representations of .« such that
there are vector representatives x;, y; € #; of w;, ¢; with

(* (xj’ J’j)20,
(xj, yy*>c—e, j=1,2.

Such x;, y; exist by definition of P,.

Let n=7,@®n, be the representation of o/ acting on the orthogonal sum
H =A@, in the usual manner. Putting z,=./rx,+./1—-rx, and z,
=/ry;+/1-r y,, we see v(4)=(z;, n(A)z;), j=1, 2.  Therefore, by
definition of P, and ()1 P(vy, v2)'?>1(zy, z5)|=[r(xq, y1)+(1—1r)(x2, yo)l=
r(xy, y)+ (1 =1) (X3, y2)>rc—e +(1—r)Jc—e =\/c—¢, s0 P(vy, v;)>c—=.
This has to hold for any &>0 sufficiently small, so P_(v,, v;) >¢, i.e. M(P,; ¢)
is convex. The latter means quasi-concavity of P_. Furthermore, in[6.] one
shows P (w, 6)=inf w(A)s(A™!), telling that P_, is the infimum of w*-continuous
functions. Hencg;g’&, is w*-u.s.c. on #(£)?. Since unitary invariance is ob-
vious we may take together all these facts and conclude that P, is in 2,(%7).
Let us assume now that < acts on a Hilbert-space #. By a result of [6] one
knows that for normal states w, ¢ over " (the double commutant of .«7, i.e.
the weak closure of &) always P .(w, 06)=P (w,,, 0,,) holds true. Especially,
for an irreducible C*-subalgebra of #(+#), i.e. "= %(#°), we find for normal
states w, 0 € F(H#)y: Py )0, 0)=P (w,,, 0,,). By our discussion above
P, e 2,(«7), hence we see that P, 5, belongs to 2,(s#) since for .« every
irreducible UHF-algebra could have been chosen (once more again “UHF”’ is
not important in the proof). Thus, Py 4, fulfils 1.4 (a)-(¢). Applying 1.3 we
recognize that P, 4 is a generalized transition probability, i.e. Py sy € T 2(#)
in the sense of 1.5. In [18] one finds an explicit expression for Py s):

if ®,0€P(H),, then Py oy(w, 6)=(Tr. (0 20w!/2)1/2)2,

where we identify normal states with density operators (Tr. means ‘“‘trace of”’).
For later use, we give the following remarkable special case of 1.4 (see [5]):

1.9 Proposition. Let w, 0 € #(#),, and be w,, w, the vector states given
by the unit vectors x, ye s#. There exists a completely positive unital linear
map T over B(#) with o=w,T, c=w,eT iff

Py, 0) > Py oy, w)=|(x, %
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If this condition holds true the T in question can be chosen io be a normal
map.

1.10 Remark. For all questions relating operator algebras, positive and
completely positive linear maps over operator algebras and their applications the
reader is referred to textbooks, e.g. [17], [11] and their corresponding lists of
references. Concerning positive maps see also the review [16]. Concerning
‘“generalized transition probabilities’’ and references to that subject see [5]-

[8], [10], [12], [13], [18], [19].

§2. Techmical Preliminaries

Let o be a unital C*-subalgebra of #(s#), where s is a separable infinite-
dimensional complex Hilbert-space. By ., #(#),, oL, , B(H#), the selfad-
joint and positive portions of 7, #(s#) will be denoted, respectively. Let n
be an arbitrary but henceforth fixed natural number (to be non-trivial n>2 is
supposed).

2.1 Definition. Let @y,..., 0, € L(# )y, A1,..., A, € B(),;, then
K(@yseees 0y Agsenes A):= sup 3 0Y(4));

Usy(x¥) j=1
if wq,..., 0, € P(L), Ay,..., A, € S, then
K (@500 05 Agseery A):= sup 3 @¥(4));

Uey (&) j

if 0g,..., 0, € P(H)s, by convention we will agree to read
K.n((wl""b @y ; Ala"', An):=K.n((w1/le"'-9 wn/d; Ala'--, An)

whenever A; e st

2.2 Lemma.

(i) K and K, are continuous functions with respect to the uniform
product topology on ()% x B(H): and (L)' x LWL (AL X L),
respectively;

(i) K(,...,. ; Ay, Ay) and K (.,...,.; Aqy..., A,) are convex and
w*-Ls.c. on P(H#)L, P(L)(F(H)]), respectively;

(iii) in case of an irreducible of ie. A"=FH(#), one has
K(wy,..., 055 Agyenns A) =K (04,00, 0,5 Ay,...y A,) Jor all ;€ P(H)y
and all A; e s,

Proof. (i) and (ii) are obvious from the definitions. (iii) follows from the
fact that #(«/) is strongly*-dense within #("). In fact, the latter implies
{(UAU%,..., UA,U*): U e %()} to be strongly dense in {(U A,U*,..., UA,U*):
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U e (")} for all choices {A;}. For «”"=2%() and normal states w;,..., @,
€ #(#), then follows K(wy,...,®,; Ag,..., A) <K (0y,..., 0,5 Ayg,..., 4,),
from which fact together with # () > %(2/) the validity of (iii) can be seen.

Let .4, denote the full matrix algebra of complex k x k-matrices. Assume
# is a unital C*-algebra. We should remember that a linear map T acting from
A into # is said to be completely positive (see [15]) if T®id,:
M QM€ m=(m)—>TQid(m)=(T(m;;))e # @A, is a positive map for
k=1,2,3,. A linear map ¢ acting from .#* into .#* is said to be
positive if q,’)(./ﬂ )%, and will be referred to as a stochastic map if
(L (M) =L (M), and is said to be completely positive (c.p.) if the adjoint
map ¢+ acting over the second dual .#** is c.p.. If ¢ is stochastic and
c.p. we call ¢ c.p.-stochastic; ¢ is c.p.-stochastic iff ¢+ is c.p. and unital
over #**. Each fe(#®.#)* is uniquely determined by a family (f;;), with
fij € #*,via the relation f((m;;))= Z fifmyj). A linear map over .#* is c.p.
iff for any positive linear form f ( fi;) over #Q@.#, always follows that
(¢ ®id,) (f)=(¢(f;;) defines a positive linear form over the same algebra for
any natural k. In case of a W#*-algebra .#, with predual .#,, a linear map
over .#, is said to be: positive, if ¢( My, )= Ay, ; cp. if ¢ is c.p. over 4;
stochastic if H(ANL(MH)c M NS (M). If ¢ is c.p. and stochastic the
term c.p.-stochastic on #, will be in use. In case of 4 =B (#), B(H#)s will
be identified with (o), the operators of trace-class, in the usual manner.
It is not hard to see that a linear map ¢ over Z(#), is c.p. iff (¢;;) >0 within
T(H)Q M= B(H#)R A, (inclusion as sets of bounded operators over the
space #®C) always implies (¢(0;;))>0. One then easily sees that the
following is true:

2.3 Remark.

(i) Let # be a unital C*-algebra. If T is c.p. on 4, then T* is c.p. on
M* in the above-discussed sense;

(i) let .# be a W*-algebra. If ¢ is a c.p. linear map over #* and
(M) = My, then the restriction ¢_,, onto the predual is c.p.  Espe-
cially, if T is a linear map over # which is c.p. and normal, then
T,:=T},,is c.p. on M.

Let us take notice of the following very simple, but nevertheless very useful

technical results:

2.4 Lemma. Let P bean orthoprojection over &, and vy,..., v,, states over
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B(#). Suppose a linear map ¢ is defined over H(H#)* by ¢(w)(4)
=w(PAP)+ 3. o(P)v{A), for all w e B(#)* and all A e B(#), with a finite de-
composition {lP,-},-=1,___,m of PL=1— P into mutually orthogonal orthoprojections.
Then
(i) ¢ is c.p.-stochastic;
(ii) for dim P<oo, and vy,...,V,€P(H#)sx (normal  states)
W(B(H)) = B(H )
(ili) under the assumptions of (ii), for any c.p.-stochastic ¥ over ZB(H#)*
the composition map Q=¢o¥ 44, is c.p.-stochastic on B(H )y,
and hence 2% is a normal unital c.p. map over Z(H).

Proof. The linear map T given by T(A)=PAP+ Y. v(A)P,, Aec B(H#), is
c.p. and unity preserving (since P,>0 and states are c’.(p.). Hence, T*=¢ is
c.p.-stochastic (see 2.3 (i)) and (i) is seen. To see (ii) one notes that in case of
dim P< o0, PA(#)P is finite-dimensionally, so has only normal states. There-
fore, w(P(.)P)e %(H)y for all we Z(#)*. Moreover, the v;’s are supposed
to be normal, so the assertion follows. (iii) is a consequence of 2.3 (ii).

2.5 Lemma. Let w,,..., w, be density operators over #.  There exist
sequences {Wyp,},-.-» {Wumt Of density operators such that:
(i) all wy, have finite rank, and | - || -lim w,,=w, Yk;
(ii) there exist c.p.-stochastic mamps b, over RB(H)*  with
Pl Om) = 0 Vi, M ;
(i) ¢ (B(H)*)c B(H#)y for all m.

Proof. Assume w,= i_o‘, BisPrs> With {P,;} a decomposition of I into mu-
tually orthogonal, onedimeil_s}onal orthoprojections, and f;>pf;,>---. Define
P,= VARV P,. Let Qipm---» Qnm be onedimensional, mutually orthogonal
ortho;é);;tions with @;,<PL, Vj. We define finite-rank density operators by
setting W= 2. PrsPist( 2 Bis)Qum- Then, (i) is easily followed. Let I, be
a set of indif:f:: defined ass>';,,,={je{l,..., n}: 2 B;=0}. Let us fix m. If
I,={1,..., n} we define ¢m(w)=w(Pm(.)Pm)+a)(};5v with an arbitrarily chosen
normal state v. Since in this case P,w,=w, Yk, and w,,,=w, Yk, we see ¢,(w,)
= ¢, {0y =0, and the chosen ¢,, satisfies (ii) and (iii), the latter following by
applying 2.4 (ii). Assume I,#{1,...,n}. We may suppose ne&l,. If j&I,,
let us define normal states v;, by
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VilA)=(Z Bj) ' Tr. (L B;sPj)d,  for VAeB(#).

Then, applying 2.4 (i), (ii) once more again we see that

¢m(w):=w(Pm()Pm)+ g_;. G)(Qjm)ij"‘CU(P#— j; Qjm)vnm
f#llm j;’m
is c.p.-stochastic and satisfies (iii). If jel,, we have P,0;=w;, ie. w;,=w;,
S0 Pp(w;m)=w;. If j&l,, j#n, then P,w;,=w;,P,= > B;P;, and
s<m

0 if ksj
wijkm= . o and wjm(PrJ;l_ Z le)z()
( sgm .Bjs)Qjm 1f k=] 5?:11;11

Hence, by definition of v;,,: ¢,(@;,)=Tr. ( X B;sP;) () +( X B;)Vim=Tr. 0;(.).
s<m s>m
Analogously ¢,(w,.)=w, follows, so (ii) is seen.

2,6 Lemma. Let w,,...,w, be density operators over the separable
Hilbert-space 5#. There exist sequences {®1,},--., {®W.} of density operators
and linear maps ¢,, over B(#)y such that:

(i) all wy, are of finite rank and | - | ,-lim w,,,=w,, Yk;

(ii) the ¢,, are c.p.-stochastic over %’(9?)"; with @u,= o (w), Yk, m;

(iii) P H(B(H#)*) = B(H#)y Ym.

Proof. Let w;= ;i B;sP;s, with P, B;; and also P, having the same
meanings as introduced in the proof of 2.5. Take an orthogonal decomposition
{Qgm} of P into onedimensional orthoprojections: Pj,= Z Q.n- Let us choose
an onedimensional orthoprojection R,, with R, <Pi, and partial isometries
Vs € B(H)With VEV, =0, ViusVE=R,,, Vs. Wedefine linear maps ¢,, over
%(H#), (in its identification with 7 (#)) by ¢,(4A)=P,AP,+ f VusAVE,
VAe T(H#)=H(#)s. Due to our assumptions ¢, is i}la.-stochastic
over #(#)y. Let us define w;,:=¢,(w;). By construction of ¢,,

im = Z /i ;s js+ Bjm, With some B;,, >0. Since ¢, is stochastic, w;,, is a density
operator for all m. Now, |-, 11m Z B;sP;s= w;, therefore lir{‘n Tr. B;,=0.

From this, together with B;, >0, B ” ”1 0 follows for Vj. Hence w;, tends
uniformly (functional norm) towards w;, for all j. By construction ¢,(4) has
finite rank (<nm+1) for each A€ S (9?) SO w;,, has finite rank. This proves
(i) and (i)). Finally ¢}=P,()P,+ 2 VE()V, Due to our assumptions
Vi AV, =(Tr.R,A)Q,, (see the ch01ce of V,s), SO by 2.4 (ii) and since dim P,, < co
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we follow ¢} (w)=w(P,(.)P,)+w(Pi)Tr.R,(.) to be a c.p. map satisfying
(iii).

2.7 Lemma. Let w,...,w, and o,,...,0, be normal states over ZB(H#).
Assume ¢ is a c.p.-stochastic linear map over Z(H#)* such that w,=¢d(o,)

for all k. Then, there exists a c.p., unital linear map T on () such that

=0T, V,.

Proof. By 2.5thereis {0,,} = F(#)s With 6,,,— 0,, Yk, and c.p.-stochastic
¢, with ¢, (B(H#)*) < B(H#), such that o,=0¢,(6,,)Vk, Ym. By 2.6 there
i {Wym} © L (H#) 4 With wy,, —> 0y, Vk,and c.p.-stochastic ¢,, over (), with
D= Or(w)), Ym,and ¢, (B(A)*)= B(H# ). Let us define Q,,:=¢, Fopoo,,.
As a composition of c.p.-stochastic maps Q,, is c.p.-stochastic, too. This is true
for any m. Moreover, Q,(%(5#)s) = B(H )s, SO Sy =2y 55y, aT€ C.p.-stochastic
maps on Z(H#)y, with S,(04.) =0 Yk, m. Let T,, be the unital, c.p. linear
map defined by T,,:=S;,. Then, w,,=0,,°T,Ym, Vk. Since the unit sphere
of the bounded linear operators over £(s#) is compact with respect to the weak
operator topology over the duality (Z(5#), #( )4y (see 1 for the definition of
a w-topology) there exists a weakly converging subnet {7, }: w-lilr’n T,,=T.
Dueto T,,,(I)=1, VB, also T(I)=1 has to hold. Itisclear that T'is a completely
positive map. For any Ae%(s#) we have the following estimates:
|00 T(A) = Gmy© Ty (D] < 10,2 T(A) — 6,0 Ty ()| + (04 = Gmy) (Tory (A) |
< |0 (T(A) — Ty (AN + | All |0k — Okm, |-~ Since oy,,, tends uniformly towards
o, and since T is the weak limit of {7, } the left hand side of our estimation
tends to zero for any Ae %(s#) (remember that o, is normal). Hence

o‘koTzw*-lign Omy° T, 10 the w*-topology on Z(#)* with respect to £().

mg
We know, however, 0y,,°T,,, =0, and wy,, 5> o, (even uniformly), so

o T=w,, Yk, hasto hold with a c.p., unital linear map 7 over Z(s¢).

2.8 Lemma. Let £, be a finite-dimensional complex Hilbert-space, and
H = HyQH, with another complex Hilbert-space s#;. Let ¢ be a completely
positive, trace-preserving, linear map over B(#,). Assume x € H#, is a unit
vector, and E denotes the one-dimensional orthoprojection corresponding to x.
There exists a unitary U e %(H#) such that

d(A)=Tr,UARQE)U*  for YAe B(H,),
where Tr,; means the relative trace over #; with respect to 5.

Proof. By the Stinespring-theorem (see [15]), and since 5%, is of finite
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dimen- sion, we find a representation n of %(s#,) on some finite-dimensional
Hilbertspace s#', and a bounded linear operator ¥ from s#"' into 5#, with VV*=1,
such that ¢ *(B)=Vrn(B)V*, VBe #(#,). It is known that we may identify
' with a factorization #' = s#,® ] such that n(B)=B® I for all Be #(#,);
hence ¢*(B)=W(BQI)W* for some bounded W, with WW*=1. Let #"
=H#,@H, with #|=#1®#; for some separable infinite-dimensional com-
plex Hilbert-space o#,. Assume ze s, is a unit vector. We may identify
H#' with #y®#|®[z] within s#”. Let P be the corresponding orthopro-
jection. Then, WP is a bounded operator acting from s#” into +#,, WPW*=1,
and ¢ *(B)=WP(B® I)PW*, VB e B(:#,), where B® I is understood to act on
H"=H#,@#]. Since s, is isomorphic to ], we might identify s with
#" and have: there is R with RR*=1 and ¢*(B)=R(B®I)R*, VBe %Z(#).
Let € be the isometry defined by S: #,3y—»y®xe#. Then, S*(ARE)S
=A, and for VA e #(#,):

(*)  Tro Ap+(B)=Tr.S*(A® E)SR(B® I)R* =Tr. R*S*(AQ E)SR(BR ).

The orthoprojection Q onto 5#,®[x] is dimensionally finite, so R¥S*QSR =R*R
has finite dimension. Therefore, @ is equivalent with R*R*Y, i.e. there is a
unitary U with UQ=R*S*Q. From (x) one follows:

Tro A+ (B)=Tr. UARQE)U*(B®1), VA, Be B(#,),
from which equality the assertion follows.

2.9 Lemma. Let wy,..., w, and 04,...,0, be density operators over the
finitedimensional Hilbert-space #,. Then, with #, x, E having the same
meanings as in the assumptions of 2.8, the following conditions are
equivalent:

(i) there exists a completely positive stochastic ¢ over B(H#y)* (which

may be identified with B(#,)) with w,=¢(0}), Vk:

(ii) for every choice of A,,..., A, € B(H#,), one has

sup > Tr.(w,®@E)U(4,®)U*< sup 2 Tr. (6,@E)U(4,@U*.
vez () & ver () K

Proof. Let W(oy4,..., 0,)={(d(0}),..., ¢(6,)): V¢ c.p.-stochastic}. This set
is convex and closed in #(#,);. Assume (@3,..., w,)&WVi(oy,..., 6,), and all w;,
are hermitian. By a standard application of the separation theorem for convex
sets in real topological vector spaces we provide us with a continuous real linear
form f over #(#,); and real B such that f(wy,..., @,)>B>f(¢(c4),..., $(0,)
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V¢ c.p.-stochastic. Now, f is given by some A,..., 4,€ #(#,), through

the formula f(vl,...,v,,)=‘§_r!‘, Tr. vA;, vje B(Hoh, so 2 Tr.wjd;>pf>
i=1 J

2. Tr.¢(c)A;, V¢ c.p.-stochastic. Particularly

J

(*) sgp > Tr. p(w))A;> sg’p 2 Tr. ¢(o4;,

where the “sup’’ extends over all c.p.-stochastic linear maps. Since all @}, o;
have equal trace, we may suppose 4;>0. By 2.8 we see that (x) means that

sup 3 Tr.(w;@E)U(4;®@ HU*> Usul()m}: Tr.(6,QE)U(4,;,® )U*
- el PO

Uey(x) j

for some Ay,..., 4,€ B(#y) , if (01,..., 0,)ED(ay,..., 0,) has been supposed.
Therefore, the implication (ii)—(i) is true. Since the set of c.p.-stochastic maps
is a semigroup, with a view to 2.8 again, validity of the implication (i)—(ii) is
also easily justified.

2.10 Propositien. Let w},..., , and d,..., o, be density operators over
the separable infinite-dimensional Hilbert-space 5. Suppose all o) and
o'; have finite-dimensional range (i.e. are of finite rank). Then, the following
conditions are equivalent:

(i) there exists a c.p.-stochastic linear map ¢ over RB(H#), with

wp=d(0}) Vk;

(i) with & defined in 2.1

K(0%,..., 05 Aqyeees AY<K(GY,.., O3 Agyenns Ay)

for every choice of A,,..., A,€ ., where o is an arbitrary UHF-
algebra over J#.

Proof. (i)—(ii). Let A ctpc-. F= C)_j o, with finite type-I-factors
&, Assume o isof typel,,. <« is UHFIif nk—k;oi) Dueto 2.2 (i) it is enough
to show validity of (ii) for A4,..., 4, € \Ojj o .. Let us suppose the latter. Let
m be the dimension of the joint rangek —olf the family wy,..., ®,, 01,...,0,. By
assumption m<oo. Now, there exists an index k such that n,>m and A4,,...,
A,e,. Since & is a type-I,-factor over s, we might identify s with
Ho®@H#y, with dim #,=n,, and .« is identified with Z(H#)®I, i.e. 4,
=X,®1 for some X, € #(#,).. Let R be the orthoprojection onto the joint
range of wi,...,0,. With the notations of the assumptions of 2.9, we find
Vea(#) with VR# = #,®[x]. There exist density operators w;, o; € B(H#,)
such that Vo', V*=w;®E, Vo ;V*=0,®E. Therefore (see 2.1):
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K(w},..., w5 Ag,enny A)=sup X Tr. (0, Q@ EYU(X ;@ )U* ;
v g
(%)
K(oi,..., 045 Ay,e.y A)=sup 3, Tr.(6;,Q E)U(X ;@ ) U*,
v j
where the “sup’” runs over #(s#). Assume (i) holds. Then ¢'=Vp(V*()V)V*
is c.p.-stochastic on #(#)., and w,QE=¢'(c;®E)Vj. But then, T(4):=
Tr, ¢'(A®E) for all A e #(5#,) defines a c.p.-stochastic linear map on %Z(#,)
with w;=T(s;), Vj. 2.9 implies
sup 2 Tr.(0;®E)U(X;®@NU*< sup 3 Tr.(o,QE)U(X;®U*,
Uez(#) J

Uz (x) j

from which inequality by means of (%)
K(wi,..., 0y Ay,..., A) < K(a4,..., 0,5 Ags..., 4,)

follows. Therefore, (i)—(ii) is true.

To see the implication (ii)—(i), let us suppose (ii) holds. Especially, (ii)
holds for all 4,..., 4, € 4, with k such that n,>m. With the notations of the
first part of this proof (see (*)) we may conclude that 2.9 (ii) is valid. By 2.9
there exists a c.p.-stochastic ¢” over #(s#,), with w,=¢"(g,), Vk. Hence,
by well-known facts, there are Ve #(s#,), with 3 VI¥V,=1, such that
$( )= V(- IVE Let W,e B(#,®#,) be defined by W,=V,@1. Then,
¢'(-)=3 W(-)W% is c.p.-stochastic over B(Ho®#,)y, due to 3 WHW, = 1.
Finally, j¢:=V*¢'(V(-)V*)V is a c.p.-stochastic map on z?(,}f),: with ;=
(o)), V.

§3. Proofs of 1.1-1.3

3.1 Proposition. Let w,,..., w, and 0y,..., 6, be normal states over the
bounded linear operators on some infinite-dimensional separable complex
Hilbertspace #. The following conditions are equivalent:

(i) there is a completely positive stochastic linear map ¢ over B(H#)*

with w,=¢(a,), Vk;

(i) K(wyse-o, 0,5  Agseens A) < K(01525 0,5 Agyees Ay) for  all

Ay, Ayle A, where o is an arbitrary UHF-algebra over #;

(iii) there exists a c.p., unital linear map T acting in %(#) such that

w, =0T, Yk.

Proof. Theequivalence (i)« (iii) is clear by 2.7. We show the implication



TRANSFORMING NORMAL STATES BY C. P. MaPs 631

(iii)—(ii). Again we identify normal states with density operators. By 2.5 there
are finite-rank density operators {oy,}, with |- “1—1i,£n Om=0y Yk, and c.p.-
stochastic maps ¢,, on Z(#)* with

¢m(akm) =0y, ¢m('@(%)*) < ,@(%)* vm, Vk .

By 2.6 there are another sequences {w,,,} of density operators, all of finite
rank, with || - ||1'1i,§,n W=y, and c.p.-stochastic maps ¢,, over Z(s#), such
that ¢, (B(A)) < B(H )y, Ym, and ¢, (@)=, (0) =Wy, for all m, k.
Let us define a c.p.-stochastic map £, on Z(s)* by

Q=@ T o, (see 2.3).

Then, 2,,(04,) =W Ym, k. Moreover, by the above-listed properties of ¢, and
Om We have Q,(B(H)y) = B(H )4, Ym, therefore Q,,/5(%), is a c.p.-stochastic
linear map on #(s#), (see 2.3 (ii)). Hence, all the assumptions for an application
of 2.10 are given and we may apply 2.10 with the result that

K(@imye-es Oy Atsees Ap) <K(Oymye-es Opms Ats-ens Ap)

for any choice of A4,,..., 4,€/,.. With a view to 2.1(i) and since {o},} and
{w.} are sequences which approximate o, and w,, in a uniform sense, respectively,
the validity of (i) becomes evident. We show the implication (ii)—(iii). Assume
(ii) holds for any choice of 4y,..., 4,€ &, and @,,, ®1,s (Opm), (©,,) be the maps
and sequences, respectively, introduced in the first part of the proof where we
have already seen that (iii), which is equivalent to (i), implies (ii). Particularly,
this last-mentioned implication applies to the situation wy,= @, (wy), Ym,
with the c.p.-stochastic ¢+ on Z(#)*, and we get

(*) I((wlm""a Dy 5 Ala'--, An)SK(wl"--a W, ; Al;"': An)

for all choices Ay,..., A,€o7,. Since ¢,, is c.p.-stochastic on Z(#)*, too, by
the same argument and since ¢,,(0},) =0y, Vk,

(%) K(o(..; 0435 Agyerey A)<K(O1ysees Opms Agseees 4p)
for all Ay,..., A, €, has to hold. By assumption (ii), (x) and (**) may be
taken together and result in

K(0ymse-vs O3 Agyeves A) SK(Omsees Opms Avseees Ap)
VA;esf,. By 2.10 we get a sequence {Q,,} of c.p.-stochastic linear maps over
B(H)s With ©;,=Q,(0;,), Ym, Vj. Defining the c.p., unital linear map 7,, over
Z(#) by T,,=2;, we have w,,, =04, T,,, Vk, m. Let T be a weak accumulation
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point of the sequence {T,,} with respect to the weak operator topology with re-
spect to the duality {#(#), #(#)sy. Arguing as in the proof of 2.7 we see
w,=0,°T, Yk, i.e. (iii) holds with a c.p., unital linear map T over ().

3.2 Proposition. Let o/ be aunital C*-algebra, and v4,..., v, and u,,..., U,
be states over «Z. Then, the following conditions are equivalent (see 1. 1.2,

2.1):

(i) thereis Te € () withv,=T(w,) Vk;

(i) K (viseees Va3 Agyeees A)SK (Uiseees ns Agsenns 4,) VAjesty;

Gi) S VS (Wseees )V fE2(F).

Proof. Let M(u) be defined as M(w) = {(T(uy),-.., T(u,)): Te €,(=£)}, which
isasubset of &Z§". () is convex and w*-closed. Therefore, an application of
the standard separation theorem for convex sets to the situation v;e (),
(V1o V) ED (1) guaranties the existence of BjeZ, such that K_(vi,..., v,;
By,..., B))>K (uy5..-, Uy By,..., B,) (the argumentation running formally as in
the proof of 2.9 with obvious modifications, so we omit the details). Therefore,
(ii) implies (i). The K -functions are w*-1.s.c., unitarily invariant and convex,
so the implication (i)—(ii) is easily derived (we omit the details). (—K,) is
w*-u.s.c., unitarily invariant and concave on #(&)". Since concavity implies
quasiconcavity, we have —K_(: ,..., +; Ay,..., 4,) € 2,(=Z). Hence, the impli-
cation (iii)—(i) is true. On the other hand,

W= 1 (O W E LN [t W) St 1))

is an intersection of convex, w*-closed, unitarily invariant sets (by quasi-con-
cavity, unitary invariance and w*-u.s. continuity for fe 2,(«)). Hence I'(n)
is w¥*-closed, convex, unitarily invariant and contains (ui,..., 4,). By the
already established equivalence (i)«(ii), 9t(x) is the smallest set of this specifi-
cation, so IM(u)=M'(x). This shows (ii)— (iii).

Now, we are ready to prove even a sharpening of 1.1:

3.3 Theorem. Let 5 be an infinite-dimensional separable complex
Hilbertspace. Assume ®,,...,®, and 64,...,0, are normal states over
B(#). The following conditions are equivalent to each other:

(i) there is a completely positive, stochastic linear map ¢ with

w,=¢(0)), Vk;

(ii) there is a c.p., unital linear map T over %(#) such that w,=0,°T,

Vk;
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(iii) there exists an irreducible UHF-algebra o of bounded linear oper-
ators over # such that there is Te €() with wy,=T(64.,), Vk;
@iv) for all fe 2,(#) (see 1.2)

fw,e..; 0)> f(01,..., 6,).

If one of the conditions (and so all of them) happens to be true, then (iii) is
true for every irreducible UHF-algebra over 5#.

Proof. Let .o/ beasin(iii). By 2.1, 2.2(iii) we have

(*) K(pl,'--: Pns Ala---, An)=K.n!(p1’---’ Pns Ala---a An)

for any choice of py,..., p,€ #(#), and all A;e.,. If (iii) is true, 3.2 and (*)
show equivalence of (iii) with

K(@qs..r @y Agyeens Ap) <K(O15evs Oy Agyenes Ap)

for all 4;es7,. This, however, is equivalent with (i) and also equivalent with
(ii), which can be seen by means of 3.1. Therefore, (i)«(ii)«>(iii) has been
established. From 3.1 follows that (iii) is true for any irreducible UHF-algebra
o if one of the conditions (i), (ii) is full-filled. Finally, from 3.2 and the de-
finition of 2,(5#) (see 1.2) follows equivalence of (iv) with (iii).

§4. The K-Functioms

4.1 Proposition. Let o be a UHF-algebra over the infinite-dimensional
separable complex Hilbert-space 5, and Ay,..., A,€ .. Withthe K-functions
defined in 2.1 we have:

(i) K(@,..., ®; Ay A)= | 121 Al for Yoe (),

() if ..., w,€ P(H#)y are mutually orthogonal density operators,

i.e. 0, =0 Vj#k, then

K(wls'--s (D”; Al;--w An)= J;l ”A]“ °

Proof. To see (i), we consider the linear map ¢ over #(#), defined by
¢(p)=(Tr. p)w, Vpe B(H#)y. By2.4,disc.p.-stochastic on Z(s#),, and w= ¢(o)
for each density operator . Application of 3.1 yields K(w,..., @; 44,..., 4,)
=va,-ei3(fz”)*K(01""’ Gp; Ays..., Ay). Especially, the value of K(w,..., 0;A44,..., 4,)
does not depend on the particular weP(s#), chosen. Taking an

one-dimensional orthoprojection E, with Ex=x for the unit vector x €, as
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a special case of a density operator, we see K(w,..., w; Ay,..., A,)=K(E,..., E
Agseey A)= sup 2 Tr.EUA;U*= sup (Ux, 2 4;Ux)=| T 4;|.
Uez (#) j Uez (#) j J

To derive (ii), assume @,,..., w, are mutually orthogonal density operators,
and {P;} be an orthogonal decomposition of I into orthoprojections with P;w
=w;, Vj. Let {0y,..., 0,} be an arbitrarily chosen n-tuple of density operators.
We introduce a linear map over #(s#), by ¢(-)= 2 o;Tr. P)(-). ¢ preserves
the trace and is c.p. by 2.4, hence, it is c.p.-stochajszilc over #(#),. By con-
struction ¢(w;)=0;, V;. Applying 3.1 once more again, and having in mind
that the n-tuple {0y,..., 6,} could have been chosen at will from the set of all
n-tuples of density operators, we see K(wi,..., ®,; Aq,..., 4)= vajseligz»)
K(o,,..., 6,; Ay,..., A,). Especially, the value K(wy,..., w,; 4y,..., 4,) has
to be independent of the specific orthogonal family wy,..., w, chosen. Let
us take n mutually orthogonal one-dimensional orthoprojections E,,..., E, as

our special choice. Then,

*) K(Egyes By Ay A)=K(@1see0, 05 Asseces A) L T 41

the inequality being an obvious consequence of the definition of K. To see (ii)

we need some auxiliary construction.

4.2 Lemma. Let Q, P be orthoprojections, with dim P=o00, dim Q <oo0.
Then, dim P A @+ = c0.

Proofof 4.2. Let {u,}be a complete orthonormal system in Ps#. Then,
u,=Quy+Q*uy,.  Let J={k;: Qu, #0}. Ifcard #"\J=oo (4 means the natural
numbers), u,=Q'u,Vke#\J, and the assertion follows. Assume card
#\J<oo. Then, [{Qu };c,]J=Qs#. Let dim Q=m, and let us consider the
systems I'; of vectors given by I';={Quy, .. ,). o> QUi s iyomsryts J=0 1, 2,000
Each of these systems contains m+ 1 non-vanishing vectors. Since dim Q =m,
there exist nontrivial systems {fU’}m+! of complex numbers such that
o( Z BY )u,” (mm”) 0, from which by means of the orthogonality of the u,’s
follows that Z B Ui, sy =1 w;#0, with w;=0*w;, Vj. By construction,
the w; are mutually orthogonal: (w;, w,)=0, Vj#k, and [wy,..., W,...] =@+
On the other hand, since w; € [u;, u,,...], Pw;=w;, so the infinite-dimensional
subspace [Wy,..., Wg,...] of # is contained in both Q+# and Ps#, and dim
0+ A P=o follows.

4.3 Lemma. Let Py,...P, be orthoprojections over 5, with dim P;= oo for



TRANSFORMING NORMAL STATES BY C. P. MAPs 635

all j. There are mutually orthogonal unit vectors Xi,...,X, such that
Pix;=x;| Vj.

Proof of 4.3. For x, let us take a vector | x,[| =1, P;x;=x,. Assume, we
have yet built a system {xj,..., x;} of vectors, being mutually orthogonal, with
Pix;=x;,j=1,..., k. Weconstruct x,,, as follows: let Q, be the orthoprojection
onto [xy,..., X, ], then dim Q,=k< 0, and 4.2 can be applied showing dim Qj
APpyy=o00. Take |[x,4q=1, xp11 €5, With Qf APy X1 =X44. Then,
{X1,..., X+ 1} is an orthogonal system of unit vectors fulfilling P;x;=x; Vj<
k+ 1. Successive application of this procedure gives the result.

We continue in the proof of 4.1: due to 2.2(i) it is sufficient to prove (ii)
for A4,...,A4,€ \wJ &+, A;7#0. Hence, assume A;€x4,, j=1,...,n, non-
trivial. Since &fk:lis a finite type-I-factor we may assume a spectral representa-
tionof 4;, 4;= %‘, ® P jx, with { P} the corresponding orthogonal decomposition
of I, and a;; >w;,>--->0 the points in the spectrum of 4;. Especially, [|4;]
=u;; #0. Since 4 N Z%(#)={0}, we must have dim P;;=co, Vj. Then,
by 4.3 we provide us with an orthonormal system {x,,..., X} such that P;;x;=x;,
j=1,...,n. Let us make a special choice for Ei,..., E, in (¥): take E; as the
orthoprojection onto [x;]. Then, by the choice of x; we obtain

24;l= 2 Tr.E;A; < sup X Tr. E;UA;U*=K(E,,..., E,; Ay,..., 4,),
J J

Ue () j
from which inequality together with (%) the assertion (ii) follows.

4.4 Lemma. Let o be a UHF-algebra over 5. Lei ®q,..., 0, € P(H# ).
Assume  K(@q,..., 0y Aoy A)= 3. |A;] holds for every choice of
ji=1

Ayyeeey Aye . Then, the w; are m;tually orthogonal.

Proof. Let E,,..., E, be mutually orthogonal one-dimensional orthoprojec-
tions. By assumption and since K(vy,..., Vy; Ays-.-, 4) < 2 4] for any choice
Vi,..., v, Of density operators and every subset {4,,..., A,,}Jc &/, we may apply
3.1 to see the existence of a c.p., unital linear map 7 over %(s#) such that
Ey=wpeT, Vk. By 1.9 we then have Py o\(E;, E)>Pgay(@;, @) Vi, k, and
having in mind the explicite formula for P45 (see 1.8) we might conclude as
follows: let i#k, then O=(Tr.EE,)?=(Tr.(E}/2EE}?)2)2=P 4 4 (E; Ey)
NPy @i @) =(Tr. (0} 2w,w}/?)112)2 >0, so ww,=0 for i#k has to be

followed.

4.5 Lemma. Let < be a UHF-algebra over s, and q,..., ®,€ L(H)y
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given. Assume K(wg,...,w,; Ag,..., A)=I|2 A;| for every choice of
J

Ay, Ayety. Then wy=-=w,.

Proof. The argumentations of the proof of 4.1(i) show that |3 4|l is
the minimal value of K(v,,..., v,; 4y,..., 4,) for vy,..., v, € L(H#),. Thjerefore,

our assumption tells us that
K(vyiseees Vo3 Agyeens A7) > K(@45..05 0,5 Ays..., A,)for all A;e,
and an arbitrary choice of v;e #(#),, j=1,...,n. Applying 3.1 once more

again gives a c.p., unital linear map T, over Z(s#) with w,=veT, Vk.
Making the special choice v;=---=v, we see 0, =+ =,.

Let .« be a UHF-algebra over #. Then, o is separable. Especially,
there is a normdense countable subset {4,}{,coZ, for &, : {4}, =,.
It is not hard to get convinced that we may choose {4,} in such a way that

3 4> 1S Al for any choice (ky,..., k,) € A%, with
=1 i=1
s:=A""\{(m, m,...,m): me #}. Let us define
Ru@ssres 0)=( 3, [Aull =1 5 A CE 1A =K@y 05 Ay 45)

for any k=(k,,..., k,)e #8. By 4.1 we know that R, (w,..., »,) € [0, 1] for
all w; e #(H#)4, and R, is concave and w*-u.s.c. over S (#)4. Let £" be the
set of sequences

Lr={=AMA)ress: 1>0 VEk, 3 1,=1},

sy
and define

Py 0gye.., w))= 2. R (wy,..., @) for Aezm

keN'p

We then have:
4.6 Proposition. Let o be an UHF-algebra over s#; {P,(«; --+), 1€ L}

is a system of w*-u.s.c., quasi-concave and unitarily invariant functions
on F(#)%, with the following additional properties:

(i) Py; @y,..., 0)€[0, 1] Vo, € L(#)4;

(ii) Py«f; wy,..., 0,)=0 iff wjw,=0Vj#k;

(i) Py; wq,..., w,)=1 iff o =-=w,
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(iv) if o is irreducible, then P, € 2,(s#) and Py ; 0y,..., 0,)>P(L;
O1se..» O,) for all A€ £™ if and only if thereis a c.p.-stochastic linear
¢ over B(#)* such that w,=d(oy), Yk.

Proof. Quasi-concavity, unitary invariance and (i) are obvious properties.
By definition, there exist f;e R}l and o€ R} such that Py«/; wy,..., @)
=f1— 2 4K(@g,..., 0,5 Appseees Akn)=i2f{ﬁﬂ— 2 K (wy,..., 05 Agpseees

ket o ke AN
A,)}, where the infimum runs over all finite subsets .# of 47§ The

infimum of u.s.c.-functions is u.s.c., so Py«;.,...,.) is w*us.c. By
construction of P,;, we have
= 4]

Pt @y, )= {?iff K(@gyeney @ Agpyerny A )= {"

1
forall ke 43,
| % 4wl ¢

This, together with density of {4,} within the positive cone of .« implies
(ii), (iii) by 4.1, 4.4 and 4.5. Letke #8. Then, there is a sequence {A(™}c . ¥"
such  that li}'n Paomy (5 Viseees V) = Rp(vysenns v,) Vv, € P ()4 Hence,
Py 04,..., 0)>P (L 04,..., 6,) VAL implies Ry (wy,..., w,) =R (04,...,0,)
which is equivalent with

K(wy,..., @5 Agysens A3 ) <K(Oys. ., 045 Aipse-r Ap)s k€N

This implication holds for an arbitrarily chosen ke #%. By 2.1(i), and
since {4} is dense in .o, we may use 3.1 to see the existence of c.p.-stochastic
¢ over Z(H#)* with w,=¢d(o,), Vk, and the one direction of (iv) is proved.
The other way around follows by 3.3 and the fact that Py(e; ---) e 2,(5#) in
case of an irreducible «.

§5. The Case of Tuples

Throughout this part we specialize to n=2. Let .« be an arbitrary (but
throughout fixed) irreducible UHF-algebra over s#. Fix A4, Bew,. If
X, y, X', y' € 5 are unit vectors, with |(x, y)|=|(x', y')|, then there is U € %(#)
such that x'=Ux, y'=Uy (s is a complex Hilbert-space). Therefore, if w,
denotes the state w,=(x, (-)x), etc., we have K(w,, @,; 4, B)=K(w,, ,; 4, B).
This shows that f, 5(1):=K(w,, w,; 4, B) with t=|(x, y)|> is a weldefined
realvalued function.

S.1 Lemma. For fixed A, Be o4, ,f:=f, pis a continuous and monoto-
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neously decreasing function over the unit interval.

Proof. Having in mind that P, 4 (w,, ®,)=|(x, y)|?, an application of a
combination of 1.8 with 3.1 gives the decreasing behaviour. Let te[0, 1], and
define x,=./t x+./1—1y, with x, y unit vectors being orthogonal to each other:
(x, y)=0. Assume {U,}<=%(s#) have been chosen in such a way that, with
A,=U,AU% B,=U,BUZ, the following limits exist (use a compactness argu-
ment repeatedly):

FO=K(oy, 0y,; 4, B)=lim {0(4,)+ 0 (B}, a(t)=1im (x, 4,x),

y(®)=1m (y, B,y), () =lim (x, B,y), f(1)=lim {(x, B,x)~(y, Byy)}-

A simple calculation shows that

(*) FO=u(®)+y()+1B(t)+2/t1—1)Re (t) (Re-the real part).

If y()=|8(t) exp id, put z=./t x + (exp-id)/I—ty. Then, |(x, 2)|?>=t,
50 K(w,, @5 4, B)>1im {0,(4,) +w,(B,)} =a(t) + (1) + (1) + 2,/t1 - ) [5(1)| >
f(®), by (). Therefore, 6(t) >0 has to hold for t#0, 1, and can be supposed for
t=0, 1. Now, the sequence {U,} = #%(s#) depends on the particular choice of
te[0,1]. Hence, in general for s#t: f(s)zh;"m {w,(4,) + o, (B} =
() +y(5) + sP(®) + 2/s(1 —s)8(2), Vs. We define a function Fys):=
o)+ () + sp(t) + 2\/ s(1 —5)d(t) over the unitinterval. For the second derivative
F(s)" we see F(s)'=— \/ s(1—5)"12+ (1 —25)%(2s(1 —5))~1)d(£) <0, due to 5(¢) >0,
for s taken from the unit interval. Consequently, F(s) is concave for s € [0, 1].
We take together all these informations and know: to every te[0, 1] there is a
concave continuous function F,(s) over [0, 1] such that

(i) f()=FLs) Vs;

(il) fO=F();

(iii) F,(s)>0 Vs.

The function f is 1.s.c. (the supremum of continuous functions by definition)
and decreasing so that it is continuous from the right. Let {t,} be an increasing
sequence within [0, 1) and ¢, /t. From concavity of F,(s) together with
(i), (i) and (iii) we close as follows: f(s)>F,(s)>(1—s)(1—t,)"'F,(t)+
G—t)A-t) ' F,(D>1-s)(1—t)"'f(z,) for allse[t,, 1). If te[t, 1), for
s=t this yields

JO=A-)1-1)"f(t) =1 -1 —-1)"f (1),

where in the last step we also used monotonicity of f. From the last written
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inequality follows that ligl f(t)=f(®). For t=1 this follows from |F, (1)—f(z,)|
<A =) 1B + 2t (1+1,)5(t,) —> O, since |B(t)l, &(t,) are uniformly
bounded. In fact, since limf(z,) exists (monotonicity), we have lim f(z,)=
limF, (1). From F, ()<f(1)<f(¢t,) (see (i) and monotonicity) comes
limf(¢,)< f (D)< f(t,), so lim f(¢,)=f(1) follows. Thus, f is also continuous
from the left.

We will have need for the following elementary, but very useful result:

5.2 Lemma. Let g be a monotonously increasing continuous function over
an interval [o, fl< R!. Let h be a quasi-concave and u.s.c. function over a
convex subsei % in a topological vector space. Assume hZ)<[a, Bl
Then, goh is quasi-concave and u.s.c. over ¥.

Proof. Let ce RY, and define M, ={xe L goh(x)>c}. Assume h is quasi-
concave and u.s.c. Let R ={rela, fl: g(r)>c}. R, isclosed. If R.=¢,
then M, =¢. If R.#¢, by monotonicity and continuity of g, there is ¢’ € R!
with R|.=[c’, f]. Since xe M, iff h(x)e N, we have M. ={xe X: h(x)>c'}.
By assumptions, 3¢, is convex and closed. Hence, goh is quasi-concave and
u.s.c.

Let us now specialize to the case of tuples within all constructions and
definition of 4, especially 4.6. By 5.1 we know thatf,, 4, ()=K(w,, ®,; 4y, 4,),
with t=|(x, y)|?, is a decreasing and continuous function over [0, 1].
Then, the function G(f):=P,(«; w,, w,) as a uniform limit of increasing,
continuous functions over [0, 1] has to be so, too. Combining 1.9 with 3.1 we
see for e #? and t, se[0, 1]

G,()>G,(s) iff t>s,

so G, a strictly increasing continuous function which maps [0, 1] into itself (see
4.6 (1)—(iii)). Then, G3! exists and is an increasing continuous function on
[0, 1] with range [0, 1]. We apply 5.2 with &= FL(#), X P(H# )y, =0, f=1,
g=G;, h=Py;.,...,.)and see that P,(w, 6): =G P,(; w, o) for YA e £?
is a quasi-concave, unitarily invariant, w*-u.s.c. function over L(#)y X L(H#)«
with the additional property P(w,, w,)=|(x, y)|> for unit vectors x, ye .
Since G, is strictly monotonous and continuous, P,(w, 6)> Py w’, ¢'), Y2 £?
iff Py(of; w,0)>Py; 0, 0")Vie £2 By construction, P,e 2,(#), Vi
€ #2. With a view to 3.3, 4.6 we may take together the results of this section in
the following form: '
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5.3 Proposition. Let IP(#) be the set of realvalued functions over
L(H)y x P (H)y characterized by: pe T P(#) if and only if

(i) p(w,0)e[0, 1] Vo, 6 € L(#)y;

(i) p is w*-u.s.c., quasi-concave and unitarily invariant,

(iii) p(w, 6)=0 iff w, o are mutually orthogonal states;

iv) plw, o)=1iff o=o0,

(v) plo,, o,)=I|(x, y)I? for all unit vectors x, y € #;

(vi) plweT, 6oT)> p(w, 6) for any unital, completely positive linear map

T over B(#) and all w, 6 € P(H#), such that woT, 6oTe€ L(H)s.

Then, for normal states w, 6, @', ¢’ € P(H#), we have:
p(w, 0)=p(w’, ')  forany peITP(H)

is equivalent with the existence of a completely positive, unital linear map
T over B(s#) such that o=w'~T, 6=0"-T.

Proof. The P,’s constructed above belong to 2,(s#) and fulfil (i)-(v). By
4.6 (iv) and our discussions above all P, obey (vi), so the assertion is seen.

Note that in proving 5.3 we also proved 1.4. Finally, as the discussion of
1.8 shows, it is useful to take notice of the following fact:

5.4 Corollary. Let p(.,.) be a realvalued function over S(H#)y X L(H )4
with properties 5.3 ()~(v). Then, pe€ 2,(s#) (see 1.2) implies p € TP(H#).

Proof. From pe 2,(s#) and 3.3 follows 5.3 (vi).

5.5 Remark. As we know from 5.3 each of the functions of Z2(s#)
reduces to |(x, y)|? if it is considered in restriction to the set of pure states {w,:
xe s, |x| =1}, ie. p(w,, ®,)=|(x, y)|* for all pe 72(s#). Hence, in context
of quantum statistical mechanics, one might think of each of the functions p with
properties 5.3 (i)-(vi) as a “reasonable’’ extension of the notion of the quantum
mechanical transition probability (together with some of its properties) from pure
to mixed states in the sense of quantum statistics. Whether or not such an
extension is sound or useful cannot be decided or even discussed within this
mathematical treatment. This task together with a discussion of the physical
backgrounds of the search for such extensions is a matter of foundation of quan-
tum physics within the algebraic approach. This is to be done elsewhere.
Nevertheless, some heuristic and methodological aspects should be touched on.
The reader who is not willing to follow such speculations beyond mathematics
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might skip the rest of this point. In the literature on mathematical physics
several definitions for ‘“‘generalized transition probabilities’” exist. All of them
which are known to the author fall into the class of functions described by 5.3 (i)—
(vi) if they are considered in restriction to normal states over #(s#). As an
additional property these examples are symmetic functions, i.e. p(w, 0)=p(o, @),
Yo, 6 € #(#),. A really physical reasoning why such a symmetry should be
imposed is not known to the author (besides the simple fact that |(x, y)|? is
symmetric). For a general element of 72() such symmetry is not required.
Only in certain special cases the restriction onto the symmetric members of
TP (#) exclusively will be sufficient to maintain the validity of both directions
of the assertion of 5.3 (see 1.9 for such an example). Even the fact that for the
description of irreversible behaviour in quantum statistical mechanics one has
to deal mainly with dissipative (directed, non-reversible) motions (instead of a
description by means of groups and semigroups of automorphisms) seems to
indicate that also non-symmetric extensions of |(x, y)|?> should be meaningful.
Granting an interpretation for p in sense of a transition probability, one should
better refer to the number p(w, o) by convention as giving a transition pro-
bability from w into the one-point-set {¢} of states than speaking merely of the
transition probability between ® and ¢ (which suggests symmetry). The result
of 5.3 might be used to give mathematical support to the arguments in favour of
considering also non-symmetric extensions of |(x, y)|2. This gives, in a natural
way, an imbedding of the case of two states into the case of n-tuples (see 4.6)
and suggests to refer to the values of certain “canonical’’ functions p(wy,..., ®,)
with properties as described in 4.6 as giving a ‘“‘generalized transition probability

b

from w,; into the convex set conv {w;}7_,”’. In this case it is not clear, however,
how to impose “boundary conditions’” on the pure states (compare 5.3 (v) in
case of tuples) without loosing the equivalence of p(w,,..., w,)>p(o4,..., 6,)
with the existence of a transformation T such that w;=0;T, Vj. Also, it seems
that there is no natural pendant of [(x, y)|? in quantum mechanics for more than
two vectors, wheré generalizations to the general quantum statistical situation
could be based on in sense of the n-tuple-problem. Thus, these general con-
siderations don’t seem to be as significant as in the case n=2. These very
incomplete remarks are thought to serve as an impulse for further discussions

about generalized transition probabilities between mathematicians and physicists.
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§6. The Case of a Non-Separable Hilbert Space

Assume the Hilbert-space o is not separable. Let w,,..., ®, and o4,..., g,
be density operators over ##. Let E, P be the orthoprojections onto the joint
range of the family {w,,..., w,}, {04,..., 6,}, respectively. Since all operators
considered are of trace-class, Es# and Ps# are separable. U e %(s#) might
be chosen such that UEU*=E*>P, or E*<P holds. Assume T is a c.p.,
unital linear map over #(5) such that w;=g;°T, Vj. Then, oY=0;T", V],
with the unital c.p.-map T"=T(U-U*). Moreover, for VA4 e Z(H#):

Tr.o;T"(A)=Tr. 0YA=Tr. oYEVAEV=Tr. 0, T"(EVAEY), i.e. Vj :
Tr.o(PT"(A)P—PT"(EVAE")P)=0.

Especially, the latter holds for A=1. Since T” is unital, we see B=
PT"I)P—PT"(EY)P>P—P=0, so the equality above amounts to Tr.c;B=0
Vj, which implies B=0, since PAB=BP+=0. With other words, P=PT"(EV)P.
We define Q=EVv P. Then, Qi is separable. Over #(Q#)=Q%(#)Q let
us define a completely positive linear map 7' by T'=PT"(EY(-)EV)P+
(Q—P)(-)(Q—P). We have T'(Q)=PT"(EY)P+(Q—P)=P+(Q—P)=Q,s0 T’
is unital on #(Qs). Now, over Qx, we may write: Tr.o;T'(4)=Tr.
0;PT"(EVAEV)P = Tr.cT"(EVAEY) = Tr. oYEVAEV =Tr. YA, YA€ #(Q#), so
wY=0;0T', ¥j, if ®Y, o; are thought of as density operators over Q..

What we have shown is the following: if w,=g,°T for a c.p., unital linear
map 7, then there exists a unitary U € %(s#), an orthoprojection Q with Q-7
separable, and a c.p., unital linear mapping 7" over %(Qs#) such that {w¥, o,}
cQAB(#) 0= B(QH#), and WY =0,cT’, YVk. On the other hand, let w,,..., ®,,
0,,..., 0, be given density operators and an orthoprojection Q, with Qs# sep-
arable, Ue#(s#) such that QuY=wY, Qg;=0;, Vj. Assume, there is a
completely positive, unital map T over #(Q#°) such that w¥=0;T, Vj, if
Y, o; are thought of as density operators on Qs#. Let V be an unitary in #(s#)
such that VQ1V*=0+, and define a linear map 7"’ by:

T'=Q0T(QU(-)U*Q)Q+QV*U(-)U*VQL, over R(H#).

Then, 7' is completely positive, and T'(I)=Q0T(Q)Q+Q+=0+Q0+=1
shows thatX’ is unital. Moreover, for VA€ #(#): Tr.o; T'(A)=Tr.c;0T'(4)Q
= Tr.¢;QT(QUAU*Q)Q = Tr. 0, T(QUAU*Q)=Tr. 0YQUAU*Q =Tr. oY UAU*
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=Tr.w;A. Hence, w;=0;0T', with a c.p., unital linear map 7' on Z().
Taking together all this we see that our restriction of the n-tuple-problem to
considerations over separable Hilbert-spaces throughtout §§1-5 is not a severe
one. All results might be adapted to the non-separable situation by obvious
modifications as indicated above.
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