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Decompositions of Linear Maps into
Non-Separable C*-Algebras

By

Tadasi HUurRuyA*

Abstract

We study positive decompositions of bounded linear maps between C*-algebras. A
characterization of commutative injective C*-algebras is given in terms of positive decomposi-
tions with certain norm condition of linear maps. We also provide under the Continuum

Hypothesis a completely bounded map into the Calkin algebra which admits no positive
decomposition.

§1. Introductiom

In [17, Satz 4.5] Wittstock proved that if B is an injective C*-algebra, then
every self-adjoint completely bounded map from any C*-algebra into B can be
written as the difference of two completely positive maps (see [11] for another
proof). Haagerup [4, Theorem 2.6] showed that for a von Neumman algebra
B the converse of Wittsock’s theorem holds. In the C*-algebra case, if B is
separable, the converse also is true [5]. But there exists a non-injective C*-
algebra B for which the converse fails to hold [6]. We recall that every positive
(resp. bounded) linear map from a C*-algebra into a commutative C*-algebra
is completely positive (resp. bounded) ([1, Proposition 1.2.2], [10, Lemma 17).

In this paper we prove that for a commutative C*-algebra B if every self-
adjoint bounded linear map from any C*-algebra into B can be decomposed
into positive linear maps in the form ¢=¢* — ¢~ with [[¢* +¢ || =|¢| then B
is injective (Theorem 2). Characterization of general injective C*-algebras
seems to remain open. There exist several examples of bounded linear maps
between commutative C*-algebras which are not linear combinations of positive
linear maps ([6, Theorem 2], [7, Proposition 9], [9], [13, Example 2.1], [15,
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1.3.4 Example II]). We show that such an indecomposable phenomenon
occurs in the category of commutative C*-algebras if there exists a sequence
{T;} of disjoint open subsets of the compact Hausdorff space associated with
a range algebra such that the intersection N2, T; of their closures is non-empty
(Theorem 4). Applying this result, we give under the Continuum Hypothesis
a completely bounded map from a commutative C*-algebra into the Calkin
algebra which is not a linear combination of positive linear maps (Theorem 8).

The author would like to thank Professor Tomiyama for a careful reading
of the manuscript and his useful comments.

§2. Preliminaries

Let A and B be C*-algebras. A linear map ¢: A— B is completely positive
if every multiplicity map ¢®id,: AQ M,—B® M,, is positive, and is completely
bounded if sup, |¢®id,|| <oo. The supremum is called the completely bounded
norm and is denoted by | ¢|.,- A bounded linear map ¢ from a C*-algebra into
a commutative C*-algebra satisfies | @] ,=I¢] ([1, Proposition 1.2.2], [10,
Lemma 1]). We use repeatedly these results without reference.

A linear map ¢: A— B is said to admit a positive (resp. completely positive)
decomposition if ¢ is a linear combination of positive linear (resp. completely
positive) maps. It is known that ¢: A— B admits a completely positive decom-
position if and only if there exist completely positive maps ¢, ¢,: A—B such
that

$1(x) ¢*(x)

*) PO= 4 b

is a completely positive map from A into B M,, where ¢* is the map given
by ¢*(x)=¢(x*)* for x in A [4, §1]. If ¢: A—B admits a completely positive
decomposition, we let | ¢]|4. denote the infimum of those »=0 for which there
exist completely positive maps ¢, ¢,: A—B such that ||¢;|<r, i=1, 2 and
(%) holds [4, Definition 1.1]. In particular, if ¢ is a self-adjoint linear map
(@p*=¢) then ||}| 4o =Inf {||¢* + ¢~ ||}, where inf runs over all completely positive
decompositions ¢ =¢*+ — ¢~ [4, Proposition 1.3].

A unital C*-algebra B is injective if for any C*-algebra D such that D=2 B,
there exists a projection of norm one from D onto B. For a compact Hausdorff
space S, let C(S) denote the C*-algebra of all continuous functions on S. The
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space S is stonean (or extremally disconnected) if the closures of any disjoint
open subsets are again disjoint. If t€ S, let p(f) denote the supremum of 1
and those n=2 for which there exist n disjoint open subsets Si,..., S, such that
the intersection N}, S7 of their closures contains ¢, and put p(S)=sup {p(1):
teS}. The C*-algebra C(S) is injective if and only if p(S)=1 (see [6] for
example).

We refer to [14] for recent development of completely bounded maps.

§3. Norm ||-] 4., and Commutative Imjective C*-Algebras

In this section, we give a characterization of a commutative injective C*-
algebra in terms of the norm | - ||4.., and estimate | - || 4., Of linear maps which
have been considered in [6].

The following is a basic lemma in this paper.

Lemma 1. Let X be a compact Hausdorff space with n disjoint open
subsets {X;: i=1,..., n} such that the intersection N7-; X7 of their closures is
non-empty. Then there exist a commutative C*-algebra A and a self-adjoint
bounded linear map ¢: A—C(X) such that ||¢|ge.=nll@| and |¢|=n for
any positive linear map ¢+ = ¢.

Proof. For i=1,..., n, let Y; denote the one-point compactification of X,
with the point w; at infinity. We put A=3%,; ®C(Y;). Then each C(Y)) is
canonically regarded as a C*-subalgebra of 4. Let ¢p: A—C(X) defined by, for
Jiin C(Y)),

S8 —flw) if seX;;
0 otherwise.

(/=1
Then ¢*=¢, ¢(Si- )€ CX) and $(DFU)=0 (i) as X;n X, is empty.
Since ||§|C(Y)||=2 for i=1,..., n, we have
¢l =max {I$|C(T: i=L,..., n}=2.
We put
SUD=¢U)+fiw)l and  $5(f)=fi@)I
for f, in C(Y;), where I denotes the unit of C(X). It is easy to check that this

induces positive linear maps ¢§, ¢g: A—C(X) with ¢=¢§—¢g. If e; denotes
the unit of C(Y;), then
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63+ b5l =l¢5(Xi-1 e) + ¢o(Xi-1 el =2nl| =2n,
and hence || ¢| 4. < 2n.
If se X;, we choose h; in C(Y;) such that | k]| =1, h(s)=1, h;=0 and hy(w;)
=0. Put g;=e;—h;. Let ¢*: A—-C(X) be a positive linear map such that
¢=¢*. Putdp—=¢*—¢. Then

I=e;h(s)=(e;h) ()= P (e) (),
I1=egw)=—¢(e;g) ()=~ (eg) ()= P (&) (5).
Choose s, € N7y X7 and a net {s(4)} in X; such that lim, s(A)=s,. Then

1<lim; ¢*(e) (s(D)=0"(e) (5.)
1=1lim; ¢~ (e) (s{D))=¢ (&) (50) -

Hence we have

lo*+o~12(@* +¢7)(Zire)(5,)22n,
lo*I2P*(Xi-g e)(s0)2n,
so that |¢||gec=2n, |¢T || =n and this completes the proof.

Theorem 2. Let B be a commutative C*-algebra. If every self-adjoint
bounded linear map ¢ from any commutative C*-algebra into B admits a

positive decomposition and | ¢| 4.c=||P|l, then B is injective.

Proof. Suppose that B is not unital. The self-adjoint linear map y: B
+ CI—B defined by Y(a+al)=a admits no positive decomposition by the
argument of the first paragraph of the proof of [7, Theorem 11]. Therefore we
may assume that B=C(X) for some compact Hausdorff space X.

Suppose that B is not injective, that is, X is not stonean. Then there exist
disjoint open subsets X; and X, of X such that X7 n X3 is non-empty. It
follows from Lemma 1 that there exist a commutative C*-algebra 4 and a self-
adjoint bounded linear map ¢: A—C(X)=B such that ||@|s.c=2[¢|. Thisisa
contradiction and completes the proof.

Remark. This result is related to a question of Tsui [15, pp. 97-98].

As stated in the introduction, we have the example of a non-injective C*-
algebra into which every completely bounded map ¢ from any C*-algebra admits
a positive decomposition [6]. Haagerup suggested at the GPOT-conference in
Boulder Colorado, June 1983 that for such a map ¢, |P)lgec=2|Pll,- We
now include a proof of this estimate.
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We recall the notation in [6]. Let S; and S, be stonean spaces with
limit points s; and s, respectively. We put T; =S;—{s;}. Let T denote the
space obtained from S; and S, by indentifying s; and s,. More precisely, T is
the one-point compactification of the topological sum of locally compact spaces
T, and T,, with the point @ at infinity. Since S; is homeomorphic to T;\U{w},
we identify S; with T,\U{w}. Since T, and T, are open subsets of Tand T7N\T3
={w}, the space T'is not stonean. Hence the C*-algebra C(T) is not injective.
In [8], such a space C(T) was studied as a Banach space.

Proposition 3. With the above notation, if ¢ is a bounded linear map
from a C*-algebra A into C(T), then

lPllaec =2l
Proof. For i=1,2, let ¢;: A—C(S;) be defined by ¢,(a)=¢d(a)|S;, the
restriction to S; of ¢(a). Since C(S,) is injective, there exist completely positive
maps ¢; 1, ¢;,: A—C(S;) such that [|¢;, |, [$;.] = ll$:]l and
¢i,1(@)  ¢F(a)
i@ @i x(@ )
defines a completely positive map from 4 into C(S;)® M, by [4, Theorem 1.6].
Forj=1, 2, let y;: A—>C(T) be defined by
Y@ ®)=0¢ (@) O+, (a)(w) if teS;;
Vi@ ()=, a)(@)+ ¢, (a)(®) if teS,.

Then each y; is completely positive and

Wil @il + a1 STl + g2l S2] @l -
Let @: A—>C(T)® M, be defined by
%k
o) ( $:1(a) $*(@) )
¢(@)  $i(a)

We now show that @ is completely positive. For convenience, we define
completely positive maps ¥4, ¥,: A—M, by
$i,1(a)(w) Y )

0 $i,2(a) ()

since ¢;; and ¢, , are positive. For a compact Hausdorff space T, the C*-
algebra C(T,)® M, can be identified with the C*-algebra of M,-valued continuous

?(a)=

Yi(a)= (
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functions on T, and a is a positive element of C(T,)®M,, if and only if a(¢) for
each t in T, is a positive matrix in the n x n matrix algebra M,. We have, for
ain AQM,,

(2®id,) (a) () =P, ®id,(a) () + ¥, ®id,(a) if teS;;
(2Qid,) (a) () =¥ ®id,(a)+ P,®id,(a) (1) if teS,.

Hence @ is completely positive and the proof is complete.

We remark that the number “2” in Proposition 3 is the best posibility by
Lemma 1.

§4. Commutative Non-injective C*-Algebras

We recall the notation in the introduction. For ¢ in a compact Hausdorff
space S let p(f) denote the supremum of 1 and those n for which there exist n
disjoint open subsets S,,..., S, such that te N\%; S7, and p(S)=sup {p(?):
teS}.

In this section, we show that if X is a compact Hausdorff space with p(X)
=00, then there exist a commutative C*-algebra A and a bounded linear map
from A4 into C(X) which admits no positive decomposition. Therefore, if the
C*-algebra C(T) for a compact Hausdorff space T satisfies the condition that
every bounded linear map from any commutative C*-algebra into C(T) admits
a positive decomposition, then p(7T) < co.

The following result is an improvement of [6, Theorem 2].

Theorem 4. Let X be a compact Hausdorff space with p(X)=oco0. Then
there exist a commutative C*-algebra A and a bounded linear map from A

into C(X) which admits no positive decomposition.

Proof. For each integer m =2, we have m3 disjoint open subsets X(m, 1),...,
X(m, m®) of X such that N\72, X(m, j)~ is non-empty. For each j<m3, let
Y(m, j) be the one-point compactification of X(m, j) with the point w(m, j) at
infinity and let 4,, be the direct sum .72, @C(Y(m, j)). Let A be the C(c0)-
direct sum > 2, @4; of {4;}. Then each C(Y(m, j)) is canonically regarded as
a *-subalgebra of 4. We define ¢: A—C(X) by, for f, ;, in C(Y(m, j)),

_ AmY(f i 1 () —fem p(@(m, ) if s€X(m,j);
$m 1) ()= { 0 otherwise.
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By a similar argument of the first paragraph of the proof of Lemma 1, it is easy
to chech that ¢ is bounded.

Suppose that there exists a positive linear map ¢*+: A—C(X) such that
¢=<¢*. Since the restriction m2¢|4,, is the map ¢ for n=m3 obtained in
Lemma 1, we have m3< |m2¢*|4,,]. Hence

m= | ¢* Al S lo* -
This implies the unboundedness of ¢+.

A map h: X—Y between two topological spaces is called minimal if it is
continuous, and no closed proper subset of X is carried onto h(X) by h. If S
is a compact Hausdorff space, then there exist a stonean space Gy and a minimal
map gs from Gg onto S [3]. We call Gg the Gleason space of S and gy the
Gleason map of S.

Proposition 5. Let X be a compact Hausdorff space. If p(X)<oo and
{te X: p(t)=2} is a finite set, then every bounded linear map ¢ from any C*-
algebra A into C(X) admits a positive decomposition.

Proof. Since p(X)< o0, it follows from [8, Lemma 7] that gx'(¢) for each
t in X is finite, so that we put {¢,..., t,} =g3'({te X: p(1)=2}). Let G,..., G,
be disjoint open and closed subsets of the Gleason space Gy such that \U?%.; G;
=Gy and ;€ G, for each i<n. The restriction gx|G; is a homeomorphism from
G; onto X;=gx(G;) and X;nX;={te X: p(1)=2} if i#j. Since G, is stonean,
so is X;. The intersection X;n X; for any pair (i, j) is finite and U7, X;=X.
Hence ¢ admits a positive decomposition [6, Remark (ii) of Theorem 1].

The following proposition gives an example of a compact Hausdorff space T
such that p(T)=2, F={te T: p(t)=2} is an infinite closed subset and every
bounded linear map from any C*-algebra into C(T) admits a positive decom-
position. If the proposition is compered with Proposition 3, the range algebra
of the proposition is in a restricted form because we have in general no simul-
taneous extension from C(F) into C(T) (cf. [12, Proposition 5.3]).

Let S be a stonean space with a closed subset F and put S;=S and S,=S.
Let S, be the topological sum of S; and S,. For a homeomorphism ¥/: S;—S,,
let CH(S)={feC(Sy): f()=fW(¥)) for all t in F}. The algebra Cg(S) is *-
isomorphic to the C*-algebra of all continuous functions on the space Sy obtained
from S, by the identification of the naturally corresponding points of F and
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Y(F). It is easy to see that p(Sp)<2. If F is a nowhere dense closed set then
p(Sp)=2 by [8, Lemma 2].

Proposition 6. With the above notation, if ¢ is a bounded linear map
from any C*-algebra A into Cx(S) then ¢ admits a positive decomposition and
lPllacc =21l

Proof. Since C(S,) is an injective C*-algebra, there exist, by Haagerup
[4, Theorem 1.6], completely positive maps ¢4, ¢,: A—C(S,) such that |¢,],
62l =l ¢ll and the map

$1(a) ¢*(a))
d(a) ¢,(a)

defines a completely positive map from A4 into C(S))®M,. For i=1, 2, we

¢(a)=(

define a completely positive map ¢;: A—C(S,) by
Pa)(Y(n) if t in Sy
P~ (®) if ¢ in S,.
We put ¢7 =¢;+ ¢;. Then for all ¢t in F and a in 4,
¢7(a) (1) =p«(a) (1) + di(a) (Y(1) = ¢(a) (Y(1)) -
We then can define a completely positive map @’ from A4 into Cx(S)® M, by
¢i(a) ¢*(a) )
p@) ¢35 |

Hence ¢ admits a positive decomposition. It is easy to check that |¢7|| <2| ||
and ||@|l4e.=2[l¢ll. This completes the proof.

#i(@) ()=

¢’(cf)=(

Remark. Let BN be the Stone-Cech compactification of the discrete
space N of all positive integers. Isbell and Semadeni [8, Proposition 1] proved
that if S=pN and F=fN — N then C(Sy) is not injective as a Banach space and

p(Sp=2.

§5. Linear Maps into the Calkin Algebra

In this section, assuming the Continuum Hypothesis, we give a bounded
linear map from a commutative C*-algebra A into 1*/c, which admits no
positive decomposition, where I° and ¢, denote the C*-algebra of bounded
sequences and the C*-algebra of sequences convergent to 0. This map also
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induces a completely bounded map from the C*-algebra A4 into the Calkin
algebra which admits no positive decomposition.

Let S be a compact Hausdorff space. A subset S, of S is called a zero-set
if there exists g, in C(S) with So={x€ S: go(x)=0}. A subset S; of S is called
a cozero-set if there exists g, in C(S) with S;={xeS: g,(x)#0}. Hence S,
is a zero-set if and only if S—S, is a cozero-set.

The following lemma is based on an idea of Gillman [16, Proposition 3.30].

Lemma 7. Let SN be the Stone-Cech compactification of the discrete
space N of all positive integers. Assume the Continuum Hypothesis. Let
peEBN—N. Then p(p)=oco.

Proof. We choose a base of cardinality of the continuum zero-set
neighbourhoods of p since SN —N has a base consisting of cardinality of the
continuum open and closed subsets [16, Corollary 3.17] and every neighbour-
hood of p contains a zero-set neighbourhood of p. By the Continuum Hypo-
thesis, the basis is indexed by the first uncountable cardinal w; and written
{Z,: a<w;}. Proceeding by transfinite induction, we assume for a given ¢ <w,
that cozero-sets {4; ,: i€ N, o <o} such that

A; ;N\A; . is empty, the union \U2, 4; ;S Z; and p& A, ; forall i, jin N i#j
and all 4, t<a. A countable union of cozero-sets is again a cozero-set [2, 1.14].
We put

Aa=Zam(ma'<a{(ﬁN—N) _(U?D:l Ai,o‘)}) .

Then A, contains p and thus is a non-empty zero-set of N —N. Hence 4, hasa
non-empty interior by [16, Corollary 3.28]. Since fN — N contains no isolated
points [16, Proposition 3.12], there exists a family {4;,: ie N} of disjoint
countable cozero-sets in 4,— {p}. Then the induction hypothesis is satisfied for
all A, t=Zo.

We define

Ai= Ua<w; Ai,a: .

Then {4,} consists of disjoint open sets.  Since each basic neighbourhood Z, of p
contains \U{; 4;,, every neighbourhood of p meets all 4; so that N2, 47
contains p. This completes the proof.

Let H be an infinite dimensional Hilbert space and let L(H) and K(H) be the
C*-algebra of bounded linear operators on H and the ideal of compact linear
operators on H, respectively. We put Q(H)=L(H)/K(H) and denote by n the



654 Tapast HURUYA

quotient map L(H)—Q(H). If H is a separable infinite dimensional space, Q(H)
is called the Calkin algebra. Let M be the o-weak closure of the algebra gen-
erated by a family {p;} of countable mutually orthogonal minimal projections in
L(H). Then

M={xeL(H): x=3 % x(n)p,, x(n)e C and sup, [x(n)] < oo}
and
MnKH)={xeM: p,x=xp,=x(n)p,, lim, x(n)=0}.

Hence M ~I1* and M n K(H)~c,, so that C(fN—N)=~I1®/c,. Since n(M)=
C(BN —N), the algebra C(BN — N) is regarded as a C*-subalgebra of Q(H).

Theorem 8. Assume the Continuum Hypothesis. With the above no-
tation, there exist a commutative C*-algebra A and a completely bounded map
¢: A—Q(H) with ¢(A)< C(BN —N) which admits no positive decomposition.

Proof. Let @: L(H)—M defined by

D(x)=2 321 PiXD;-
Then @ is a projection of norm one from L(H) onto M. If x € K(H), then mo®(x)

=0. Hence we define the projection ¥ of norm one from Q(H) onto C(BN —N)
by

Y(x+ K(H))=mo®P(x)

for x in L(H).

By Theorem 4 and Lemma 7, there exist a commutative C*-algebra 4 and a
self-adjoint bounded linear map ¢: A—C(SN — N) which is not a linear combi-
nation of positive linear maps. Since ¢p(4)= C(BN—N), ¢ is a completely
bounded map from 4 into Q(H). Suppose that there exist positive linear maps
¢*, ¢~ A—>Q(H) such that ¢=¢+—¢p~. Then

(f)= Toqﬁ: 'f’qu"'—gloqﬁ_ .

Both ¥Yo¢* and Yo¢p~ are positive linear maps from A4 into C(BN —N). This is
a contradiction and completes the proof.

Remark. Answering a question of Paulsen, Haagerup [4, Corollary 2.9]
showed that there exist a non-commutative von Neumann algebra B and an
ideal J such that for every infinite dimensional C*-algebra D, there exists a com-
pletely bounded map : D— B/J which has no completely bounded lifting y~: D
—B. The map ¢ in Theorem 8 also is regarded as a map ¢y: A—1%/c,. Then
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¢, admits no positive decomposition. Since L(H) and I* are injective, neither
¢ nor ¢, has a completely bounded lifting.
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