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Decompositions of Linear Maps Into

By

Tadasi HURUYA*

We study positive decompositions of bounded linear maps between C*-algebras. A
characterization of commutative injective C*-algebras is given in terms of positive decomposi-
tions with certain norm condition of linear maps. We also provide under the Continuum
Hypothesis a completely bounded map into the Calkin algebra which admits no positive
decomposition.

In [17, Satz 4.5] Wittstock proved that If B Is an Injective C*-algebra, then

every self-adjoint completely bounded map from any C*-algebra Into B can be

written as the difference of two completely positive maps (see [11] for another

proof). Haagerup [4, Theorem 2.6] showed that for a von Neumman algebra

B the converse of Wittsock's theorem holds. In the C*-algebra case, If B Is

separable, the converse also is true [5]. But there exists a non-injective C*-

algebra B for which the converse falls to hold [6]. We recall that every positive

(resp. bounded) linear map from a C*-algebra Into a commutative C*-algebra

Is completely positive (resp. bounded) ([1, Proposition 1.2.2], [10, Lemma 1]).

In this paper we prove that for a commutative C*-algebra B if every self-

adjoint bounded linear map from any C*-algebra into B can be decomposed

Into positive linear maps in the form $ = 0+ — <j)~ with ||$+ + $~ || = ||0|| then B

is injective (Theorem 2). Characterization of general Injective C*-algebras

seems to remain open. There exist several examples of bounded linear maps

between commutative C*-algebras which are not linear combinations of positive

linear maps ([6, Theorem 2], [7, Proposition 9], [9], [13, Example 2.1], [15,
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1.3.4 Example II]). We show that such an indecomposable phenomenon

occurs In the category of commutative C*-algebras if there exists a sequence

{TJ of disjoint open subsets of the compact Hausdorff space associated with

a range algebra such that the intersection C\T=i 77 of their closures Is non-empty

(Theorem 4). Applying this result, we give under the Continuum Hypothesis

a completely bounded map from a commutative C*-algebra into the Calkin

algebra which is not a linear combination of positive linear maps (Theorem 8).

The author would like to thank Professor Tomiyama for a careful reading

of the manuscript and his useful comments.

§ 2B

Let A and B be C*-algebras. A linear map 0: A-*B is completely positive

if every multiplicity map 0®idn: A®Mn-*B®Mn is positive, and is completely

bounded If sup,, ||$®IdJ| < oo. The supremum Is called the completely bounded

norm and Is denoted by ||$||c&. A bounded linear map 0 from a C*-algebra Into

a commutative C*-algebra satisfies ||0||c&= ||$|| ([1, Proposition 1.2.2], [10,

Lemma 1]). We use repeatedly these results without reference.

A linear map 0: A->B is said to admit a positive (resp. completely positive)

decomposition if $ is a linear combination of positive linear (resp. completely

positive) maps. It is known that (j):A-*B admits a completely positive decom-

position if and only If there exist completely positive maps 0l9 (j)2°. A-»B such

that

, , .,.
(*) <Po(*)

is a completely positive map from A Into 5®M2, where 0* is the map given

by 0*(x) = $(:x*)* f°r x In A [4, §1]. If </>: A-*B admits a completely positive

decomposition, we let ||$||dec denote the infimum of those r^O for which there

exist completely positive maps $19 $2
: ^-»B such that ||<^||gr5 f = l, 2 and

(*) holds [4, Definition 1.1]. In particular, if (j) is a self-adjoint linear map

(0* = <£) then |0||dec = inf {||$+ +0"||}5 where inf runs over all completely positive

decompositions $ = $+— <£~ [4, Proposition 1.3].

A unital C*-algebra B Is injective If for any C*-algebra D such that B^B,

there exists a projection of norm one from D onto B. For a compact Hausdorff

space S, let C(S) denote the C*-algebra of all continuous functions on S. The



DECOMPOSITIONS OF MAPS OF C*-ALGEBRAS 647

space S Is stonean (or extremally disconnected) if the closures of any disjoint

open subsets are again disjoint. If teS, let p(f) denote the supremum of 1

and those n^2 for which there exist n disjoint open subsets Sl9...5 Sn such that

the Intersection n?=i ^7 of their closures contains t, and put p(S) = sup {p(t):

teS}. The C*-algebra C(S) is Injectlve If and only If p(S) = l (see [6] for

example).

We refer to [14] for recent development of completely bounded maps.

§3o Norm || - ||dec ami Commifltatl¥e Innjective C*-AIgebras

In this section, we give a characterization of a commutative Injectlve C*-

algebra In terms of the norm |] • ||dec, and estimate || • ||dec of linear which

have been considered In [6].

The following Is a basic lemma in this paper.

Lemma L Let X be a compact Hausdorff space with n disjoint open

subsets {Xt: i = l,..., n} such that the intersection r\"=iXj of their closures is

non-empty. Then there exist a commutative C*-algebra A and a self-adjoint

bounded linear map 0: A-*C(X) such that ||^||dec = n l i ^ l l an^ \\$+\\=n far

any positive linear map (f)+ ^0.

Proof. For i = l,..., n, let Yt denote the one-point compactificatlon of Xt

with the point cot at Infinity. We put A=^=1 ©C(Y^). Then C(^) Is

canonically regarded as a C*»subalgebra of A. Let <£: A-»C(X) defined by? for

otherwise.

Then $* = & ^(Z?=i/i)eC(Z) and 0(/,)0C/}) = 0 (iVj) as XrfXj Is empty.

Since H^|C(yf)|| =2 for i = l,..., n, we have

We put

)I and

for ft In C(7f), where I denotes the unit of C(X). It Is easy to check that this

induces positive linear maps ^J? $o : A-*C(X) with $ = (J)Q — (J)Q . If e$ denotes

the unit of C(7j), then
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and hence |j0||d
J f s e X i 9 we choose ht in C(Yt) such that ||hj|| = 1, h,<s) = l, fe^O and ^(co,-)

= 0. Put 0. = e. — ft.. Let 0+: ^4-»C(X) be a positive linear map such that

-=0+-0. Then

Choose sw e r\"=i Xj and a net {st(X)} in Z^ such that IimA s^(A) = 5co. Then

Hence we have

so that 1)01 dec ̂  2ft, ||0+|| ̂ n and this completes the proof.

Theorem 20 Let B be a commutative C* -algebra. If every self-adjoint

bounded linear map $ from any commutative C*-algebra into B admits a

positive decomposition and \\4*\\dec=\\(t)\\? then B is injective.

Proof. Suppose that B is not unital. The self-adjoint linear map \j/: B

+ CI-»B defined by \l/(a + al) = a admits no positive decomposition by the

argument of the first paragraph of the proof of [7, Theorem 11]. Therefore we

may assume that B = C(X) for some compact Hausdorff space X.

Suppose that B is not injective, that is, X is not stonean. Then there exist

disjoint open subsets Xl and X2 of X such that X± n X2 is non-empty. It

follows from Lemma 1 that there exist a commutative C*-algebra A and a self-

adjoint bounded linear map 0: A-*C(X) = B such that ||0||dec = 2||0||. This is a

contradiction and completes the proof.

Remark. This result is related to a question of Tsui [15, pp. 97-98].

As stated in the introduction, we have the example of a non-injective C*-

algebra into which every completely bounded map 0 from any C*-algebra admits

a positive decomposition [6]. Haagerup suggested at the GPOT-conference in

Boulder Colorado, June 1983 that for such a map 0, ||0||dec^2||0||cft. We

now include a proof of this estimate.
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We recall the notation in [6]. Let St and S2 be stonean spaces with

limit points 5X and s2 respectively. We put Tf =Si — {si}. Let T denote the

space obtained from S^ and S2 by indentifying s1 and s2. More precisely, Tis

the one-point compactification of the topological sum of locally compact spaces

T-L and T2? with the point to at infinity. Since St is homeomorphic to T|W{co}9

we identify St with Tt\j{co}, Since Tx and T2 are open subsets of Tand T^r\T2

= {o>}5 the space Tis not stonean. Hence the C*-algebra C(T) is not injective.

In [8], such a space C(T) was studied as a Banach space.

Propositions 30 With the above notation, if 0 is a bounded linear map

from a C*-algebra A into C(T), then

Proof, For i = l, 2, let 04: A^>C(S^) be defined by 0i(a) = 0(a)|Sf
i, the

restriction to Sf of 0(a). Since C(5f) is injective, there exist completely positive

maps 0U, ^s2: ^^C(S,) such that ||0U||, ||0lf2|| g ||̂ || and

defines a completely positive map from ^4 into C(Si)®M2 by [4, Theorem 1.6].

For j = l, 23 let i/r/. 4-*C(T) be defined by

Then each ^ is completely positive and

II W ^1101^11 + 1102,711

Let <P: ̂ .-^C(T)®M2 be defined by

>(a) 02(fl)

We now show that <P is completely positive. For convenience, we define

completely positive maps Wl9 W2: A-^M2 by

a) (CD) 0

since 0ifl and 0^2 are positive. For a compact Hausdorff space T0? the C*-

algebra C(T0)®Mn can be identified with the C*-algebra of Mn-valued continuous
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functions on T0 and a is a positive element of C(T0)®Mn if and only if a(t) for

each t in T0 is a positive matrix in the n x n matrix algebra Mn. We have, for

a in A®Mn,

3) if t e Si ;

($® idj (a) (0 = F-L ® idn(a) + cP2 ® idn(a) (f) if f e S2.

Hence <P is completely positive and the proof is complete.

We remark that the number "2" in Proposition 3 is the best posibility by

Lemma 1.

§ 4 Commutative Non-imjective C*°Algebras

We recall the notation in the introduction. For t in a compact Hausdorff

space S let p(f) denote the supremum of I and those n for which there exist n

disjoint open subsets Sl5...,5B such that ter\1l=1Sj9 and p(S) = sup (p(f):

In this section, we show that if X is a compact Hausdorff space with p(X)

= 00, then there exist a commutative C*-algebra A and a bounded linear map

from A into C(X) which admits no positive decomposition. Therefore, if the

C*-algebra C(T) for a compact Hausdorff space T satisfies the condition that

every bounded linear map from any commutative C*-algebra into C(T) admits

a positive decomposition, then p(T)<co.

The following result is an improvement of [6, Theorem 2].

Theorem 4, Let X be a compact Hausdorff space with p(X) = co. Then

there exist a commutative C*-algebra A and a bounded linear map from A

into C(X) "which admits no positive decomposition.

Proof. For each integer m ̂  2, we have m3 disjoint open subsets X(m9 1),...,

X(m9 m3) of X such that r\J=1X(m, j)~ is non-empty. For each j^m3, let

Y(m, j) be the one-point compactification of X(m, j) with the point o)(m, j) at

infinity and let Am be the direct sum £5^1 ©C(Y(m, j)). Let ^4 be the C(oo)-

direct sum XS=2 ®^i of (AJ. Then each C(Y(m, j)) is canonically regarded as

a *°subalgebra of A. We define 0: ^-^QX) by, for/(mj) in C( Y(m, j)).

otherwise.
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By a similar argument of the first paragraph of the proof of Lemma 1, it is easy

to chech that $ is bounded.
Suppose that there exists a positive linear map 0+: A—>C(X) such that

$5^ + . Since the restriction m24>\Am Is the map 0 for n = m3 obtained in

Lemma 1, we have m3<; \\m2(j)+\Am\\. Hence

This implies the unboundedness of (j)+.

A map ft : X-» 7 between two topological spaces is called minimal if it Is

continuous, and no closed proper subset of X Is carried onto h(X) by ft. If S
is a compact HausdorfF space, then there exist a stonean space Gs and a minimal

map 0S from Gs onto S [3]. We call Gs the Gleason space of S and 0S the

Gleason map of S.

, Le£ X be a compact Hausdorjf space. If p(X)<co and

{teX: p(f)^2} is a finite set, then every bounded linear map $ from any C*-

algebra A into C(X) admits a positive decomposition.

Proof. Since p(X)< oo, it follows from [8, Lemma 7] that g^l(t) for each

tin X is finite, so that we put {tl9..., tn} = gxi({t eX: p(f)^2}). Let Gl5..., Gn

be disjoint open and closed subsets of the Gleason space Gx such that Wf=i Gf

= Gx and ^ e Gt for each i ̂  n. The restriction 0X|G4 is a homeomorphism from

G4 onto X{ = gx(G^ and JQ n Xj^{teX: p(t)^2} If iVj. Since G, Is stonean,

so is Xt. The intersection Xt n Xj for any pair (i, j) is finite and W?=i Xt = X,

Hence 0 admits a positive decomposition [6, Remark (il) of Theorem 1].

The following proposition gives an example of a compact HausdorfF space T

such that p(T) = 2, F = {teT: p(t) = 2} is an infinite closed subset and every

bounded linear map from any C*-algebra into C(T) admits a positive decom-

position. If the proposition is compered with Proposition 3, the range algebra

of the proposition Is in a restricted form because we have in general no simul-

taneous extension from C(F) Into C(T) (cf. [12, Proposition 5.3]).

Let S be a stonean space with a closed subset F and put S1 = S and S2 = S.

Let S0 be the topological sum of S± and S2. For a homeomorphism \j/: S1-^S29

let CF(S) = {/eC(Sf
0):/(0=/(^(0) for all t in F}. The algebra CF(S) Is *-

isomorphic to the C*-algebra of all continuous functions on the space SF obtained

from S0 by the identification of the naturally corresponding points of F and
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i//(F). It is easy to see that p(SF)^2. If F is a nowhere dense closed set then

p(SF) = 2 by [8, Lemma 2].

Proposition 60 With the above notation, if (j) is a bounded linear map

from any C* -algebra A into CF(S) then 0 admits a positive decomposition and

Proof. Since C(S0) is an injective C*-algebra, there exist, by Haagerup

[4, Theorem 1.6], completely positive maps 0t, 02: A-*C(S0) such that H0J,

|| 02 1| g|| 0|| and the map

>i(a) 0*(a)
<f>(a) = 1 0(a) 02(a)

defines a completely positive map from A into C(S0)®M2. For i = l, 2, we

define a completely positive map 0-: y4-»C(S0) by

if t in Si ;

if t in S2.

We put 0" = 0i + 0J. Then for all t in F and a in A9

We then can define a completely positive map $' from ^4 into CF(S)®Mn by

Hence 0 admits a positive decomposition. It is easy to check that ||0'-||

and || 0|| dec = 2II011- This completes the proof.

Remark. Let /W be the Stone-Cech compactification of the discrete

space N of all positive integers. Isbell and Semadeni [8, Proposition 1] proved

that if S = fiN and F = f$N — N then C(SF) is not injective as a Banach space and

§ So Linear Maps Into the CuSMn Algebra

In this section, assuming the Continuum Hypothesis, we give a bounded

linear map from a commutative C*-algebra A into I°°/c0 which admits no

positive decomposition, where £°° and c0 denote the C*-algebra of bounded

sequences and the C*-algebra of sequences convergent to 0. This map also
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induces a completely bounded map from the C*-algebra A Into the Calkin

algebra which admits no positive decomposition.

Let S be a compact Hausdorff space. A subset S0 of S is called a zero-set

If there exists gQ In C(S) with S0 = {x e S : g0(x) = 0}. A subset Si of S is called

a cozero-set if there exists g1 In C(S) with S1 = {xeS: 0i(x)^0}. Hence 50

Is a zero-set if and only if S — S0 Is a cozero-set.

The following lemma is based on an Idea of Gillman [16, Proposition 3.30].

Lemma 7, Let @N be the Stone-Cech compactification of the discrete

space N of all positive integers. Assume the Continuum Hypothesis. Let

pE@N-N. Then p(p)=oo.

Proof. We choose a base of cardinality of the continuum zero-set

neighbourhoods of p since @N — N has a base consisting of cardinality of the
continuum open and closed subsets [16, Corollary 3.17] and every neighbour-

hood of p contains a zero-set neighbourhood of p. By the Continuum Hypo-

thesis, the basis is Indexed by the first uncountable cardinal a>1 and written

{Za: oKCD}}. Proceeding by transfinite induction, we assume for a given a<c»1

that cozero-sets {Ait<r: ieN, a<a} such that

Ait^r\AJtT Is empty, the union \Jf=1L At^Z^ and p^Ait^ for all i,j In N i^j

and all A, T<a. A countable union of cozero-sets Is again a cozero-set [2, 1.14].

We put

Then Ax contains p and thus is a non-empty zero-set of fiN — N. Hence Aa has a

non-empty Interior by [16, Corollary 3.28]. Since f$N — N contains no isolated

points [16, Proposition 3.12], there exists a family {Ait0i:ieN} of disjoint

countable cozero-sets in Ax — {p}. Then the Induction hypothesis is satisfied for

all A, T^a.

We define

A _ v / A
^i" ^a<co! ^Ha°

Then {At} consists of disjoint open sets. Since each basic neighbourhood Za of p

contains WS=i^>a, every neighbourhood of p meets all At so that r\f=1A^

contains p. This completes the proof.

Let H be an Infinite dimensional Hilbert space and let L(H ) and K(H) be the

C*-algebra of bounded linear operators on H and the ideal of compact linear

operators on H, respectively. We put Q(H) = L(H)/K(H) and denote by n the
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quotient map L(H)-»Q(H). If H is a separable infinite dimensional space, Q(H)

is called the Calkin algebra. Let M be the cr-weak closure of the algebra gen-

erated by a family {p J of countable mutually orthogonal minimal projections in

L(H). Then

M = {xeL(H): x=^lx(n)pn, x(n)eC and supB|jc(n)|<oo}

and

M n K(H) = {x E M : pnx = xpn = x(n)pn, limB x(n) = 0} .

Hence M~/°° and M(}K(H)~c0, so that C(pN-N)^l"lc0. Since

C(0N-N), the algebra C(0N-N) is regarded as a C*-subalgebra of

Theorem 80 Assume the Continuum Hypothesis. With the above no-

tation^ there exist a commutative C*-algebra A and a completely bounded map

(j>\ A^>Q(H) with <j)(A)^C(f}N — N) which admits no positive decomposition,

Proof. Let <f>: L(If)-*M defined by

Then $ is a projection of norm one from L(H) onto M. If x e -K(H)j tnen ^°^
= 0. Hence we define the projection W of norm one from Q(H) onto C(@N —

by

for x in L(H).

By Theorem 4 and Lemma 7, there exist a commutative C*-algebra A and a

self-adjoint bounded linear map $: A-*C(@N — N) which is not a linear combi-

nation of positive linear maps. Since $(A)^C(JiN — N), (j) is a completely

bounded map from A into Q(H). Suppose that there exist positive linear maps

$ + , 0~: ,4-»2(H) such that $ = ̂ +-e£-. Then

Both !Fo^+ and !F°0- are positive linear maps from A into C(f$N — N). This is

a contradiction and completes the proof.

Remark. Answering a question of Paulsen, Haagerup [4, Corollary 2.9]

showed that there exist a non-commutative von Neumann algebra B and an

ideal J such that for every infinite dimensional C*-algebra D, there exists a com-

pletely bounded map \j/: D-^BJJ which has no completely bounded lifting \j/~: D

-+B. The map $ in Theorem 8 also is regarded as a map (f>0°. y4-»I°°/c0. Then
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0 admits no positive decomposition. Since L(H) and I00 are injective, neither

) nor ^0 has a completely bounded lifting.
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