Decompositions of Linear Maps into Non-Separable C*-Algebras

Bу

Tadasi Huruya*

Abstract

We study positive decompositions of bounded linear maps between C^* -algebras. A characterization of commutative injective C^* -algebras is given in terms of positive decompositions with certain norm condition of linear maps. We also provide under the Continuum Hypothesis a completely bounded map into the Calkin algebra which admits no positive decomposition.

§1. Introduction

In [17, Satz 4.5] Wittstock proved that if *B* is an injective C^* -algebra, then every self-adjoint completely bounded map from any C^* -algebra into *B* can be written as the difference of two completely positive maps (see [11] for another proof). Haagerup [4, Theorem 2.6] showed that for a von Neumman algebra *B* the converse of Wittsock's theorem holds. In the C^* -algebra case, if *B* is separable, the converse also is true [5]. But there exists a non-injective C^* algebra *B* for which the converse fails to hold [6]. We recall that every positive (resp. bounded) linear map from a C^* -algebra into a commutative C^* -algebra is completely positive (resp. bounded) ([1, Proposition 1.2.2], [10, Lemma 1]).

In this paper we prove that for a commutative C^* -algebra B if every selfadjoint bounded linear map from any C^* -algebra into B can be decomposed into positive linear maps in the form $\phi = \phi^+ - \phi^-$ with $\|\phi^+ + \phi^-\| = \|\phi\|$ then Bis injective (Theorem 2). Characterization of general injective C^* -algebras seems to remain open. There exist several examples of bounded linear maps between commutative C^* -algebras which are not linear combinations of positive linear maps ([6, Theorem 2], [7, Proposition 9], [9], [13, Example 2.1], [15,

Communicated by H. Araki, November 26, 1984.

^{*} Department of Mathematics, Faculty of Education, Niigata University, Niigata 950-21, Japan.

Tadasi Huruya

1.3.4 Example II]). We show that such an indecomposable phenomenon occurs in the category of commutative C^* -algebras if there exists a sequence $\{T_i\}$ of disjoint open subsets of the compact Hausdorff space associated with a range algebra such that the intersection $\bigcap_{i=1}^{\infty} T_i^-$ of their closures is non-empty (Theorem 4). Applying this result, we give under the Continuum Hypothesis a completely bounded map from a commutative C^* -algebra into the Calkin algebra which is not a linear combination of positive linear maps (Theorem 8).

The author would like to thank Professor Tomiyama for a careful reading of the manuscript and his useful comments.

§2. Preliminaries

Let A and B be C*-algebras. A linear map $\phi: A \to B$ is completely positive if every multiplicity map $\phi \otimes id_n: A \otimes M_n \to B \otimes M_n$ is positive, and is completely bounded if $\sup_n \|\phi \otimes id_n\| < \infty$. The supremum is called the completely bounded norm and is denoted by $\|\phi\|_{cb}$. A bounded linear map ϕ from a C*-algebra into a commutative C*-algebra satisfies $\|\phi\|_{cb} = \|\phi\|$ ([1, Proposition 1.2.2], [10, Lemma 1]). We use repeatedly these results without reference.

A linear map $\phi: A \rightarrow B$ is said to admit a positive (resp. completely positive) decomposition if ϕ is a linear combination of positive linear (resp. completely positive) maps. It is known that $\phi: A \rightarrow B$ admits a completely positive decomposition if and only if there exist completely positive maps $\phi_1, \phi_2: A \rightarrow B$ such that

(*)
$$\phi_0(x) = \begin{pmatrix} \phi_1(x) & \phi^*(x) \\ \phi(x) & \phi_2(x) \end{pmatrix}$$

is a completely positive map from A into $B \otimes M_2$, where ϕ^* is the map given by $\phi^*(x) = \phi(x^*)^*$ for x in A [4, §1]. If $\phi: A \to B$ admits a completely positive decomposition, we let $\|\phi\|_{dec}$ denote the infimum of those $r \ge 0$ for which there exist completely positive maps $\phi_1, \phi_2: A \to B$ such that $\|\phi_i\| \le r$, i=1, 2 and (*) holds [4, Definition 1.1]. In particular, if ϕ is a self-adjoint linear map $(\phi^* = \phi)$ then $\|\phi\|_{dec} = \inf \{\|\phi^+ + \phi^-\|\}$, where inf runs over all completely positive decompositions $\phi = \phi^+ - \phi^-$ [4, Proposition 1.3].

A unital C*-algebra B is injective if for any C*-algebra D such that $D \supseteq B$, there exists a projection of norm one from D onto B. For a compact Hausdorff space S, let C(S) denote the C*-algebra of all continuous functions on S. The space S is stonean (or extremally disconnected) if the closures of any disjoint open subsets are again disjoint. If $t \in S$, let $\rho(t)$ denote the supremum of 1 and those $n \ge 2$ for which there exist n disjoint open subsets S_1, \ldots, S_n such that the intersection $\bigcap_{i=1}^n S_i^-$ of their closures contains t, and put $\rho(S) = \sup \{\rho(t): t \in S\}$. The C*-algebra C(S) is injective if and only if $\rho(S) = 1$ (see [6] for example).

We refer to [14] for recent development of completely bounded maps.

§3. Norm $\|\cdot\|_{dec}$ and Commutative Injective C^* -Algebras

In this section, we give a characterization of a commutative injective C^* -algebra in terms of the norm $\|\cdot\|_{dec}$, and estimate $\|\cdot\|_{dec}$ of linear maps which have been considered in [6].

The following is a basic lemma in this paper.

Lemma 1. Let X be a compact Hausdorff space with n disjoint open subsets $\{X_i: i=1,...,n\}$ such that the intersection $\bigcap_{i=1}^n X_i^-$ of their closures is non-empty. Then there exist a commutative C*-algebra A and a self-adjoint bounded linear map $\phi: A \rightarrow C(X)$ such that $\|\phi\|_{dec} = n\|\phi\|$ and $\|\phi^+\| \ge n$ for any positive linear map $\phi^+ \ge \phi$.

Proof. For i = 1,..., n, let Y_i denote the one-point compactification of X_i with the point ω_i at infinity. We put $A = \sum_{i=1}^{n} \bigoplus C(Y_i)$. Then each $C(Y_i)$ is canonically regarded as a C*-subalgebra of A. Let $\phi: A \to C(X)$ defined by, for f_i in $C(Y_i)$,

$$\phi(f_i)(s) = \begin{cases} f_i(s) - f_i(\omega_i) & \text{if } s \in X_i; \\ 0 & \text{otherwise.} \end{cases}$$

Then $\phi^* = \phi$, $\phi(\sum_{i=1}^n f_i) \in C(X)$ and $\phi(f_i)\phi(f_j) = 0$ $(i \neq j)$ as $X_i \cap X_j$ is empty. Since $\|\phi\|C(Y_i)\| = 2$ for i = 1, ..., n, we have

 $\|\phi\| = \max \{\|\phi|C(Y_i)\|: i=1,...,n\} = 2.$

We put

$$\phi_0^+(f_i) = \phi(f_i) + f_i(\omega_i)I$$
 and $\phi_0^-(f_i) = f_i(\omega_i)I$

for f_i in $C(Y_i)$, where *I* denotes the unit of C(X). It is easy to check that this induces positive linear maps $\phi_0^+, \phi_0^-: A \to C(X)$ with $\phi = \phi_0^+ - \phi_0^-$. If e_i denotes the unit of $C(Y_i)$, then

TADASI HURUYA

$$\|\phi_0^+ + \phi_0^-\| = \|\phi_0^+(\sum_{i=1}^n e_i) + \phi_0^-(\sum_{i=1}^n e_i)\| = \|2nI\| = 2n$$
,

and hence $\|\phi\|_{dec} \leq 2n$.

If $s \in X_i$, we choose h_i in $C(Y_i)$ such that $||h_i|| = 1$, $h_i(s) = 1$, $h_i \ge 0$ and $h_i(\omega_i) = 0$. Put $g_i = e_i - h_i$. Let $\phi^+ \colon A \to C(X)$ be a positive linear map such that $\phi \le \phi^+$. Put $\phi^- = \phi^+ - \phi$. Then

$$1 = e_i h_i(s) = \phi(e_i h_i)(s) \le \phi^+(e_i)(s), 1 = e_i g_i(\omega_i) = -\phi(e_i g_i)(s) \le \phi^-(e_i g_i)(s) \le \phi^-(e_i)(s)$$

Choose $s_{\omega} \in \bigcap_{i=1}^{n} X_{i}$ and a net $\{s_{i}(\lambda)\}$ in X_{i} such that $\lim_{\lambda} s_{i}(\lambda) = s_{\omega}$. Then

$$1 \leq \lim_{\lambda} \phi^+(e_i)(s_i(\lambda)) = \phi^+(e_i)(s_{\omega}),$$

$$1 \leq \lim_{\lambda} \phi^-(e_i)(s_i(\lambda)) = \phi^-(e_i)(s_{\omega}).$$

Hence we have

$$\|\phi^+ + \phi^-\| \ge (\phi^+ + \phi^-) (\sum_{i=1}^n e_i)(s_\omega) \ge 2n,$$

$$\|\phi^+\| \ge \phi^+ (\sum_{i=1}^n e_i)(s_\omega) \ge n,$$

so that $\|\phi\|_{dec} \ge 2n$, $\|\phi^+\| \ge n$ and this completes the proof.

Theorem 2. Let B be a commutative C*-algebra. If every self-adjoint bounded linear map ϕ from any commutative C*-algebra into B admits a positive decomposition and $\|\phi\|_{dec} = \|\phi\|$, then B is injective.

Proof. Suppose that B is not unital. The self-adjoint linear map ψ : $B + CI \rightarrow B$ defined by $\psi(a + \alpha I) = a$ admits no positive decomposition by the argument of the first paragraph of the proof of [7, Theorem 11]. Therefore we may assume that B = C(X) for some compact Hausdorff space X.

Suppose that B is not injective, that is, X is not stonean. Then there exist disjoint open subsets X_1 and X_2 of X such that $X_1 \cap X_2$ is non-empty. It follows from Lemma 1 that there exist a commutative C^* -algebra A and a self-adjoint bounded linear map $\phi: A \to C(X) = B$ such that $\|\phi\|_{dec} = 2\|\phi\|$. This is a contradiction and completes the proof.

Remark. This result is related to a question of Tsui [15, pp. 97-98].

As stated in the introduction, we have the example of a non-injective C^* algebra into which every completely bounded map ϕ from any C^* -algebra admits a positive decomposition [6]. Haagerup suggested at the GPOT-conference in Boulder Colorado, June 1983 that for such a map ϕ , $\|\phi\|_{dec} \leq 2\|\phi\|_{cb}$. We now include a proof of this estimate.

648

We recall the notation in [6]. Let S_1 and S_2 be stonean spaces with limit points s_1 and s_2 respectively. We put $T_i = S_i - \{s_i\}$. Let T denote the space obtained from S_1 and S_2 by indentifying s_1 and s_2 . More precisely, T is the one-point compactification of the topological sum of locally compact spaces T_1 and T_2 , with the point ω at infinity. Since S_i is homeomorphic to $T_i \cup \{\omega\}$, we identify S_i with $T_i \cup \{\omega\}$. Since T_1 and T_2 are open subsets of T and $T_1 \cap T_2^ = \{\omega\}$, the space T is not stonean. Hence the C^* -algebra C(T) is not injective. In [8], such a space C(T) was studied as a Banach space.

Proposition 3. With the above notation, if ϕ is a bounded linear map from a C*-algebra A into C(T), then

$$\|\phi\|_{\mathrm{dec}} \leq 2 \|\phi\|.$$

Proof. For i=1, 2, let $\phi_i: A \to C(S_i)$ be defined by $\phi_i(a) = \phi(a)|S_i$, the restriction to S_i of $\phi(a)$. Since $C(S_i)$ is injective, there exist completely positive maps $\phi_{i,1}, \phi_{i,2}: A \to C(S_i)$ such that $\|\phi_{i,1}\|, \|\phi_{i,2}\| \le \|\phi_i\|$ and

$$\Phi_i(a) = \begin{pmatrix} \phi_{i,1}(a) & \phi_i^*(a) \\ \phi_i(a) & \phi_{i,2}(a) \end{pmatrix}$$

defines a completely positive map from A into $C(S_i) \otimes M_2$ by [4, Theorem 1.6].

For j = 1, 2, let $\psi_j \colon A \to C(T)$ be defined by

$$\psi_{j}(a)(t) = \phi_{1,j}(a)(t) + \phi_{2,j}(a)(\omega) \quad \text{if} \quad t \in S_{1}; \psi_{i}(a)(t) = \phi_{1,i}(a)(\omega) + \phi_{2,i}(a)(t) \quad \text{if} \quad t \in S_{2}.$$

Then each ψ_i is completely positive and

$$\|\psi_j\| \le \|\phi_{1,j}\| + \|\phi_{2,j}\| \le \|\phi_1\| + \|\phi_2\| \le 2\|\phi\|.$$

Let $\Phi: A \rightarrow C(T) \otimes M_2$ be defined by

$$\Phi(a) = \left(\begin{array}{cc} \phi_1(a) & \phi^*(a) \\ \phi(a) & \phi_2(a) \end{array}\right).$$

We now show that Φ is completely positive. For convenience, we define completely positive maps $\Psi_1, \Psi_2: A \rightarrow M_2$ by

$$\Psi_i(a) = \begin{pmatrix} \phi_{i,1}(a)(\omega) & 0\\ 0 & \phi_{i,2}(a)(\omega) \end{pmatrix}$$

since $\phi_{i,1}$ and $\phi_{i,2}$ are positive. For a compact Hausdorff space T_0 , the C*algebra $C(T_0) \otimes M_n$ can be identified with the C*-algebra of M_n -valued continuous TADASI HURUYA

functions on T_0 and a is a positive element of $C(T_0) \otimes M_n$ if and only if a(t) for each t in T_0 is a positive matrix in the $n \times n$ matrix algebra M_n . We have, for a in $A \otimes M_n$,

$$(\Phi \otimes \mathrm{id}_n)(a)(t) = \Phi_1 \otimes \mathrm{id}_n(a)(t) + \Psi_2 \otimes \mathrm{id}_n(a) \quad \text{if} \quad t \in S_1;$$

$$(\Phi \otimes \mathrm{id}_n)(a)(t) = \Psi_1 \otimes \mathrm{id}_n(a) + \Phi_2 \otimes \mathrm{id}_n(a)(t) \quad \text{if} \quad t \in S_2.$$

Hence Φ is completely positive and the proof is complete.

We remark that the number "2" in Proposition 3 is the best posibility by Lemma 1.

§4. Commutative Non-injective C^* -Algebras

We recall the notation in the introduction. For t in a compact Hausdorff space S let $\rho(t)$ denote the supremum of 1 and those n for which there exist n disjoint open subsets S_1, \ldots, S_n such that $t \in \bigcap_{i=1}^n S_i^-$, and $\rho(S) = \sup \{\rho(t): t \in S\}$.

In this section, we show that if X is a compact Hausdorff space with $\rho(X) = \infty$, then there exist a commutative C*-algebra A and a bounded linear map from A into C(X) which admits no positive decomposition. Therefore, if the C*-algebra C(T) for a compact Hausdorff space T satisfies the condition that every bounded linear map from any commutative C*-algebra into C(T) admits a positive decomposition, then $\rho(T) < \infty$.

The following result is an improvement of [6, Theorem 2].

Theorem 4. Let X be a compact Hausdorff space with $\rho(X) = \infty$. Then there exist a commutative C*-algebra A and a bounded linear map from A into C(X) which admits no positive decomposition.

Proof. For each integer $m \ge 2$, we have m^3 disjoint open subsets $X(m, 1), ..., X(m, m^3)$ of X such that $\bigcap_{j=1}^{m^3} X(m, j)^-$ is non-empty. For each $j \le m^3$, let Y(m, j) be the one-point compactification of X(m, j) with the point $\omega(m, j)$ at infinity and let A_m be the direct sum $\sum_{j=1}^{m^3} \oplus C(Y(m, j))$. Let A be the $C(\infty)$ -direct sum $\sum_{i=2}^{\infty} \oplus A_i$ of $\{A_i\}$. Then each C(Y(m, j)) is canonically regarded as a *-subalgebra of A. We define $\phi: A \to C(X)$ by, for $f_{(m,j)}$ in C(Y(m, j)),

$$\phi(f_{(m,j)})(s) = \begin{cases} (1/m)^2 (f_{(m,j)}(s) - f_{(m,j)}(\omega(m,j))) & \text{if } s \in X(m,j); \\ 0 & \text{otherwise.} \end{cases}$$

650

By a similar argument of the first paragraph of the proof of Lemma 1, it is easy to chech that ϕ is bounded.

Suppose that there exists a positive linear map $\phi^+: A \to C(X)$ such that $\phi \leq \phi^+$. Since the restriction $m^2 \phi | A_m$ is the map ϕ for $n = m^3$ obtained in Lemma 1, we have $m^3 \leq ||m^2 \phi^+|A_m||$. Hence

$$m \leq \|\phi^+|A_m\| \leq \|\phi^+\|.$$

This implies the unboundedness of ϕ^+ .

A map $h: X \to Y$ between two topological spaces is called minimal if it is continuous, and no closed proper subset of X is carried onto h(X) by h. If S is a compact Hausdorff space, then there exist a stonean space G_S and a minimal map g_S from G_S onto S [3]. We call G_S the Gleason space of S and g_S the Gleason map of S.

Proposition 5. Let X be a compact Hausdorff space. If $\rho(X) < \infty$ and $\{t \in X : \rho(t) \ge 2\}$ is a finite set, then every bounded linear map ϕ from any C*-algebra A into C(X) admits a positive decomposition.

Proof. Since $\rho(X) < \infty$, it follows from [8, Lemma 7] that $g_X^{-1}(t)$ for each t in X is finite, so that we put $\{t_1, \ldots, t_n\} = g_X^{-1}(\{t \in X : \rho(t) \ge 2\})$. Let G_1, \ldots, G_n be disjoint open and closed subsets of the Gleason space G_X such that $\bigcup_{i=1}^n G_i = G_X$ and $t_i \in G_i$ for each $i \le n$. The restriction $g_X | G_i$ is a homeomorphism from G_i onto $X_i = g_X(G_i)$ and $X_i \cap X_j \subseteq \{t \in X : \rho(t) \ge 2\}$ if $i \ne j$. Since G_i is stonean, so is X_i . The intersection $X_i \cap X_j$ for any pair (i, j) is finite and $\bigcup_{i=1}^n X_i = X$. Hence ϕ admits a positive decomposition [6, Remark (ii) of Theorem 1].

The following proposition gives an example of a compact Hausdorff space T such that $\rho(T)=2$, $F=\{t \in T: \rho(t)=2\}$ is an infinite closed subset and every bounded linear map from any C*-algebra into C(T) admits a positive decomposition. If the proposition is compared with Proposition 3, the range algebra of the proposition is in a restricted form because we have in general no simultaneous extension from C(F) into C(T) (cf. [12, Proposition 5.3]).

Let S be a stonean space with a closed subset F and put $S_1 = S$ and $S_2 = S$. Let S_0 be the topological sum of S_1 and S_2 . For a homeomorphism $\psi: S_1 \rightarrow S_2$, let $C_F(S) = \{f \in C(S_0): f(t) = f(\psi(t)) \text{ for all } t \text{ in } F\}$. The algebra $C_F(S)$ is *isomorphic to the C*-algebra of all continuous functions on the space S_F obtained from S_0 by the identification of the naturally corresponding points of F and $\psi(F)$. It is easy to see that $\rho(S_F) \leq 2$. If F is a nowhere dense closed set then $\rho(S_F) = 2$ by [8, Lemma 2].

Proposition 6. With the above notation, if ϕ is a bounded linear map from any C*-algebra A into $C_F(S)$ then ϕ admits a positive decomposition and $\|\phi\|_{dec} \leq 2\|\phi\|$.

Proof. Since $C(S_0)$ is an injective C*-algebra, there exist, by Haagerup [4, Theorem 1.6], completely positive maps $\phi_1, \phi_2: A \rightarrow C(S_0)$ such that $\|\phi_1\|$, $\|\phi_2\| \leq \|\phi\|$ and the map

$$\Phi(a) = \left(\begin{array}{cc} \phi_1(a) & \phi^*(a) \\ \phi(a) & \phi_2(a) \end{array}\right)$$

defines a completely positive map from A into $C(S_0) \otimes M_2$. For i=1, 2, we define a completely positive map $\phi'_i \colon A \to C(S_0)$ by

$$\phi'_{i}(a)(t) = \begin{cases} \phi_{i}(a)(\psi(t)) & \text{if } t \text{ in } S_{1}; \\ \phi_{i}(a)(\psi^{-1}(t)) & \text{if } t \text{ in } S_{2}. \end{cases}$$

We put $\phi_i' = \phi_i + \phi_i'$. Then for all t in F and a in A,

$$\phi_i''(a)(t) = \phi_i(a)(t) + \phi_i'(a)(\psi(t)) = \phi_i''(a)(\psi(t)).$$

We then can define a completely positive map Φ' from A into $C_F(S) \otimes M_n$ by

$$\Phi'(a) = \begin{pmatrix} \phi_1''(a) & \phi^*(a) \\ \phi(a) & \phi_2''(a) \end{pmatrix}$$

Hence ϕ admits a positive decomposition. It is easy to check that $\|\phi_i''\| \leq 2\|\phi\|$ and $\|\phi\|_{dec} \leq 2\|\phi\|$. This completes the proof.

Remark. Let βN be the Stone-Čech compactification of the discrete space N of all positive integers. Isbell and Semadeni [8, Proposition 1] proved that if $S = \beta N$ and $F = \beta N - N$ then $C(S_F)$ is not injective as a Banach space and $\rho(S_F) = 2$.

§5. Linear Maps into the Calkin Algebra

In this section, assuming the Continuum Hypothesis, we give a bounded linear map from a commutative C^* -algebra A into l^{∞}/c_0 which admits no positive decomposition, where l^{∞} and c_0 denote the C^* -algebra of bounded sequences and the C^* -algebra of sequences convergent to 0. This map also induces a completely bounded map from the C^* -algebra A into the Calkin algebra which admits no positive decomposition.

Let S be a compact Hausdorff space. A subset S_0 of S is called a zero-set if there exists g_0 in C(S) with $S_0 = \{x \in S : g_0(x) = 0\}$. A subset S_1 of S is called a cozero-set if there exists g_1 in C(S) with $S_1 = \{x \in S : g_1(x) \neq 0\}$. Hence S_0 is a zero-set if and only if $S - S_0$ is a cozero-set.

The following lemma is based on an idea of Gillman [16, Proposition 3.30].

Lemma 7. Let βN be the Stone-Čech compactification of the discrete space N of all positive integers. Assume the Continuum Hypothesis. Let $p \in \beta N - N$. Then $\rho(p) = \infty$.

Proof. We choose a base of cardinality of the continuum zero-set neighbourhoods of p since $\beta N - N$ has a base consisting of cardinality of the continuum open and closed subsets [16, Corollary 3.17] and every neighbourhood of p contains a zero-set neighbourhood of p. By the Continuum Hypothesis, the basis is indexed by the first uncountable cardinal ω_1 and written $\{Z_{\alpha}: \alpha < \omega_1\}$. Proceeding by transfinite induction, we assume for a given $\alpha < \omega_1$ that cozero-sets $\{A_{i,\alpha}: i \in N, \sigma < \alpha\}$ such that

 $A_{i,\lambda} \cap A_{j,\tau}$ is empty, the union $\bigcup_{i=1}^{\infty} A_{i,\lambda} \subseteq Z_{\lambda}$ and $p \notin A_{i,\lambda}$ for all i, j in $N \ i \neq j$ and all $\lambda, \tau < \alpha$. A countable union of cozero-sets is again a cozero-set [2, 1.14]. We put

$$A_{\alpha} = Z_{\alpha} \cap (\bigcap_{\sigma < \alpha} \{ (\beta N - N) - (\bigcup_{i=1}^{\infty} A_{i,\sigma}) \}).$$

Then A_{α} contains p and thus is a non-empty zero-set of $\beta N - N$. Hence A_{α} has a non-empty interior by [16, Corollary 3.28]. Since $\beta N - N$ contains no isolated points [16, Proposition 3.12], there exists a family $\{A_{i,\alpha}: i \in N\}$ of disjoint countable cozero-sets in $A_{\alpha} - \{p\}$. Then the induction hypothesis is satisfied for all $\lambda, \tau \leq \alpha$.

We define

$$A_i = \bigcup_{\alpha < \omega_1} A_{i,\alpha}.$$

Then $\{A_i\}$ consists of disjoint open sets. Since each basic neighbourhood Z_{α} of p contains $\bigcup_{i=1}^{\infty} A_{i,\alpha}$, every neighbourhood of p meets all A_i so that $\bigcap_{i=1}^{\infty} A_i^-$ contains p. This completes the proof.

Let *H* be an infinite dimensional Hilbert space and let L(H) and K(H) be the *C**-algebra of bounded linear operators on *H* and the ideal of compact linear operators on *H*, respectively. We put Q(H) = L(H)/K(H) and denote by π the

Tadasi Huruya

quotient map $L(H) \rightarrow Q(H)$. If H is a separable infinite dimensional space, Q(H) is called the Calkin algebra. Let M be the σ -weak closure of the algebra generated by a family $\{p_i\}$ of countable mutually orthogonal minimal projections in L(H). Then

$$M = \{x \in L(H) \colon x = \sum_{n=1}^{\infty} x(n) p_n, x(n) \in \mathbb{C} \text{ and } \sup_n |x(n)| < \infty \}$$

and

$$M \cap K(H) = \{x \in M : p_n x = x p_n = x(n) p_n, \lim_n x(n) = 0\}$$

Hence $M \simeq l^{\infty}$ and $M \cap K(H) \simeq c_0$, so that $C(\beta N - N) \simeq l^{\infty}/c_0$. Since $\pi(M) \simeq C(\beta N - N)$, the algebra $C(\beta N - N)$ is regarded as a C*-subalgebra of Q(H).

Theorem 8. Assume the Continuum Hypothesis. With the above notation, there exist a commutative C*-algebra A and a completely bounded map $\phi: A \rightarrow Q(H)$ with $\phi(A) \subseteq C(\beta N - N)$ which admits no positive decomposition.

Proof. Let $\Phi: L(H) \rightarrow M$ defined by

$$\Phi(x) = \sum_{i=1}^{\infty} p_i x p_i.$$

Then Φ is a projection of norm one from L(H) onto M. If $x \in K(H)$, then $\pi \circ \Phi(x) = 0$. Hence we define the projection Ψ of norm one from Q(H) onto $C(\beta N - N)$ by

$$\Psi(x+K(H))=\pi\circ\Phi(x)$$

for x in L(H).

By Theorem 4 and Lemma 7, there exist a commutative C^* -algebra A and a self-adjoint bounded linear map $\phi: A \to C(\beta N - N)$ which is not a linear combination of positive linear maps. Since $\phi(A) \subseteq C(\beta N - N)$, ϕ is a completely bounded map from A into Q(H). Suppose that there exist positive linear maps $\phi^+, \phi^-: A \to Q(H)$ such that $\phi = \phi^+ - \phi^-$. Then

$$\phi = \Psi \circ \phi = \Psi \circ \phi^+ - \Psi \circ \phi^-.$$

Both $\Psi \circ \phi^+$ and $\Psi \circ \phi^-$ are positive linear maps from A into $C(\beta N - N)$. This is a contradiction and completes the proof.

Remark. Answering a question of Paulsen, Haagerup [4, Corollary 2.9] showed that there exist a non-commutative von Neumann algebra B and an ideal J such that for every infinite dimensional C^* -algebra D, there exists a completely bounded map $\psi: D \rightarrow B/J$ which has no completely bounded lifting $\psi^{\sim}: D \rightarrow B$. The map ϕ in Theorem 8 also is regarded as a map $\phi_0: A \rightarrow l^{\infty}/c_0$. Then

654

 ϕ_0 admits no positive decomposition. Since L(H) and l^{∞} are injective, neither ϕ nor ϕ_0 has a completely bounded lifting.

References

- [1] Arveson, W. B., Subalgebras of C*-algebras, Acta Math., 123 (1969), 141-224.
- [2] Gillman, L. and Jerison, M., Rings of continuous functions, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [3] Gleason, A. M., Projective topological spaces, Illinois J. Math., 2 (1958), 482-489.
- [4] Haagerup, U., Injectivity and decomposition of completely bounded maps, preprint.
- [5] Huruya, T., Decompositions of completely bounded maps, *Acta Sci. Math.* (Szeged), to appear.
- [6] —, Linear maps between certain nonseparable C*-algebras, Proc. Amer. Math. Soc., 92 (1984), 193–197.
- [7] Huruya, T. and Tomiyama, J., Completely bounded maps of C*-algebras, J. Operator Theory, 10 (1983), 141–152.
- [8] Isbell, J. R. and Semadeni, Z., Projection constants and spaces of continuous functions, *Trans. Amer. Math. Soc.*, 107 (1963), 38–48.
- [9] Kaplan, S., An example in the space from C(X) to C(Y), Proc. Amer. Math. Soc., 38 (1973), 595-597.
- [10] Loebl, R. I., Contractive linear maps on C*-algebras, Michigan Math. J., 22 (1975), 361–366.
- [11] Paulsen, V. I., Completely bounded maps on C*-algebras and invariant operator ranges, Proc. Amer. Math. Soc., 86 (1982), 91–96.
- [12] Semadeni, Z., Simultaneous extensions and projections in spaces of continuous functions, *Lecture Notes Series*, 4, *Aarhus Univ.*, 1965.
- [13] Smith, R. R., Completely bounded maps between C*-algebras, J. London Math. Soc. (2), 27 (1983), 157–166.
- [14] Tomiyama, J., Recent development of the theory of completely bounded maps between C*-algebras, Publ. RIMS Kyoto Univ., 19 (1983), 1283–1303.
- [15] Tsui, S.-K. J., Decompositions of linear maps, Trans. Amer. Math. Soc., 230 (1977), 87-112.
- [16] Walker, R. C., The Stone-Čech compactification, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [17] Wittstock, G., Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal., 40 (1981), 127-150.