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Covariant Markov Dilations of Quantum
5̂5̂

By

Alberto FRIGERIO*

We develop a general theory of unitary dilations of quantum dynamical semigroups,
satisfying a Markov property; and we construct explicit examples by means of the noncom-
mutative stochastic calculus of Hudson and Parthasarathy.

§ 1.

The dilation problem for quantum dynamical semigroups is related with
the question whether it is possible to interpret an Irreversible evolution "without
memory" of a physical system as the projection of a unitary (reversible) evolution
of a larger system. The status of the problem up to 1977 was exhaustively
presented by Evans and Lewis in [1]: unitary dilations were known to exist (at
least at the C*-algebraic level [2]) for all dynamical semigroups, but their
physical interpretation was unclear, with the exception of the quasi-free case.

After the introduction of the notion of a quantum stochastic process [3, 4],
it appeared that some clarification in the dilation problem was to be obtained by
requiring that the dilation should define a Markov process, in some sense. After
some remarks in this direction by Lewis [5], Kiimmerer developed a theory of
Markov dilations for completely positive (discrete and continuous) semigroups
with a stationary state ([6, 7], see also Kiimmerer and Schroder [8]); In partic-
ular, the first nontrlvial examples of Markov dilations for non-quasi-free
semigroups were obtained. With the aid of Bumcke's theory of the singular
coupling limit for multi-time correlation functions [9], Frigerio and GorinI
[10] constructed stationary Markov unitary dilations for a large class of dy-
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namical semigroups satisfying the quantum detailed balance condition [11]

with respect to their stationary states.

Meanwhile, Hudson and Parthasarathy [12, 13] developed a powerful

theory of noncommutative ("quantum") stochastic calculus, generalizing the

classical Ito calculus, and it soon became clear [13, 14] that this theory could

provide explicit constructions of dilations of quantum dynamical semigroups;

however, the connection with the usual framework of dilation theory (as in

[6-8]) was not made explicit.

In the present paper, we show how quantum stochastic calculus allows the

construction of covariant Markov FF*-stochastic processes which are unitary

dilations of the associated dynamical semigroups: the results are based on a

slight generalization of Kiimmerer9s framework (emphasizing "covariant

Markov" rather than "stationary Markov" processes) and on the results of

[13, 14]. Since the constructive aspect is very thoroughly described by Hudson

and Parthasarathy in [14], we have chosen to insist on the algebraic structure of

the dilation, in the spirit of Kiimmerer [7] and of Accardi [15], cf. also Hudson,

Ion and Parthasarathy [16]. For an introduction to the theory of quantum

stochastic processes and its connection with the dilation problem, the reader

may consult the papers by Barnett Streater and Wilde, Diimcke, Frigerio and

Gorini, Hudson and Parthasarathy, Kiimmerer, Lewis and Maassen, von

Waldenfels in [17]. The forthcoming Proceedings of the Second Workshop

on Quantum Probability and Applications, Heidelberg, 1984 [18] will cover

important recent developments, including non-Fock boson and fermion quantum

Wiener processes and the associated stochastic calculus.

The structure of the paper is as follows. Section 2 contains the definition

of a covariant Markov W*-stochastic process and the discussion of its relation-

ship with an associated dynamical semigroup. The construction of covariant

Markov processes by means of covariant adapted unitary evolutions is given

in Section 3, and in Section 4 we show that quantum stochastic calculus pro-

vides examples of covariant adapted unitary evolutions, allowing, in particular,

to construct a covariant Markov dilation for any norm continuous dynamical

semigroup. Some of these results have been independently obtained by Maas-

sen [19], with the use of a particularly convenient representation of boson

Fock quantum stochastic differential equations. We defer to a forthcoming

publication (contribution in [18]) the discussion of some new results concerning

the problems of stationarity, time reversal and detailed balance.



COVARIANT MARKOV DILATIONS 659

I am grateful to L. Accardi and G. C. Lupierl for stimulating discussions, and to
R. L. Hudson for sending me Ref. [14] before publication. The present version of Sections 2
and 3 of the paper owes much to a discussion with B. Kummerer. I also thank
D. B. Applebaum and H. Maassen, who had independently obtained some of the results
described in Section 4 of this paper, for very interesting discussions. Finally, I wish to thank
the referee for valuable suggestions.

§ 2o Covarfiamt Markov Processes Semigroups

A dynamical semigroup on a FF*-algebra B is a weakly* continuous

one-parameter semigroup {Tt: teR + } of completely positive identity preserving

normal linear maps on B, T0 being the identity map. The Infinitesimal generator

L of Tt Is defined on the weakly* dense domain D(L) of those elements b of B

for which t~\Tt(V) — b) has a limit as f->0 in the weak* topology of B, and L(b)

Is the value of this limit.

A W*-stochastic process [4] over a FF*-algebra B, indexed by a set T5 Is a

triple (A, {jt: te T}, w), where A Is a W*-algebra, each jt Is a faithful normal

^representation of B into A, with jf(l^) = l^, A Is generated by {jt(B): te T},

and w Is a normal state on A, such that the GNS representation of A determined

by w Is faithful. The Index set T will be understood to be the real line R, unless

an explicit statement to the contrary is made.

A IF*-stochastic process (A, jt9 w) over B Is said to be covariant Markov

If there exists a weakly* continuous one-parameter group {at: te R} of normal

*-automorphisms of A such that, for each t In JR,

Jt = *tJo (2.1)

and there exists a one-parameter family {En: teR+} of normal conditional

expectations In A such that, for s, tinR +
 9

(2.2)

(23)

(2.4)

(2-6)
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where A0=j0(B)9 and where ALO = v {ju(B): u>Q}. The process Is said to be

stationary Markov if, In addition, w = woat for all t and conditional expectations

satisfying (2.2)-(2.5) exist for negative t as well.

If (A, jt, w) is a covariant Markov FF*-stochastic process over a FF*-algebra

B, then there exists a dynamical semigroup 1] on B associated with it. Actually,

this is a special case of a more general result, which we shall formulate following

Accardi [15].

Let A be a W *-algebra3 let {ott : t e R} be a weakly* continuous one-parameter

group of normal ^-automorphisms of A, and let w be a normal state on A such

that the associated GNS representation is faithful. Let {A^: te R} (resp. [Alt:

t G R}) be a monotonically increasing (resp. monotonically decreasing) family of

FF*-subalgebras of A, such that

Let j'o be a faithful normal ^-representation of another W *-algebra B Into A,

t = &tj0,
 and suppose that

Suppose that there exists a one-parameter family {£,-,: teR+} of normal con-

ditional expectations in A satisfying the analogues of (2.2)-(2.6), with A, oe,3
w, At]9 Et^ ALO replaced by A, 6tt, w, An> Etp ALO respectively. Then we have

Theorem 2.1 (Accardi [15]). Under the above assumptions, there exists a

dynamical semigroup Tt on B such that

Tt(b)=j^£Q&jQ(b): beB, teR+s (2.7)

and, more generally,

=Jo 1E0,( jti(a^ - -JMJdbn)' • -Wii)) (2-8)

for all al9..., an, bl9..., bn in B and for tl<t2<>~<tn in R + ,

The proof can be found in [15], or also in [4].

Remark 2.2. If A is defined as the W*-subalgebra of A generated by jt(B) :

t e R, then {6tt t e J^} restricts to a weakly* continuous one-parameter group of

normal ^-automorphisms {ar: teR} of A, satisfying (2.1). Let w be the restric-

tion of w to A. Then (A, jt = utj0, w) is a FF*-stochastic process over B,
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2o30 // the state w on A is of the form

W
A — /"jo 7 1 W CJ Qi\— F Jo ^o \£*y)

where E0 is a normal conditional expectation of A onto A0 and p is a normal

state on B such that the associated GNS representation is faithful, then (2.4) is

equivalent to £0E0] = E0, so that we may replace £0] by EQ = EQ [A in (2.7) and

(2.8) and the W*-stochastic process (A, jt = %J0, w = p°Jo1E0) is both a unitary

dilation and a stochastic dilation (in the sense of [10]) of the dynamical semi-

group Tt.

Remark 2.4. In the case that At^At^ we are unable to prove in general

that the process (A9jt = atj09w) of Remark 2.2 is covariant Markov, since

it is not obvious (and perhaps it is not true) that £f] maps A onto At^ and con-

ditional expectations £f] of A onto An satisfying (2.4) might (possibly) not
exist. We shall come back to this point in the following Sections. Under the

circumstances of Corollary 2.3, and if the process (A,jt = aJ0, w = p°JQlE0) is

covariant Markov, we shall say that it is a covariant Markov dilation of Tt; if

it is also a stationary Markov process, we shall say that it is a stationary Markov

dilation.

The following result is related to the quantum version of the martingale

problem, as formulated by Hasegawa and Streater [20]:

Theorem 2e§0 Let (A, jr, w) be a covariant Markov process over B, let Tt

be the associated dynamical semigroup on B. Then, for all b in the domain

D(L) of the infinitesimal generator L of Tr, the family {M(b; f): teR + } defined

by

M(b; t)=jt(b)-j0(b)- ('ju(L(b)~)du (2.10)
Jo

satisfies the martingale property

M(b; i)eAn: t<=R+, (2.11)

ES](M(5; f)) = M(6; s): s<teR+ . (212)

Proof. (2.11) is obvious from the definitions, and we have

; t)-M(b; s^EjW-j^b)-^Es,ju(L(b))du

-fe-r~Sr,(L(fo))Ji;) = 0;
Jo
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where we have used (2.1), (2.5) and (2.7). D

§ 3o Construction of Covariant Markoy Processes

The actual construction of structures (A, &t, w, At^ Ait, j0, £,-,) satisfying

the assumptions of Theorem 2.1 (hence the construction of unitary stochastic

dilations and of covariant Markov dilations of dynamical semigroups) can be

effected by perturbing "trivial95 ones by means of unitary cocycles satisfying a

Markov property, as in [15], [16], [4], [7], We need some preliminary

definitions.

Solo A ff*-stochastic process (A, {j(S5f): — oo<s<f<+ 00}, w),

indexed by the open intervals in the real line, over a W*-algebra B is said to have

stationary independent increments if, upon letting

the following conditions (i)-(iii) hold:

(i) N(s, f)£N(r, tOfor r < s < r < n ; (3.1)

(ii) there exists a weakly* continuous one-parameter group {a°: teR} of

(automatically normal) *-automorphisms of A leaving w invariant, such

that

(3.2)

(iii) for each — oo < s < £ < + oo there exists a normal conditional expectation

EM of A = N(— oo, +00) onto JV(s, i), with w°E(S}t) = w, such that, for all

a(t, u} in N(t, u),

£(ri,)(fl(r,ii)) = w(fl(t,ii))l if ( r ,s )n( t , t i ) = 0. (3.3)

Remark 3.2. We shall never use the isomorphisms j(Sjf) or the model W*-

algebra B. A family {N(s, i): — ao<s<t< + 00} of mutually isomorphic

IF*-algebras satisfying (i)-(iii), where w is a state on N(—co, +00) such that

the GNS representation of N(s, i) determined by (the restriction of) w is faithful

for all s, t, defines a PF*-stochastic process with stationary independent incre-

ments over (say) N(Q9 1). With some abuse of language, we shall henceforth

say that a W*-stochastic process with stationary independent increments is a

pair (N(s, i), E), where {N(s, t): — oo<s<£< + oo} is a two-parameter family

of l^-algebras as above, and where E is the conditional expectation of N(— oo,
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+ 00) onto the multiples of the identity defined by

E(a) = w(a)l: aeN(-ao, +00), (3.4)

Examples of FF*-stochastic processes with stationary independent increments

can be given by means of the representations of the CCR or of the CAR algebra

over L2(R) determined by universally invariant quasi-free states., see the following

Section.

3o Let B be a W*-algebra, let p be a normal state on B such

that the associated GNS representation is faithful, and let (JV(s, i), E) be a

W*-stochastic process with stationary independent increments. Define

(-ao, +00), (3.5)

?: teR9 (3.6)

(3.7)

(3.8)

(3.9)

(3,10)

Then the assumptions of Theorem 2.1 hold. The associated dynamical semi-

group on B is the trivial one: Tt = idBfor all t,

Proof, Among the assumptions of Theorem 2.1, the only ones that are

not immediate consequences of the definitions (3.5)-(3.10) are the analogues of

(2.3), (2.5), (2.6). In order to prove them, we show preliminarly that the con-

ditional expectations E^s^ of N(— oo, +00) onto JV(s, t) leaving w invariant

are uniquely determined. We identify JV(— 00, -foo) with its GNS repre-

sentation determined by w, acting on a Hilbert space F with cyclic vector v; the

closed subspace F(s, i)=~N(s, t)v of F is the GNS space of N(s, t). If EM

leaves w invariant, we have, for all x, y in N(— oo, + oo),

(EM(X)V, yv) = w(£(5i0(x*)j;) = w°E(8tt)(EM(x*)y)

= w(E(Ji0(jc*)E(Ji0(j;)) = w(x*EM(yy) = (xv, EM(y)v) ,

so that the map xv^E(Sft)(x)v extends to the orthogonal projection P(Sjt) of F

onto F(s, f). Then we have

EM(x)a(s, i)v = EM(xa(s, t))v

= P(Sit)xa(s, i)v: a(s, i)eN(s, t),
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so that the action of E(Stt^(x)eN(s, t) is uniquely determined on a dense set of

vectors in the GNS space of N(s9 t) ; by the assumed faithfulness of the GNS

representation, E(Sit)(x) is uniquely determined.

For — oo<s<t, the product E^-ao, *)£(-«>, t) is a conditional expectation
onto N( — co, s) leaving w invariant, hence it coincides with £(_«>, s> and the

analogue of (2.3) holds. For all s, t in R, the expression aJ)_s£'(_00jS)a°r+s is a

conditional expectation onto N(—co, t) leaving w invariant, so that the

analogue of (2.5) holds. The analogue of (2.6) reads

which holds as a consequence of (3.3).

Then the assumptions of Theorem 2.1 are satisfied. Since &t acts trivially

on.40 = #(8>ljv(-oo,+oo), the associated dynamical semigroup is the trivial one. D

3 A Let B be a f^"*-algebra? let (N(s, t), E) be a W*-

stochastic process with stationary independent increments, and assume

that B and N( — oo, +00) are concretely represented as von Neumann algebras

of operators on Hilbert spaces H0 and F respectively. A covariant adapted

unitary evolution based on B and N(s, f) is a two-parameter family {U(s, f):

s, teR} of unitary operators on the Hilbert space H = H0®F, satisfying

U(s,i)eB®N(s9i) for s<t<=R, (3.11)

and, for all s, t, u in R,

U(s9t)=U(t,s)*9 (3.12)

V(s,f)U(t,u)=V(s9u), (3.13)

s9 uj) =U(s + t,u + 1) (3.14)

where &t is defined by (3.6); and such that s«->C/(s, t), t^U(s, t) are continuous
functions in the strong operator topology.

The definition given above is essentially the same as the definition of a

"covariantly adapted unitary evolution", given in [16]; as we shall see in

Theorem 3.5 below, E0 = idB®E plays the role of the "reducing map" of [16].

Another appropriate name for U(s, t) would be "unitary Markovian cocycle",

cf. [15], [4], [7]. Examples of covariant adapted unitary evolutions will be

constructed in the following Section, with the aid of the noncommutative

stochastic calculus of [12-14], [18].
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The Idea of Theorem 3.5 below can be already found In the "quantum

Feynman-Kac'5 papers [15], [16]:

Theorem 3050 Let B, p, N(s, t), E be as in Theorem 33, and let U(s, f)

be a covariant adapted unitary evolution based on B and N(s, f). For each

t in R9 define a map oit of A = B®N( — oo? H-oo) by

<xt(a) = C/(0, 0<*tOMO? i)*:aeA. (3.15)

Then {a,: teR} is a weakly* continuous one- parameter group of normal *-

automorphisms of A, and the assumptions of Theorem 2.1 hold with at replaced

by ait. Upon letting

A=v{jt(B): t E R } i o c t = &tlA;E0 = E0 lA(£0 = idB®E),

the W*-stochastic process (A,jt = aJ0, w = p°Jo1E0) is a unitary stochastic

dilation of the dynamical semigroup Tt on B defined by

r((&)=7a1£o«j'o(^)=7o1£o(t/(0, t)b®lFU(0, 0*). (3.16)

Proof. Clearly 3 each ar is a normal * -automorphism of A; the group

property follows from (3.13) (3.14), and the weak* continuity Is a consequence

of the assumed continuity properties of [7(s, t). By (3.5) and (3.11), 17(0, 0 Is

in A[Q n A] for all positive t, so that <xt maps 40] Into AtJ and Alo Into AIQ for t

in R + , as 6tt does. There remains to prove that, for all a In A,

at.sEs,(a) = Et^t.s(a))i s,teR+. (317)

The left-hand side of (3.17) can be manipulated as follows:

since (2.5) holds for &t and £n. Both s and t are nonnegatlve, so that C7(0? t — s)

and 17(0, t — s)* are in the range of the conditional expectation j§f]; so they can

be taken Inside E(] and (3.17) follows. D

Theorem 3o6o Under the additional conditions that for all — oo<s<f

< M < + 0 0

N(s,f)c:N(t,uy9 (3.18)

i)r, (3.19)

^fte conditional expectations (3.10) map ^4 owto At^ and the W*-stochastic

process (A9jt = atj09 w=p°JQ1E0) is a covariant Markov dilation of the dy-
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namical semigroup (3.16).

Proof. We use the same notations as In the proof of Lemma 3.3. By

(3.18) and (3.19), for each — co<s<t<u< + 00 there is a natural isomorphism

of F(s9 t)®F(t, u) with F(s, u\ where a(s, f)v®a(t, u)v is identified with

a(s, t)a(t9 u)v. In particular we may identify H = H0®F with H(— oo, 0)

®F(0, + oo), where H(- oo, 0) = H0®F(- oo, 0). Then the conditional

expectation E0] of A onto A^ is determined by

(^(-00,0)®^, +oo)?£0](^2(-oo,0)(x)02(03 +00))

= (^i(-oo, 0)®t<0, +00), a\l/2(-ao, 0)®t<0, +00))

OWO, + 00), 02(0, +00)) (3.20)

for all W- oo, 0), ̂ 2(- oo, 0) in H(- oo, 0) and for all 0t(0, + oo), 02(0, + oo)

in F(0, + oo), where u(0, + oo) is v regarded as an element of F(0, + oo). The

von Neumann algebra A is generated by sums of products of the elements of

40]£B0JV(-oo, 0) and the elements of AL0^B<S)N(Q, +00); since B®1F

e^o], then A can be generated by sums of products of (all the) elements of ̂ 40]

and (suitable) elements of lHo®N(0, +00), which commute with v40] by (3.18).

Hence A is contained in the weak closure of the linear span of elements of

B(H) of the form

fl(-oo, 0)x(0, +00): a(-oo, 0)e40], x(0, +oo)e !Ho®JV(05 +00). (3.21)

By (3.20) we have

£0](a(-oo, 0)x(0, +cx))) = (»,jc(0, +oo»a(-oo, 0)e^0],

so that £0] maps A onto A0]. Taking into account (3.17), we also have

^](A) = af£0]a_r(^) = a^0](^) = a^o]) = A]: *6JR + ,

as required. So we may restrict £r] to a conditional expectation Ef] of 4 onto

^4r] for all tin R+, and the process Is a covariant Markov dilation of Tt. D

Remark 3.7. If (N(s, i), E) is a Pf*-stochastic process with stationary

independent increments, with group of automorphisms a?, then also

(N( — t, —s), E) is a PF*-stochastic process with stationary independent Incre-

ments, with group of automorphisms a°,; and If U(s, f) is a covariant adapted

unitary evolution based on B and N(s, t), then U( — s, — t) Is a covariant adapted

unitary evolution based on B and N( — t, —s) such that ^.^(a,)"1 is given by

17(0, —t)<x°.t(-)U(Q9 —0*. Then there is another dynamical semigroup {r_^:

teR + } onB such that
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T-t=JolE^.J0=j^E0a_tj0: teR+
5 (3.22)

where £[0 = idB®E(0j + 00); a regression relation of the form (2.8) holds, with

£0] replaced by £[0 (or by E0), and with fr : r = 1, . . . , w replaced by — tr throughout.

T_f will be called the time reversed dynamical semigroup. It should be noted

that we have

T_t(b)=j^E0(U(Q, f)*&® IF 0(0, 0), (3-23)

since [7(0, -i) = &_t(U(Q9 t)*)9 and E0o&_t = E0, <5L,(&®1F) = 6®1F for all b

InB and f in£ + .

§ 4o Examples (Stochastic Evolnitioias)

The noncommutative stochastic calculus of Hudson and Parthasarathy

[12, 13, 14] provides a very interesting class of covariant adapted unitary

evolutions. More recently, Applebaum and Hudson [21] have constructed a

large class of fermion examples; see also Barnett Streater and Wilde [22], and

the contributions by Accardi and Parthasarathy and by Applebaum In [18].

The present Section Is essentially a translation of the results of [13, 14, 18] into

the language that we have developed in Section 3. We try to be as general as

possible.

Let K be a separable Hilbert space, and denote by L2(jR; 1C) the Hilbert

space of square-integrable K- valued functions defined on jR, with inner product

(/,<?)= ( f ( s ) , g ( s ) ) d s : f , g e L * ( R ; K ) (4.1)
JR

For all t In R9 define a unitary operator St on L2(R; K) by

Stf(s) =f(s -t):fe L\R ; K), s e K ; (4.2)

and for all — oo<s<£< + oo, define an orthogonal projection in L2(R; K) by

multiplication with the indicator function #(S)0 of the Interval (s, t).

Let Q be a self-adjoint contraction on K. We shall write Q/for the function

si->g/(s). Then Q commutes with all St and with all /(Sj0. All these properties

of Q will be understood In the following.

)Ie 41 (CCR). Let Q be positive with densely defined inverse Q *

(then Q'1 > 1, since Q is a contraction) and denote by M the dense linear manifold

In L2(R; K) consisting of the functions/ with values in D(g~1/2) such that
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(4.3)
R

Let (F, W, v) be the cyclic representation of the CCR over M, consisting of

unitary operators W ( f ) : f e M acting on the Hilbert space F, with cyclic vector

v, satisfying

, flf)]:/, geM, (4.4)

and with the generating functional

(v, Wt/»=exp[-<z(/)/2]:/eM; (4.5)

and, for — oo < s < t < + oo, let

N(s, t) = {W(f):feM, supp/E[s, f}}" . (4.6)

As is well known (see e.g. [23]), it is always possible to reduce to the case

Q = 1 by doubling the space K : denote (temporarily) by WQ the representation

with generating functional determined by (4.5), (4.3); then a possible realization

of WQ is

WQ(f) = ̂ ([(Q-1 + 1)12] '/Ve/Kfi-1 - 1)12] ̂ f) , (4.7)

where J is a complex conjugation on K, commuting with Q. Let also {a? : t e E}

be the weakly* continuous one-parameter group of ^-automorphisms of

N(— oo, +00) defined by

(4.8)

Define also the conditional expectations £3 ^(S,o: ~~ oo<s<£< + oo in i¥(— oo?

+ 00) by (see [1,24])

(4.9)

(4. 10)

Then conditions (i)-(iii) of Definition 3.1 hold, and (N(s, t), E) is a FF*-

stochastic process with stationary independent increments. Moreover, also the

additional conditions (3.18), (3.19) of Theorem 3.6 hold, and the Hilbert space

F acquires a natural continuous tensor product structure. This Is well-known

in the case Q = l, and extends to the general case by (4.7), since Q commutes

with all X(Sity

Example 4,2 (CAR). Let (F, a, v) be the cyclic representation of the CAR
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over L2(R; K), consisting of bounded operators a(f): feL2(R; K) acting on

the Hilbert space F, such that/Wa(/) is a conjugate-linear map and the canonical

anticommutation relations

+ = 0, La(f), a(<7)*]+ = (/, g ) l F : f , geL2(R; K) (4.11)

hold; the unit vector v is cyclic in F for (fl(/), a(g)*: f, g e L2(R°y K)}" and

(v, a(f)*a(g)v)P = (g, [(l-fi)/2]/)L,(Jt.K). (4.12)

For — oo<s<£< + 00, let

N(s, 0 = W), a ( f ) * : f e L 2 ( R ; K), supp/<=[s, *]}". (4.13)

It is possible to reduce to the case Q = 1 by doubling the space K and letting

[25]

where J is a complex conjugation on 1C, commuting with Q. Define the auto-

morphism group {a.0,: teR} of N(— oo, +00) by

x°(a(f)) = a ( S t f ) : f E L 2 ( R ; K\ teR. (4.15)

Define also the conditional expectations £3 E(Sjf) : — oo<s<£< + oo by [26]

x<=N(-ao, +oo)? (4.16)

(4.17)
(v,5([l-^ f0]/ym+1)...5([l-X (, l0]/y»lF,

where

B(/) = a(/) + fl(/)*:/eL2(^; X), (4.18)

and where the summation extends to the partitions of {!,..., n} into two sets

{Ji<~'<jm}> {Jm+i<"'<Jn}> and £ is the parity of the permutation {!,..., n}

-^{Jiv-^'j-
Again, conditions (i)-(iii) of Definition 3.1 hold and (N(s, i), E) is a W *™

stochastic process with stationary independent increments. However3 the

additional condition (3.18) of Theorem 3.6 is not valid, due to the anticom-

mutation relations (4.11).

Now we use the noncommutative stochastic calculus of [13, 14] to con-

struct a co variant adapted unitary evolution. Let B be a von Neumann algebra
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of operators on a Hilbert space H0, let {Xj : j = 1 , 2, . . . } be a sequence of operators

In B such that

f XjXj=Y (4.19)
j=i

converges in the strong operator topology, and let h be a self-adjoint element of

B. Consider the case Q = 1 in the representation of the CCR (Fock represen-

tation). Denote by «(/), a(/)* the annihilation and creation operators for a

boson with wave-function / in M, and choose a complete orthonormal set

{kj-:j = l9 2,...} In K, once and for all.

It has been shown by Hudson and Parthasarathy in [14] that, for all t in

R+, u in H0 and /in M, supp/c=[0, +00), the expressions

W(f)v\ = 2 [Ary®a(X[0it]

= i 2 (fcj,/(j))«fcArj«® PF(/>, (4.20a)

are convergent, and define mutually adjoint operators Ax(f), A$(f) in H(Q, + oo)

= H0®F(Q, +00). Then it is possible to consider the noncommutative

stochastic differential equation [14]

dU(t)=U(t) [i(dAx(i) + dA*(f)) + ih - 7 ® 1FA] , (4.21)

with initial condition 17(0) = 1. Roughly speaking, we have

dAx(f) = JE XJ ® flCc[w+*]fey) • (4-22)

We quote without proof the following results of [14] (or also [13], in the case

of a finite-dimensional K) :

Theorem 4.3 (Hudson and Parthasarathy [14]). Equation (4.21), with

initial condition 17(0) = 1, has a unique solution such that U(f) and 17(0* map

H(0, f) = H0®F(Q9 0 into itself and satisfy

l7(0*=!7(OUH(o,o®Woc)? (4.23)

where U(t)* denotes either U(f) or U(t)*. The solution defines a strongly

continuous one-parameter family {U(f): teR+} of unitary operators on H

(0, + oo), satisfying
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: s, teR + , (4.24)

where, for each t in R + ,

y(St) [u ® If (/>] = 11 ® FF(SJ> :uEH0,feM. (4.25)

Moreover, if E is defined as in (4.9), we have, for all b in B and t in R+,

£(C/(06®lFt/(0*) = exp [Lf](6)®lF, (4.26)

where L is given by

L(b) = \lh, 6]+ Z (x<jbXj- \ IXjXj, blAbeB. (4.27)
J = l \ ^ /

Note that (4.27) is the general form for the generator of a norm continuous

dynamical semigroup (Lindblad [27], Christensen and Evans [28]).

We extend U(f) to H = H0®F(- oo, + oo) by letting

U(t)=lP^v®U(i):teR + (4.28)

(recall that F(— co, +00) is Isomorphic with F(— oo, 0)®F(0, +00), by

Theorem 3.6), Then y(S() extends to a unitary operator on H satisfying y(Sf)«

•ay(S?) = ^(a) for all a In ^4, and can be defined for negative t as well Then

we have

Theorem 4,4, The two-parameter family {U(s, t): s3 teR} of unitary

operators on H defined by

U(s, t) = y(Ss)U(t-s)y(Sf): s<teR, (4.29)

U(s9i) = U(t9s)*:s^t€R9 (4.30)

is a covariant adapted unitary evolution. The dynamical semigroup Tt

= exp \Lf] on B, with infinitesimal generator L given by (4.27), has a covariant

Markov dilation, constructed by means of U(s, f). The infinitesimal gen-

erator L+ of the time reversed dynamical semigroup T_f is given by

L+(b)=-i[_h, b]+£(XjbXj-±-lXjXj9 bl+):beB. (4.31)

Proof. Conditions (3.12) and (3.14) hold by definition; then It suffices to

prove (3.13) for s, t, u >0. By (4.24) and (4.29), (4.30), we have

: Q<t<s;

so that, for s, t, u > 0,
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U(s, i)U(t, u)=U(s)*U(t)U(t)*U(u)==U(s)*U(u)=U(s, u).

It follows from the construction of [14] that (4.23) can be strengthened to U(t — s)

G B®N(Q, t-s)fors< t, then, for s < t e R,

17(5, t)ey(SJB®N(Q, t-s)y(Sf) = B®N(s, t), (4.32)

which proves (3.11). The required continuity properties follow from the

strong continuity of s*->y(Ss) and of t*-+U(t).

The conditions of Theorem 3.6 are satisfied, hence the FF*-stochastic

process (A,jt = atJQ9 w = p°JQ1E0) is a covariant Markov dilation of the as-
sociated dynamical semigroup, defined by (4.26), (4.27). Also T_t is a dy-

namical semigroup, so it suffices to calculate

-JL (u, r-,(&X)Uo for u5u
fEH09beB.

We have, for

(u, r_r(&X) = (C7(0|>®i>], 6®lFl7(OIX®i>]), (4.33)

where we have used (3.22), (4.29). In analogy with Theorem 7.3 of [14], we

have, from Equation (4.8) of [14] and (4.33) above,

V], L+(U(t)*b®lFU(t))l_u'

hence

-(11, T_t(b)u')\t=0 = (u, L+(b)u'): u,u'EH0,beB,

which proves that T_ t = exp L + /. D

Remark 4.5. The case of non-Fock quantum Brownian motion (Hudson

and Lindsay [29]) may - be treated by letting <2^1, choosing feji 7 = 1, 2,... in
(4.20) to be eigenvectors of Q:

Qkj = t*nh(pjl2)kj:j = l, 2,..., (4.34)

and taking, in place of Yin (4.21),

l ir1XJXJ ; (4.35)

the resulting generator of Tt turns out to be [29]
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(4.36)
\ ** /;

(see also Applebaum in [18]).

Remark 4.6. The stochastic differential equation (4.21) admits also of

a fermion version, where the annihilation operators in (4.22) are to be Interpreted

as fermion annihilation operators, satisfying the canonical antlcommutatlon

relations (4.11). In [21], Applebaum and Hudson have considered only the case

K=C, Q = l, and

Ax(i)=V*9®a(%[Qit-^, (4.37)

where 9 Is a unitary Involution on H0 and V anticommutes with 9, but It should

be clear from subsequent work of Accardi and Parthasarathy (see e.g. [18])

that also the general case (parity Independent, Fock and non-Fock) can be

considered (see e.g. Applebaum In [18]). Then a covarlant adapteduni tary

evolution can be obtained as in (4.29), (4.30), where the unitary group (y(St):

t E R} on H satisfying y(St)ay(Sf) = 6tt(a) for all a in A and t in R is now defined

by y(St)u®v = u®v and

y(St)u®a(fl)*"'a(fn)*v = u^a(Stf1)*'"a(Stf^*v (4.38)

for all u in H0,fl9...,fn in L2(jR; K), n = l, 2,..., and t in R.

Due to the anticommutation relations (4.11), Theorem 3.6 cannot be applied

as such. However, as pointed out to us by the referee, we may apply the

formalism of W%-algebras developed by Davles [30]: Instead of tensor products

we have FFf-tensor products, but again (3.20) holds and the linear span of the

elements of the form (3.21) is weakly dense in A, so that again £f] maps A onto

At-y In conclusion, we get a covarlant Markov dilation also In the fermion case,

In complete analogy with Theorem 4.4.
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