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A System of Quasi Variational Inequalities
and its Application to Reaction
Diffusion Equations

By

Koichiro NAITO*

§1. Introduction

To control a flow and exchange of material through its boundary
is the most important problem for the organism to maintain the
order on the dynamic equilibrium. Mathematically this complicated
control through the boundary or membrane of the organism is consid-
ered as various types of boundary conditions. For instance, by using
the methods of variational inequalities (abr. V.1.) or quasi variational
inequalities (abr. Q. V.1), Duvaut and Lions studied the unilateral
problem in [3] such that

(1. D —Adu+ku=0 in 2,
ou ou
= > >
(1.2) Uu— 0, o =0, u=0 on 0%

where u describes the concentration of a chemical substance in the

domain £ and 9 is the outward normal derivative. The boundary

on

conditions (l.2) mean that the flow through the boundary into the
domain is shut up on the place where u!30,>>0 and, on the other hand,
the substance is allowed to enter into the domain on the place where
ulop=0. In the last part of this paper we consider the boundary
conditions called “a priori feedback control” model which was intro-
duced by Lions [8];
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S_Z:O on a.Q+= {yE&.Q u|ag(y)>Q,(u|a.Q) (y)}s
(1. 3) _g%zM on 2= {yE62: u]g<<Q(u]a0)}
ou
0§3—n§M

where Q: L?(02)—L%*(9%2) is continuous and uniformly bounded. In
the case of Lions [8] Q(ulag) (») is a constant function defined by

14 Qulw §) =mean[ulsl = o ulao(»D

92

which means the substrate is allowed to enter into the domain through
the part of the boundary where the concentration is lower than the
average and on the part where the concentration is higher than the
average the flow is shut up. When Q(u|s) =¢ and ¢>0 is small
enough, the unilateral problem is approximated by (l.3).

In this paper first we study a system of Q. V.I. General forms
of Q. V. 1. were introduced and studied by Mosco in [10] and Mossino
also applied a general theory of Q, V. 1. to the equations from Plasma
Physics in [11]. She used the function type of Q, V.I. such that

(1.5) Fu,u)=F(v,u) for every v€U,
that is,
(1.6) 0E0F(uw), uEU

where U, V are reflexive Banach spaces and F: UXV—R and the
subdifferentials are taken with respect to the first variables.
To analyze reaction-diffusion systems we introduce a system of

Q. V.1
0
w7 { 0€0F (s, p)

0E3F,(p, )

and we prove the existence of a pair of solutions by applying the
method of Mossino. Next we consider a system of reaction-diffusion
equations which was mathematically formulated by Kernevez [7] or
Banks [l] as an active transport model of double-layered membranes.
We construct convex functionals. By applying the theory of Rockafellar
about integrals of convex functions we calculate the subdifferentials
of these functionals and show the existence of solutions in equilibrium
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as minimal points of these convex functionals.

We study this reaction-diffusion system with the following two
types of boundary conditions:

(1) The Dirichlet boundary conditions—We assume that the boundary
is absorptive or chemical components are dissolved on the boundary.

(2) The Neumann boundary conditions—There exists the flux through
the boundary which is controled by the concentration of the other
reacting chemical component. In this case we assume that the chemical
components are dissolved at the rate proportional to their concentration
in the domain.

It should be remarked that we can show the existence of the
stationary solutions when the components are dissolved in the domain
or on the boundary. These conditions of dissolution yield the saturated
states chemically and also yield the coercive conditions mathematically.
In our cases the coercivity is the most essential condition for the
existence of the stationary solutions. When the coercive conditions
are satisfied, we obtain the solutions as minimal points of convex
functionals.

In §2 we study a system of Q. V.I. and we show the existence of
solutions. By applying this Q. V.I. system we show the existence of
stationary solutions of reaction—diffusion equations with Dirichlet
boundary conditions in § 3 and with Neumann boundary conditions in
§ 4 and, especially, we treat “a priori feedback control” problem in § 5.

§2. System of General Q. V. L

Let U, V be real reflexive Banach spaces and assume that U is
compactly imbedded in V, that is, (1) U is a vector subspace of I, and
(2) the identity operator I defined on U into V is continuous and
compact.

Let M,, M, be nonempty closed convex subsets of U and F,, F,
be functions defined on U XV with values in (—o0, +o0], satisfying
the following conditions:

(i.a) Fi(-,-) islower semi-continuous (abr.l. s.c.) on M; (relative
weak topology of U) X M, (relative strong topology of V);

(i.b) Fy(+, =) is L s.c. on M; (relative weak top. of U) X M; (relative
strong top. of V);
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(i.¢) for each sEM,, Fi(s, ») is continuous on M, (relative strong
top. of V);

(1.d) for each ¢EM,, F,(g, -) is continuous on M, (relative strong
top. of V);

(ii.a) for each pEM,, Fi(-, p) is proper, strictly convex;

(ii.b) for each rEM,, F,(-,r) is proper, strictly convex;

(iii.a) F; is coercive on M; in the following sense, there exists
an element s;&€M,; such that, if s€EM; and |[s]||;—>-+ o0, then
Fi(s, p) —F1(so, p)—>+00, uniformly w.r.t. p in M,;

(iii. b) F, is coercive on M, that is, there exists an element ¢, in
M, such that, if ¢€EM, and |[[g|ly—>+ oo, then F,(g,7)—
F,(qo, r) >+00, uniformly w.r.t.r in M.

Theorem 2.1. Under the above assumptions, we have a pair of solutions
(&) in MyxM, of Q. V.I. given by

{ Fi(&n)=Fi(s, ) Sfor all s in M,
F,(n,&)=F,(q,&)  for all q in M,.

We use the following lemmas for the proof of Theorem.

2.1

Lemma 2.1. For each pE M,, there exisis a unique element s, in M,;
Fl(Sp,p)éF]_(S,p> for all 5) Zn Ml,
and for each rE M, there exists a unique element g, in M,;

FZ(gr, 7) §F2(qy r) for all q Zn MZ-

Proof. It can be easily proved by the results of Ekeland-Temam
[4] or Barbu [2], because Fi(-, p) is proper, strictly convex, coercive,
and L. s.c. with the weak topology of U for each p in M, and also
M, is closed convex in U. Furthermore, F,, M, have same properties.

Q.E.D.

Lemma. 2.2. We define mappings T.: My—M,, Ty: M,—>M; by
T\p=s, for each p in M, and T,r=gq, for each r in M,. Then T, and
T, are continuous with the strong topology of V and

sup || T1pllo= K<+ oo
pPEM2

and
5;1151 T or|jy= Ky<+o0.
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Proof. T, T, are well defined by Lemma 2.1. From the definition
of Ty, we have
Fi(T\p, p) — F1(so, p) =0
where s, is the element defined in the coercive condition (iii). By
the coerciveness we can easily see that

sup HT1[7”U= K,<{4-co.
peMz

Now we shall show the continuity of 77. Consider a sequence
{p.} CM, convergent to p, in M, with the strong topology of V.
Since ||T1p,ly=K; and M, is closed convex in U, there exist s;EM;
and a subsequence {p,} of {p,} such that

Tlpnj—ml in M; with the weak top. of U
as n;—-+oo. Then we have
Tlp,,j—>sl in M; with the strong top. of V,

because U is compactly imbedded in V. From the definition of 77 we
have

Fl(Tlp,,j, pnj)éFl(s, p,,j) for all s in M,.

Since Fi(-, ) is L.s.c. and F,(s,-) is continuous on M, for each s
in M, in the sense of (i), we obtain

I (51, ﬁl) élimiffFl(Tlpnj, ﬁnj)
"j_’ oo

Zliminf F, (s, bs)

n]—»-}-oo

=F(s, p1) for all s in M,.
Since the minimum point is unique, s;=71p. We can conclude that
Tip,~>Tip in M, with the strong top. of V.
Similar arguments imply the results about 7%. Q. E.D.

Proof of Theorem 2.1. Let B=M,N u<€U: ||[u||[;=K,}. Then B is
a nonempty weakly compact convex subset of U by Lemma 2.2 and
the reflexivity of U. Furthermore, B is compact convex with the
strong top. of V, because U is compactly imbedded in V.

Since T'M,CM,, T,M,C B, and the composition 75,7, is continuous
on M, with the strong top. of V by applying Lemma 2.2, there
exists a fixed point » in BCM,, i.e.,, T,°Tip=%n by Schauder’s fixed
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point theorem. Let §=77, then we have a pair of Q. V.1. solutions
(&, 7)) in MyXM,:

Fi(§, ) =F,(s, 1) for all s in M,
and

F,(, §) =F,(q, &) for all ¢ in M,.
Q.E.D.

Remark. To show the uniqueness of solutions of this system is
an interesting problem, but the assumptions for the uniqueness will
be complicated, because we need the arguments about the uniqueness
in the Schauder’s fixed point theorem [6].

§3. Dirichlet Boundary Conditions

Let the cell £ be a bounded open subset in R” with the sufficiently
smooth boundary I'=02. Assume that the organs 2;, £, are measurable
subsets of £ and 2,N2;=¢. Enzymes E,, E, are embedded in £,
£, respectively. We have coupled reactions between two chemical
components § and P. In £, we have the irreversible reaction with
competitive inhibition;

1
§ — P
where § is the substrate of E; and the product P is an inhibitor of

this reaction. In £, P is the substrate for the enzyme E, which
catalyzes the irreversible reaction;
E.
P 5.

Here we consider a system of reaction-diffusion equations with the
absorptive boundary I' which can dissolve or absorb the substrate
and the product. We assume that the diffusion coefficients of § and
P are in the ratio of 1: A Then, in the stationary case, this model
is described by the following system of the differential equations. (See
[1] or [7] for further details.)

_ 0'15+ _ 02p+ f =
(3 1) AJ‘+X1 l—|—ap++s+ X2 l+‘3p+ fl 0

o5t
1 _ﬂ:O,

—Up+ o —x
x11+ﬂp+ 1l+ap++s+



Q. V.I. AND REACTION DIFFUSION EQUATIONS 683

=0
(3.2) { olr
pir=0
where
; ax,
in the sense of distributions,
) {1 if x€0,
X) =
n 0 if x&02,
() = {l if x€02,
TN if x&0,

s(x) is the concentration of § at xE£2,

p(x) is the concentration of P at xE42,
pt=max(p,0), st=max(s,0),

01,05 @, B, and 2 are positive constants,

fi(x) is the supply of § at xE2,

f2(x) is the supply of P at xE2, Ji [ELX(2),

and we take a suitable unity of concentration.

Now we deal with the problem (3.1)-(3.2) by using the results
of §2. Consider the functions ¢, ¢, ¢;, and ¢,: RX R—R defined by

$1(a, b) =01 {a*— (1+ab*)log (1+a*+ab*)},
#,(a, b) =—02$;b+a,
O (a, b) = — {1+b+ (a— a+)+—log(1+aa++b+)},
$r(a, D) =g(@) = ol —§10g<1+ﬁa+>}
Let G, G; be real valued functions defined on H§(2) X L*(2):
Gits, ) =3 iPsPtet 1810500, )
Q ]
+{, 20 860, sy s

Gotas ) =4 2] _1Pg it | 1,009, r () d
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+{ 2000, r)ax= figax

The integrals are well defined, because the composition of a Borel
measurable function and a Lebesgue measurable function is Lebesgue
measurable and also ¢;(s(x), p(x)), ¢;:(¢(x),7(x)),i=1, 2, are summable
by using the inequalities

< < >
(3.3) 7 Slog(14+0) =t for all ¢=0.

Theorem 3. 1. There exists a pair of solutions (s, p) in Hy(2) X Hy(2),
which satisfies the system of Q.V.I. given by

G (s, p) =G, (u, p) for all uE Hy(2)
{ G:(p, s) =G, (v, 5) Jor all vEH{(2).

Proof. 1In view of Theorem 2. 1, let U= M,=M,=Hy(2), V=1*(92),
F,=G,, and F,=G,, then it is sufficient to show that G, and G, satisfy
the conditions (i), (i) and ({ii) in § 2.

(i) : Consider a sequence {s,} CH;(2) convergent to an element s;
in Hj(£2) with the weak topology of Hj(£2) and a sequence {p,} CL*(2)
convergent to p; with the strong topology of L?*(2). Since H3(2) is
compactly imbedded in L*(2), s,—s; in L?(2) strongly. For an element
v in L*(2), we define v*, v~ by v*=max(s,0),v”=—min(y,0). It can

3.4

be easily shown that

st—st, s;—>si in L*(2), strongly,
and

bi—pt, p—pr  in L*(2), strongly.

We claim that, as n—>+ o0,

[, 181G pdx= .3) 1o P

and
S X2(%) G2 (Sny pr) dx—*S X2 (%) @2 (51, p1) dx,
2 2

which is the direct consequence of the following calculations.

§,, #1620, 0o 1= (51 Lt aptdlog U sitap))

—{,, 5= (+apdlog (4 si+apd} |
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éalg Ist—st |+alg | (14 ap?) log (14 si+ap?)
— (I+ap) log (1+si+apf) |
<o\ s st . la i — s log (1 si+api) |

o (1 +apt) llog (145t +ap!) —log(1+57 +apD) |

galg st —st | +alag bt —pt || 5t +apt |

+y_|sa—sT tap;—apl|

Zollst —sil s+ elips p1|1L2{||s+H +allpil] )
+c{|l5n _51 an‘l‘aHPn |L2}s

where we use the inequality (3. 3),

SQZ B2 (Sny ) — S B, (51, p1) | =0

Srzz {15310: lf}%pl }

S zb" pn _ pl

_ozS 1+,3[7n —51) —I—GZS T+apr  T+pp7 |1
<o Ll ~pr—pT s

_ozgﬁ |s,— 51| +azg (4 55 (1t BpT)

§5|i5n_51.fL2+0||Pn pf—”Lb

where ¢ is a positive suitable constant which is independent of n and

S = S dx.
o
Furthermore, we have

Sflsn—égflsl as n— 400

we use the abbreviation

and also S[Ve |* is weakly Ls.c. on Hy(2). Similarly, we can show

the lower semi-continuity of G,(-,-) and the continuity of G,(g, =)
for each ¢ in M.,

(ii) : The strictly convex property is easily shown by using the fact
that ¢,(-,b), ¢3(-,b0), ¢1(-,b) and ¢,(,b) are convex for each b in

R and S]w |? is strictly convex.

(i) : Let s5=0, ¢o=0. The following calculations show the coerci-
veness of Gy, G,
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1

Gi(s, p) —G1(0, p) = Vs |2 +S‘71X1 {st*— (A 4aph)log(l +ap*+s+)}

ity Lo = (L aplog (1 apn) (£

14+ ap*
ozle-!-ﬁ[? SflS

! s |? +S01X1{s — (1+ap*)

>

)

-]
ISIVsI +SUIX1{S ‘(1+ap+)10gw}
-

)

l+ap+}
it e 1s1= 1Al s
ZCillslfy—Cllslly G0, €G>0

where we use Poincaré’s mequahty and the fact that the injection
0(2)—>L*(2) is continuous. Similarly, we have

Guta:1) =G0, =2 17 IZ+S%x2{q+—-:§—10g(l+ﬁq+)}
1X1{1+ ——(g—q") +—log(1 +aqg* +1‘“)}

7 Salxl—log (141

b
3
25\ Iral {gonle o)
-
S

alxl{H T+ 4 q+)+—10g< [ )} szq
R A

{1114
2@“4”2})—04”4”,{3, >0, C>0.

(4= +-L 12

I+ a(l+rt)

Q.E.D.

Definition 3.1. Let X be a real Banach space with its dual X*
and (-, -) denote the dual pairing between X* and X. Given the
proper convex function f: X— (—oo, 400], the subdifferential of such
a function is the generally multivalued mapping 9f: X—X* defined
by



Q. V.I. AND REACTION DIFFUSION EQUATIONS 687

of (x) = x*€X*: f(w) —f(x) = (x*,u—x) for ‘ueX}.
The elements x*€adf(x) are called subgradients of f at x.

Definition 3.2. Consider any function f: X—(—oo, +o0]. The
function f*: X*—[—oco, +oo] defined by
J*(x*) =sup {(x*, x) —f(x) : xEX}

is called the conjugate function of f.

We obtain the following Theorem from the definition of subdif-
ferentials and Theorem 3. 1.

Theorem 3.2. We have a solution (s,p) in Hi(2) x Hi(2) of the
Jollowing system;
{OEBGl (s, p)
0€0G,(p, s)
where we consider the subdifferentials of G, G, with respect to the first

variables.

(3.5)

Now we can show the main theorem of this section.

Theorem 3.3. The system (3.1)-(3.2) admits a solution (s,p) in
[Hy(2) N H*(2) ]

Proof. By applying Theorem 3.2 we have a solution (s, ) of (3.5)
in H{(Q) x Hy(2). Now we calculate the subdifferentials of G; and
G, actually and show that the solution of (3.5) satisfies System (3. 1)-
3.2).

We consider the functions hy, ki, I, and [,: X R—R defined by

hi(x, 1) = () 1 (2, p (%)),

ha(xy 8) = 22(%) $2 (2, p(x)),

L, 1) = (%) 1 (2, 5 (),
and

L(x, 1) =22 (x) P2 (2, s (x)).

We need the following Lemma for the proof of Theorem.
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Lemma. £k, [, i=1, 2, satisfy the following conditions.

(@) hi(x, ), L;(x,*) are proper, convex and continuous for each xEL.

) hi(e,t) 1;(e,t) are measurable for each t<R.

(¢) int D, (x) =int {teR: h;i(x,t) <<+o0} and int D, (x) =int {tER:
l;(x,t) <40} are nonempty for each x in L.

(d)  hi(e,u;(x)) [resp. 1;(x,0;(x))] is majorized by a summable function
of x for at least one choice of w;[resp.v;] in L*(2), i=1,2.

(e) The conjugate function h¥ (x,uf (x))[resp.lf (x,0¥(x))] of &
[resp. I;] is majorized by a summable function of x for at least
one uf[resp.v}] in L*2(2), i=1,2, where the conjugate functions
are given by

h¥ (x, s*) =sup {s*t—h;(x, 1) : tER}, s*ER,
¥ (x,r*) =sup {r*t —l:(x, 1) : tER}, r*ER.

Proof. (a), (b) and (c) are obvious. We shall show (d) and (e).

Taking u;(x) =v;(x) =0, we obtain

and

and

hi(x,0) = —a1n(x) (1 +ap(x) log(l+ap(x) ™),
hy(x,0) =0,

h(x, 0) = o) 2 log (1+5(1) ),

l,(%,0)=0
Thus (d) is satisfied. Take
(=0, 7 () = —oap() TS v (0 = —om) 2o
o2 () =

then (e) is obtained by the following calculations.

B (5, 0) =sup (— (s, )
=sup o1 (x) {(1+ap(x) Hlog (1 +t*+ap(x)*) —i*}
San(x) (I+ap(x) Hlog(1+ap(x) ™),

hy (x, —02x2(%) ?éf(?)“)
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=sup {—~ 10,005 (x) Y ICA +,5(x) _Mt_t}

I+Bp (%)™ I+8p(x)*
=0,
* _ s(x)*
i (x, o1y (%) 1+s(x)+>
-_—StléRpl:t{—ﬁXl(x) l:Iv—(sx—g;)*} +o(x) {%Z‘;)‘r(t_ﬁ)

+%)+log(l+at++s(x) +)}:|

=sup o122 {%)J“log(l tatt+s(x)*) — t+%}

<ot log (14500,

I3 (x,0) =sup {—L&x, 1}

= sup F1:() {%log(l ) —t+}

IA

0.

Now we return to the proof of Theorem. By using the results of
Rockafellar [13], [14] and the above Lemma we obtain

wf€ol,(s) [resp. zF €0l (p)]
if and only if
w (x) €0hs . (s (%)) [resp. ¥ (x) €l (p(x))]

for a.e. x€£2, i=1,2, where

1,9 =\ hxs) d,

1,0 =\ LG p(@) dx
hix(*) =hi(x, +)
and
Li(+) =L(x, *).
By calculating the ordinary differentials, we have

t+
I+ap(x)*+tt’

%l;l(x, £) =a;p(x)
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Ohy iy = — p)*
at (x’ t) - 02X2(x) 1+‘8p (x) T
ol, _ s(x)t
5 D= om0 +att+s(x)*
and
al, _ it
a (%, 1) = 0y2(x) —1+,Bt+ for a.e. xE0.

So we have

s(x)*

l+ap(x)*+s(x)*’

0hy, (s (%)) = o1 (%)
oh =~ LB
22 (5(x)) 022 (%) ETIeEa

s(x)*
l+ap(x)t+s(x)*

ol (p(x)) = —o1(x)
and

alz.x([? (%)) =0a32(%) *ﬂ_% .

By calculating the subdifferentials of the other terms, S Vs IZ,S ﬂs,S 1425

szp(sec proposition 2.7, 2.8 of chapter 2 in Barbu [2]), we can

show that the subdifferentials of G;, G, are single valued and correspond
to the terms in (3.1). Thus we have a solution (s, p) in [H3(2)]?
which satisfy (3.1)-(3.2). By using the arguments about the smooth-
ness of solutions of regular elliptic problems in [9] (p.212) we have

s, PEHN(2) N HX(2).
Q.E.D.

Remark. When the system depends to time-variables, it is important
to analyze the time-dependent behavior of solutions in relation to
the solutions in equilibrium. Under suitable boundary conditions,
such as convergency and periodicity, we show the convergence to the
equilibrium states ([5]) and the periodicity ([12]) of solutions of
reaction-diffusion systems.
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§4. Neumann Boundary Conditions

We consider the constant flow of the substrate S and the product
P through the boundary I' and assume that S and P are dissolved
at the rate proportional to their concentration, k;s(x), kp(x) at x in
2, where k;, k, are positive constants. Then the system is given by

.y o8t . 0Pt
*.1) B T A e A
+
—2p+kp+ 2 loffﬁﬁ 1+§;‘++S+ —£,=0
in 2,
s .
A, sl
(4. 2) on
9p _
an —gz
on I,

where g, EH*(I"), ﬁan_ is the normal derivative taken toward the

exterior of £, and we use the same notations as those in § 3.

In order to use the Q.V.I. method, we consider the functions
JuJot H(2) x L*(2)—>R defined by

jl(s,p)=ig 7s|? dx+-1 S 52 dx+g i (s, p) dx

Q

X2P2 (5, p) dx—S fis dx—

Q

.]2(‘1, 1’)

w‘x

Q

| )
. pair dx 54 1017 ax | nnan) an
) )

2@ s = fig dx—
where @, ¢y, ¢, and ¢, are defined in § 3.

&9 dy

Q r

Theorem 4.1. The system of the following Q. V. 1. admits a solution
(s,p) in H'(2) xH'(2).

4.3 {.]1(5, D=Ji(w,p)  for all u in H'(Q)
*9 J2(0, D=J:(v,5)  for all v in H'(Q).
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Proof. Let U=M,=M,=H'(2), V=1*2), F,=],, and F,=], in
§2. By using the argument similar to §3 and applying Theorem
2.1, it may be sufficient to show that /i, J, satisfy the coercive condition
(iii), but it is immediately clear from the calculations in §3 and
the inequalities

Smsie Bl ez Lmin, w1l

9 2@’

1 . . .
2rar Bl gz Lo mina kgl

g

Q. E.D.
From the definition of subdifferentials we have the following Theorem.

Theorem 4.2. We have a solution (s,p) in H'(2) X H'(2) which
satis fies
{Oeajl(s, 2
0€9/,(p, s)

where the subdifferentials with respect to the first variables are considered.

4.4

Definitions. <-, -> denotes the dual pairing between H'(£2) and
[H*(2)] and <-, *>, denotes the dual pairing between H *(I') and
H*(I"y. The inner products on L*(2), L*(I") are denoted by (-, *),
(¢, *), respectively.

I, I, are the continuous injections from H'(2) into L*(£2), from
H*(I") into L*(I'), respectively, and 7 is the trace operator. Their
dual operators are denoted by I*, I and r*.

Theorem 4.3. The system (4. 1)-(4.2) admits a solution (s, p) in
H2(Q) x H*(2).

Proof. By calculating the subdifferentials of J,, J, and applying
Theorem 4.2, we have

_ « ) o5t _ aopt }
< AS+I {kls—'_xl 1+ap++s+ X21+‘3p+ \]{1
—r*IFg,0>=0 for all » in H'(9).

By Green’s formula we obtain
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( AH[“““H ap” +s* Xn?’ép —fiv)

+<—g;——g1, vy, =0 for all veH'(Q).

Taking v=w€ 2 (2) in the above equation, we have

+
<—AS+/€1$+X1 1+§;S++S x;li_z"gp_l_ fl,w):()

for all wE 2 (2).
Since 2 (£2) is dense in L*(2), we have

—‘AS"_kls‘l‘Xll_i_ [7* o lizng —f1=0 a.e. in £.

Thus we have
<¢%Sz—g1, 70>,=0 for all v in HY(9).

It implies that
os

W—gl a.e. on I,
By the same argument about J, we obtain
+
— a4 _ (8] f— .
A p+k2ﬁ+x‘l+ﬁp X TFap +s* f2=0 a.e.in £
and
75=g2 a.e. on I,

By using the argument about the regularity of regular elliptic pro-
blems in [9] (p.212), we have s,p in H*(2).
Q.E.D.

§5. A Priori Feedback Control

Now we consider “a priori feedback control” model. We start
from the theorem of Mossino about Q.V.I. Let U, V be real
reflexive Banach spaces and assume that U is compactly imbedded in
V. Let K be a function defined on U XV with values in (—o0, +o0]
and assume that K satisfies the following conditions (I), (II) and
III).
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(I K(-,+) is lower semi-continuous on U(weak) XV (strong).
For each s in U, K(s, *) is continuous on I (strong).

(II) For each p in V, K(-, p) is proper, strictly convex.

(III) K is coercive in the following sense; there exists an element
5o in U and a constant m;>0 such that K(s, p) <40 for each p in
V and, if [|slly>m,
K(s,p) —K(so, p) =0 for all p in V.
The above coercive condition (III) is weaker than (i) in §2.
Furthermore, this condition can be weakened to the type which

appeared in [15]. The following theorem is proved by using the
same method as the proof Theorem 2. 1.

Theorem 5.1. Under the above assumptions there exists u in U such
that

5. D Ku,u) =K (v, u) Sor all v in V,
that is,
(5.2) 0€ 0K (u, u)

where the subdifferential is taken with respect to the first variable.

First we consider the following system.

(5.3) —dutku=f in Q
with the boundary condition
2o on I'n={El: ulr() >0l ()
5. 4) B on I'_= el ulr(y)<Qlr) ()
ogg_ng on Iy=T'—T,UT.

where k, m are positive constants and f€L*(2) and Q: L2(I")—>L*(I")

is continuous and sup |Q(w) [<+oo.
weL?(D)

Take U=H'(2) and V=H®(2) where ¢ is a positive constant
such that %<e<1, then U is compactly imbedded in V. We shall deal
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with this system by considering the function K: H'(2) X H*(2)—>R
defined by

2 2
+mSP{qu—Q(vlp)}" dy—ggfu dx.

.5  K(u, 1) :iggwulz etk SQW dx

When vE H*(2), ~é—<s<l, the trace of v, v|p is in H*¥(I"). Since

Q: L*(I"y—L*(I") is continuous, if v,—v in H*(£2) as n—+o0, we have
Q.| —Q@|r) in L*(I). Thus, by using the same argument as
the proof of Theorem 3.1 (i), it follows that K satisfies the condition
(I). As for the condition (II), since the operator on R;{—{t}~ is
convex, we can use the argument of the proof of Theorem 3.1 (ii).
For the condition (III), take s,=0, then by using the uniform bound-
edness of Q we have

K(s,p)—K(O,p):—;-Sgle}Z dx—l—ggglslz dx-l—mgr[{s[p
~0 )= (=0 1911 &= 5 ax

Z il ) (=00 10) d=cdlslng,

Zcills| P — 0I5l

") Cs

oy

where ¢;, ¢; and ¢; are positive constants.
Thus there exist a constant my >0 which satisfies the condition

(I1D).
Theorem 5.2. The system (5.3)-(5.4) admits a solution u in H'(2).

Proof. 1t is sufficient to calculate the subdifferential of K. By using
the argument in the proof of Theorem 3.3 and 4.3 we obtain

0 — dutku— f+mr*la*agp u—QGu)} -, w

for all w in H'(£2). Taking w=w€ 2 (2) in the above equation, we
obtain

—du+ku=f

in the sense of distribution. By Green’s formula, we have
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0 (—du+ku—f, w)+<g—z+ml§agr{ru—Q(ru)}‘, T,
for all w in H'(2). And hence
ou % _
0e<2 +miza| u—QGu)-, .
Let ¢ be a convex function from L?(I") to R defined by
s =\ B0, v 2,

then it is easily known that
0 on {y&€l': u|r>0}
0p(w) = { —1 on {yel": u|r<0}
[—1,0] otherwise.

Thus we conclude that

ou _

W—O on F+

ou _

?n——-m on F_
ou

0= —==m on I.
on

QIESD.

Now we can study the reaction diffusion system with a priori
feedback control by applying the previous results. We consider the
system (4.1) with the following boundary conditions

5-=0 on (YEI': 1s>0.()}
(5.6) g—;—ml on (yeI't 1s<Q,(rp)}

0=2 <m,,

’g_fl’zo on (YEI: 1p>0Q,(s)}
.7) %:mz on {(YET: 7p<0,(ys)}

0<g_n£m
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In (5.6) and (5.7) m,, m, are positive constants, Q;: L*(I") —L*(I")

are continuous and sup |Q;(w) |<{+oo, i=1,2. By these functions
weLl()

Q4, Qs the flow of each substance through the boundary is controlled

according to the boundary value of the other chemical component.
Define Fy, F,: H'(£2) x H*(2) >R as follows;

6.8)  Flsp=y 75 dxt Bl ¢ ave| 16,6, e
+{ wop derml 0.0~ &= fis 4
6.9 F@n=y\ 17l der B g avi| poian dx

+ @ drml_ge-0.my- &= 1q i

where ¢, ¢, ¢, ¢, are defined in §3. Then, by Theorem 2.1 and
the previous arguments, we obtain the following theorem.

Theorem 5.3. System (4.1)-(5.6)-(5.7) admits a solution (s, p)
in H'(Q) x H'(Q).

Remark. Enzymatically catalyzed membranes are of primary
importance in various biological process, because they control the flow
of chemical substances ([16]). Mechanism of this control is very
complicated, but the recent progress in biochemistry shows that
proteins in membrane play the most important role by catalyzing
the reaction which occurrs active transport. In our models the functions
Q. and Q, correspond to this control. To give an actual form of
Q; in each biochemical model will be a complicated, but an interesting
problem.
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