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A System of Quasi Variational Inequalities
and Its Application to Reaction

Diffusion Equations

By

Koichiro NAITO*

§ 1. Introduction

To control a flow and exchange of material through its boundary
is the most important problem for the organism to maintain the
order on the dynamic equilibrium. Mathematically this complicated
control through the boundary or membrane of the organism is consid-
ered as various types of boundary conditions. For instance, by using
the methods of variational inequalities (abr. V. I.) or quasi variational
inequalities (abr. Q. V. I.) , Duvaut and Lions studied the unilateral
problem in [3] such that

(1. 1) ~-du+ku = Q in Q9

(1.2) M-^ = 0, -1^0, iu>0 on dQ
^ J ' ' ~~

where u describes the concentration of a chemical substance in the

domain Q and -=— is the outward normal derivative. The boundary

conditions (1.2) mean that the flow through the boundary into the
domain is shut up on the place where u jg^X) and, on the other hand,
the substance is allowed to enter into the domain on the place where
M 1 90 = 0. In the last part of this paper we consider the boundary
conditions called "a priori feedback control" model which was intro-
duced by Lions [8] ;
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on

on 30.= {j,e9fl: u \dQ<Q(u

dn

where Q,: L2(dQ)-*L2(dQ) is continuous and uniformly bounded. In
the case of Lions [8] Q,(u\dQ} (y) is a constant function denned by

(1.4) Q(u | g0) (» = mean [M 1 9 J = " I w 00 <*y

which means the substrate is allowed to enter into the domain through
the part of the boundary where the concentration is lower than the
average and on the part where the concentration is higher than the
average the flow is shut up. When Q(u\gg) = £ and s>0 is small
enough, the unilateral problem is approximated by (1.3).

In this paper first we study a system of Q. V. I. General forms
of Q. V. I. were introduced and studied by Mosco in [10] and Mossino
also applied a general theory of Q. V. I. to the equations from Plasma
Physics in [11]. She used the function type of Q. V. I. such that

(1.5) F(u,u)^F(v,u) for every v^U,

that is,

(1.6) Oe3F(M,M), u^U

where [/, V are reflexive Banach spaces and F: UxV-*R and the
subdifferentials are taken with respect to the first variables.

To analyze reaction-diffusion systems we introduce a system of

Q. V. I.

(1 7)
^

and we prove the existence of a pair of solutions by applying the
method of Mossino. Next we consider a system of reaction-diffusion
equations which was mathematically formulated by Kernevez [7] or
Banks [1] as an active transport model of double-layered membranes.
We construct convex functionals. By applying the theory of Rockafellar
about integrals of convex functions we calculate the subdifferentials
of these functionals and show the existence of solutions in equilibrium
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as minimal points of these convex functionals.

We study this reaction-diffusion system with the following two

types of boundary conditions:

fl) The Dirichlet boundary conditions—We assume that the boundary

is absorptive or chemical components are dissolved on the boundary,,

(2) The Neumann boundary conditions—There exists the flux through

the boundary which is controled by the concentration of the other

reacting chemical component. In this case we assume that the chemical

components are dissolved at the rate proportional to their concentration

in the domain.

It should be remarked that we can show the existence of the

stationary solutions when the components are dissolved in the domain

or on the boundary. These conditions of dissolution yield the saturated

states chemically and also yield the coercive conditions mathematically.

In our cases the coercivity is the most essential condition for the

existence of the stationary solutions. When the coercive conditions

are satisfied, we obtain the solutions as minimal points of convex

functionals.

In § 2 we study a system of Q. V. I. and we show the existence of

solutions. By applying this Q. V. I. system we show the existence of

stationary solutions of reaction—diffusion equations with Dirichlet

boundary conditions in § 3 and with Neumann boundary conditions in

§ 4 and, especially, we treat "a priori feedback control33 problem in § 5.

§ 2. System of General Q. Vo I.

Let [/, V be real reflexive Banach spaces and assume that U is
compactly imbedded in V, that is, (1) U is a vector subspace of F, and
(2) the identity operator / defined on U into V is continuous and
compact.

Let MI, M2 be nonempty closed convex subsets of U and Fl9 F2

be functions defined on UxV with values in (—°o, +oo]3 satisfying
the following conditions:

(i. a) jFi(«, •) is lower semi-continuous (abr, 1. s. c.) on MI (relative
weak topology of U) X M2 (relative strong topology of V) ;

(i. b) F2(e, •) is 1. s. c. on M2 (relative weak top. of [/) X MI (relative
strong top. of V) ',
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(i. c) for each s^M^Fi(s9 •) is continuous on M2 (relative strong
top. of F) ;

(i. d) for each q^M2,F2(q, •) is continuous on MI (relative strong
top. of F);

(ii. a) for each /?GAf2, F! (- , />) is proper, strictly convex;
(ii. b) for each reMl9 F2(°, r) is proper, strictly convex;

(iii. a) FI is coercive on MI in the following sense, there exists
an element sQ^Mi such that, if s S M i and [ M i f f — > + °°, then
Fi(s,p) — F^SQ, />)-»+ oo 9 uniformly w. r. t. p in M2°,

(iii. b) F2 is coercive on M2, that is, there exists an element qQ in
M2 such that, if q^M2 and Holler- H-oo, then F2(q,r) —

F2(#o5 r)-^+°° 5 uniformly w. r. t. r in MI.

Theorem 2. 1. Under the above assumptions, we have a pair of solutions
(? , 37) iw MX X M2 of Qj V. L given by

?5 *]) Jor aM s ln M-\

i^F2(g, f) /or all q in M2.

We use the following lemmas for the proof of Theorem.

Lemma 2* 1. For each p£=M2, there exists a unique element sp in Mil

Fi(sp^p) ^Fi(s, p) for all s in M1?

and for each r €E Ml3 there exists a unique element qr in M2;

F2(qr,r)^F2(q,r) for all q in M2.

Proof, It can be easily proved by the results of Ekeland-Temam
[4] or Barbu [2], because Fl(•,/>) is proper, strictly convex, coercive,
and 1. So c. with the weak topology of U for each p in M2 and also
MI is closed convex in U. Furthermore, F2, M2 have same properties.

Q. E. D.

Lemma. 2.20 We define mappings 7\: M2-*Ml3 T2: Mi~^M2 by
Tip = sp for each p in M2 and T2r = qr for each r in MI. Then TI and
T2 are continuous with the strong topology of V and

and
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Proof, TI, T2 are well defined by Lemma 2. 1. From the definition

of TI, we have

where s0 is the element defined in the coercive condition (iii). By

the coerciveness we can easily see that

Now we shall show the continuity of 7\. Consider a sequence

{pn} CM2 convergent to pi in M2 with the strong topology of V.

Since \\Tipn\v^Ki and MI is closed convex in [/, there exist

and a subsequence [pn] of {/?„} such that

Tipn.-^Si in MI with the weak top,, of U

as w,— »+oo. Then we have

^Si in MI with the strong top. of F,

because U is compactly imbedded in V. From the definition of 7\ we

have

pnJ for all j in Mlo

Since FI(°, •) is 1. s. c. and FI(S, • ) is continuous on M2 for each

in MI in the sense of (i), we obtain

^i(Ji, A) ̂ U

= Fi(s,pJ for all 5 in MI.

Since the minimum point is unique, Si = Tipi. We can conclude that

Tipn-+Tipi in MI with the strong top. of V.

Similar arguments imply the results about T2. Q. E. D.

Proof of Theorem 2, 1. Let £ = M2n fye[/: ||w||^X2}. Then 5 is

a nonempty weakly compact convex subset of U by Lemma 2. 2 and

the reflexivity of U. Furthermore, B is compact convex with the

strong top. of F, because U is compactly imbedded in V,

Since TriM2cMi3 T2MiCJ3, and the composition T2°7\ is continuous

on M2 with the strong top. of V by applying Lemma 2, 2, there

exists a fixed point 57 in BdM2, i.e., T2°Ti7] = 7] by Schauder3s fixed
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point theorem. Let ? = 7^, then we have a pair of Q. V. I. solutions
(f, 37) in MiXM2:

FiCf, 37)^0, )?) for all s in MI

and

F2(>7, f ) ̂ F2(g, f) for all ? in Af2.
Q. E. D.

Remark. To show the uniqueness of solutions of this system is

an interesting problem, but the assumptions for the uniqueness will
be complicated, because we need the arguments about the uniqueness
in the Schauder's fixed point theorem [6],

§3. Dlrichlet Boundary Conditions

Let the cell Q be a bounded open subset in R" with the sufficiently
smooth boundary F—dQ. Assume that the organs Q^ Q2 are measurable
subsets of Q and Qi^\Q2=^. Enzymes E^ E2 are embedded in !3l9

$25 respectively. We have coupled reactions between two chemical
components S and P. In Ql we have the irreversible reaction with
competitive inhibition ;

Ei
S — ̂  P

where S is the substrate of EI and the product P is an inhibitor of
this reaction. In Q2 P is the substrate for the enzyme E2 which
catalyzes the irreversible reaction;

E2
P -±>S.

Here we consider a system of reaction-diffusion equations with the
absorptive boundary F which can dissolve or absorb the substrate
and the product We assume that the diffusion coefficients of S and
P are in the ratio of 1 : L Then, in the stationary case, this model
is described by the following system of the differential equations. (See
[1] or [7] for further details.)
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(3.2)

where

in the sense of distributions,

-I1 if
1 10 if

fl if

jO) is the concentration of S at

p(x) is the concentration of P at

p+ = max(p, 0), 5+ = max(5, 0),

^b °"25 <*, ^5 and /I are positive constants,

fi(x) is the supply of S at

f2(x) is the supply of P at

and we take a suitable unity of concentration.

Now we deal with the problem (3.1) -(3. 2) by using the results

of § 2. Consider the functions 0l5 02, ̂ i? and <p2\ Ry. R-*R denned by

/ M b+
(a, b) =—ff

Let GI, G2 be real valued functions defined on H\ (Q) X L2
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The integrals are well defined, because the composition of a Borel
measurable function and a Lebesgue measurable function is Lebesgue

measurable and also 0f (s (#) , p (x) ) , <p{ (q (#) , r (x) ) , i = 1 , 2, are summable

by using the inequalities

(3.3) -— ^log(l+0^* fo r a l l f^

Theorem 38 1. TTz^ ^.mfc a pair of solutions (s,p) in H\(Q)

which satisfies the system of Q. V. L given by

Gl (s, p} ̂  d (M, />) /or all
(3e ' G2(p, s) ^G2(v, s) for all

Proof, In view of Theorem 2. 1, let U=Ml = M2 = H1
0(Q), V=L\Q},

FI = GI, and F2 = G2, then it is sufficient to show that GI and G2 satisfy
the conditions (i) 9 (ii) and (iii) in § 2.

(i) : Consider a sequence {sn} C//J(^3) convergent to an element Si

in H\(Q} with the weak topology of H](Q) and a sequence {pn} dL2(Q)

convergent to pi with the strong topology of L2(Q}. Since H\(Q) is

compactly imbedded in L2(^3), ^M^JI in L2(@) strongly. For an element

v in L2(<0), we define y+, v~ by y+ = max (v, 0) , y~ = — min (v, 0) . It can

be easily shown that

Jn-^i", Jn-^Jf in i2(^)5 strongly,

and

Pn-^Pi, Pn-^pi in L2(Q), strongly.

We claim that, as 72->+oo5

\
J

and

\ X2W<f>2(Sn,pn)dx->\ fo
JQ JQ

which is the direct consequence of the following calculations.
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«/>+)log(l + 4-

- sf | +ffla\> \p: -pf 1 1 si +apt

where we use the inequality (3. 3) ,

where c is a positive suitable constant which is independent of n and
we use the abbreviation

H/-
Furthermore, we have

as

and also \ |F- |2 is weakly L s. c. on H\(Q) . Similarly, we can show

the lower semi-continuity of G2(0., °) and the continuity of G2(^3 °)
for each q in Mz.

(ii) : The strictly convex property is easily shown by using the fact

that 0i( ' ,6) , ^C 0 : , ^ )? 0i(-5 i) and < / > 2 ( 8 , £ ) are convex for each i in

,R and \ • |2 is strictly convex.

(iii) : Let ^o^O, ^0 = 0. The following calculations show the coerci-
veness of GI, G2-
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_-Ct\\s\\^ Ci>0, C2>0

where we use Poincare's inequality and the fact that the injection
I: Ho(ff)-*L2(Q~) is continuous. Similarly, we have

G2(?,r)-G2(0,r)=-

, C4>0.

Q.E.D.

Definition 3.1. Let X be a real Banach space with its dual Jf*
and (•, •) denote the dual pairing between X* and X. Given the
proper convex function/: A"-»(— °o? +00], the subdifferential of such
a function is the generally multivalued mapping df: X^>X* defined
by
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3/00 = {**€=**: /(tt)-/(*)^(**,M-*) for

The elements x*^df(x) are called subgradients of/ at x.

Definition 3.2. Consider any function /: Z->(— oo? +00], The
function/*: JL"*-»[— oo, +00] denned by

/*(**)= sup {(*%*)-/(*): *€=;?}

is called the conjugate function of/

We obtain the following Theorem from the definition of subdif-
ferentials and Theorem 3. 1.

Theorem 3.2. We have a solution (s,p) in H\(Q} xH](Q) of the
following system',

(3.5)

where we consider the subdifferentials of GI, G2 with respect to the first

variables.

Now we can show the main theorem of this section.

Theorem 3.3. The system (3.1) -(3. 2) admits a solution (s,p~) in

Proof. By applying Theorem 3. 2 we have a solution (s, p) of (3. 5)
in H\(Q) XH1

0(@). Now we calculate the subdifferentials of d and
G2 actually and show that the solution of (3.5) satisfies System (3. 1)-
(3.2).

We consider the functions /zb /z2, /i, and 12- QxR^>R defined by

and

We need the following Lemma for the proof of Theorem.
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Lemma, hi9 /f, i= l 3 2, satisfy the following conditions.

(a) h{(x, •), h(x9 -) are proper, convex and continuous for each
(b) A ; ( e , 0 l i ( ° 9 t ) are measurable for each t^R.

0) int />*.(*) =int [t^R: hi(x9 0<+°°} and int A. 00 =int

/i(^30<C+00} are nonempty for each x in Q.
(d) h{ (x, HI (x) ) [resp. lt (x, v{ (x) ) ] is majorized by a summable function

of x for at least one choice of Ui\_resp,v^\ in L2(Q}, z = l,2.
(e) The conjugate function hf (x, uf (x) ) \resp. If (x, vf (x) ) ] of h{

[resp. /J is majorized by a summable function of x for at least
one u*\resp.v*~\ in L2(Q), i=l,29 where the conjugate functions
are given by

Proof, (a), (b) and (c) are obvious. We shall show (d) and (e).
Taking u{ (x) = v{ (x) = 03 we obtain

hi(x9 0) - -<7lXiM d +<*p 00+)log(l +<xp(xD,

and

/2(^50)-0B

Thus (d) is satisfied. Take

af(*)=o, "fW =

and

then (e) is obtained by the following calculations.

h * ( X, — <72%2 (*) i . o . x N + )
\ i+pp (X) J
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=o,

a

#(je,0)=sup{-/2(*,0}

Now we return to the proof of Theorem. By using the results of
Rockafellar [13], [14] and the above Lemma we obtain

wf e dlh. (s) [resp. z* e dlt. (p) ]

if and only if

wf (x) e dhitX(s (x) ) [resp. ^ (*) e 3/,.., (p (^) ) ]

for a. e. x^Q, i= l , 2 5 where

(x,s(x)} dx,

dx,

and

By calculating the ordinary differentials, we have
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and

r57
-^•C*. 0 = *«»(*) 1™ a- e-

So we have

and

By calculating the subdifferentials of the other terms, \ \Vs |2,\/i^\ \Vp |2,

\/2/?(see proposition 2.7, 2.8 of chapter 2 in Barbu [2]), we can

show that the subdifferentials of Gl5 G2 are single valued and correspond
to the terms in (3.1). Thus we have a solution (s, p) in \_Hl(Q)~}2

which satisfy (3. l)-(3. 2). By using the arguments about the smooth-
ness of solutions of regular elliptic problems in [9] (p. 212) we have

Q. E. D.

Remark. When the system depends to time-variables, it is important
to analyze the time-dependent behavior of solutions in relation to
the solutions in equilibrium. Under suitable boundary conditions,
such as convergency and periodicity, we show the convergence to the
equilibrium states ([5]) and the periodicity ([12]) of solutions of
reaction-diffusion systems.
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§4. Neumann Boundary Conditions

We consider the constant flow of the substrate S and the product
P through the boundary F and assume that S and P are dissolved
at the rate proportional to their concentration, kis(x), k2p(x) at x in
Q, where &l5 k2 are positive constants. Then the system is given by

(4. 1)

in Q,

(4.2)

on r,

3where £1, ̂ ^//^(T), -=— is the normal derivative taken toward the
on

exterior of £, and we use the same notations as those in § 3.
In order to use the Q. V. I. method, we consider the functions

A, L: I f ( O ) XL2(£)-»# defined by
\J i? \J £ \ / ^ ' /

\ s \ 2 dx + Kh(s,p-) dx
2 JQ JQ

\ %2<l>2(s>p} dx-lf^ dx~\ gtf dy,
JQ JQ Jr

\ \^\2 d* + ¥\ \9 2 dx + ( »#!(?, r) dx
JQ L JQ JQ

\ fo02(q,r)dx -\ f2q dx-\ gzq dy
JQ JQ jr

where 0l5 02, ̂ i? and ^2 are defined in § 3.

Theorem 4.1. The system of the following Q. V, L admits a solution

u9p) for all u in Hl(Q)

y, s) for all v in H1 (Q}.
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Proof. Let U=Ml = M2=Hl(Q}, V~-=LZ(Q), FI=/I, and F2=J2 in
§ 2. By using the argument similar to § 3 and applying Theorem
2. 1, it may be sufficient to show that^,^ satisfy the coercive condition
(iii), but it is immediately clear from the calculations in § 3 and
the inequalities

±\ ^1'+-2} ys\ +

i\W+-
Q, E. D.

From the definition of subdifferentials we have the following Theorem.

Theorem 4,2. We have a solution (s, p) in Hl(Q)xHl(Q} which
satisfies

where the subdifferentials with respect to the first variables are considered,

Definitions. <e, •> denotes the dual pairing between Hl(Q} and
' and <-, °>r denotes the dual pairing between //""*" (f) and

„ The inner products on L2(£)? L2(r) are denoted by ( - , - ) ,
(% a ) r ? respectively.

/, J0 are the continuous injections from Hl(Q) into L2(Q), from
H*(F} into L2(F), respectively, and ^ is the trace operator. Their
dual operators are denoted by /*, 7* and p*.

Theorem 4. 3o The system (4.1) -(4. 2) admits a solution (s,p} in

Proof. By calculating the subdifferentials of /1? J2 and applying
Theorem 4. 2, we have

-r%*&,»> = 0 for all » in

By Green's formula we obtain
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for all

Taking v = w^@(@) in the above equation, we have

for all

Since ® (S) is dense in L2(£?)3 we have

-As + kiS + ft °1^ + -ft { °$* -/! = 0 a.e. in Q.

Thus we have

<-|^-£i,rzC>r = 0 for a11 y in ^W-

It implies that

ds T-,——=g1 a. e. on / .

By the same argument about J2, we obtain

and

dp T-~— = p2 ^- GO on L .

By using the argument about the regularity of regular elliptic pro-
blems in [9] (p. 212), we have s, p in H2(Q}.

Q, K D0

§5. A Priori Feedback Control

Now we consider "a priori feedback control" model. We start
from the theorem of Mossino about Q. V. I. Let U, V be real
reflexive Banach spaces and assume that U is compactly imbedded in
V. Let K be a function defined on C/x V with values in (— oo? +00]
and assume that K satisfies the following conditions (I), (II) and
cm).
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(I) K ( * 9 •) is lower semi-continuous on t/(weak) X V (strong).
For each s in £7, K(s, •) is continuous on F (strong).

(II) For each p in F, K(e,p) is proper, strictly convex.

(III) X is coercive in the following sense; there exists an element
s0 in U and a constant m0>0 such that j^(^05/?X+00 for each p in
F and, if lljll^nio,

K(s,p)-K(s0,p)^Q for all p in F.

The above coercive condition (III) is weaker than (iii) in § 2.

Furthermore, this condition can be weakened to the type which

appeared in [15]. The following theorem is proved by using the

same method as the proof Theorem 2. 1.

Theorem 5.1. Under the above assumptions there exists u in U such
that

(5.1) K(u9u)^K(v,u) for all v in F,

that is,

(5.2) Oeaf iT(M,M)

where the subdifferential is taken with respect to the first variable.

First we consider the following system.

(5.3) -du + ku=f in Q

with the boundary condition

f 3u

(5.4)

= 0 on F+={y^r: M|rOO>Q,(«lr)00}

= m on r_={y^r\ u r(j)<Q(u Ir) 00}

3n

du_
dn

on r0-r-r+ur_
~ dn

where &, m are positive constants and/^L2(-0) and Q,: L2 (jT) ->L2 (F)
is continuous and sup \Q[w')

Take U=Hl(Q) and V=HB(Q} where e is a positive constant

such that — <6<1, then f/ is compactly imbedded in F. We shall deal
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with this system by considering the function K: Hl(Q) X//E (£?)->./?
defined by

(5.5) K(u,v)=±\ \!7u\2 dx + M \u\2 dx
Z. JO L JQ

{u\r-(v\r)}- dy-fu dx.

When D€E//e(£), ~-<£<1' the trace of y> v\r is in H&'^(r^ Since

Q: L2(F)-^>L2(F) is continuous, if vn->u in He(Q) as /2->+oo? we have
Q(vn\r)-:>Q(v\r) in L2(F). Thus, by using the same argument as
the proof of Theorem 3. 1 (i), it follows that K satisfies the condition
(I) . As for the condition (II) , since the operator on R ; £— > {t} " is
convex, we can use the argument of the proof of Theorem 3. 1 (ii)0

For the condition (III), take ^0 = 0, then by using the uniform bound-
edness of Q we have

\s\
2 dx + m \_{s\rJr

- s d xdy-\f
JQ

where cl} c2 and c3 are positive constants.
Thus there exist a constant m0^>0 which satisfies the condition

(HI).

Theorem 5.2, The system (5. 3) -(5. 4) admits a solution u in H1^).

Proof, It is sufficient to calculate the subdifferential of K, By using
the argument in the proof of Theorem 3. 3 and 4. 3 we obtain

for all w in Hl(Q), Taking w = a)^@(@) in the above equation, we
obtain

in the sense of distribution. By Green's formula, we have
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0^ ( — du + ku—f, w) + <^- + m/0*9\ [fu — Q,(?u}} , fw\

for all w in Hl(Q). And hence

Oe<-|^-

Let ^ be a convex function from L2(F) to ^ defined by

0 (0) — \ W <^? y ir

then it is easily known that

30(n)= (

[—1,0] otherwise.

Thus we conclude that

- = 0 on T+

0 on 0>er: u\r>Q]

-1 on {jer: M r<0}

3n

-=— = m on

on

Now we can study the reaction diffusion system with a priori
feedback control by applying the previous results. We consider the
system (4. 1) with the following boundary conditions

(5.6)

on {y^F:

dn
on

(5. 7)

on

on

-
on
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In (5.6) and (5.7) ml9 m2 are positive constants, (£,•:
are continuous and sup \Qi(w) K + 00, i= l ,2 . By these functions

weLZ(r)

0,1? Q.2, the flow of each substance through the boundary is controlled
according to the boundary value of the other chemical component

Define Fl9 F2: Hl(Q} xHB(Q)^R as follows;

(5.8) Fi(s,p)= \rs\* dx + \ s \ 2 dx + &&(*, p) dx
2

dx,

(5.9) / r a ( ? , r ) = - ]Fg|2 dx + \q 2 dx + xifcfor) dx
£ JQ 2 JQ JQ

+ \ i2<f>2(q,r} dx+m\ (rff-Q^Cr)}" dy~\ Jq dx
JQ Jr JQ

where 0l5 ^2, ^i, ^2 are defined in § 3. Then, by Theorem 2. 1 and
the previous arguments, we obtain the following theorem.

Theorem 58 3, System (4. 1)- (5. 6) -(5. 7) admits a solution (s,p)
in Hl(Q} xHl(Q).

Remark. Enzymatically catalyzed membranes are of primary
importance in various biological process, because they control the flow
of chemical substances ([16]). Mechanism of this control is very
complicated, but the recent progress in biochemistry shows that
proteins in membrane play the most important role by catalyzing
the reaction which occurrs active transport. In our models the functions
Q,i and Q2 correspond to this control. To give an actual form of
0,.- in each biochemical model will be a complicated, but an interesting
problem.
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