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Non-Uniqueness in the Cauchy Problem for
Partial Differential Operators with

Multiple Characteristics, II

By

Shizuo NAKANE*

§ 0, Introduction

In this paper, we shall consider non-uniqueness of C°°-solutions
of the non-characteristic Gauchy problem for a class of operators with
C°°-coefficients containing some degenerate elliptic operators. Then
we shall extend the non-uniqueness results of our preceding papers
[6] and [7].

A typical example of the operators treated here is the following
operator in R2:

where /^#>r^l. Plis [10] treated the case l = m = Q, A = B = C=l
(i.e. elliptic case) and Nakane [6] treated the case A = B = C=l
(i.e. degenerate elliptic case). These results show that under some
conditions on A:, /, m, there exist C°°-functions u and / satisfying

Pu-fu = Q, (0, 0)eEsuppwd{t^O}.

An important property of P is that the imaginary parts of its
characteristic roots have finite order zeros on the initial surface £ = 0.
For these operators, [6], Okaji [9], Roberts [11] and Uryu [13]
showed uniqueness under Levi type conditions on the lower order terms.
But they considered mainly the case of variable multiple characteristics.
We are much interested in the case of constant multiplicity (i.e.
/?>g). As for this case, there are few results. In [6] and [9], they
treated the case p = q = 2, r=l and ^4 = 0. For first order operators,
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see Strauss-Treves [12] or Zuily [14].
The main purpose of this paper is to give a necessary condition

for uniqueness on the lower order terms for operators of the above
type. Then we conclude that uniqueness does not hold unless the
lower order terms degenerate according to the order of degeneracy
of the imaginary parts of characteristic roots. Another purpose of
this paper is to investigate the effect of the behaviour of imaginary
parts (or of real parts) of symbols of operators.

The method of proofs of our results is a modification of those of
Alinhac-Zuily [1], Lascar-Zuily [5], Nakane [7] and Zuily [14].
That is, we shall construct the functions u and f by using the method
of geometrical optics. Our results will show that this method is
very powerful to get necessary conditions for uniqueness.

§ 1. Statement of Results

Let P = P(t9x; dh Dx) be the following operator of order p in Rd+l:

(1.1) P=(3t-

Here dt = d/dt, Dx=-=(d/dxi,* • - , 9/9^), k9 /, m, m(j, i) ^JV= {0, 1, 2,
V —1

° ° ° } , A, B,C, Bjti are partial differential operators, homogeneous order
<7, q — r , I 9 i with respect to D* respectively, whose coefficients are C°°
in C7, an open neighborhood of the origin in Rd+l and p^q^>r^l.
Let f be the dual variable of x.

Then the following theorem is a corollary of Theorem 1. 1 of [7].

Theorem 1.1. Suppose

n 9^ pr-i-qm ^^^ prl+ (p — q)m
\L0 &) ^^A/^x^ ; ,

q-r ^ ^ p-q+r

\L« «D) m \ / « i ) ^> ~i a
P Pr

We also assume that there exist ?°eJ2''\{0} and a branch D(f°) of
{5(0, 0; f°) -A (0,0; f)} w ^ '̂̂

(1.4) R
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ft 0/J07Z neighborhood Uf of the origin and C°° -functions

u and f in [/' 5^/z that

(1.6) Pu-fu = Q, (0,

Remark 1.1. Assumption (1.2) is equivalent to assumption (1.9)
or (1.13) of Theorem 2 of [6]. Hence this theorem is a generalization
of Theorem 2 of [6].

Remark 1.2. As in Remark 1.4 of [7], we introduce Newton
polygons. In the (X, Y) -plane, we plot the following points :

Ri = (q/P, - 1 ) , ft = (0, A//0 , ft = (r/p, m/p) ,
f t= (?//>- 1,/) , P j . i = ( q / p - i / J , m ( J , i ) / f ) -

The first inequality of (1.2) implies that ^3 is located below the line
passing through the points RI and R2. The second inequality of (1.2)
implies that R± is located above the line passing through the points
R2 and R3. Assumption (1.3) implies that all the points Pjti are
located above the line passing through the points R2 and R3 . Hence
above theorem is a corollary of Theorem 1.1 of [7],

Now we consider the case £>

Theorem 1.2. Suppose

(1-8)

(1.9) , r

We also assume that there exist f°eJ2d\{0} amf a irawcA 5(0,0;

(1.10) ReC(0 9 0; f°)+Re 5(0,0;

(1.11) j&ReC(0 ,0 ; f°) + (?-r)Re 5(0, 0; f°

conclusion as in Theorem 1. 1
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Remark 1.3. In terms of Remark 1.2, assumption (1.7) implies

that R4 is located below the line passing through the points R2 and
R3. Assumption (1.8) implies that ^3 is located below the line passing
through the points RI and R^. Assumption (1.9) implies that all

the points Pjti are located above the line passing through the points

RS and ^4.

Example. We consider the following operator in R2:

P=(3t- tlDx}
 p - tmB (t, *) Dl~\

where B^C°°(U) and p^q^>r^l. Since it corresponds to the case
A = Bjii = Q, assumptions (1.7) and (1.9) are automatically satisfied.
We assume (1.8) and we consider assumption (1.10) and (1.11).

By considering the effect of the similarity transformation: x^-*hx for

some AEijR, we have the following:

Case 1. When /?2^3, assumptions (1.10) and (1.11) are satisfied if

fi(0,0)=J=0.
Case 2. When p = q = 2 and r = l, assumptions (1.10) and (1.11)

are satisfied if 5(0, 0) & C\[0, oo).

Remark 1.4. Consider the following operator in R2:

where 5, C^C°°(LT). In [6], we showed that uniqueness holds for
P if m^>l— 1. Recently Okaji [9] showed that uniqueness holds for

P if m^l—l. Furthermore, Professor K. Watanabe pointed us that

uniqueness holds for P with m</— 1 if B(t, #) >0. Hence assump-

tions (1.8), (1-10) and (1.11) are indispensable.

Finally we consider the case k=
p-q + r

Theorem 1.3. Suppose (1.8), (1.9) and

(1.12) k=prl+(p-q)m ^
p-q + r

We also assume that there exist ^^Rd\{0] and a branch D(f°) of

{5(0,0; £°)-4(0,0; f0)}1^ satisfying
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(1.13) ReC(0,0; ?°)+R

(1.14) />ReC(0, 0; f°)

5(0, 0;?) -4(0,0: f°)

conclusion as in Theorem 1. 1 holds.

Remark 1.5. Assumption (1. 12) implies that ^4 is located on the
line passing through the points R2 and R3.

Since the proof of Theorem 1.3 is similar to that of Theorem 1.2,
we omit its proof.

§ 2. Proof of Theorem 1. 2

Let a) be a sufficiently small open neighborhood of the origin in
Rd. We construct the function u(t,x) as a superposition of func-
tions un(t,x), defined in Un=(bn+^bn-^) xw, of the form:

un (t, x) = exp ^ - 1 TH?X ~-j(tl+l- bl
n
+l) exp 0- *3 A,

so that the function f=Pu/u becomes C°° near the origin. The above
form of un is a modification of the one in [7]. Considering the
degenerate elliptic part tlC(t,x\Dx) of P, we introduce a complex

phase function f°x — -. — ̂ (tl+l — bl
n

+l). Then a similar argument as in

[7] works for this case.
This method was originally introduced by Cohen [3] and [10],

etc. for a special type of operators. In order to treat more general
class of operators, Hormander [4] constructed un by using the method
of geometrical optics. In [1] and [14], they have developed his idea
and have obtained a more systematic way to construct un. As in [7],
we treat the case of higher multiplicity. Then we come across a new
difficulty when we solve the transport equations.

Put t=ds, where d is a small positive parameter. Then P is
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transformed into

P=(3-1d,-3lslC(ds,x; Dx))
p + dkskA(ds, x', Dx)

- dmsmB (&, x ; DJ + E 2 d*u-i>+'-*smu-i>BJ ,- (ds, x ; Dx) dt~j.
3=1 i*j

Let T be a small open neighborhood of 1 in 1? and let B°° be the

set of functions f=f(s, x, d) which are C°° with respect to (s, x) and
satisfy

\3iDa
xf\^Cjia in Txa>

for any (j,a)&Nd+1 as d tends to 0. We construct the asymptotic
solution u = u(s, x, d) of the equation Pu = 0 in T X w in the form :

Xexp{ — r(x,

where

j=l
N N

3=1 J ' j=l

T = d'\

all these are determined later.

Let us consider

We determine ^ and j so that / shall be written in the form:

(2.1) / = (TM'1 (LQw + d£L^ ,

where

(2. 2) Lo=C0(55 ^ V 3. + Ci(j, ̂ 5 a), COJ defi",

(2.3) C0(5?x55)^0,

and LI = LI(J, A;,^; 9S? D J is a partial differential operator of order
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with coefficients in B°° and e>0 is an appropriate constant We note

that £Qx— ~ (tl4~l — d/+1) and 0 are phase functions and that 7- is the

normalization term.
We put

Ig= [dlTsl(l -C(fc, x;

s-l

First we determine <f>i so that Ii = Q. Next we determine 7^ from $lt

Then we find <j)2 so that I2 = Q(dB~pVi~l) and find 7-2 from 02. In the
same way, once we have determined <j)j and jj (l^S/^g), we find <f>g+i
so that Ig+i = 0(d*~pv{~1) and then find 7^+1 from ^^+i0 We shall see
that there exists N^N such that IN-+i = 0(de~pvP

i~
l) even if we take

<?>N+I = 7"]v+i = 0- Then, by the choice of r, y,- (l^j'^A^), it is easy to
see that / is of the form (2. 1).

(2. a) Determination of <f>i.

Now we consider Ilm We set dlT = d~1vl and dplTp = dmTq~r. That is,

we have

„-£=& , */-iw

From (1.8), we can easily see that fif0>^i>0 . Here we have, from
(1.7) and (1.9),
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Then there exist a small constant e>0 and A./fo *, <5)
such that

p
v1 n (? <v/ i LJ\ j ^o, A,
/=!

Let <j)l be the solution of the Cauchy problem:

P
C(0, *;

(2.4)

We note that

(2. 5) &.,(!, *, 0) = - 1 + C(0, *; f0) +^(0, *;

(2. 6) # l i M(l , x, 0) - -

We put j8y.1(*,3)=Re^. I(l,^a) and 2ft,2(^3) =Re #y i f - ( l , ^« ) ,
(l^j^TV). Then, from (1.10), it follows that

(2.7) l+h.i(x,8)>0

by taking d and ft> small if necessary. Furthermore, since 5(0, 0 ; f°)?

C(0,0;e°)=t=0 from (1.10) and (1.11), we have

(2.8) fi., + sld-C(0,x9P))*0

for (s,x) ^Txa) and for small d.

(2. b) Determination of ft .

Put d = bn = n~p, T = Tn = bn ° and yi = yi.B = 6» \ where
is sufficiently large and p^>Q is a constant determined later. For

te(bH+i9bn-J9 we define

Gltn(t, x) =

+ ^1>n Re #i( -T-, A:, A«) — ̂ i.B+1 Re ^/-r — , ^3 6n+i) .
\bn / \ bn+l /

Lemma 2. 1. W7* ^ mn= (6«+4«+i)/2, ln=bn—bn+l and Ii.n(x) =

Gi.n(mn9x). Then we have

(2.9) /i..W~- d+A.!
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1 ' 1 ^const. • n~l for t^(bn+l, bn^ and.. ' i*...
for n~^nQ, we may take

Re fr(s, x, 5) = j8u(x, 0) (s-1) +J81.a(x, 0) (5-1)2.

Then we have
/ i

V ™Jhl-J — <r .fry, —h .\ V mj&^~-n+
J=0 j=0

(*, 0) (mn-bnr-(mn~

Since

— v— — -Q-pi. i , v2

l ( ^ l < ^ \R fv ClM J2( Vl-n + l ^l.n\< f .^Iks; I ̂ -r- lpi.2^ u; i M-Tg — ~~ ~TT = const. -w
^ \ °n + l t?n /

we have (2. 9) . This completes the proof.

We define 7*1. nW by

It is easy to see that there exists fi(#, 5) ̂ 5°° satisfying

n.»W =yi,».ri(^ W =fi(^» W-
Note that, from the definition,

(2. c) Determination of <f>j, j

In order to determine 02s we consider /2 . Since /i = 0, we have

x
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E S (&)""• ° E -A-£$ (&, *; rf)
j=l i^j P*Q pi

x {iPTwi («!,- j 'CrfV+a- 1 I

where

, xi f),

{V-i vi(n.,-#i..)}*=

and so on.

Here, by a direct calculation, we have

where Z)2, A. A, D^

If g^-r-i^ = Q (g-^-i) 3 we take $. = Qforj^2. Then the remainder

term © is absorbed in Ci of (2. 2). If not so, we set 5~M~S = 3l"r«~r"1y2j

which implies v2 = T~lVi = d Q l and d2 = 2di — dQ = di + (di — </oX#i- Then
we have

A=0
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h=l

We construct <j)2 so that I2 = 0(dB~pv{~l>) and <j>2\s=i = Q, Such 02

really exists. In fact, if we take s>0 sufficiently small and take 02

in the form:

0, x, <5) = 2 SBj$2j(s9 #5 5) ? for some N2^N,

l.-i = 0,

then 02,j are determined successively. Here we use (2.9).

Now we construct 72 from <f>2 in the same way as we have constructed
fi from <j>i. We define for t G (6«+i, 6«-i)

G 2 a A r ) = v R e ^ f — * i V ^ Re <* ("— x b ^

Then we have

Lemma 2. 2e /2>MO) ~ -ft.xU, 0) /on^"1.

Since this lemma can be proved in the same way as Lemma 2.
we omit the proof.

We define f2in(x) by

Then it is easy to see that there exists ^(X^GB00 satisfying

Suppose we have constructed ^- and ^ (l^j^g). Then /ff=
and we have

g .

r s, x; r +
pi k=l
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- 3 Vfl«> (5s, x; rf + V^T ̂  y, fa., - 95,.,) ) }

X
h=l

x

L S
j=l i^j

x lj

By a direct calculation, we have

where Dg+i, Dg+ith, D'g+lih

If 3*r«-r-1^ = 0(3-V"1), we take 0j = rj = Q for j^g+L Then the
remainder term (2) is absorbed in Ci of (2. 2) . If not so, we set

d~pv{~lvg+i = dmTq~r~lVg, which means vg+l = T~lv1vg and dg+i = dg— (d0 — di)
dg. Consequently we have

'(1 -

JD,+1,,(53 x, S) ̂ +1,s

We take ^+1 so that Ie+i = 0(de~p^~1) and ^+1|s=1 = 0. By the same
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way as before, we can construct such $g+i. We can also construct

from 0^+1 as before.
Since dg = de^— (dQ — d^ = • • • = dQ-g(d0-dl) =d0-g(l+ 1), there exists

such that /^+i = 0(5e"V"1) even if we take 0ar+i = 7tf+i = 0°
It is easy to see that the remainder terms of / are absorbed in

the term dBLiw of (2. 1) by taking e small if necessary. We remark

that, from (2.8),

Co (s9 x, (5) =p{sl(l -C) + Z -%* A*''*0

I ft=i i>i ;

for sufficiently small 5, which implies (2. 3) .

(2. d) Transport equations.

Now we consider the formal solution of the equation L0w+d*LiW = Q.

Let Wj 0' = ^) be the solutions of the following equations :

(2.10)

It is easy to see that there exists a function g=g(s, x, d, ij) such
that for any (j, a)^Nd+\ K^N, there exists C = CjiOLtK>§ satisfying

Then Z£; = M;(^, %, d} —g(s^ x, 5, 5£) is the desired solution.

We set wn(s9 x) =w(s, x9 bn} and ^n(x) =r(x> *») and we define in f/M,

exp - , ^ * l l

X CXp { - ^ (x) } Z£y , JV .

By the argument above, we have

Proposition 2. 3. In Un , w^ &/me fn = Pvn/vn . TA^/z, /or a/2jj; (J, a)

there exists a>0 JwcA that for any K^N there exists C = CjiCXiK

satisfying

(2.12) I

/or (l,x)&Ua and for n^na.
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(2. e) The set where \vn = v,n+l\

In Un, we put Fn(t,x)=Log . Then we have

Proposition 2. 4. Suppose p>2/di. Then there exist C>0 and

such that

(2.13) Jt

for (t,x)^Un and for n^nQ.

Proof. As before, we may take

, x, 3) = 2 ^-{ft.i(^ 0) (s- 1) +ft,2(^ 0) (j- 1)2} .

Then it follows that

Lbn+l
2V

+ L 2&.2o,0)

Here

IV
YJ 28- 2(x 0) { i/J'ili

If we take p>1/dl9 we have /o(rfi+l) — l>^o+l. Hence, if we put
p(di+l) — l>/o+l, we have



NON-UNIQUENESS IN THE CAUCHY PROBLEM, n 713

From assumption (1.11) and (2.5), (2,6), it follows that

- H+&.i(0, 0) (4+1) +2A.2(0, 0)}

= --j~r(P Re C(0, 0; f°) + (?-r) Re 5(0, 0;
— --

Hence, if we take o> sufficiently small, there exists C>0 such that

in [/,.

This completes the proof.

By virtue of (2. 13) and the implicit function theorem, there exists

mn (x) ^ C°° (w) satisfying

(2.14) F.Cm.OO, *)=0.

Lemma 2. 5« For sufficiently large n, mn (x) 6= (6«+i, in-i) •

Proof. There exists m* (x) for each jv^ft), satisfying

w r^-w _ Fn(mn(x),x) ~Fn(mm x)
-- -

From the choice of /•„ it follows that FH(mn,x) =0(1). Hence, from
(2. 13) and (2. 14), we have

(2.15) \mn (x) -mn\^ const. • n~a.

Since cr^^+l, mn(x) ^ (bn+i, bn-i) for sufficiently large w. This com-

pletes the proof.

(2. f) Modification of vn .

We set

un (t, x) = exp V^T r f 0 ^ - (tl+l - bl
n
+l) exp

V

X exp { -

As in the proof of Proposition 3. 5 of [7] or in the proof of funda-
mental lemma of [1], we have the following proposition.
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Proposition 2.6. Put Sn= {t = mn(x)}. Then there exists ^^E00 such

that

( i ) satisfies (2.13) and (2.14),

( it ) & = Pwn/wn satisfies (2.12),

(Hi) gn is flat on Sn and on Sn-\.

Remark 2. 1. In order to construct £„ we use Whitney's extension
theorem with estimates, which can be easily proved (see [1] or [7]).

(2. g) Smoothness of u and f.

Let %eC5°CR) be a function satisfying

l for | j |^3/4, supp i C [-1,1],

and put fcCO = ' " * "

We define the desired functions u and f by

z
(2.16) u(t,x) = "-'

0

(2.17) /(,,,) ={[•""

First we show the smoothness of /. Note that, from the above
definition, f may fail to be smooth only on t = 0 or on $„•

(2. g. 1) For ̂ e\bn- A/My bn+l + -l^+il we have

From (2.15), we can easily see that mn (x) e iB — — /„, bn+i + — ln+i .

If t^mn(x), |M, , | ^ |M»+I | and

j= |^|(1-,-«).
\ MM /

Using the inequality:
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4 f°r *e [0,2],
2 for *^1,

and (2. 13), we have

rCn'(f-«!„(*)) |«.| if £e=[0,2],

Since gn and gn+i are flat on t = mn(x)9 this implies that/ isC°°on Sn

and that

(2. 18)

The same holds for t^mn(x) and for the derivatives of /.

(2.g.2) For fe^, 6re-A/wJ3 we have

r P(un + i+lnUn)

Un+1+XnUn

From (2.15), it follows that

Then, from (2. 13), we have

(2. 19) J?5-

= exp {(t - mn (x)) 9, F, (mn* (*),*)}

This implies, for large w,

Hence we conclude that

(2.20) X^]^» I + In \gnUn

The same holds for the derivatives of f.

(2.g.3) For t^[bn+l + -lH+l9 6B, we get (2. 20) by the same argu-

ment as in (2. g. 2) .
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From the above argument, it follows that / is C°° near the origin.
Now we show the smoothness of u. From the definition of Tn(x) and
(2. 7), we have, for some

TnW ^ const. 'nP l.

On the other hand, we have, for te[JB+1, &n_i],

^ const. •nPl .^ const- i>it „

From these, we can easily see that u is C°° at £ = 0. This completes
the proof of Theorem 1.2.

Remark 2.2. If p = 2 or if the coefficients of P are independent
of x9 we can take 0j- = 7V = 0 for ;^2. Especially in the latter case,
we can take un in the form:

un (t, *) = exp /=T rnx - (*z+1 - bl
n
+l) exp 0 - - , 6M
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