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Non-Uniqueness in the Cauchy Problem for
Partial Differential Operators with
Multiple Characteristics, II

By

Shizuo NAKANE*

§0. Introduction

In this paper, we shall consider non-uniqueness of C*-solutions
of the non-characteristic Cauchy problem for a class of operators with
C~-coefficients containing some degenerate elliptic operators. Then
we shall extend the non-uniqueness results of our preceding papers
[6] and [7].

A typical example of the operators treated here is the following
operator in R?:

P=(0,——1t'C(t,x)0)*+1*4(t, x) (V=T 9.)*—¢"B (¢, x) (V=1 997,

where p=¢>r=1. Plis [10] treated the case l=m=0, A=B=C=1
(i.e. elliptic case) and Nakane [6] treated the case A=B=C=1
(i.e. degenerate elliptic case). These results show that under some
conditions on £, [, m, there exist C*-functions # and f satisfying

Pu—fu=0, (0, 0) Esupp uc {t=0}.

An important property of P is that the imaginary parts of its
characteristic roots have finite order zeros on the initial surface £=0.
For these operators, [6], Okaji [9], Roberts [11] and Uryu [13]
showed uniqueness under Levi type conditions on the lower order terms.
But they considered mainly the case of variable multiple characteristics.
We are much interested in the case of constant multiplicity (i.e.
p>q). As for this case, there are few results. In [6] and [9], they
treated the case p=¢=2, r=1 and 4=0. For first order operators,
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see Strauss-Treves [12] or Zuily [14].

The main purpose of this paper is to give a necessary condition
for uniqueness on the lower order terms for operators of the above
type. Then we conclude that uniqueness does not hold unless the
lower order terms degenerate according to the order of degeneracy
of the imaginary parts of characteristic roots. Another purpose of
this paper is to investigate the effect of the behaviour of imaginary
parts (or of real parts) of symbols of operators.

The method of proofs of our results is a modification of those of
Alinhac-Zuily [1], Lascar-Zuily [5], Nakane [7] and Zuily [14].
That is, we shall construct the functions u and f by using the method
of geometrical optics. Our results will show that this method is
very powerful to get necessary conditions for uniqueness.

§1. Statement of Results

Let P=P(¢,x; 0:, D,) be the following operator of order p in R**':
(I.1)  P=(0,—#C(t,x;D))*+t* A, x; D,) —t"B(t, x; Dx)

b .. :
+ Y X mGDB; (1, x5 D)8,

j=1 i<j
Here 8,=3/0t, sz_l_ml(a/axl,- oo, 3/0xD), K, Lm,m(,) EN={0, 1,2,

««<}, 4, B, C, B;,; are partial differential operators, homogeneous order
g, ¢g—r, 1,7 with respect to D, respectively, whose coefficients are C*
in U, an open neighborhood of the origin in R*! and p=g¢g>r=1.
Let & be the dual variable of x.

Then the following theorem is a corollary of Theorem 1.1 of [7].

Theorem 1.1. Suppose

pr-+-qm pri+-(p—q)m
(1. 2) —r <k< —gtr
sk, (p—jg) (k—m)
(1.3) m(J,1) >T+ or .

We also assume that there exist &€ R\{0} and a branch D(&%) of
{B(0,0; &% —A(0,0; &} satisfying

(1.4) Re D (&% >0,
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(1.5 Re K B, oAs(‘?)SAE:()) 0: ey ! _%>D<$°)} >0.

Then there exist an open neighborhood U’ of the origin and C™-functions
u and f in U’ such that

(1.6) Pyu—fu=0, (0, 0) Esuppuc {t=0}.

Remark 1.1. Assumption (1.2) is equivalent to assumption (1.9)
or (1.13) of Theorem 2 of [6]. Hence this theorem is a generalization
of Theorem 2 of [6].

Remark 1.2. As in Remark 1.4 of [7], we introduce Newton
polygons. In the (X,Y)-plane, we plot the following points:

Ri=(q/p, —1), Ry=(0,k/p), Rs=(r/p,m/p),

R=(¢/p—1,D, Pji=(q/p—i/j;m(,0) /).
The first inequality of (l.2) implies that R; is located below the line
passing through the points R; and R,. The second inequality of (l.2)
implies that R, is located above the line passing through the points
R, and R,. Assumption (1.3) implies that all the points P;; are
located above the line passing through the points R, and R;. Hence
above theorem is a corollary of Theorem 1.1 of [7].

Now we consider the case k>Mq)—m.

p—q+r
Theorem 1.2. Suppose
1.7) k>”—”p+_(z—%i)—m,
(1.8) m<(I+1) (g—r) —p,
(1.9) m (j, i) >U+Z’@__7ff—r(j—i)-

We also assume that there exist &€ R*\{0} and a branch B(0,0; &)V?
satisfying

(1.10) Re C(0,0; &% +Re B(0,0; &)2>0,

(.10 pReC(0,0; &) + (g—r)Re B(0, 0; £)#<0.

Then the same conclusion as in Theorem 1.1 holds.
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Remark 1.3. In terms of Remark I.2, assumption (l.7) implies
that R, is located below the line passing through the points R, and
R;.  Assumption (1.8) implies that R; is located below the line passing
through the points R; and R, Assumption (1.9) implies that all
the points P;; are located above the line passing through the points
R; and R,

Example. We consider the following operator in R?:
P=(0,—#'D,)*—t"B(t,x) DY,
where BEC”(U) and p=¢g>r=1. Since it corresponds to the case
A=B;;=0, assumptions (1.7) and (l.9) are automatically satisfied.
We assume (1.8) and we consider assumption (1.10) and (1.11).
By considering the effect of the similarity transformation: x—#hx for
some AER, we have the following:

Case 1. When p=3, assumptions (1.10) and (1.11) are satisfied if
B(0,0) 0.

Case 2. When p=q=2 and r=1, assumptions (1.10) and (1.11)
are satisfied if B(0,0) & C\[0, o).

Remark 1.4. Consider the following operator in R?:
P=(0,—#D,)*—t"B(t,x)D,+C(, x),

where B, CEC~(U). In [6], we showed that uniqueness holds for
P if m>l—1. Recently Okaji [9] showed that uniqueness holds for
P if m=Il—1. Furthermore, Professor K. Watanabe pointed us that
uniqueness holds for P with m<{l—1 if B(f,x) >0. Hence assump-
tions (1.8), (1.10) and (l.1l) are indispensable.

Finally we consider the case kzﬂg__(‘g%m.

Theorem 1.3. Suppose (1.8), (1.9) and

. k= [Jrl+(p—q)m .
(1.12) prtoomn
We also assume that there exist &€ R\{0} and a branch D(&%) of
{B(0,0; &% —A4(0,0; &9} satisfying
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(1.13) Re C(0,0; &% +Re D(&%) >0,

(1. 14) pRe C(0,0; &%

(p—q+r) (m—k)A(0,0; &% . 0
+Re{< B0,0: £ —A(0,0: & 4 ’>D<5)}<0'

Then the same conclusion as in Theorem 1.1 holds.

Remark 1.5. Assumption (l.12) implies that R, is located on the
line passing through the points R, and Rs.

Since the proof of Theorem 1.3 is similar to that of Theorem 1.2,
we omit its proof.

§2. Proof of Theorem 1.2

Let @ be a sufficiently small open neighborhood of the origin in
R*. We construct the function u(f,x) as a superposition of func-
tions u,(¢, x), defined in U,= (b,41, b,-1) X @, of the form:

u, (¢, x) =exp {\/—_l rn<E°x — ‘/—lg(t’+1 — i+t )} exp {¢<~bt—n, x, b,,)}

Xexp{—7.(x)} w(% x>,

so that the function f=Pu/u becomes C* near the origin. The above
form of u,is a modification of the one in [7]. Considering the
degenerate elliptic part #'C(¢,x; D,) of P, we introduce a complex
phase function E”x—%{_—%(t’“-—bfﬁl). Then a similar argument as in
[7] works for this case.

This method was originally introduced by Cohen [3] and [10],
etc. for a special type of operators. In order to treat more general
class of operators, Hérmander [4] constructed u, by using the method
of geometrical optics. In [1] and [14], they have developed his idea
and have obtained a more systematic way to construct u, As in [7],
we treat the case of higher multiplicity. Then we come across a new
difficulty when we solve the transport equations.

Put t=ds, where 0 is a small positive parameter. Then P is
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transformed into

P=(0719,—0's'C (ds, x; D,))?+0**A4(ds, x; D,)

—omsmB(Bs, x; D)+ 3, X amIaimanGaB. (55 x; D)ok,

i=1 i<j
Let T be a small open neighborhood of 1in R and let B” be the

set of functions f=f(s, x,0) which are C* with respect to (s,x) and
satisfy

|6iD2 f|1=C; in TXw

for any (j,a) EN®' as d tends to 0. We construct the asymptotic
solution u=u(s, x,0) of the equation Pyu=0 in Txo in the form:

u(s, x, 6) =exp {\/——1 r(&"x — ‘%(t’“ - )}exp {65, %0}

xexp{—r(x,0)}w(s, x,0),

where
N

¢(53 X, 5) :_Z_:luiqsi(s,xa 5)9 ¢iEBws

N N
r(x, 5) :jé 71' (xa 6) = J_ZJI’)J'TJ' (x, 5) ) TJ'EBM,

‘c=5—d°,

v;=6 9, 1<jEN,
dy>d >+ - >dy >0,
NEN,

all these are determined later.

Let us consider

I=exp{—— V-1 ’L'(S%—Q(t’“—ﬁ’“))—q&—l—r} X Pu,

I+
We determine ¢ and 7 so that I shall be written in the form:
@.n I=0"28"(Law + 6 Lw) ,
where
2.2) Ly=Cy(s, x,0) 0,+Cy(s, x,0), C,, C.EB~,
2.3 Co(s, x,0) %0,

and L,=L,(s,x,0; 0, D,) is a partial differential operator of order p
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with coefficients in B* and ¢>0 is an appropriate constant. We note
that E"x—%(t’”—ﬁ’*l) and ¢ are phase functions and that 7 is the
normalization term.
We put
L= {0'zs' (1 = C (85, x; &%) +07mgy }
+0* 15k A (05, x; %) — ™t "s™ B (ds, x5 &°)
) R .
+ 2 X omUigigmEO B, (8, x; £°) (0'ts' 407 gy, ) 2,

j=1 i=j

L= [o'es (1-C (s, % &) +37 % iy} ?
_ g-1
05t A (0s, x; TE + —1 jZ:]l Vi (T — Pnx))

g1
—0™s™B (0s, x; €%+ —1 h§1 Ui (72— Ps))

i=1 i<j

b N g1
F3 5 @08, s, e T (e 6)
X (5ITSI+5_1Zg: viBa,s) P, (2=g=N).
=1

First we determine ¢; so that 7;=0. Next we determine 7, from ¢,.
Then we find ¢, so that ,=0(* ") and find 7, from ¢,. In the
same way, once we have determined ¢; and 7; (1=7/=g), we find ¢,
so that I,;=0( %) and then find 7,4; from ¢,,;. We shall see
that there exists NEN such that Iy, ,=0(* 1) even if we take
oy1=7yv+1=0. Then, by the choice of 7, v; (ISj=N), it is easy to
see that I is of the form (2.1).

(2.a)  Determination of ¢ .

Now we consider I;. We set d't=d ' and 0*7#=§"c?"". That is,
we have

m—pl
—JP—atr a7
T=0 . do [J*(Z"H”
U1=T51+1, dl_——do—'(l"_l).

From (1.8), we can easily see that dy>d;>0. Here we have, from
(1.7) and (1.9),

O*c?=0(0""7),
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omi el (§l7) 1= = 0 (8%'7?) .
Then there exist a small constant >0 and D ;(s, x, 6) EB*(1=j=p)
such that

L=0"28[{¢,,+s' (1 —C(0, x; E))} 2 —s"B(0, x; &%
4o é Dy, (s, x,8) $£77].
Let ¢, be the solution of the Cauchy problem:
(15 (1= C 0, €)= 5"BO, x589 +0° 3 Dyt =0,

¢1 |s=1 =0.
We note that
(2.5) &61:(1,x,0)=—14+C(0, x; £° +B(0, x; £ V2,

2.4)

(2.6)  @rs(l, x,0) =—1+1C(0, x; £ +%B(O, x; £V,

We put B;.(x,0) =Reg; (1,x,0) and 2B;,(x,d) =Re ¢;..(1, x,0),
(1j£N). Then, from (1.10), it follows that

2.7 1+ B1.1(x,0) >0

by taking ¢ and o small if necessary. Furthermore, since B(0,0; &%),
C(0,0; & +0 from (1.10) and (l1.11), we have

(2.8) G +5'(1—C(0, x, %) 0
for (s,x) €T Xw and for small 4.

(2.b)  Determination of 7.

- -a

Put d=b,=n"", r=r,,=b,,d° and v,=v,,=b, !, where nEN, n=ny, n,

is sufficiently large and p>0 is a constant determined later. For
tE (byy1, bar), we define

Gty %) =ﬁ1—{r,,<z'+1—b:,+l> e (T b))

+V1_,, Re ¢1(%, X, bn>_y1.n+l Re ¢1< ¢ y Xy bn+1> .

bn+1

Lemma 2.1. We put m,= (by+b,u41) /2, l,=b,—b,y, and I,,,(x) =
Gin(my, x). Then we have

(2.9) La(x) ~ — (14 B1a (x, 0)) on” ™,
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Proof. Since 1

LA , |t —Il<const n~! for tE (bpyy, b,o1) and
bn | bn+1
for n=n,, we may take

Re @1 (s, x,0) =Pu1(x,0) (s—1) +B12(x, 0) (s —1)%

Then we have

! . . ! . .
5n) = i fenma—) 5 mibt — e ma—b,1) T il
B (3, 0) {20, —b) = 2, — b, |
+181.2(x3 0) { o "(mn_b )2 Dl ";1 (mn n+1) 2}
n+
=0+®@+0®.
Since

dy—1
@""—P”p ! ’

— ___L Vl,n | Y+l pdl
®= — 5Bl QL 221) — B (e, 0 pn™ ™,

d —
I®= <ﬁ 81,2 (x, 0) Ilz< ’22"“ ?é”)éconst.-np 17
n+1 n

we have (2.9). This completes the proof.
We define 7,,(x) by
n—1
Tn(®) = = 3 Ly () ~d7 (14 Bra(, 0)) ™,
J=ny

It is easy to see that there exists y;(x, ) EB* satisfying

Tl,n(x) = l)l.n‘rl (xs bn) = 71 (xa bn) .
Note that, from the definition,

T4 (0) =12 (%) = — 1, (%)
(2.¢) Determination of ¢; 7v; (j=2).
In order to determine ¢, we consider I,. Since I;=0, we have
h=rpfgyr%bqb4n+mgfwa

+ Z [0*s* A B (s, x; 7E%) —™s™B® (ds, x; &%) }

19
X {(V=1v(r:—9d1}"
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+Z 2, (@s)m? P 31 LB (05, 2 78Y)

=1 i<j

S} =T (B — 1)} P ('S 070 3wyl )
r=1

+Z 2(55)"‘" 2 B;,i(ds, 3 §)

XZK%”N*%Vﬁ*w*w%f+¢arﬁwa
=0+®@+®+®,
where
C=C(0,x,£%,
AP (t,x;8) =04A(t, %5 6),
V=120 91 }’9=hH=d1 NI (s, — 61}

and so on.

Here, by a direct calculation, we have

@=0t75, 3() /) (gt 5 A= OV 48,
@ =5m1.q—r—-1y1D2 (S, X, 5) b

p-1
@ZBF_P’J{-H‘F_I hZ::O(VZ/VI) h-DZ,h(sa x: 5) ¢g,sa
p-1
@ :5E_P)J€ h;‘l (vZ/ul) h-DZ,h (57 xa 5) ¢g,s’

where Dg, Dz_h, Dé'hEBm.

If 0™l =0(0"247Y), we take ¢;=0 for j=2. Then the remainder
term (2 is absorbed in C; of (2.2). If not so, we set d 22 ly,=0"c"" 1y,

which implies v,=t2?=6"""" and d,=2d,—dy=d+ (d,—d;) <dy. Then

we have
L=0""00p 91+ (1-0)} 7.0
+ h‘i;(ﬁ) 3TN g 5 (1—C)} 2k,
+D,(s, x,9)
+fz“%WDmm%®ﬁs

7=0



NON-UNIQUENESS IN THE CAUCHY PROBLEM, II 709

G Dy, %, 9) 9],

We construct ¢, so that I,=0( %) and ¢,],-1=0. Such ¢,
really exists. In fact, if we take ¢>0 sufficiently small and take ¢,
in the form:

-1
N
h=1

Ny
{gziz(s, x,0) =2, 0%, ; (s, x,0), for some N,EN,
im0
¢2 Is=1=0:

then ¢,; are determined successively. Here we use (2.9).

Now we construct 7, from ¢, in the same way as we have constructed
71 from ¢;. We define for ¢< (b,yy, by-1)

GZ.n(ta x) =p2.n RC ¢2<%3 x: bn) —Vz.n+1 RC ¢2<bt_, x, bn-l-l),
n a+l

I2.n (x) = Gz.n (mm x) o
Then we have

Lemma 2.2. I,,(x) ~—pB51(x, 0) on”? ",

Since this lemma can be proved in the same way as Lemma 2.1,
we omit the proof.

We define 7,,(x) by
n—1
ROEE MO MODLS
Then it is easy to see that there exists y,(x, 6) EB* satisfying

TZ.n(x) ZVZ.nTZ(x: bn) 272 (xa bn) .

Suppose we have constructed ¢; and 7; (1=j=g). Then [,=
0(* %Y and we have

b g . :
La=37 5(D) 0 1= + B} s

_g-1
+3 L (3549 (55, 13 18+ =T 5 v (s 5.0))
s%o Bl K=l
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g1
—a"s™B® (s, x; 7€+ — 1 ng Vi (T — On
h=

x (V=1 vg(rgx $ex)}?

)}

+ Z 2, (ds)md? Z] VAl SB35, x5 78— T Z Vi (2= Phx))

ji=1 isj

X {‘/_1 Ve(Ves— ¢g.x)}ﬁ5j—p(vlsl+hz=:1 ViPs,

» o g1
+Z;Z(%VW”WﬁB”@smr?+d—1%vﬂn
=

X Z(p ‘]>(”1~Y + Z Vi) P i th+1¢g+1,

+0 (@ ™)
=0+@+@+@+06.

By a direct calculation, we have

D=0""1"y, ]Z!:“l(é]) {Sl (=0 +h§g1 {fm's} p_j<@>j_l J

Y1

@ =0"""",Dy11(s, x,0),

-1 h
—p_— v
@zae br lvgyg ;0< é;H) Dg+1.h(s’ X, 5) ¢Z+1,s H
= 1

-1 h
- v
®=0"4 X% Dipsa(s, 5,9 B
= 1

where Dgy1, Dgi1py Digirn €EB>.
If o™, =002, we take ¢;=7;=0 for j=g+1.
remainder term (@ is absorbed in C; of (2. 2). If not

S) =i

+ = Pna))

s

¢5;+1.s 9

Then the
so, we set

00, =0y, which means vg=t"ww, and d .1 =d;— (dy—dy)

<d,. Consequently we have

g p—-1
L= | p {0 1=+ 5, 261, s,

) p ey gy, }!’—‘i<12g+1>'1_1 j
+jz§;<j>{5 (1 ) “|‘h§1 Tl¢h,s _Vl— Il
+Dg+1(5, xa (7)

2=l/y  \P .
to S <Tl> Dy (s, %, 8) Bl

h=0

¢ Verr)' h
+5 Z( ) Dg+1.h(ss X, 5) ¢E+1

r=1\ Y1

L0 @Y.
We take ¢gy; so that I, ;=0 ™) and ¢4y =0.

By the same
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way as before, we can construct such ¢,.. We can also construct
7g+1 from ¢@,.; as before.

Since dy=dy_1— (dy—dy) =+ + + =dy—g(dy—dy) =dy—g(l+1), there exists
NEN such that Iy,,=0(0* ™) even if we take @y 1=7y11=0.

It is easy to see that the remainder terms of I are absorbed in
the term 6°Lyw of (2.1) by taking ¢ small if necessary. We remark
that, from (2.8),

Co (s, x, 8) = {51(1-C>+§: Yr }Hq:o
0\9y Ay —[7 h=171 h,s

for sufficiently small 6, which implies (2. 3).
(2.d)  Transport equations.

Now we consider the formal solution of the equation Lgw +0°Lyw =0.
Let w; (j=0) be the solutions of the following equations :

{LoU)oZO, {Lowj: —Llw,-_l,

(2.10) G=1

w0|5=1:13 w,-\5=1=0.

It is easy to see that there exists a function g=g(s,x,0,%) such
that for any (j,a) EN*', KEN, there exists C=Cj, x>0 satisfying

. K_l .
(2.11) IaiD‘,’:(g—i;) n'w;) |=C |y~

Then w=w(s, x,0) =g(s, x,0,0°) is the desired solution.
We set w,(s, x) =w(s, x,b,) and 7,(x) =7(x, b,) and we define in U,,

v, (t, x) =exp {\/~_1 T,,(é‘ox —%(tm —byth >} €xp {¢<%, x, bn)}
Xexp{—71.(x)} w,,(%n, x> .
By the argument above, we have

Proposition 2.3. In U,, we define f,=Puv,/v,. Then, for any (j, a)
E N, there exists a>>0 such that for any KEN there exists C=Cj.x
>0 satisfying

(2.12) 18iD2 f,| <Cn~k

Sor (¢4, x) €U, and for n=ny.
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(2.€) The set where |v,|= |Up41].

Then we have

In U,, we put F,(t,x)=Log

Uny1

Proposition 2. 4. Suppose 9>>2/d,. Then there exist C>0 and 6>p+1
such that

Wy s e
(2.13%) e Cn

for (¢t,x) €U, and for n=n,.
Proof. As before, we may take
Reg (5,%,9) = 25 % {12 (5 0) = ) +81a(2 0) 6= D).
Then it follows that

N :
et ey tar) + 1 B, 0) (22— i)
ot = buir

5 28205 0) {2 =80 = 2,00 |

n+l

w - w —

+< n,sbn 1__ n+l,s bn+]-.1>
Wy Wyt

=0+@+®+®.
Here
@~ —pdon” 7,

(paz+D -1

@~ 2 f1a(x 0o+

P+ -1
b

~—p1(x, O)P(dl‘l‘ Dn

®=— 15 26105, 0) {230y — by + (=) (2t~ 2i2)

2
bn+ nJ-l

p(dj+1)—2

N -
~ = 2 2B, 0) {0 T O 7Y
~ =261 (x, 0"

|@ |=const.-n"
If we take p>2/d;, we have p(di+1) —1>p+1. Hence, if we put
c=p(d+1)—1>p+1, we have

oF,

o ~—p{dy+P11(x,0) (di+1) +2B:2(x, 0)} n°.
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From assumption (1.11) and (2.5), (2.6), it follows that

— {do+ 1100, 0) (d1+1) +28,:(0,0)}
- _ pl—m . &0 _ 0. 0: £
p_q+r{PReC(0,0,§)+(q r) Re B(0,0; €9}
>0.
Hence, if we take o sufficiently small, there exists C>>0 such that

oF,

> L 1
o =Cn in U,.

This completes the proof.

By virtue of (2.13) and the implicit function theorem, there exists
m,(x) EC~(w) satisfying

(2.14) F,(m,(x), x) =0.
Lemma 2.5. For sufficiently large n, m,(x) € (bn1, baa) .

Progf. There exists m; (x) for each x*Ew, satisfying
Fn(mn(x)’ x) _Fn(mns x)

s (m2 (39, )

From the choice of 7,, it follows that F,(m,, x) =0(1). Hence, from
(2.13) and (2.14), we have

(2.15) |m,(x) —m,|=const.-n"°.

my (.X') —m,=

Since 6>p+1, m,(x) € (041, by—1) for sufficiently large n. This com-
pletes the proof.

2.1) Modification of v,.
We set

u, (£, x) =exp {\/—_1 z-,,(f"x — 1/1_;:% (=it >} exp {¢<tT,,’ x, b,,)}

X exp {_ Tn (x)} {wn<’£_9 x> +Zn<%, x)} .
As in the proof of Proposition 3.5 of [7] or in the proof of funda-
mental lemma of [1], we have the following proposition.
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Proposition 2.6. Put S,= {t=m,(x)}. Then there exists 2, B> such
that

(i) ﬁ;::Logl U | satisfies (2.13) and (2.14),

Un+1
(1)  g.=Pu,/u, satisfies (2.12),
(i3) g, is flat on S, and on S,

Remark 2.1. In order to construct z, we use Whitney’s extension
theorem with estimates, which can be easily proved (see [1] or [7]).

(2.g) Smoothness of u and f.

Let y€Cy(R) be a function satisfying
x(s) =1 for |s|=3/4, supp x C [—1,1],

and put y,(?) =x< t—l,,bﬂ> .

We define the desired functions # and f by

l 2 XD ua(t, x) t>0,
(2.16) u(t,x) = { """
0 =0,

Pu/u >0,

2.17) ﬂg@:{o 0

First we show the smoothness of f. Note that, from the above
definition, f may fail to be smooth only on ¢=0 or on §,.

2.g.1) Forie[b—34, burt 31y, we have

= P(unttnr1) _ Gathn+ Gusrtlnnr
un+un+1 un+un+1 )

From (2.15), we can easily see that m,(x) E[b,,——%l,,, b,,+1+%l,l+1:|.

If tgmn(x)s Iun,g lun+1, and

o+t | 2 | (1~ }—%7—

n

)=lwla—c".

Using the inequality:
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x/4 for x€[0, 2],
—evz|

1/2 for x=1,
and (2.13), we have

Cna(t_mn<x)) Iun| if F,,E[O, 2],
'%+”ﬂzhmvz i F>1.

Since g, and g,;; are flat on ¢{=m,(x), this implies that fis C*on S,
and that

2.18) xf|§max{cjl—§'i%, 2(1gi] + gi D}

The same holds for {=m,(x) and for the derivatives of f.

(2.8.2) For tE[b,,q, bn—%ln:l, we have

f= P (i1t Yoltn)
Un 17T Yok
From (2.15), it follows that
t—m,(x) =t—my+m,—m,(x) =L,/4+0(n"°).
Then, from (2.13), we have

=exp (F)

(2.19) iy

n+l

=exp {(t—m,(x)) 8, F,(m} (x), x)}
Sexp(—Cn"*1).
This implies, for large n,
(i1t Yl | Z [Uns1]/2

Hence we conclude that

(2. 20) ViE 2(|gnrattnsr| + {LPy Yudthn| + %o |Galk |
' B ey

=2{|g.| + g1l FO (@) exp(—Cn’*H}.

The same holds for the derivatives of f.

(2.2.3) For lE[bn+1+%ln+1, bn], we get (2.20) by the same argu-

ment as in (2.g.2).
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From the above argument, it follows that f is C* near the origin.
Now we show the smoothness of u. From the definition of 7,(x) and
(2.7), we have, for some

7.(x) = const. e,

On the other hand, we have, for tE[b,:1, b,-1],

pdq—1
7, |t bl |[Zconst. on" !,

(L)

From these, we can easily see that u is C*at t=0. This completes
the proof of Theorem 1. 2.

-1
<const.*v; , 1

d.
o | <const.-n’
b, |

Remark 2.2. If p=2 or if the coefficients of P are independent
of x, we can take ¢;=7;=0 for j=2. Especially in the latter case,
we can take u, in the form:

u,(t, x) =exp {\/-—_1 r,,<E°x — %(ﬂ“ —bith >} exp {¢(—li;, b,,)}

X exp(—7a) {w(-é—) +z<%>} .
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