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Quasi-entropies for States of
a von Neumann Algebra

By

Denes PETZ*

§ 1. Introduction

In a general von Neumann algebra context the relative entropy

of two states was defined and investigated by Araki ([3], see also

[5]). When <p and w are normal states on a von Neuman algebra

M the relative entropy S(<p,<u) is defined by means of the relative

modular operator A (cp, co) .

r-<logJ(p,a00,0> if J(0>)>j(o0.
S(<p9co) = \ .

v + oo otherwise.

where Q is the representing vector for co in the natural positive cone

of the standard form of M and $(• ) denotes the support of a functional.

We recall that if M is finite dimensional and possesses a faithful

trace r then <p (co) has a density p9 (p^) and we have

Due to its importance in thermodynamics the relative entropy func-

tional has been widely studied ([5], [24]). In this paper we gene-

ralize the relative entropy functional and discuss its convexity and

some other properties. Our quasi-entropy

depends on two parameters k^M and a function f: [0, oo) ->JJe

This notion is intimately related to Lieb's concavity as Kosaki ([13])

generalized it and the /-divergence of Gsiszar ([8], [9]) in classical

information theory. We recapture Lieb's concavity in Kosaki's form
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and exclude any interpolation theory. Instead, we shall use the Jensen
inequality of operator concave functions. For finite dimensional algebras
a part of the present paper is covered by [17]. The main convexity
properties of Sf(<p,a>) will be established for arbitrary positive normal
functionals but in further discussions we assume faithfulness. We
mention that the discussed properties of the relative entropy follow
also from the variational expression of Kosaki ([14]),

It is a pleasure to thank I. Gsiszar and J. Fritz for useful con-
versations.

§2. Relative Modular Operator

Let M be a von Neumann algebra acting on a Hilbert space Jf ,
If Q^3? then sM(Q} denotes the smallest projection in M such that
sM(Q)Q=Q. It is easy to see that

If 0, .Qejf then we define a conjugate linear operator S($,Q) by the
formula

where a^M and

Lemma 1. S(<f>,Q} is closable.

Proof. By the standard method one can prove that S(<j),Q}* is
densely defined. Set

with a'<=M' and ^[Jlffl]-1-. Since F(<f>,Q) dS(<f>,Q)* the proof is
complete.

The operator S*S is selfadjoint and will be called relative modular
operator, in notation S*S=d(<f>, Q). We note that this definition is
due to Araki (see, for example, [3] or [5]). We have supp -4(0, Q)
CLsM'(Q} and A(<j>,Q}sM/(Q} is the positive selfadjoint operator associated
to the closable quadratic form aQ^-*<p(asM(@)a*). In other words

, fl) is the spatial derivative of <?eJfJ with respect to o/
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where <p(a) =<^a<fi, 0> and a)'(a'} = <^a'Q, $>8 However, the spatial
derivative is usually defined in the case when co' is faithful ([7], [21]).

We shall need the following observation.

Lemma 2. Let Mtc: &(&?), I, /*>0 and fa 0^^. Set
M=Ml@M2, ^ = jel®je2,Q=ZQl@(JiQ2 and 0=^i®W*2. Then

Proof. Obvious.

Araki ([3]) proved the continuity of the relative modular operator
when ^ and Q are choosen from a natural positive cone If <j)n— >09

Qn->Q and Q is cyclic and separating then 4 (0n,£B)->J(0, fi) strongly
in the generalized sense. Another kind of continuity is the following.

Lemma 3o Let Jfc«^(Jf) be a von Neumann algebra with a cyclic
and separating vector Q and ^GEJfJ. Suppose that (Mn) is an increasing

sequence of von Neumann subalgebras such that \J Mn is w-dense in M.
n=l

Let ^<E[Jfre0] such that <p(a) =<a$n$H> for all a<=Mn. If An is the

relative modular operator A((j)^Q^) on [Jfn£?] concerning Mn and Pn denotes

the projection onto [_MnQ~} then AnPn->A{<l>^Q} strongly in the generalized

sense,

Proof, q^i aQ^xp^aa*} is a closable quadratic form and
is the associated selfadjoint operator. Similarly, An is the associated

00

operator to qn = qQQ\MnQ. Since \j Mn is strong* dense in M we have
n=l

that w MnQ is a core for q^ and an invocation to Theorem D in
n-l

Appendix gives the statement.

§3* Definition of Quasi-entropies

Let M be a von Neumann algebra acting on a Hilbert space Jf
and (p, o) be normal positive functionals on M. Assume that <p and
co have vector representatives c5 and Q in Jf5 that is
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, <o(a)=<aQ,Q>

Let/: [0, oo)--»jR be a continuous function and k^M be a fixed

operator. The quasi-entropy

(* oo

is defined by the spectral theorem. If \ ZdEx is the spectral resolu-

tion of ^(^,£) then

Of course, this integral may not exist but we need mostly the case

when / is concave and then S}((p,a)) is well-defined, however, it can

be infinite. At the moment it is not clear that 5/($05<y) does not

depend on the representing vectors but we shall come back to this

point later.

Now we consider the usual relative entropy. Assume that <p and

a) are faithful normal states on M and have vector representatives (f>

and O in a natural positive cone. Then

5(oi, p) = -<& log J (oi, p) 0>.

Since JA(a),<p}J=A(<p,a))~l we can infer Jf(d(a>9 p))J=f(d(<p9 o>) ~x) and

5(oi, p) = -

where f](t} — — tlogt. So Araki's relative entropy may be expressed

as a quasi-entropy. Of course, it can be expressed without changing

the arguments if we take the logarithm function but for simplicity

we do not bother with non-continuous functions on [0, oo) .

Another particular case is f(t) =^t • If ^? ̂  $ and O are the same

as above then

which is interpreted as a kind of transition probability and it is

denoted by PA (<p, cai) . Many properties of PA ($0, co) follow from our

results ([1], [19], [20]).

lffi(t)=f(t)+at + b then

Hence we shall fix /(O) sometimes. When k — I we write simply
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§4. Convexity Properties

In [3] Araki proved the monotonicity of the relative entropy for

special subalgebras and Uhlmann ([22]) obtained the monotonicity

in the general case using quadratic interpolation techniques. In fact,

he proved more: the relative entropy increases under stochastical

mappings. The main result of the section is in this direction.

Theoren 4. Let f: [Q,oo}->R be an operator monotone function with

/(O) >0. Assume that MQ and M are von Neumann algebras with positive

normal functionals <^0, (00 and p, co, respectively. If a : M0—>M is a unit

preserving ^-positive mapping such that

and <

then for every k^M0 we have

Proof. Suppose that M(MQ) acts on a Hilbert space 3? (Jf0) and

<f}^o)((p^a)^) have vector representatives 0, £(005 £0). We define linear

operators V^ V9: 3fQ->3l? as follows.

where a0(=M0, ^^[MoQ^ and i]0&[.sMo(Q{dM0fa']-L. We show that

and V9 are contractions. By simple majorization we have

Since a)Q(l -JM°(-00)) -0 we get w(\ -a(sM°(Q0)^ =0. This implies

)) and sM(Q)<a(sM°(QQ)). Theorem E in

Appendix can be applied

^
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and we have arrived at ||F||<l. From VClSVn we obtain

(Note that SVa is closed.) Hence for any ^e^(50) we have

It follows that

Using Theorem A and B of the Appendix we have

Vlf (A (9, *0 ) 7. < /( VIA (p, a,) V J < /( 4 fa,,

and in particular

which is equivalent to the statement.

As a consequence of Theorem 4, Sf(y>9co) does not depend on the
representation in which the relative modular operator is calculated.

Corollary 58 Let f: [0, oo) — >R be an operator monotone function

and let <p, a) be normal positive functionals on the von Neumann algebra M.

Then

(i) Sf (ft o») <f(<p (7) /

When MQ is a subalgebra of M and k EE M0 then

(ii) 5>(?|A

// <p and CD are states then

(iii) Sf(v, o»

anrf jfor non-linear f the equality holds if and only if (p=co.

Proof, (ii) is a direct consequence of Theorem 4. (ii) implies
(i) since the right hand side is nothing but the quasi-entropy of the
functionals restricted to the subalgebra C7-J. To prove (iii) let $i — <p2

be the Jordan decomposition of <p— co. If MQ is the commutative
subalgebra generated by the support of <pi then

llp-^ll = IIPo-«oll

where pQ=<p\MQ and o)0=a)\MQ. Iff is not linear then /'(I) >0([11],
Theorem 4. 5) . We can use Theorem 2. 1 in [8]. Iff (I) -Sf(<p, co)
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then /(I) — Sf(<p0, o)o)<^d and \\<pQ — to0\\<C^JT (for sufficiently small

with a constant

Lemma 6. Let <pi, <p2, ̂ i, <*>2 be normal positive functionals on the von

Neumann algebra M. We consider the functionals

on the algebra M@M where 1, fji^>Q. Then

Proof. We know from Lemma 2 that

and the rest follows from the definition,

Theorem 7. Assume that f: [0, oo) ->S fj operator monotone and

/(O) =0. L^ ^i3 ^2j ^? ̂ b ^2? to be positive normal functionals on the von

Neumann algebra M such that

If k<=M and 1,

2, 0)2)

Proof. Let N = M@M and ^12? (ol2 be as in Lemma 6. So the left
hand side is 6/0fe (^i2, %2) which is smaller than •S/e*(0>i2 |M0, ft>i2 |M0)
where Jf0= {a0a: ae Jf} is a subalgebra of M.

Theorem 7 is a generalization of Lieb's concavity and was proved
by Kosaki ([13]) by means of interpolation technique. Our method
is different and based on the Jensen inequality for unbounded operators
(see the Appendix).

Corollary 8. S f ( p , ft>) is jointly concave in <p and co under the conditions

of Theorem 70

§ 5» Continuity Properties

Let J^(JfJ) denote the set of all faithful normal positive func-
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tionals on the algebra M. In this section we shall assume that
•^(JfJ). First we use the fact that the relative modular operator is
continuous if the vector representatives are taken from a natural
positive cone.

Theorem 9. Let f: [0, oo) ->R be a bounded continuous function.

Assume that pn, <p, wn, a) & M* and k^k^M (n^N) such that 9n^»ft a)n-*(o

in norm and kn->k strongly. If o) is faithful then

Proof. We may suppose that />0. So

l/2

and f(A^k£n=f(An)WkQ+f(An)W(kJ)n-kQ). Here
f(A}l/2kQ by the continuity of the relative modular operator and the
function calculus. On the other hand knQn — kQ->$.

Crcorollary 10. Let f: [0? oo) -^R be a continuous function bounded

from below. Then

is lower semicontinuous on M%X^(M%) endowed with the product of norm
topologies.

Proof. There exists a sequence (/J of continuous bounded func-
tions such that fn/f- Therefore

S} ((p,o))= sup S}n((p,o)')
n

is lower semicontinuous.

Theorem 11. Let M be a von Neumann algebra and (Mn) be an
oo

increasing sequence of subalgebras such that \J Mn is w-dense in M. If
n=l

f: [0, oo)->jR is an operator convex function, <p,<o^&:(M~£) and
then

where <pn and a)n are the restrictions of <p and w to Mn.
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Proof. First we observe that by Theorem 9 the sequence (Sf(<pm oO)

is increasing. If An stands for the relative modular operator A(yM con}

then Lemma 3 tells us that AnPn->A(<p,a)) strongly in the generalized

sense. Hence g(AnP^) ->g(J(£>, <y)) for every bounded continuous

function. When / is bounded from below then it is the increasing

limit of bounded continuous functions and similarly to the previous

corollary we have

lim Sk
f (<pm o)n} > Sk

f (<p, w) .

Therefore the limit of S/C^oO must be Sf((p9co).

If f is not bounded from below then —f is operator monotone

and f has an integral representation

with a finite Borel measure fjt. Then

<(1 +40 (t-An}-lkQ,

and the function ^i->(l +U) (t — Z) ~l is bounded on (0, oo)

so

<(1 +^J (t-4nr
lkQ, kQ>-^<(\ +tA(y, 01)) (t-A(<p, <o)rlk

On the other hand the limit is monotone and we can conclude that

the integral converges.

§ 6. Appendix

In this part we collect some auxiliary materials we needed above.

For the reader's convenience we recall definitions and results scattered

in the literature and in some cases we shall slightly improve the

known theorems.

/ always denotes a continuous function [09 oo) ->R. f is called

operator monone if 0<A<B implies f(A) <f(B) for every bounded

operators A and B. (A and B are supposed to be on the same Hilbert

space and /C4), f(B) are defined by the familiar functional calculi

for selfadjoint operators.) For example, ta (0<^a<O) is operator mono-

tone. Every operator monotone function has a representation
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with a Borel measure /* ([2]).
We recall that if A and B are positive selfadjoint operators then

A<B means

(i) ^(51/2)CSU1/2) and P1/2f||<P1/2f|| for feSCB1/2).
(ii) (7+5)-1<(/+^[)-1

a

The next theorem was proved in [4] and we repeat the proof
for the sake of completeness.

Theorem A* Let f be an operator monotone function on [0, oo) and
A, B be closed operators such that 9(A)CL9(B) and \\B£\\<\\A%\\ for
any £&9(A). Then

Proof, The hypothesis is equivalent to the condition B*B<A*A.
Hence we may assume that A and B are positive selfadjoint operators.
We also suppose that />0. Denote %B the characteristic function of
the interval [0, «] and let EH = ̂ n(A) and Fm = %m(B). Then

EnBFmEnBFmEn<EnA
2En

and we have

applying / to bounded operators. For f e @ (f(A2) 1/2) we majorize as
follows.

Letting m->oo the proof is completed.

The function /: [0, oo) -» R is called operator convex if for any
bounded positive operators A, B>0 and 0<^<1 the inequality

f(U+(l -X)B) <lf(A) + (1 -X)f(B)

holds. Any operator monotone function is operator concave, i. e. its
negative is operator convex ([2]) and any operator convex function
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n

is C*-convex in the following sense. If 2 CfCi=I and Ai>Q is
z = l

bounded ( l<i<ra) then the Jensen operator inequality

is satisfied (see [10], [11]). Clearly, if /(O) <0 then the inequality
M

holds also for degenerate C*-convex combinations (2 C*Cj</). In
i=l

particular, if V is a contraction and A>0 is bounded then

We extend this inequality to unbounded A,

Theoren B« Let f be an operator monotone function withf(Q) >0. //
A is a positive self adjoint operator and V is a contraction then

/(FMF)>F*/G4)F.

Proof, Let En = %n(A) where %n is the characteristic function of
[0,n]. So for fe^G41/2F) we have

and using Theorem A we obtain

/(FMF)>/(F*Iv4F)e

Therefore

/(FMF) > V*f(EnA} V= V*f(A) EHV+f(0) V*EiV.

Letting ?2->oo we arrive at the statement .

Theorem C« Let f: [0, oo) — >U be an operator convex function with
./(O) <0. Then for any positive self adjoint operator A and for any contraction

V the inequality

/(FMF)<F*/U)F

holds.

Proof. If /<0 then — / is operator monotone ([11], Theorem
2. 5) and this case is covered by Theorem B. Otherwise we set

fm f°°fn = mm(f,n). Let Am = \ ldEx if \ AdEz is the spectral resolution of
Jo Jo

A. Since



798 DENES PETZ

V*f(Am}V<V*f(AW

we have

|![F*/G4JF+fra

where — t is a lower bound of f. So

for any f e ^ ([F*/(-4) F+£]1/2). Letting rc->oo we get

Now we turn to quadratic forms and convergence of selfadjoint
operators (see [12]). If q is a densely denned closed quadratic form
on the Hilbert space Jf then there exists an associated selfadjoint
positive operator H such that 3f (q) = 2 (//1/2) and ?(Q =\\Hl/2£\\2.

Let An and A be positive selfadjoint operators. An->A strongly
in the generalized (or resolvent) sense if (I + AJ "1->(/ + A) ~l strongly
as ?z->oo. In this case f ( A n ) — >f(A) strongly as ?2->oo for any conti-
nuous bounded function /: [0, oo)— »12.

Theorem Do Let (^fn) be a sequence of closed subspaces of a

Hilbert space ffl. Assume that qn: @n->R is a densely defined closable

quadratic form on ffln with the associated selfadjoint operator Hn. If q^:

^^— >R is a closable quadratic form on ffl such that

(i) ^ t td^n+1 and U &n is a core for q^

(ii) qn = q00\9n

and //„ is the associated selfadjoint operator then HnPn-^H^ strongly in

the generalized sense where Pn denotes the orthogonal projection onto ffln.

Proof. Let Jf n be the domain of the closure of qn endowed with
the norm

(n = 1, 25 . . . , oo). So Jf03 becomes a Hilbert space and (Jfw) is an
increasing sequence of closed subspaces. (i) implies that U 3Cn is
dense in Jf03. Hence if Qn denotes the projection onto 3Cn then
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strongly. We set a contraction Tn^&(3fn) such that

(n = 1, 2, . . . , oo). Since TnQn = QnT00(ln we have TnQn-*T^ strongly.
However, TnQ^n (TJ is the restriction of (/ + JF/»)-1((/ + //00)-

1) to
<#"n C^foo). Using the uniform boundedness of the sequence (/ + //„)"*
we obtain (/ + //n)"

1->(/ + //00) "
1 strongly as operators in ^(Jf).

Let s& and ^ be C* -algebras. We recall that the linear mapping
a: s4-*Sl is 2-positive if a(g)id: j/(X)M2-> J* ®M2 is a positive mapping.
Assume that a: stf->gfi is a 2-positive unit preserving mapping and

is invertible. Then

for any S^stf (see [6], Proposition 4. 1). In fact, the above inequality
is equivalent to the 2-positivity of a.

Theorem E. Let J^Q and jtf be C* -algebras and let a: ja/0->j/ be a

unit preserving ^-positive mapping. Suppose that g£j/0 and p^jtf are

projections such that p<a(q). Then for any a^j/0 the inequality

a (a) *pa (a) <a(a*qa)

holds.

Proof. First we note that p commutes with a(q). Indeed, p< a (q) <I
implies a(q)£ = £ wherever p£ = $.

Let Cz = qJrA(I~q). Since Cx is invertible for /l>0 we have

a (a) *a (C,) ~la (a) <a (a*C^a) .

When /l->oo then Czl->q in norm and the right hand side tends to
a(a*qd). On the other hand, a(Cx)~

l>p since a(q) and p are com-
muting operators.
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