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Examples of Nonslngular Irreducible Curves
Which Give Reducible Singular Points of red(H^)

by

Mutsumi AMASAKI*

Introduction

The open subscheme Hdig of Hilb(P3) which consists of points
corresponding to nonsingular irreducible curves of degree d and genus
g has more than one irreducible components in many cases. If one
proceeds further to care about its connected components, he will
necessarily encounter the problem whether red(Hdig.) is irreducible
at the point corresponding to a given curve or not But even the
examples of such reducible singular points of red(H^) do not seem
to be known well, except that J. Harris in [6; p. 93] mentioned the
existence of nondegenerate nonsingular irreducible curves in P" (n^4)
whose Hilbert points lie on more than one irreducible components
of Hilb(P"). These curves are on the cone over a nonsingular rational
curve of degree n-l in P""1 and the projection of them to P3 provides
the examples of curves in P3 which have the same character, if the
degree is sufficiently small as compared with the genus. For instance,
when n = 4 and C is a nonsingular irreducible curve belonging to
the linear system \mh-\-r (h\ a hyperplane section, r: a line of ruling)
on the blowing up of the cone over a twisted cubic curve in P3 with
center its vertex, the curve X obtained by projecting C (the isomorphic
image of C under the blowing up) to P3 from a general point
corresponds to a point of the intersection of two nonreduced irre-
ducible components of Hilb(P3) for m^O (see [4; Theorem 3. 1] and
[5; Proposition B. 2]). The basic sequence (cf. [2; Definition 1.4])
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of X is (3; m + 1, (m + 2)2; 2m + l)5 and under the deformation given
in this way, X is deformed on the one hand into curves having the
same basic sequence and on the other hand into curves with basic
sequence (3; (m + 2)3; m + 2, 2m) (see Example A. 5 in the appendix
of this paper together with Notation and Terminology 6). One of
the features of this example is that the minimal degree of the surfaces
containing the curve does not change in the deformation.

We will give other kinds of examples with completely different
methods. In Section 3 we show the existence of a nonsingular irre-
ducible arithmetically Buchsbaum curve Xl with basic sequence (a;
(a + 2)a~\ 0 + 3; a + 2) (a ̂ 4) which can be deformed flatly into
projectively Cohen- Macaulay curves in two different ways: one by
deforming the homogeneous ideal IXidR'=k[xi, x2, x3, x4~] which defines

Xi and the other by deforming the graded /^-module H* ( 0 Xl) flatly.

The basic sequences of the projectively Cohen-Macaulay curves
obtained through these deformations are (a', (a + 2)a) and (a-\- 1 ; (a+ I)3,
Gz + 2)fl~3, a + 3) respectively. In Section 2 it is proved that there is
a nonsingular irreducible curve X2 with H* (</j?2) = /2[ — a]/(xi, x2, A, B)

(where A, B are relatively prime homogeneous polynomials of degree
2 of k[_x3, #4]) and having the basic sequence (a', a + 2, (a + 3)a~lm, a + 4)
or (a] (a + 2)a~\ (a + 3)3', a + 4) which can be deformed flatly at least
in two different directions, namely one into a projectively Cohen-
Macaulay curve and the other into an arithmetically Buchsbaum
curve X'2 with Hi(./ /) =k2[— (a+1)]. The latter cannot be induced

X2

either by the deformation of the ideal /* nor by that of H* ( 0 *2) .

In the proof of the existence of the curves Xi and X2 we have used
the technique of liaison to construct the desired curve from a simple
and familiar one. It should be noted that in all the cases treated
here the surface of degree a which contains the curve in question
is smooth, and in the deformation, the minimal degree of the surfaces
containing the curve varies in one direction and does not in the other.
The interested reader will be able to find many other examples by
our method, if he wishes.

Notation and Terminnology

1. k denotes an algebraically closed field of characteristic zero
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throughout this paper and we set R'—k\_x^ x2, x^ #4]3 m:— (xi, x2, x3, x^R,

where Xi,'x2, #3, #4 are indeterminates over k.

2. P* denotes the projective space of dimension n over k,

3. We use the word 'curve' to mean an equidimensional complete

scheme over k of dimension one without any embedded points.

4. The notation of [2] will be used freely.

5. The ideal sheaf of a curve X in P3 is denoted by *? x and

Ix=®Ix.» denotes the homogeneous ideal HUP3, S £ in H°* (P3, 0 Ps)

= /?," where /*.y:=H°(P3
5 S x(v)) .

6. The sequence of integers n,'~,n (m times) will often be deno-

ted simply by nm.

§ 1. Some Remarks on the Basic Sequence

of an Integral Curve

Let X be a curve in P3. We will denote by B(X) the basic

sequence (a°, n^ . . . , na\ na+^ . . . , na+b) of X (see Definition 1. 4 of [2],

where the Greek letter v is used instead of ri) . Sometimes the symbol

n1 (resp. n2) is used to mean the sequence (n^ . . . , na) (resp. (na+^ . . . ,

w f l + 6)) for convenience sake. In this paper we say that an increasing

sequence of integers (£,-) i^l is connected if the difference zi+i— ^

is zero or one for all i^l.

Lemma 1.1. Let f be an irreducible polynomial of R and let

2 be algebraically independent elements over R. Then f=f(x^x2

is irreducible as a polynomial of Qj=kl_s^ s2, t^ t2, x^ x2~]>

Proof. It is enough to show that the scheme Spec (Q/fQ) is integral.

In fact the open subscheme Spec (Q/fQ) \Spec (Q/ (x^ x2) Q) is the union

of two irreducible subschemes which are isomorphic respectively to

{Spec (R/fR) \Spec (R/xtR)} xSpec k[_sh t,~\ ((ij) = (1, 2) or (2, 1)) and

they have a Zariski open set in common, therefore the one codi-

mensional scheme Spec (Q/fQ) is integral. Q. E* D.

Corollary 1. 2. Let (a ,* n^ . . . ? na ; ^fl+i9 . . . 5 na+b} be the basic sequence

of an integral curve X in P3. Then n^ . . , 9 na is a connected sequence of

integers.
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Proof. First of all we may and do assume that the variables
#1? ^2? #3, #4 of R are chosen sufficiently generally so that the argument
in [2; § 1] may go well and we set /:=/*. Recall that (a\ wb . . . , wa)
is defined as the sequence of the degrees of homogeneous polynomials
— _ _ - _ ° —

/o,/i, . . . ,/fleA;[>i, Xz] satisfying /=/ (mod(*3,*4)) =/Qk\_Xi9 *2] 0@f ,-* [>2] •

This definition can be restated as follows. Let si9 s2, ti9 t2 be algebraically
independent elements over R, K the field k(si, s2,ti,t2) and put I'

=IK[xi, x2, x39 #4]. Then (a', ni9 . . . , na) is the sequence of the degrees
of the homogeneous polynomials /o,/i, ... ,/fleX[#i, x2~] such that

( 1 . 2. 1 ) /:=/' (mod (#3 — SiXi — S2x2, x± — ttfi — t

Now let f-j1 be the matrix of relations among /o,/i9 ...,/« computed

by [1; Theorem 1.6] and suppose wi = . . . =^«1<C^«1+i — • • • =^M1+«2
<\

««1+»2+i = . • • <««1+«2+...«r_1+i = . • • =^1+M2+...+Mr=
:^fl. Since X is integral by

hypothesis, all elements of Ia are irreducible, so Ia contains an irreducible
polynomial by Lemma LI, which implies, together with the formula

and the form of 1 that

rank^[ g1] (mod (xl9 x^^r-l

(cf. [4; Proposition 2.1]). Thus the sequence HI, . . . , na must be
connected. Q. E. D.

One finds the following fact as a corollary to this proof.

Corollary 1. 3. Let the notation be as in the preceeding corollary and

pol C/02 0 1

let A2 = \Ui U2 C/4 be the matrix of relations among the generators of
[U2l If* C/5J

/ = H1(./*) described iw[2; Proposition 1.3]. Then rankl^ol~] (mod m)

^r— 1, where r = # {HI, «2, - - - , « « } -
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Proof. In the formula (1.2.1), we may replace K by the ring

k\_s^ ^2, £1, £2]fc and /' by Ik\_s^ s2, t^ t2~\h, where h is a polynomial of
k\_s^s2^t^t^\ such that /z/; e k \_s^ s2> t^ t^ x^ x2~\ for all O^z^fl. Then

the entries of Uoi, Ui are in k\_Si, s2,ti,t2, x^ x^h and the matrix of

relations . r01 (mod (#3, #4) ) among /0, /i, . . . ,/fl is induced from ^-P1

by substituting (0, 0, 0, 0) for (jl9 J2, £1, ^2) - Since #3, ^4 were chosen
sufficiently generally, the assertion follows from the last part of the

proof of the preceding corollary. Q. E. D.

The next results are all derived from the condition length*.
(Coker(%))<oo (Cf. [1; (3. 5. 5)1 and [2; (2. 1. 1)]). They are useful

in certain restricted cases to compute the basic sequence of a given

nonsingular irreducible curve. We will continue to use the notation

X, I and (a', HI, . . . , w a ; rcfl+i, . . . , na+b) with the assumption that X is

integral.

Lemma 1.4. With the notation above, suppose ni = n2 and ni =

for 3^i^a, Put jQ = max{j\na+j<^ni + a — 2}. Then the sequence na+i,. . . ,

na+jQ is connected and

rank4(['C73 '
 fU^t+ lj ' ' ' ' 6))(mod m) ^q, where q = # [n.+1, ..., na+ia} .

Proof. Since the degrees of the entries of 12 are determined as

stated in [1; Corollary 3. 5], if the assertion were not true, one would

have for some p (l^p^jo)

with p^Xp matrices C/s, f/s such that the entries of U$ — XI\P and

U's — x2lp are in A; (2). But this leads to a contradiction in the following

2{f
r-, rn *

way. Notice first that U\ is of the form
0

3 where

Ci^k (l^i^a— 1) satisfy CiC3 , . . ca_i^0 or c2c3. . ,ca-i^0 by Corollary

1. 3, and recall the direct sum

(1.4.1) Rp^tU/
3k(Oy®tU/

5k(\r®k(2y (cf. [1; Remark 4.1]).
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Let hi (resp. /,-) denote the i-th row of

for l^t^fl. Then it follows from [2; Lemma 1.6] that ha = 09 for
the degrees of the components of ha must be nonpositive by the choice
of j'0. Starting from this fact we can prove the following:

Claim. hi = li = 0 for 3^i^a and

Proof of Claim. Put ^ = Mh } , ) =
\p ~r 1, • - « 5 D/

-h,
-\

o 5

-f/3

0

Suppose ha = ... =h{ = Q for 3<j^<2, then one finds by the equation
^3 = 0 that — Ci-ihi-i — /x-t/5 = 0, namely iU'$( — '/,-) — £,-_i ^--i^O, which
implies by (1.4.1) that li=hi-i = Q. Thus hi = li+i = 0 for 3^i^<2 by
induction and finally we obtain Ci/^ + c2/Z2 — ̂ 3= 0 analogously.

Now we go back to the proof of Lemma 1.4. The Claim and the
formulae (2.3.5), (2.3.6) of [2] imply that

where N'=^](tO'/5)
ih with h = hi or h2 and tfj^ = x2lp — iU/^ hence

i^O

This A; (2) -module, however, has infinite length, because it follows
from the equation ^('#5) =0 for the monic polynomial i)(z) =det
(zip — ̂ D of degree p in a variable £ that N' is generated over k (2)
at most by p elements. This contradicts the condition lengthK(Coker

00 and our assertion is proved. Q. E. D.

Take a polynomial /e/fl, then HI = min {v | (I/JK) v =£ {0} } and there
exists a polynomial g^IHl which is not contained in fR. Put n = rii.

Since X is integral, / and g are relatively prime, so one can use the
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results of [1; §3] with J=(f,g)R to obtain the generators go? £ ! » • • • >
ga,ga+i, • * • ,ga+i' of / allowing the expression as in [1; Proposition 3. 1]5

where we may assume fl^ra = deggi^o. .^deggfl, degga+i^8.. ^deg ga^.

f/01 f/02 0 ]

By abuse of notation we write here ^2 = f/2 C/2 4 to denote the
L o c/3

matrix of relations among these generators. In this case rjl is the

matrix of relations among the generators g0j gi, • • • 5 ga of the ideal
ru i(/? g) ̂ 5 so that rankJ T T°l (mod m) = a — I and one sees deg gi = n + i — l
Lui J

for l^i^a.

Lemma 1. 5. In this situation, put (vfl+i5 . . . , ya+&') = (deg ga+i, . . . ,
deggfl+&,) and j0 = max{j' va+j<n + a- 1}. Then vfl41, a e . 3 yfl+J-o w a

connected sequence of integers and

rankfc['t/3 *C/5 , ̂ ]J0 * ° ° ? (mod m) 2^5

where h'a is the last row of C/4 and q = % {ya+1? . . . , ua+JQ} .

Proof. If the assertion were not true, then, by taking the degrees
of the entries into account, one would find for some p (l^p^jo) that

P
and h'tt=(Q, . . . , 0, *) with pxp matrices

C/3, C/5 such that the entries of U'3 — Xilp and U^ — x2lp are in A (2). The
situation is almost the same as in the proof of the previous lemma
and the argument used there can be applied to this case without

any change, consequently Ul, , , //) = ^° This implies
\p~r l, « • • 5 o /

in contradiction with the condition length^(Coker(^3))<oo5 and our

assertion is proved. Q, E. D.

Lemma 1. 6. With the notation above, let d and pa be the degree and
the arithmetic genus of X respectively. Then

(1.6.1) b' = an-d, £va+j=
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Proof. Put (»!,..., O = (deg gl9..., deg ga) = (w, n + 1,..., n + a- 1).
Then the formula of [2; Remark 1.9] holds true for (a', v^..., ua;
y f l + i , . . . , ya+6/) in the notation here, since it is derived only from the
direct sum decomposition stated in [2; Proposition 1.3], The formula
(1.6.1) is a consequence of straightforward computations.

Q. E. D.

Example 1.7. (cf. [4; §4]). Let X be a nonsingular irreducible

curve belonging to the linear system on a smooth cubic

surface in P3, where as usual /, £1? . . . , e6 denote the Z-basis of the
Picard group of the cubic surface such that Z 2 =l ,0?= — 1 and let = Q
for l^i^G. X is a canonical curve with (d,g) = (8, 5), and A°(^(2))
= 0, /*°(J^(3))=1 and

- (1-5 + 32) +AJ(^(4)) 2>7.

4

It follows that a = 3, ft = 4, 6' = 4 and S^s+y — 18, by which one finds

(a', »i, . . . , y f l; yfl+1, . . . , va+6/) = (3; 4, 5, 6; 4, 4, 5, 5) combined with
Lemma 1. 5. This, then, implies

(1.7.1) ^(^(1))=!, A1(^ J C(2))=2, A1(
and A1(^W)=0 for i^45

so that all elements of H^(j^z) are annihilated at least by two line-
arly independent linear forms of R. The minimal generators of
Hi(j^x) over R are therefore those of Hi(«/x) over A (2) as well,
so one sees again by Lemma L 5 that B(X) = (3; 4, 4, 4; 5) or (3; 4, 4, 5;
4,5) (cf. [2; Proposition 2.4]). But the latter is impossible by
Lemma 1.4, hence B(X) = (3; 4, 4, 4; 5). Let ^2 be the matrix of
relations among the generators of Ix as in Corollary 1. 3, and put
't/4=(^i, A2, ^3) with /ZiGE£(2) . Then we see Hom» (Hi (./*)), A)
S*(2)[3]/(Ai,A2,A3)A:(2)([2; (2.3.7)]), and this -means by (1.7.1)
that the ideal (Al5 /z2? A3) A(2) coincides with (^4, jB) A(2), where .4, J5 are
relatively prime homogeneous polynomials of degree 2 of A: (2). We
have thus Hi(^) ^A(2) [- 1]/U, B)k(2). This curve will be used
in the next section to construct the examples we are interested in.
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§2. Nonsingular Irreducible Curves with Basic Sequence

(a; a+2, (a+3)0-1; a+4) or (a; (a+2)fl~3
f (a+3)3; a+4)

Such That Hi (^) = *[-«]/(*!»*»

We will make free use of the technique of liaison developped in

[8] and [9]. Let's begin with the following lemma.

Lemma 2.1. Let S be a noetherian affine scheme, p:

a flat family of curves over S and J> % the ideal sheaf of SC on PJ.

Suppose two homogeneous polynomials /, g of 0H°(P|, *&&(»)} C.k\_S~\
V

[xi, x2, #3, #4] define the complete intersection Proj k ( s ) [#l5 x2, #3, xil/(fs, gs)

for all points sEiS, where k ( s } is the residue field of the local ring (0s,s,
lttSiS) and Js'=f (modmSiS), ^s:= g (modm, fS). Then there exists another

flat family of curves q: <& (C^P|) - >S such that &s = q~l(s) is the curve

linked to &s=p~l(s) by the two surfaces defined by fs = 0 and gs = Q

respectively.

Proof. Put £i = deg/, c2 = deg^8 Since @% is flat over @s, the

0p3-module G& has a locally free resolution

(2.1.1) 0 - >/ - >©0 p 3(-m t . ) - >®, - *GX - > 0,
i=l P5 PS

/ being a vector bundle of rank N-l on P|. The sequence

(2.1.2) 0 >0p3(-c1-c2) »0 p 3(

r f rr\ ~
)—> o

is exact by hypotheses and one can take the mapping cone of the

dual of a morphism of complexes from (2. 1.2) to (2. 1. 1), obtaining

the complex

(2.1.3) 0 >0 0p3(m«-*i-*2)

p PPS PS

Since f, g is a regular sequence at each point of Pf, this complex
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proves to be exact (see the proof of [8; Propositions 2.5 and 2.6]).
Let «/ denote the image of <f>, ^ cP| the subscheme defined by J
and q: <&'• >S the projection. This is the desired family. In fact
the ideal sheaf of the curve Y's linked to 3£s by the two surfaces

/s = 0 and gs = 0 coincides with Im(^(mod ms s)) C ^Ds for each s^S
Pfc(s)

and the complex (2.1.3) (mod mSiS) is exact (loc. cit.), therefore the

structure sheaf 0 J' J of <$/ is flat over 0 sand Ys— <&s, which provesvs
our assertion. Q. E. D.

From now on M will denote the /^-module R/(x^ x2, A, B)R defined
by relatively prime homogeneous polynomials A, B^k(2) of degree 2.

Lemma 2.2. Let a, n^ ..., na, na+i be integers satisfying the condition
a^ni^... ^na-2 = na-i = na, na+i = na + 1. Then the curves X with B(X)

= (a] HI,. .., na\ na+i) such that H* (j^) =M[— (na+i — 4)] form an irredu-
cible subset of Hilb (P3) and the ideal Ix is generated over R by elements of
degrees at most na for every X corresponding to a general point of this

subset.

Proof. Let /0,/i,... ,/a,/fl+i be the generators of Ix that give the
sequence B(X) and let ^2? ̂ 3 be the matrices as described in [2;
Proposition 1.3], The condition H1* (^x) = M[ — (na+i — 4) ] implies
Imfe(2) (fC/4) = 04, B)R, so that we may assume '£/4= (0,... , 0, A, B) by

changing (/i,...,/«) for (fl9... ,/«)"•= (/i, • •• ,/«)G with a suitable
G^GL(a, ^(2)). Since the relations among A, B are generated b:=
'(— B,A), the space T which parameterizes ^2 satisfying the equation
^3 = 0 is irreducible (cf. [1; Remark 4. 1])5 and UZi takes the form
( * , c, 0, 0) for 22 corresponding to a general point of 7", where c is a
nonzero element of k. Let 0: T *Hilb (P3) be the natural morphism
which induces the family of curves over T defined by the ideals
arising from these ^2- Then it is enough to regard @(T) as the
irreducible subset in the statement. Q. E. D.

Proposition 2. 3- Let a be an integer larger than or equal to 43 and
suppose a nonsingular irreducible curve X satisfying B(X) = (a — l', aa~1',

< 2 + l ) 5 Hi(i/.x) =Af[— (a — 3)] exists. We assume furthermore that Ix

is generated over R by elements of degrees at most a.
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1) Let YI be the curve linked to X by the two surfaces defined respecti-

vely by a general element of Ix.a and of Ix,a+i- Then YI is nonsingular
irreducible with B(Yl) = (a', aa~\ (0+1)3; a + 2), HU^) =Af[- (a-2)].

2) Let Zi be the curve linked to YI by the two surfaces both defined
by a general element of ly^a+i- Then Zi is nonsingular irreducible with

B(2£ = (a', (a+ l ) a ; fl + 2), Hi («/Zl) =M[_- (a-2)].

3) For an integer n (ra§:<2 + 2), let Y2 be the curve linked to X by the

two surfaces defined respectively by a general element of Ix>a and of Ix.n*
Then Y2 is nonsingular irreducible with B(Y^ = (a~, (n — l) f l~3, n3', n-\- 1),

4) Let Z2 be the curve linked to Y2 by the two surfaces defined respec-

tively by a general element of IY2,a and of /y2.2»-«. Then Z2 is nonsingu-

lar irreducible with B (Z2) = (a ; n - 1 , na~l ; n + 1 ) , Hi ( J^) ^ M [ - (n - 3) ] .

Furthermore, in all these four cases we may assume that the ideals !YI and

Izl (resp, Iy2 and Iz^ are generated over R by elements of degrees at most

a-\-\ (resp. n) .

Proof. Since the argument is common to all cases, we only give
the proof of 4) assuming the results of 3) . Notice first that a general
element of Ix,a defines a smooth surface. It then follows from the
definition of Y2 that a general element of IY2.a also defines a smooth

surface, and since Iy2 is generated over R by elements of degrees at

most n, the curve Z2 is nonsingular (see the proof of [8; Proposition
4. 1] under the condition char. & = 0). In addition, one has Hi(*/22)

= Ext!(//U^72), R) [-2n]SAf[-(w-3)], so hl(Szj =0, whence Z2

is nonsingular irreducible.

Let

0 - ^ - > 0 p 3 (_ f l 5 (_ , 2 + l ) «-3 ? (_? z )3? __n__l) - ^ - > Q

be the locally free resolution of Y2, where we have set

p3 (m 1 , . . . , fn . )=

for simplicity. Then J2"^ has a locally free resolution of the form

(2.3.1) 0 - ><9.(a-2n, (-«-l)'-3, (-n)\ -B + l)
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- > 0p3(a-2n, -a)©<f v(-2ra) - >J^2 - > 0.

Notice the free resolution of IYz yields the exact sequence

(2.3.2) 0 - > < r v ( - 2 r a ) - >0^((-nY-\ (-rc + 1)3, (-

>0

with %=(0 , . . . ,0 ,4 , f i , -*2,*i). Since Hi(^z2) = Af[- («-3)], one

sees n2 of 5(Z2) is w + 1 (cf. [2; Proposition 2.4]). On the other
hand, it follows from the sequences (2.3.1) and (2.3.2) that h*(Sz2

00) =0 for i^fl-1, A ° ( ^ z 2 0 0 ) = ~ 5 for ^=^-2> h°(^z2(n

- l ) ) = n ~ + 2 + l and t f ( S Z z ( n ) ) =(~ + 3} + a + 2, consequently

It remains to show that we may assume IZz is generated over R

by elements of degrees at most n. For this purpose we use Lemma
2.2 to construct the family p\ 3£ - >5" over an integral affine scheme
5 arising from the flat deformation of the ideal Iz^ such that Ix^

is generated over R by elements of degrees at most n for every general
point .yeS and J"Si = Z2 for a point JiGS. Next take two homogeneous

polynomials /£=/^ifl, g^I%t2n-a such that the curve linked to Z2 by the
surfaces defined respectively by ^ = 0 and ^Sl = 0 coincides with Y2-

Using these polynomials, construct then a flat family g : ^ - >5
which has the properties stated in Lemma 2. 1. The general fibers
^s are nonsingular irreducible, and since H1* ( ~^Vs) ==H^ (J^FX) for all

points j-e5, we have B(<& J =B(Yi)9 therefore we may replace Y2

with ^S() and Z2 with ^SQ for a suitable point ^o^^, from which our

assertion follows. Q. E. Do

In the same manner one obtains the following.

Proposition 2.4. Let a and b be integers such that a*^2b, b^l.
Suppose a nonsingular a. B. curve (see [2; § 3]) X with B(X) = (a', aa\ ab)
exists.

1) Let YI be the curve linked to X by the two surfaces defined respectively
by a general element of Ix,a and of Ix,a+i. Then YI is a nonsingular irreducible
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a.B. curve with B(Yl) = (a] aa'2\ (a+ 1)2&; (fl + 1)*).
2) Let Zi be the curve linked to YI by the two surfaces both defined by

a general element of IYl,a+i> Then Zi is a nonsingular irreducible a, B«

curve with B(Zl) = (a+l', (a+l)a+1; (a+1)6).
3) Let n be an integer bigger than a, and let Y2 be the curve linked to

X by the two surfaces defined respectively by a general element of I x.a o,nd
of Ix.n* Then Y2 is a nonsingular irreducible a. Be curve with B(Y2)=(al
(n-\y~2\ n2b\ n*}.

4) Let Z2 be the curve linked to Y2 by the two surfaces defined respec-
tively by a general element of IY2,a and of /r2,2n-a- Then Z2 is a nonsingular

irreducible a.B. curve with B(Z2) = (a°, nal n*)a

Remark 2. 5. The basic sequences of Zi and Z2 appeared In the
propositions above may be computed generally as follows. Let X be
a curve in P3 with B (X) = (a ; nl ; n2) , Y the curve obtained by applying
linkage to X with two surfaces of degrees s^ s2 respectively and Z
the curve obtained by applying linkage to Y with two surfaces of
degrees ti, t2 respectively. Then we deduce from the locally free
resolution for J^x

0 - >£ - >0p3(-fl, ~n\ -n2) - »j^ - »0

the locally free resolution for ^z of the following form

0 - » < ? ( M ) ©

(see the proof of [9; (1.7) Theorem]), and we have H1* ( ,/2) = Ext|
(Exti(Hi(^),/Z)f[-j],/2)[-*]SHi(^)M, where s^s. + s,, t = t,
+ t2 and u=s — t. Suppose Si = a, s2 = ti = tz = a+l. Then the resolution
becomes

0

and H\(J?z}=H\(/x}[_-\~\, from which follows B(Z) = (fl+1; a+l,
nl+lm

9n
2+l). Suppose next Si = ti = a, s2 = n, t2 = 2n — a (n^>a). Then the

resolution becomes

0 - > * ( f l

- > &p2(-n,a-n-n\a-n-n2)@(9p3(a-2n, -a)
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and Hi(^"z)=Hi(^)[-(»-fl)], from which follows B(Z) = (0;

Corollary 2. 6. (cf. [2; Theorem 4. 4]) . The following basic sequences

are realized by nonsingular irreducible a. B. curves', (a', na', nb) and (a',

(n~l)a~2\n2b', nb) for a,b,n satisfying n>a^2b,b^I, (a; aa; a*) for a,b

satisfying a^2b, b^2 or <z^3, 6 = 1.

Proof. In view of Proposition 2. 4 it suffices to show the existence
of nonsingular a. B. curves with basic sequence (2; 22; 2) and the

existence of nonsingular irreducible a. B. curves with basic sequence

(26; (26) 26; (26) 6) for 6^2. The proof can be found in [3; Section 5],

but we write it here for the sake of completeness. First define the

vector bundle 3F of rank 36+1 as the cokernel of the map

where 6^1 and '0=(0, #ilj, #216, #3U, #4lj). Then Jrv(l) is generated
by its global sections and general 36 linearly independent elements

of H0(J^V(1)) define an ideal sheaf J x of a curve X in P3 that fits
in with the exact sequence

0 - »03 ( -26)®3 6 - >^V(1-26)^AV®0 3(~36) - *S* - >0

by the standard method (cf. [2; §2]). Since A° ( S x ( v ) ) = 0 for ^

A°(j^z(26))-36 + l andHU^)=Hi(^v(l-26))=^[2-26]&, we find

B(X) = (2b; (26)26; (26)6). This curve is in fact nonsingular if the
36 sections are chosen sufficiently generally, for the Kleiman's version

of Bertini's theorem [7; Theorem (3. 3)] is valid for the sections of

the vector bundle J^v(l) itself in characteristic 0. Q. E. D.

Starting from the nonsingular irreducible curve described in
Example 1. 7, one obtains, by applying Proposition 2.4 successively

with ft=<2 + 3, nonsingular irreducible curves X, Y2 and Z2 satisfying

B(X) = (a-\ ;fl-
1;* +1), Hi (^) =Af[- (fl-3)], B(Y2) = (a; (^ + 2)fl-3,

U + 3)3;a + 4), JB(Z2)-(a;a + 2,(a + 3)fl-1;a + 4) and HU^)-H1^^)

= M\_ — a~\ for all 0^4. It will be shown that the points of Hilb(P3)

corresponding to the curves Y2 or Z2 are contained at least in two

irreducible components of Hilb(P3). We first prove that they are
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deformed flatly into a. B. curves.

Proposition 2. 7. Let a be an integer larger than or equal to 4. Suppose

every nonsingular irreducible curve X with B(X) = (a—l', aa~1', fl+1), H1*

(^x) =M\_— (a — 3)] can be deformed flatly into an a. B. curve with basic

sequence (a\ aa\ a2). Then we have the following.

1) Every nonsingular irreducible curve Y\ with B(Yi) = (a] aa~3, (a+1)3;

fl + 2), Hic(«/y2) =M\_— (a — 2)] can be deformed flatly into an a. B. curve

with basic sequence (a', a°~4, (a+1)4 ; (a+l ) 2 ) 0

2) /£ follows from 1) £/z<2£ 00077 nonsingular irreducible curve Zi with

B(Zi) = (fl; ( f l+ l ) a ; a + 2),H1
He(^z1)^M[-(^-2)] can be deformed flatly

into an a. B. curve with basic sequence ( < 2 + l ; (a+l) f l + 1; (<2+l) 2 ) .

3) E^ry nonsingular irreducible curve Y2 with B(Y2)=(a', (a + 2)a~~3
3

(a + 3)3; <2 + 4)3 H*(^"y2) = Af[ — a] can ^ deformed flatly into an a, B.

curve with basic sequence (a', (a + 2) f l~4
9 (a + 3)4; (fl + 3)2)e

4) /^ follows from 3) £/z#£ ^^rv nonsingular irreducible curve Z2 with

B(Z2} = (a\ a + 2, (a + 3)0"1; fl + 4), HU«^z2) =M[-fl] ca?2 i* deformed

flatly into an a. B. curve with basic sequence (a', (a + 3) f l; (a + 3)2).

Proof, Since the argument is common to all cases, we only give

the proof for 4) assuming the results of 3). Let S' (resp. 5"') be the

irreducible subspace of Hilb (P3) whose points correspond to nonsingular

irreducible curves Z (resp. Y) with B(Z) = (a', a+ 2, (fl + 3)B-1; a+ 4)

(resp. 5 (Y) = (a; (« + 2)fl-3, (fl + 3)3; a + 4)) such that Hi (J^2) = M[ - a\

(resp. Hi(^"r)=Af[-fl]) (see Lemma 2.2). And let Hf (resp. H")
be the irreducible component of Hilb(P3) whose general points cor-

respond to a. B. curves with basic sequence (a I (a + 3) f l; (« + 3)2) (resp.

(a',(a + T)a-\ (0 + 3)4; (fl + 3)2) (see [2; Theorem 5. 11]). Then the results

of 3) implies that S" is contained in Hn'. Now let Z2 be a curve

corresponding to a general point of S'. We may assume, arguing as

in the last part of the proof of Proposition 2. 3, that Z2 is linked to

a nonsingular irreducible curve Y2 which corresponds to a point of

S" by the two surfaces defined respectively by a general element /

of /y2,fl and g of /y2,a+6. Let 5 be a sufficiently small affine subset

of H" which contains the point s2 corresponding to the curve Y2, and

let p; S£ >S be the family of curves over S induced by the universal
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family over Hilb (P3) . Since h° ( S?2 (0) ) = A° ( ̂  (a) ) = 1 for all general

and since ^(e/^Ca + G)) —0, there exist homogeneous polynomials

j^(fl)) and£eH°(J^(a + 6)) such that /,2 =/ and &2 =& which

allows us to construct another flat family q: <& - *S having the
properties stated in Lemma 2. 1. In this family, <3f s is an a. B. curve
with basic sequence (a', (a + 3)a; (<z + 3)2) for every general s&S by
Proposition 2.4 and <3fS2 = Z2, therefore Z2 is deformed into an a. B.

curve. Since Z2 corresponds to a general point of S' by assumption,
we have S'CLH', which proves the assertion. Q. E. D.

When the a. B. curves with basic sequence (a ; nl ; n2) form a Zariski

open set of an irreducible component of Hilb(P3), we will denote

this component by Ha.B. (a I n1* ̂ 2).

Corollary 2. 8» Let a be an integer larger than or equal to 4. Then
the subset of Hilb(P3) corresponding to nonsingular irreducible curves X

with basic sequence (a l (2 + 2, (a + S)""1; a + 4) (res p. (a; (a + 2)a~3, (a + 3)3;
0 + 4)) and such that Hi(./jp) =Af[ — a] w contained in Ha.B.(a', (a + 3) f l;
(« + 3)2) (r«/>. Hfl.5.(a; (^ + 2)fl-4, (fl + 3)4; (a + 3)2)). (5^ [2; Theorem

5.11].)

Proof. It is enough to show that every nonsingular irreducible
curve C with B (C) = (3; 43; 5) , Hi(^c) =M[-1] can be deformed
flatly into an a. B. curve with basic sequence (4; 44; 42) , because one
can prove the assertion with the use of Proposition 2. 7 starting from
this fact. For this purpose we have only to borrow the results of [4;
§4]. One knows that nonsingular irreducible a. B. curves with basic
sequence (4; 44; 42) exist (Corollary 2. 6) and that they form a Zariski
open set of the irreducible component Ha.5. (4; 44; 42). Besides, this
irreducible component coincides with the closure of H8i5 (see Introduc-
tion) in Hilb(P3) by [4; §4] (see [6; p. 75] also), and contains the
point corresponding to C. This proves our assertion. Q,. E. D.

The following result, combined with the corollary above, gives what
we wanted.

Proposition 2. 9* Let X be a curve with B (X) = (a ; (a + 2) a\ (a + 3) a" ;
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fl + 4), H\(J^x) =M[_ — fl], where a\ a" are integers satisfying a f - ^ a t f

= a, fl'2^1, a"^2. Then X can be deformed flatly into a projectively
Cohen- Macaulay curve with basic sequence (a + 1 ; a + 1 5 (a + 2) a/+2

3 (a + 3) a"~2) ,

Proof. Compute the free resolution for the J?-module H°*(@x)
following the method of [2; §2], It is of the form

0 - >/z[_^]-J^/2[-^-

where

f H i = ( f l , f l + l , (a + 2)c'5 (a + 3r"-2,fl+l3 (a + 2)2)

and

(see Propositions 2.8 and 2.9 of [2]).
Let /o, /i, ... 5 /a, /fl+i be the generators of Ix associated with B (X)
as usuaL Then we may assume that o is of the form

[ /9 Sl f.1? ' ' ' >fa~2 S? J.3 J4 1
"0"ii ..... "0 "x2A~BJ9

so

a+l
1

and

a' a"-2

3 ^ 3 4 ^ 4 2 3 3
2—2 3 — 3 1 2 2
1 — 1 2—2 0 1 1

i-i 2-2 6 i i
0-0 1 -1 - 1 0 0

a"-2{
' 0-0 1-1 - 1 0 0

2—2 3 — 3 1 2 2
1 — 1 2—2 0 1 1
1 — 1 2—2 0 1 1

Write the (a' + a"— l)-th column of r as follows: * (x^h? + xji^ + h^\
/z2, A 3 , . . . ) , where /Zi3)GE&(2) and h^k. Let £ be a parameter Put
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=

and we define TI to be the matrix whose i-th column is that of r for
each i^a' + a"— I and whose (af + a"—T)-th column is f (#i/zp + #2/z{2)

+ ^i3)? ^2, t-rh^ ...). In this setting, since Mv = 0 for i^3, we find
there exists a matrix r2 with entries in £^t!|Y] which satisfies the equation
0Ti = dT2 and such that the degree of its (i,j)-component with respect
to #l5 #2? #3, #4 is the same as that of r. We may assume here that
the z'-th row of r2 is zero for i = l and 3^i^a. Put f = ri — r2? then
we have <7f = 0? f (mod £jR[J]) =r, (7 (mod ^jF?[^]) =5- and -f2T:=Projra

CKM/^(r)) gives a flat family of curves p: ^(CPico) > Spec £[£]
such that &0 = X by [2; Proposition 2.11], where /(f) is the ideal
in R[_t~\ generated by the maximal minors of f, and o denotes the
point defined by t = Q. It follows from the isomorphism H*(J^s) =

R[ — a]/ImR(0) (loc. cit.) that Hi (•/£•) becomes zero for general points

s£=i Spec £[£], which implies that X can be deformed flatly into a
projectively Cohen-Macaulay curve. In order to find the basic se-
quence of ^Ts for a general point s, it is enough to notice that /^

has a free resolution of the form

Q.E.D.

Let H(a;^i , . . . , 72fl) denote the irreducible component of Hilb(P3)
whose general points correspond to projectively Cohen-Macaulay
curves with basic sequence (a', n^..., na) where a^n^... ̂ na (cf. [4;
Proposition 2. 10]). All that we have done can be summarized as
follows.

Proposition 2.10. Let a be an integer larger than or equal to 4.

contains a nonempty irreducible subset which consists of all the points
corresponding to nonsingular irreducible curves X with B(X) = (a',
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2) H ( f f l + l : fl+1, (fl + 2)3, (a + 3)°-3) nHa.B.Ca; (fl + 3)'; (fl + 3)2)
contains a nonempty irreducible subset which consists of all the points

corresponding to nonsingular irreducible curves X with B (X) = (a', a + 2,

§ 3o Nonsingular Irreducible Arithmetically Buchsbaum
Curves with Basic Sequence (a;(a+2)*~1, a+3; a +2)

Let «yF be a null correlation bundle, i. e. the vector bundle of

rank two obtained as the cohomology of the monad

0

For every integer <z2^2, ^f(a— 1) is generated by its global sections

and the subscheme of P3 denned as the zero locus of a general section

of J f ( a ~ Y ) is nonsingular by [7; Theorem (3.3)], if a^3. Let C

be the curve thus obtained. One sees by the exact sequence

0 - >03 - vT(fl-l) - ></c(2a-2) - >0

that Hi(^c)=Hi(^(-fl+l))=*[-(fl-2)] and that A°(^"c(y)) =0

for ^<X

for a^y<27z- 2, from which follows B(C) = (a; «3
? a+ 1, 0 + 2, . . . , 2a-3;

a). When a=:45 we get in this way a nonsingular irreducible a. B.

curve C with B (C) = (4; 43
? 5; 4) . The following fact can be proved

without difficulty as in Proposition 2. 3.

Proposition 3. 1. Let a be an integer larger than or equal to 45 and

suppose a nonsingular irreducible a. B. curve X with B(X) = (a', aa~l, a+ 1 ; a)

exists.

1) Let YI be the curve linked to X by the two surfaces defined respec-

tively by a general element of Ix,a and of Ix,a+i- Then YI is a nonsingular

irreducible a. B. curve with B(Yi)=(a—l; aa~3, (a+1)2; fl+1).

2) Let Zi be the curve linked to YI by the two surfaces both defined by

a general element of IYl,a+i. Then Zi is a nonsingular irreducible a. B0

curve with B(Zl} = (a+\\ (a+ l)c, a + 2', fl+1).
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3) Let Y2 be the curve linked to X by the two surfaces defined respectively
by a general element of Ix,a and of Ix.a+2- Then Y2 is a nonsingular
irreducible a. B. curve with B(Y2) = (a] a, (a+l)a~*, O + 2)2; a+ 2).

4) Let Z2 be the curve linked to Y2 by the two surfaces defined respec-
tively by a general element of IY2.a and of /y2,a+4. Then Z2 is a nonsingular

irreducible a. B. curve with B(Z2) = (a', (a + 2)a~\ a+ 3', a+ 2),

Note on the proof. It follows from Corollary 1. 3 that Ix is generated
over R by elements of degree a.

Starting from the curve C mentioned just before the above pro-
position, we can therefore get successively a nonsingular irreducible
a.B. curve X with B(X) = (a; (a + 2y~\ a + 3; 0 + 2) for every a^4.
These curves also give reducible singular points of red(Hilb(P3)).

Proposition 3= 2. Let a be an integer larger than or equal to 4. Then
H (a; (a + 2) *) fl H (a +1; (a +1) 3, (a + 2)fl~3, a + 3) is not empty and contains
the irreducible subset which consists of the points corresponding to nonsingular
irreducible a.B. curves with basic sequence (a\ (<2 + 2)c~1, <2 + 3; a+ 2).

Proof. Let X be a nonsingular irreducible a. B. curve with B(X)
= (a', (<2 + 2)c~1, 0 + 3; a + 2). X can be deformed in two directions as
follows. First of all, since B(X) satisfies the condition of [2; Lemma
5.6], the graded ring R/IX can be flatly deformed into a Cohen-
Macaulay graded ring R/I, where / is a homogeneous ideal such
that dimfe /y = dim^ Ix,o for y^O (see the proof of the lemma cited).
The basic sequence of / turns out to be (a', (<2 + 2)a) and this gives
one direction of the deformation. On the other hand, the condition
of [2; Lemma 5.5] is satisfied as well, so that one obtains a flat
deformation of X into a project!vely Cohen-Macaulay curve whose
basic sequence proves to be (a + l', (a +1)3, (a + 2) fl~3, a + 3) (seethe
proof of the lemma cited), which gives another direction. One sees
in fact that X can be deformed in these two ways only.

Q.E.D.
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Appendix: Connection between Multlsecants
and Basic Sequences

Let X be a curve in P3 and let Z be another curve the support
of which is a line L = Proj R/ (xi — /i, x2 —/2) 9 where Z l 5 /2^A;(2)1 for a
general choice of coordinates, and suppose supp(XftL') consists of
finite points. Suppose further that (S z has a filtration as an 0 3-

module of the following form (trivial, if Z=L):

0

o

0 - > &L (^-i) — 0 z,.,—

0

where Z0-Z, Zr-L and ̂ j^. . . ̂ jr^0. Put Y =
and c = c(Y):=max{y|H1(P3, ^"y(v))^=0}. Let (a; nl9 . . . , na\ na+l, . , . ,
na+b) be the basic sequence of Y and /0,/i, ... ,/,,/«+i, . . . , /«+» the
generators of /y associated with it such that

/y=
t — i

in the notation of [2; Proposition 1.3].

Proposition A.I. In this situation, if h°( 0 Xnz) = (/+!)£ and

t^t — sr^. , . ^£ — Ji>£, then there exist homogeneous polynomials fa+b+i, . . . ,

fa+i+r+i of degrees t — Si9t — s2,.*.9t — sr9t respectively such that

Ix =/„* (0) 0 0/,A (1) 0 ©/,+yA: (2) .
i=l 3=1

Proof. Put Yi = X ( J Z i . The ideal sheaf of Y{ is ^n^z. by

definition and we have a natural injection

for each O^z^r. Let ^=(DL(-f) denote the ideal sheaf of
on L. One finds from the third row of the following commutative
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diagrams

0 0 0

— +SX/SY — > o

(A. 1. 1); 0 > & L(*) SKer (&) — G *,_', -^ 0

0 - > Ker(/3,-)/Im(r;) - > <P z n Z i_1 --* 0

v 4- v
0 0 0

l^i^r) with exact rows and columns that

On the other hand, since &®OL 0 L(^) =J2P-Ker(j8,-) Clm(^), we have

Im(r,) = ^L(^-« with f,.^f, so that /?
0(Ker( /8 i)/Im(r t-))-A°(^L(^)

/^L(J,--^)) =^- and /?°(0*nz) = S ^+^. This implies f,. = f for alli=i
l^i^r by hypotheses and we obtain a series of exact sequences from
the first rows of (A. 1. l ) f :

0 - >0L(Ji-0 -^-

0 - >d? L(j2-0 -

0 - >d?L(5 r-0 - 'Sz/SY - >Sz/SY=6>L(-t) - > 0.

Consider 0 z. (Q^i=r) as 0 ^-modules through the natural injection

k(2)C>R. All these sequences then split as O L-modules, namely there
exist 0 L-module homomorphisms

which give rise to an isomorphism
r+l r+l
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where el = a( and we have put sr+i = Q for convenience sake. In the

diagram

0 - ></y (P) - >J?xM - >SX/SY (*) - > 0
ts ^ (isomo phism as 0 L-modules) ,

let /B+6+ieH°(^/^y(^-Ji)) be the image of 1<EEH°(0 L ) under
e,-(l^i^r+l). Since H1(./V(i;)) =0 for v^zt — si by hypotheses, there
exists a homogeneous polynomial fa+b+i^H0(Jr

x(t — si^ contained in
NIy such that /«+&+,- (mod /y) =fa+J)+i for every i. Besides, we have

r+l

H°(*/.x/«/y(y)) =0 for v^t — Si—l, therefore IX~!Y® 0/a+6+j^(2),

which proves our assertion. Q. E8 D,

Corollary A. 2. W^i^A the notation above, we have

i-l

(xj — lj) Im (ef) C Im (2] eM) (2" = 2)
tt=i

(xj-lj)Im(^)=0 for j=l ,2 .

Proof. Each e£ satisfies j8-_1o--«o^o6 i = ct/
i for 2^z^r and j8r°'"°$

osr+1 = irf. Therefore

for ^e^iCi; — 0, q^i— 1, 7 = 1,2. Suppose /zelmfe) and (xj —

= 28. (A^) (j = l, 2). One sees first 0 = (#<>••• ofl) ((*,-/,) A) = (^o-o^)
M = l

r+1

(E £«(^«j)) =hr+ij, in the second place 0= (#_io--.o$) ((^y — /y)/z)
M = l

r

— (j8r-i°'"°^i) (S e«(^«j)) ~ar(hrj), that is /zrj- = 0, and by induction finally

finds Ay = Al-+u = -=Ar+u = 0. Q0E9D.

Corollary A. 3. T/z^ notation being as in Proposition A, 1,

/oi c/02 o ]
Ut UA (resp. X2 =

LC/2! C/3 C/5J

I/M t/02 0

U{ U'2 U
IU'21 U'3 U

the matrix of relations among f0,... ,/„+& (resp.fa,... ,fa+b+r+i~) computed
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by [1; Theorem 1.6]. Then

C/3 *

3

0 o ••
Xi-

T *

0

If the condition t—Si^na (l^Si^Sr+1) is fulfilled additional)?, then the basic
sequence of X is (a', wl5 . . . , ?2a; wa+1, . . . , ^ f l4-&5 1 — s^ t — s2> . . . , ^— ̂ r, 0 up
to a permutation of na+i, . . . , na+t, t — sl,t — s2,...,t — sr,t.

Proof. The first part is clear. To prove the second part, notice
first of all that the entries of U\ are in O3, #4)A;(2)5 if t— Si^na. One
sees then by the formula

that/fl+J- = 0 (mod (x^ x4) R) for l^j^b + r+l and IY=Ix (mod (
Since the coordinates were chosen sufficiently generally from the first,
we find B(X) = (a', W i 5 . . . , w a ; ^/2) for some increasing sequence of
integers n2 and this must be equal to (na+i, . . . , na+^ t — s\, t — 52? . . . ,
t— sr,t) up to a permutation by the definition of the basic sequence.

Q.E.D.

Example A« 40 Let X be an integral curve belonging to the linear
system |14/~ 5^ — 4(e2 + e3) — 3(e4 + e5 + e6) \ on a smooth cubic surface
S and let G£e|2/-S^| be the line for 1:̂ 6. Set ^1 =

3. Then (2d) -Z-22, Gi--Y=ll , G2--Xi = 10,
Gz*X2= 10 and (Pacj nas the filtration

0 - >&G1(l) = Vs(-G1)\G—- »®2Gl - >&GI - >0.
6

One can check without difficulty that X3^22l — 1 ^ e{ is projectively

Cohen-Macaulay, namely hl(^x (v)) =hl(ff s( — X3 + vK)) =Q (h deno-
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ting a hyperplane section) for all integers v, and finds B(X^) — (3;93).

Now, apply Corollary A. 3 successively starting with the curve X3.

Then we get B(X2) = (3; 93; 10), B(XJ = (3; 93; 102) and finally B(X)

-(3;93; 103, 11).

Example A0 5» Let 50ClP4 be the cone over a nonsingular rational

curve of degree 3, TT. $Q >§o the blowing up of So with center its

vertex and let /2, r be the pullback of a hyperplane section and the

line of ruling respectively. We consider a nonsingular irreducible

curve X in P3 obtained by projecting a smooth curve C on So whose

strict transform C belongs to the linear system \mh-\-r\ from a general

point not on §Q, where m is an integer larger than 2, X lies on a

cubic surface SQ with a double line L which is in fact a cone over

a singular rational curve of degree 3 in P2 with a node. Denote the

projection by p: So >50 and put p=poK. We see p~l(L) is the union

of two different lines of ruling TI, r2 and of the exceptional divisor

E of $o? and we may assume (?n£Tl {/i, r2} =<f>. The curve X and

L therefore intersect quasi-transversally at SQ= p(E) and A ° ( ^ ^ O L )

= (r! + r2)-(?+l=2ro + l. Set Y = XUL and SY=SY/SSQ. Since Y

contains L, the sheaf p* (/*(«/y)) Is0\{s0] is isomorphic to «/7| SQ\[SQ}> and

since {JD} is of codimension 3 in P3, it follows from the sequence

0 >0p3( —3) >JPY ^r ^0 that this isomorphism can be ex-

tended to the whole of So, i.e. p* (p* («/y)) —^Y" In addition, we
have p*(^y) = ^sQ(-^~E~rl-r2)=-(9sQ(~(m+l^h), so we find by

the spectral sequence that H* (</y) =H*(./y) =0B Y is thus projec-

tively Cohen-Macaulay and after a simple computation we get B(Y)

= (3;ro+l, (m + 2)2), whence B(^) = (3;m + l, (m + 2)2; 2m + l)8

Let 5 be a nonsingular rational scroll of degree 3 in P4, p: § >

ScP3 a projection from a general point not on § and let /z, rC5

again denote the hyperplane section and the line of ruling respectively.

Then we find analogously B(p(CJ) = (3; m + l9 (m + 2)2; 2m + 1) (the

same as above) for a nonsingular irreducible curve d belonging to

the linear system \mh + r\ and B(p(C2)} = (3; (m + 2)3; m + 23 2m) for

C2 belonging to |(m + l)A — 2r|.
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