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On Grothendieck's Problem of Topologies

by

Julio ALCANTARA-BODE*-**

Abstract

Some classes of locally convex spaces E and F are identified for which not every bounded

set of the completed projective tensor product, E&)F, is contained in the bipolar of some
set A(g)B, where A is bounded in E and B is bounded in F.

Statement and Proof of Results

One of the open problems in the theory of Topological Tensor
Products is to characterize classes of locally convex spaces (1. c. s.)
E and F, for which every bounded subset of the completed projective

XX

tensor product, E(x)jF, is contained in the bipolar of some set A®B9

where A and B are bounded sets in E and F respectively (Problem
of Topologies) . For instance it is not known if the Problem of To-
pologies has a positive answer when E and F are general Frechet
spaces. But if one of the Frechet spaces is nuclear, then it does
([4], Theorem 21.5.8).

It is the purpose of this note to investigate the Problem of To-
pologies for classes of 1. c. s. that arise in the Theory of Distributions.

Before stating our main result, we make some remarks about the
oo

notation. In all that follows 0 = © C will be equipped with its largest
=1

locally convex topology and G> = II C with its product topology. An
i=l

LF-space will be a strict inductive limit of a sequence of Frechet
spaces.
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/\
Theorem. The Problem of Topologies for E®F has a negative

solution if, either

(i) E and F are strong duals of LF-spaces, where one of these LF-

spaces contains a non-normable Frechet subs pace, the other one is not a

Frechet space and either of them is nuclear, or

(ii) E is a Frechet space that does not have a continuous norm and F

a L c. s. that contains <j) as a complemented subspace.

Three Lemmas will precede the proof of the Theorem.

Lemma 1. Let E be a L c. s. that has a non-normable Frechet sub-

space and Fa L c. s. containing $ as a complemented subspace. Then
XX —

E(x)F and the completed inductive tensor product, £(X)F, have different duals.

Proof. First let's assume that E is a non-normable Frechet space.
As E is non-normable and metrizable, there exists a family of con-
tinuous linear functional {^J k^i on E, such that for no sequence of
strictly positive numbers {ak} t^i, is {(Xk<f>k] k^i equicontinuous ([1],
Proposition 1.7. (b)). Let (f>k be a continuous linear functional on

0 whose kernel is ®D(
n

k), where D^={0] and D(
n
k) = C if n^L Then

n = l

2 <f>k</>k is a separately continuous bilinear form on E X 0 which is

not jointly continuous. As all tensor product topologies respect com-

plemented subspaces, we get that (E®F)' =£ (£(g)F)'.
A Hahn-Banach extension argument applied to the sequence [<j>k}k^i

gives the proof in the general case.

Lemma 2, Every LF-space that is not a Frechet space, has (/) as a

complemented subspace.

Proof. Let {Ej} be a defining sequence of Frechet subspaces for
E. There is a sequence {x3}j^i in E such that Xj^Ej andxj+i^Ej
for all j 2^1. If FJ is the smallest subspace containing {#Ji^y, an
inductive argument shows that there are topological complements Gj

for FJ in Ej such that Gj+i^Gj for allj^l. By construction G = w Gj

is a subspace of countable codimension of the barrelled space E and
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therefore by the Saxon-Levin- Valdivia Theorem, G is barrelled ([6],
Theorem 15-1-10). Since G is barrelled and is a union of a strictly
increasing sequence of closed subspaces, it has the strict inductive
limit topology ([6], Definition 13-3-14 and Theorem 13-3-15). So
G is complete and therefore closed. As E is barrelled and G a closed

subspace of countable codimension, F = \J Fh with its largest locally

convex topology, is a complement of G ([6], Theorem 13-3-14). But
F with its largest convex topology is isomorphic to <f> (cf. [6], Problem
12-1-5).

Lemma 30 Let E and F be LF-spaces, one of them nuclear. Then
— /^

F(X)F is an LF-space and its strong dual is isomorphic to

Proof. The first assertion follows from the fact that the inductive
tensor product topology respects inductive limits ([5], p. 96 and
p. 119, Exercise 22). Nuclearity guarantees that the inductive limit is
strict (cf. [1], Theorem 1.4).

XX -

As F(X)F and F(X)F induce the same topology on the Frechet

subspaces of £(8)F, and every bounded subset of F(§)F is contained
in one of these subspaces, it follows from the Hahn-Banach theorem

that (F(§)F)' is strongly dense in (F(R)F)'. By the nuclear theorem

and the positive solution of the problem of Topologies for F(X)F ([4],
,-«-, xx

Theorem 21.5.8), E (X)F is strongly dense in (F(X)F) ' and therefore

also in (F(X)F) '. Since the strong dual of a nuclear LF-space is

nuclear ([4], Proposition 21.5.1 and Corollary 21.5.5) and (E(J!)F)'B
is complete (E(g)F is bornological) , it will be enough to show that

the strong topology on (F(X)F) ' induces the injective topology e on
its dense subspace E'®Fl '. When A and B vary over all possible
absolutely convex closed bounded sets in E and F, respectively, the
seminorms

PA,B(O= sup I f C O l , f

— absolutely closed convex hull of A®B} define the strong

topology on (F(g)F) 7. But

= sup |
xeA.Y^B 1=1
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where PA(0) =sup |0(*) | and
xeA

This finishes the proof.

Proof of Theorem.

(i) By Lemmas 1 and 2 there is a continuous seminorm p on £"®F

whose restriction to E®nF (E®F equipped with the projective topology)

is not continuous. The polar BQ
P of the unit ball Bp of this seminorm

is a bounded set in (E®F)'ft = E'B®F'fr such that for no absolutely

convex closed bounded sets A and B in E'p and F'fl9 respectively,

In effect this inclusion and the barrelledness of £ and

F would imply, as in the proof of Lemma 3, that the restriction of
p to E®nF would be continuous.

~~ / ^
(ii) By Lemma 3 if E = <f> and F=Q) we have (0(x)ft>) 0 = ^(8)^ as

<j)'p = a) and tt>0 = 0. By part (i), this proves part (ii) when E=co.
The rest of the proof follows from the fact that every Frechet space
without a continuous norm has co as a complemented subspace ([4],
Theorem 7. 2. 7) .

Remark (a). By Lemma 2, part (ii) of the Theorem applies to

E'p®F if E and F are LF-spaces that are not Frechet.

Remark (b) . It can be shown that if E and F are arbitrary locally
convex direct sums of Frechet spaces equipped with continuous norms,

then as sets E®F=E®F and both completions have the same bounded
sets. In particular this applies when E and F are LF-spaces with
continuous norms and unconditional bases ([2], Lemma 5.43 and
Exercise 5. 59) . Therefore a positive solution of the Problem of

Topologies under these conditions for E®F implies a positive solution

of the corresponding problem for E®F. This applies, for example,
when E and F are Z/F-spaces with unconditional bases, continuous
norms, and one of them is nuclear.

Remark (c). A positive solution of the Problem of Topologies is
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useful for deriving some general factorization Theorems in Quantum

Field Theory (cf. [3], Proposition 3.1).
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