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On Grothendieck’s Problem of Topologies
by

Julio ALCANTARA-BODE***

Abstract

Some classes of locally convex spaces E and F are identified for which not every bounded

set of the completed projective tensor product, E®F, is contained in the bipolar of some
set AQB, where A4 is bounded in E and B is bounded in F.

Statemeni and Proof of Results

One of the open problems in the theory of Topological Tensor
Products is to characterize classes of locally convex spaces (l.c.s.)
E and F, for which every bounded subset of the completed projective
tensor product, E®F, is contained in the bipolar of some set AQB,
where 4 and B are bounded sets in £ and F respectively (Problem
of Topologies). For instance it is not known if the Problem of To-
pologies has a positive answer when E and F are general Fréchet
spaces. But if one of the Fréchet spaces is nuclear, then it does
([4], Theorem 21.5. 8).

It is the purpose of this note to investigate the Problem of To-
pologies for classes of L c.s. that arise in the Theory of Distributions.

Before stating our main result, we make some remarks about the

notation. In all that follows ¢= é—% C will be equipped with its largest

locally convex topology and wEﬁIC with its product topology. An

LF-space will be a strict inductive limit of a sequence of Fréchet
spaces.
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Theorem. The Problem of Topologies for EQF has a negative
solution if, either

(i) E and F are sirong duals of LF-spaces, where one of these LF-
spaces contains a non-normable Fréchet subspace, the other one is not a
Fréchet space and either of them is nuclear, or

(i) E is a Fréchet space that does not have a continuous norm and F
a l.c.s. that contains ¢ as a complemented subspace.

Three Lemmas will precede the proof of the Theorem.

Lemma 1. Let E be a l.c.s. that has a non-normable Fréchet sub-
space and F a l.c.s. containing ¢ as a complemented subspace. Then

E®F and the completed inductive tensor product, EQF, have different duals.

Proof. First let’s assume that E is a non-normable Fréchet space.
As E is non-normable and metrizable, there exists a family of con-
tinuous linear functionals {@.};>1 on E, such that for no sequence of
strictly positive numbers {a;}:s1, 1S {@:fi} 21 equicontinuous ([1],
Proposition 1.7. (b)). Let ¢ be a continuous linear functional on

& whose kernel is éD,ﬁ’”, where D = {0} and D =C if n+#k. Then
n=1

2. ¢udy 1s a separately continuous bilinear form on EX¢ which is
k=1

not jointly continuous. As all tensor product topologies respect com-
plemented subspaces, we get that (E@F)'i(E@F)'.

A Hahn-Banach extension argument applied to the sequence {@:} 1
gives the proof in the general case.

Lemma 2. Every LF-space that 1s not a Fréchet space, has ¢ as a
complemented subspace.

Proof. Let {E;} be a defining sequence of Fréchet subspaces for
E. There is a sequence {x;};>; in E such that x;€E; andx;,,&E;
for all j=1. If F; is the smallest subspace containing {x;}:<;<j, an
inductive argument shows that there are topological complements G;

for F; in E; such that G;;;DG; for all j=1. By construction G=yU G;
j=1
is a subspace of countable codimension of the barrelled space E and
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therefore by the Saxon-Levin-Valdivia Theorem, G is barrelled ([6],
Theorem 15-1-10). Since G is barrelled and is a union of a strictly
increasing sequence of closed subspaces, it has the strict inductive
limit topology ([6], Definition 13-3-14 and Theorem 13-3-15). So
G is complete and therefore closed. As E is barrelled and G a closed
subspace of countable codimension, F= \JF with its largest locally
convex topology, is a complement of G ([6] Theorem 13-3-14). But

F with its largest convex topology is isomorphic to ¢ (cf. [6], Problem
12-1-5).

Lemma 3. Let E and F be LF-spaces, one of them nuclear. Then
EQF is an LF-space and ils sirong dual is isomorphic to E,;@F[;.

Proof. The first assertion follows from the fact that the inductive
tensor product topology respects inductive limits ([5], p.96 and
p- 119, Exercise 22). Nuclearity guarantees that the inductive limit is
strict (cf. [1], Theorem 1. 4).

As E®F and E®F induce the same topology on the Fréchet
subspaces of E®F, and every bounded subset of EQRF is contained
in one of these subspaces, it follows from the Hahn-Banach theorem
that (E®F)' is strongly dense in (EQF)". By the nuclear theorem
and the positive solution of the problem of Topologies for EQF ([4],
Theorem 21.5.8), E'QF’ is strongly dense in (E@F)’ and therefore
also in (EQF)’. Since the strong dual of a nuclear LF-space is
nuclear ([4], Proposition 21.5.1 and Corollary 21.5.5) and (EQF)
is complete (EQ®F is bornological), it will be enough to show that
the strong topology on (EQF)’ induces the injective topology ¢ on
its dense subspace E‘®F. When 4 and B vary over all possible
absolutely convex closed bounded sets in E and F, respectively, the
seminorms

Pyp(®)= sup |£(r)|, EE€(EQF’,

z2e <A®B>
({(A®B)=absolutely closed convex hull of AXB) define the strong
topology on (E®F)’. But

Pas(E @90 = sup 13400 |
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— (Pa®u») (5, $:®9), HhEE, el (1<ISK)

where P,($) =sup|¢(x) | and ¢5(¢) =sup|d() |.
This finishes the proof.

Proof of Theorem.

(i) By Lemmas 1 and 2 there is a continuous seminorm p on EQF
whose restriction to EQ,.F (EQF equipped with the projective topology)
is not continuous. The polar BY of the unit ball B, of this seminorm
is a bounded set in (E®F);EE;®F,§, such that for no absolutely
convex closed bounded sets A and B in E; and Fj respectively,
BYc<A®B). In effect this inclusion and the barrelledness of E and
F would imply, as in the proof of Lemma 3, that the restriction of
p to EQF would be continuous.

(i) By Lemma 3 if E=¢ and F=w we have (¢®w),§5w®¢ as
$s=w and w;=¢. By part (i), this proves part (ii) when E=o.
The rest of the proof follows from the fact that every Fréchet space
without a continuous norm has @ as a complemented subspace ([4],
Theorem 7.2.7).

Remark (a). By Lemma 2, part (ii) of the Theorem applies to
EiQF if E and F are LF-spaces that are not Fréchet.

Remark (b). It can be shown that if E and F are arbitrary locally
convex direct sums of Fréchet spaces equipped with continuous norms,
then as sets E@F =E®F and both completions have the same bounded
sets. In particular this applies when E and F are LF-spaces with
continuous norms and unconditional bases ([2], Lemma 5.43 and
Exercise 5.59). Therefore a positive solution of the Problem of
Topologies under these conditions for EQF implies a positive solution
of the corresponding problem for E@F This applies, for example,
when E and F are LF-spaces with unconditional bases, continuous
norms, and one of them is nuclear.

Remark (¢). A positive solution of the Problem of Topologies is
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useful for deriving some general factorization Theorems in Quantum
Field Theory (cf. [3], Proposition 3.1).
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