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Some Cyclic Group Actions on a Homotopy
Sphere and the Parallelizability of its
Orbit Spaces

By

Jin Ho Kwak*

§1. Introduction

In this paper, we introduce a way to define a free cyclic group
action on a homotopy sphere and examine the stable parallelizability
of its orbit spaces. J. Ewing et al [3] answered the stable paralleli-
zability problem for the classical lens space, that is, the orbit space
of the standard sphere under a linear cyclic group action.

Let wy, wy, ..., w,1 be positive rational numbers. A polynomial
Sz, 225+« o s 2a1) 18 called a weighted homogeneous polynomial of type
(w1, Wyy o« o, Wyyy) if it can be expressed as a linear combination of

monomials
i i i
Z 1Zz 2., « Zni1 n+1
. n+1 . . . . .
for which }]i,/w;=1. This is equivalent to the requirement that
=1
c/wy c/wy c/wy q ¢
f(e Zl, 4 ZZ, ® ooy € zn+1) =ef(z1: Zz, co ey zn+1)

for every complex number ¢.

Throughout this paper, we assume that all weighted homogeneous
polynomials have an isolated critical point at the origin. For example,
the Brieskorn polynomial

a a. a,
f(zl, zZa so 0y zn+1) =21 1+Zz 2+ LI +Zn+1 n+1,

all a;>2, is a weighted homogeneous polynomial of weights w= (a,
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Azy ooy lpi1).

Set 25,=/7(0) NS and consider the Milnor fibering g §**1—
>io——>S" defined by

g(Zh LICH ) zn+l) =f(z1, e ooy Zn+1) / ]‘f(Zh ® ooy ZrH—l) Ia

then each fiber F,=g™'(¢*) is a smooth parallelizable 2n-dimensional
manifold with the homotopy type of a bouquet of n-spheres. We
can obtain §**'—3, from FX[0,1] by identifying FX0 and FX1
by a homeomorphism h: F——F called the characteristic map. Denote
the characteristic polynomial of

he: H(F; C)—H, (F; C)
by

4(t) =determinant (¢, —h,),
where / is the identity map of F. This characteristic map #, and its
characteristic polynomial 4(t) are fundamental topological invariants.
Brieskorn [2] computed 4(¢) for varieties defined by Brieskorn poly-
nomials, and Milnor and Orlik [9] did it for weighted homogeneous

polynomials.
The following theorem answers whether or not the 2zn—1 dimen-
sional manifold };,=771(0) NS**' is a topological sphere.

Theorem ([8], Section. 8). For n>3, the followings are equivalent:
1) X, is a topological sphere.
i) H,,(2.,) =0.
iii)  The intersection pairing H,(F; Z)RQH,(F; Z)——Z has deter-
minant +1.
iv) 4 =4+1.

Furthermore, if ], is a topological sphere, the diffeomorphism
class of >}, is completely determined by the signature of the intersec-
tion pairing
if n is even. If n is odd, };, is

the standard sphere if 4(—1) =41 (mod 8),
the Kervaire sphere if 4(—1) =43 (mod 8).
Let >1,=/7(0) N$™* be a topological sphere, where f is a weighted
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homogeneous polynomial of weight w= (wy, w,, ..., W,1), say w;=u;/v;
in irreducible form for :=1,2,...,n+1, and let p be an odd prime
number relatively prime to each u;. To define a free cyclic group
Z ,~action on },,, choose natural numbers b; such that b;=h/w;=hou;*
(mod p) for some ~A#0 (mod p) and (b;, p) =1 for all i, where (5;, p)
denotes the greatest common divisor of 5; and p. Now, we define a
map T on };, by

b b b,
T<z17 Z2y0eoy zn+1) = (C 1519 C ZZz, ey C i 1Zn+1) 9

where {=¢"/?, Then

f(T(zh ZZ, ey zn+1)> :C;ff(zla ZZ’ ee ey zn+1) .

This is a well-defined free action on ), generating the cyclic group
Z, Denote its orbit space by L(p; w; b). Note that we may assume
that A=1 (mod p), i.e.,, wb;=1 (mod p) for all i by taking a suitable
generator T of Z,.

§2. An Algebraic Characterization of Stable Parallelizability

Define a Z,~action on },,XC by T'(z,7)=(T(2),{y), where {
and T'(z) are the same as above, so that the natural projection from
2. XC to ], is equivariant, that is, it commutes with the Z,-actions.
By taking quotients, one can get the canonical complex line bundle
7 over L(p; w;b). Similarly, one can get ' =7rQr& ... Xy, (b times)
with a Z,-action on },XC given by T'(z,7) =(T(2),{,). It can
be proved easily that

FOr® ... O =X, X C*YTXT,
where
(TXT) (2 (s Ty v v vy i) = (TR, € Tty o o, C 7).

To reduce the question of stable parallelizability of the orbit space
L(piw;ib) to a purely algebraic one, we first describe the tangent
bundle of L(p;w;b).

Theorem 2.1. Ouver L(p; w;b), tPePre(y) is isomorphic to
re (@7 D ... By ™Y,

where © denotes the tangent bundle, ¢ the trivial 1-dimensional real bundle
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over L(p;w;:b), and re the realification of a bundle.

Proof. Let t(.) denote the tangent bundle and v(.) the normal
bundle of the space (.) in C**', then the trivial bundle Y, XC"* is
isomorphic to

T(Dw) B (X)) =t( 5. @ (™) v (f71(0))
over )}, But v($*!) is trivial and grad f is a cross section of
v(f71(0)), so that v(f*(0)) =C-grad f. Define
0: T(Zw) @REBC—__)ZWXC”-H
by
D (v, 1, ) = (2, 0+rz+7 grad f(z)),

where v, denotes a tangent vector at z and R, C represent the trivial
bundles Bx ;,, C XY, respectively. By using { grad f(7T%z) =T (grad
f()), we can see that @ is an equivariant isomorphism from z(2,)
@RAPC with Z,-action given by dT@IP (L) to X, X C*! with Z,-
action given by T'xXT. Therefore, by taking quotients, it is proved.

Remark. In Theorem 2.1, if L(p; w;b) is defined as an orbit space
of a Brieskorn sphere, then we have
t@ePre(y) ~re (rbl@rbz@ - (—Drb”“).
This is the correction of Orlik’s theorem 3 ([12], p. 252).

Recall that the standard lens space L*7!(p) is defined as the orbit
space of $7! by the linear action. Since the principal Z,-bundles

Sl L7 1(p) and Y,——L(p;w;b)
are 2n—1 universal, there are maps
[ L™ (p)——L(p;w;b) and g: L(p; w; b)——L*(p)

such that the induced bundles f*r=y and g*r=y, where 7 is the
canonical bundle over the suitable orbit space. Hence, Theorem 2.1
implies the following:

Lemma 2.2. The space L(p;w;b) is stably parallelizable if and only
if re(y) is stably isomorphic to

re(GN @re DD ... Bre(™Y
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over the standard lens space L*'(p), where 1 represents the canonical bundle
over L*71(p).

Recall that the mod p cohomology ring of the standard lens space
L»1(p) is the tensor product

H* (L (p) s Z) =Aw) ®Z,[v]/ (")
of the exterior algebra 4(x) and the truncated polynomial ring gene-
rated by u, where deg u=1, deg v=2, and B*,(u) =v for the Bockstein
isomorphism

ﬂ*p: HI(LZ"-I([J) ;Zp) -—-——>H2(L2"—1([J) ;ZP)'

Lemma 2.3. If the space L(p;w;b) is stably parallelizable, then
1+02= (1 +b4%) (14047 o (1 +b,u%7)
in Zy,[v]/@.

Proof. By Lemma 2.2 and the hypothesis, the mod p reduction
of the total Pontrjagin class of re(y) is equal to that of

re(;") @re () @ . .. Pre (),
where 7 is the canonical line bundle over L*7!(p). Let & be the
canonical line bundle over CP(n—1), then the induced bundle =*(§)
over L™1(p) is clearly the line bundle y, where =: L*7'(p)—>
CP(n—1) is the natural projection. Note that H*(CP(n—1); Z,) =Z,
[w]/(w"). The Gysin sequence of the principal bundle §'——L*7(p)
—CP(n—1) with Z, coefficients is
— > HNCP(n—1)) = HY (L1 (p)) —HY (CP (n—1))
——%HZ(CP(n“1))"—*>H2(L2”“1(IJ))—>H1(CP(7Z—1)),
in which HZ(CP(n—l))—iHZ(Lz”“l(p)) must be an isomorphism.
By the naturality of Chern classes,
a(r) =a@*(8)) =z*(a1(§)) =% (w) =v.
The first Pontrjagin class P;(re(y)) comes from the identity
1—=Pi(re() =U—a() U+a@))=1-2"
Hence, the total Pontrjagin class of re(y) in mod p is P(re(y)) =1+
Pi(re(p)) =1+¢% Since ¢ (p®v) =c,() +¢,(v) for any line bundles
Uy Yy
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Pi(re(7") = (an(7') 2= (bies (1)) *=b 0%
Therefore, P (re (rb") ) =1+b%% and
1+*=P(re(y))
=Pre(GH@re() D ... Bre(r™™)

=P(re (Tbl) )<P(re (sz)) «esP(re (Tbnﬂ))
=(1+b2% (1 +b2?) -« (1+b,,%%

in Z,[v]/("), by the product formular of the Pontrjagin class.

From theorem 2.1, one can also get the total Pontrjagin and
Stiefel-Whitney classes of the space L(p;w;b).

Corollary 2. 4.
P(L(p;w;ib)) =1+ H 1+,
w(L(piwib)) =1 +w I (1462,

where v is a prefered generator for H*(L(p;w;b); Z), so that the total
Chern class of v is 1+v, and u is its mod 2 reduction.

In [5], KO(L*(p)) is computed. Setting s=re(y) —2, the p-
torsion part of I%(LZ"‘l(p)) is a direct summand of cyclic groups
generated by ¢, 1<i<(p—1)/2, where if n—1=s(p—1)+r, 0<r
p—1, the order of &' is p*** for i<[r/2] and p° for i >[r/2].

Lemma 2.5. If L(p;w;b) is stably parallelizable, then n—1 is less
than p.

Proof. Let L(p;w;b) be stably parallelizable, then re(y) is stably
isomorphic to
re(r") Pre(H @ ... Pre ("
over the standard lens space L™ !(p), which gives
re(y) —2=(re(;') —2) + ... + (re (" —2)

in KO(L”'(p)). Since KO(L™(p)) is abelian, we can assume that
0,<b,<...<b,y. By taking the diffeomorphic copy of L(p;w;b)
under the complex conjugation of the i-th coordinate, if it is needed,
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we may assume that 5, <5, < ... <b, 1 < (p—1)/2. Let n—1=s(p—1)
+7, 0<r<p—1, and set d=re(y) —2, then &', 1<i<(p—1)/2, are
generators of the cyclic subgroups of the p-torsion part of KO (L™ *(p)),
and their orders are p° or p°*'. On the other hand,

(e’ —2) + (re () —2) + ... + (re (") —2)
can be written as a polynomial of 6. So, we can set
G=a, a5+ ... o

with some coefficients a;’s, so that a,,ﬁl-l:l (mod p%), and all other

coefficients are divided by p°. And a, is also the number of b;’s such
that b;=b,,; in b, <b,< ... <b,,1, because

re(rb””) —2=g""1+terms of lower degree of a.
Similarly, for any & with 1<6<(p—1)/2, the number of copies of
re() —2 in

(re(r) —2) + (e (7)) —2) + ... + (re (™ —2)
must be divided by g°. Now, let 8 be the number of copies of
re(y) —2 in

(re (") =2) + (re () =2) + ... + (re (™) ~2),
then ﬂ—f—ﬁI:O{b
the polynomial of ¢ for

.-1=1 (mod p%), where B’ is the coefficient of & in

(te(r) =2) + ... + (re ") —2) —Bre (p) —2).
On the other hand, 8’ is divided by p°, so =1 (mod p°). Since the
total number of 4/s is n+1, B+Aip’=n+1 for some A, so n=s(p—1)
+7+1 (mod p°). The only possibility is s=0, or s=1 and r=0. In
both cases, n—1 is less than p.

The next lemma will be useful to prove the main theorem.

Lemma 2.6([3]). Let & =% be oriented vector bundles over a finite
CW complex X, and suppose that

i) dim(X)<2p+2, p an odd prime, and

i) H"™(X;Z) has no gq-torsion for any q¢<p.
If their Pontrjagin classes P(§), P(y) are equal, then (§—n) — (dim &—
dim %) EKAOI(X) is a 2-torsion element.
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Theorem 2.7. The space L(p;w;b) is stably parallelizable if and
only if
1) n—1 is less than p, and
i) (14655 A +82% oo« (140,95 =14+0% in Z,[0]/ (@), or equiva-
lently
b +b5+ ... +b, =1 (mod p) for j=1,2,...,[(n—1)/2].

Proof. The “only if” part comes from Lemmas 2.3-2.5. Let us
assume i) and ii). Then, the mod p Pontrjagin class of re(y) is equal
to that of re(rbl) Pre (7b2)@...@re (Tb"“). By Lemma 2.6,

re(—r@' @@ ... &) —2n
is a 2-torsion element in I&J)(LZ"‘l(p)). But it is clearly in the image
of

re: R(LP(p) —KO (L ($)),
which does not contain any 2-torsion element. So it must be a zero

element. Therefore, re(y) is stably isomorphic to re (rbl) Pre (rbz)@
@re(rb"“) over L™ '(p), and L(p;w;b) is stably parallelizable.

§3. Some Examples

Milnor and Orlik [9] gave the computation of 4(1) as follows:
Let C*=C— {0} denote the group with the multiplication. To each
monic polynomial

(t—ay) (t—ap) - (t—ap), a;EC,
assign the divisor
divisor ((t—ay) (t—ay)---(t—ay))
=la>+<ay>+ -+ <ay>
as an element of the rational group ring QC*. Denote
A, =divisor (t*—1)
=A>+<E>+ .. 8>,
where §=¢"/* Note that 4,4,= (a, b) A, ;;, where [a,b] denotes their
least common multiple and (a,b) the greatest common divisor. Then,

for a weighted homogeneous polynomial f(z3, 25 ...,2.+1) 0f type
w=(wy, Wy, ..., W,y), the characteristic polynomial 4(¢) =determinant
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(tI,—h,) of the linear transformation h,: H,(F;C)——H,(F;C) is
determined by
divisor 4= (74, —1) (v,7'4,,—1) ... (0174, —1),

where w;=u;/v;, 1=1,2,...,n+1, is the expression in irreducible form.

n+1

To make the computation of 4(1) easy, we cite two Milnor-Orlik’s
theorems.

Theorem 3.1 ([9]). By using A,4,=(a,b) A, 4, divisor 4 can be
expressed as a linear combination of the divisors A,. Let

divisor d=a 4, +ady+ ... +ad,,
and define two numbers k(4) and p(d4) by the formular

a

k(A) :a1+az+ P ~|—as, and p(A) :2a23a3 e 55,
Then, k(4) and p(d) are non-negative integers, and

A1) =p) if k() =0,
4(1) =0 if k(d) 0.

Theorem 3.2 ([9]). Let

f(zl’ ceey zn+1) :fl(zls sy zk) +f2(zk+la e oy zn+1)

where fy and f, are weighted homogeneous polynomials, and let 4, and 4, be
the characteristic polynomials associated to fy and f,. For the weight w=
(Wi« e vy Wiy + o o s Wayn), express wi=u;/v,1=1,2,...,n+1, in an irreduci-
ble form. Suppose that each of the numbers wuy, ...,u, is relatively prime
to each of Upi1y ..., typ1. Then the numbers k(4), po(d) corresponded to
the polynomial f=f,+f, are determined by the integers k;=Fk(d;) and p;=
0(4;) corresponded to f;, j=1,2 according to the formulars

k(d) =kik, and o(d) =pyo,™

The next theorems show how one can construct topological spheres
using the weighted homogeneous polynomial.

Theorem 3.3. Let g(21,25 - .,2m) be a weighted homogeneous poly-
nomial with weight w= (wy, Wy, ..., w,), w;=u;/v; as before, i=1,2,...,
m. Choose any two positive integers w4, and W, such that (W, u;) =1
Sor all i=1,2,..., m;j=1,2. Then a polynomial f defined by
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w w
f(Zb o ooy Zms mtls Zms2) =g(z1, ceoy Zm) +Zmt1 m+1+Zm+z e

is also a weighted homogeneous polynomial of weight (w;), and 3 ,=
SH0) NS**3 is a topological sphere.

Proof. Let k, k(g), ki, k, and p, p(g), 01, p» be numbers defined in
Theorem 3. 1 associated t0 f, g, Zmsr ™% Zmsz ™*2 respectively. Clearly,
divisor Ai:/lwi—l, for i=1,2, so that k;=1—1=0. Hence k=kk,k
(&) =0, and then A(l)zpz(pgklplk(g))kzplk(g)klz1. Therefore, ), is a

topological sphere.

Theorem 3.4 ([11]). Let g(z) be a weighted homogeneous polynomial
in C™ with an isolated critial point at the origin, and let f(z,w) be a
weighted homogeneous polynomial in C*X C* defined by f(z, w) =g(2) +ww,.
Then g72(0) NSt is a topological sphere if and only if f~1(0) NS™*2 is
a topological sphere. (Here, n>3).

We conclude with an example. Let

Sy 20+ 5 20) =f1(zy, v v, 25) +/2 (26 27)

where

J1(z1 20y v vy 29) =20 2T H 220+ 2,
J2(z6, 27) =262

Then, f is a weighted homogeneous polynomial with weight (w;) =
(3,6k—1,2,2,2,1/2,1/2). By Theorem 3.4, >,=/1(0)NS"® is an
11-dimensional topological sphere. First, we are interested in the
diffeomorphic type of this sphere }},. Let F, F}, and F, be the fibre
in the Milnor’s fibering corresponding to the polynomials f, fi, and f,
respectively. Then F, Fy, and F, are diffeomorphic to f(1), fi7'(1),
and f;7'(1) respectively (cf. [8], Lemma 9.4.), and f7'(1) is homotopy
equivalent to the join f;7*(1)=f;7'(1) (cf. [11]). Note that f,7'(1)
has the same homotopy type as §. Hence,

H(F: Z) =Hs(Fi+Fy; Z)
= Zsﬁi(Fl;Z) ®I:Ij(Fz?Z)®p+qZ=I4ﬁp(F1iZ)*ﬁp(Fz?Z)

i+j=

=H,(F; 2) QH\(Fy; Z) =H,(F13 Z).

(See [7] for the 2nd isomorphism). Hence, the signature of the
intersection pairing of F is equal to that of Fi. Also it is well-known
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that f;71(0) NS°=k-g, and the signature of F; is equal to 84, where
g» is a generator of the cyclic group of all 28 7-dimensional homotopy
spheres. Therefore, we get ),,=/"'(0) NS®=k-g; for a generator of
the cyclic group of all 992 11-dimensional homotopy spheres.

To get a cyclic group action on these spheres which induces stably
parallelizable orbit spaces, it is required to choose a prime p and
numbers b’s such that

wlb]_:wzbz: oo e :w7b7 (mod p),
b2+br+ ... +bi=1 (mod p),
b14+b24+ oo +b74:1 (mod p) .

Hence,

(1/3)*+b,+3(1/2)’=—7  (mod p),
(1/3)*4b,'+3(1/2)*=—31  (mod p)

must be satisfied. Accordingly, 120524=0 (mod p), so p=29 or p=
1039.

For example, if p=29, then we can take
(b1, byy o ooy b)) = (10, 1, 15, 15,15, 2, 2),

and then, for k=10+29¢,¢=1,2,...,992, >, represent all 992 11-
dimensional homotopy spheres. Furthermore, on these 992 homotopy
spheres, the cyclic group action defined by the given 5’s is well
defined, and all their orbit spaces are stably parallelizable.

Bibliography

[1] Atiyah, M.F., K-theory, Benjamin Inc., New York, 1967.

[2] Brieskorn, E., Beiespiele zur Differential-Topologie von Singulatitaten, Inventiones Math.,
2 (1966), 1-14.

[3] Ewing, J., S. Moolgavkar, L. Smith and R.S. Stong, Stable parallelizability of lens
spaces, J. of Pure and Applied Algebra, 10 (1977), 177-191.

[4] Hirzebruch, F., Singularities and exotic spheres, Séminaire Bourbaki, 19e année, (1966/67),
no 314.

[5] Kambe, T., The structure of K, -rings of the lens space and their applications, J.
Math. Soc. Japan, 18 (1966), 135-146.

[6] Kervaire M. and J. Milnor, Groups of homotopy spheres I, Annals of Math., 77 (1963),
504-537.

[7] Milnor J., Constructions of universal bundle II, Annals of Math., 63 (1956), 430-436.

[8] —————, Singular points of complex hypersurfaces, Annals of Math., Studies 61,
Princeton University Press, New Jersey, 1968.

[9] ————— and P. Orlik, Isolated singularities defined by weighted homogeneous
polynomials, Topology, 9 (1969), 385-393.



818
[10]
(1]
[12]

JIN Ho KwAk

and J. Stasheff, Characteristic Classes, Annals of Math., Studies 76, Princeton
Univ. Press, New Jersey, 1974.
Oka M., On the homotopy types of hypersurfaces defined by weighted homogeneous
polynomials, Topology, 12 (1973), 19-32.
Orlik P., Smooth homotopy lens spaces, Michigan Math. J., 16 (1969), 245-255.



