Some Cyclic Group Actions on a Homotopy Sphere and the Parallelizability of its Orbit Spaces

By

Jin Ho KWAK*

§ 1. Introduction

In this paper, we introduce a way to define a free cyclic group action on a homotopy sphere and examine the stable parallelizability of its orbit spaces. J. Ewing et al [3] answered the stable parallelizability problem for the classical lens space, that is, the orbit space of the standard sphere under a linear cyclic group action.

Let $w_1, w_2, \ldots, w_{n+1}$ be positive rational numbers. A polynomial $f(z_1, z_2, \ldots, z_{n+1})$ is called a weighted homogeneous polynomial of type $(w_1, w_2, \ldots, w_{n+1})$ if it can be expressed as a linear combination of monomials

$$
z_1^{i_1} z_2^{i_2} \cdots z_{n+1}^{i_{n+1}}
$$

for which $\sum_{j=1}^{n+1} i_j/w_j = 1$. This is equivalent to the requirement that

$$
f(e^{c/w_1}\zeta_1, e^{c/w_2}\zeta_2, \ldots, e^{c/w_{n+1}}\zeta_{n+1}) = e^c f(\zeta_1, \zeta_2, \ldots, \zeta_{n+1})
$$

for every complex number *c.*

Throughout this paper, we assume that all weighted homogeneous polynomials have an isolated critical point at the origin. For example, the Brieskorn polynomial

$$
f(z_1, z_2, \ldots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \ldots + z_{n+1}^{a_{n+1}},
$$

all $a_i \geq 2$, is a weighted homogeneous polynomial of weights $w = (a_1, a_2, \dots, a_n)$

Communicated by N. Shimada, December 24, 1984.

^{*} Department of Mathematics, Kyungpook National University, Taegu 635, Korea. This work is partially supported by KOSEF Grant 1983-84.

 a_{2}, \ldots, a_{n+1} .

Set $\sum_{w} f^{-1}(0) \cap S^{2n+1}$, and consider the Milnor fibering g: $\sum_{w} \longrightarrow S^1$ defined by

$$
g(z_1, \ldots, z_{n+1}) = f(z_1, \ldots, z_{n+1}) / |f(z_1, \ldots, z_{n+1})|,
$$

then each fiber $F_t = g^{-1}(e^{it})$ is a smooth parallelizable $2n$ -dimensional manifold with the homotopy type of a bouquet of n -spheres. We can obtain $S^{2n+1} - \sum_{w}$ from $F \times [0, 1]$ by identifying $F \times 0$ and $F \times 1$ by a homeomorphism $h: F \longrightarrow F$ called the characteristic map. Denote the characteristic polynomial of
 $h_*: H_n(F; C) \longrightarrow H_n(F; C)$

$$
h_*: H_n(F; \mathcal{C}) \longrightarrow H_n(F; \mathcal{C})
$$

by

 $\Delta(t) =$ determinant $(tI_* - h_*)$,

where *I* is the identity map of *F*. This characteristic map h_* and its characteristic polynomial $\Delta(t)$ are fundamental topological invariants. Brieskorn [2] computed $\Delta(t)$ for varieties defined by Brieskorn polynomials, and Milnor and Orlik [9] did it for weighted homogeneous polynomials.

The following theorem answers whether or not the $2n - 1$ dimensional manifold $\sum_{w} = f^{-1}(0) \cap S^{2n+1}$ is a topological sphere.

Theorem ([8], Section. 8). For $n \geq 3$, the followings are equivalent:

- i) \sum_{w} is a topological sphere.
- ii) $H_{n-1}(\sum_{w}u)=0.$
- iii) The intersection pairing $H_n(F; \mathbb{Z}) \otimes H_n(F; \mathbb{Z}) \longrightarrow \mathbb{Z}$ has deter $minant \pm 1$.
- iv) $\Delta(1) = \pm 1$.

Furthermore, if \sum_{w} is a topological sphere, the diffeomorphism class of \sum_{w} is completely determined by the signature of the intersection pairing

 $H_n(F; Z) \otimes H_n(F; Z) \longrightarrow Z$

if *n* is even. If *n* is odd, \sum_{w} is

the standard sphere if $\Delta(-1) = \pm 1 \pmod{8}$, *the Kervaire sphere if* $\Delta(-1) = \pm 3 \pmod{8}$.

Let $\sum_{w} = f^{-1}(0) \cap S^{2n+1}$ be a topological sphere, where f is a weighted

homogeneous polynomial of weight $w = (w_1, w_2, \ldots, w_{n+1})$, say $w_i = u_i/v_i$ in irreducible form for $i=1, 2, \ldots, n+1$, and let p be an odd prime number relatively prime to each *u{ .* To define a free cyclic group \mathbb{Z}_p -action on \sum_{w} , choose natural numbers b_i such that $b_i = h/w_i = hv_iu_i^{-1}$ (mod p) for some $h\neq 0$ (mod p) and $(b_i, p)=1$ for all i, where (b_i, p) denotes the greatest common divisor of b_i and p . Now, we define a map T on \sum_{w} by

$$
T(z_1, z_2, \ldots, z_{n+1}) = (\zeta^{b_1} z_1, \zeta^{b_2} z_2, \ldots, \zeta^{b_{n+1}} z_{n+1}),
$$

where $\zeta = e^{2\pi i/p}$. Then

$$
f(T(z_1, z_2, \ldots, z_{n+1})) = \zeta^h f(z_1, z_2, \ldots, z_{n+1}).
$$

This is a well-defined free action on \sum_{w} generating the cyclic group Z_p . Denote its orbit space by $L(p; w; b)$. Note that we may assume that $h = 1 \pmod{p}$, i. e., $w_i b_i = 1 \pmod{p}$ for all *i* by taking a suitable generator T of \mathbb{Z}_p .

§2. An Algebraic Characterization of Stable Parallelizability

Define a \mathbb{Z}_{p} -action on $\sum_{w} \times C$ by $T' (z, \eta) = (T(z), \zeta \eta)$, where ζ and $T(z)$ are the same as above, so that the natural projection from $\sum_{w} \times C$ to \sum_{w} is equivariant, that is, it commutes with the \mathbb{Z}_{p} -actions. By taking quotients, one can get the canonical complex line bundle *y* over $L(p; w; b)$. Similarly, one can get $\gamma^b = \gamma \otimes \gamma \otimes \ldots \otimes \gamma$, (*b* times) with a \mathbb{Z}_p -action on $\sum_{\omega} \times C$ given by $T' (z, \eta) = (T(z), \zeta^b \eta)$. It can be proved easily that

$$
\gamma^{b_1}\bigoplus \gamma^{b_2}\bigoplus \ldots \bigoplus \gamma^{b_{n+1}}=\sum_{w}\times C^{n+1}/T\times T,
$$

where

$$
(T \times T) (z, (\eta_1, \eta_2, \ldots, \eta_{n+1})) = (T(z), (\zeta^{b_1} \eta_1, \zeta^{b_2} \eta_2, \ldots, \zeta^{b_{n+1}} \eta_{n+1})).
$$

To reduce the question of stable parallelizability of the orbit space $L(p; w; b)$ to a purely algebraic one, we first describe the tangent bundle of $L(p; w; b)$.

Theorem 2.1. Over
$$
L(p; w; b)
$$
, $\tau \oplus \varepsilon \oplus r \varepsilon(\gamma)$ is isomorphic to $r \varepsilon(\gamma^{b_1} \oplus \gamma^{b_2} \oplus \ldots \oplus \gamma^{b_{n+1}})$,

where τ denotes the tangent bundle, ϵ the trivial 1-dimensional real bundle

over $L(p:w:b)$, and re the realification of a bundle.

Proof. Let $\tau(.)$ denote the tangent bundle and $\nu(.)$ the normal bundle of the space (.) in C^{n+1} , then the trivial bundle $\sum_{w} \times C^{n+1}$ is isomorphic to

$$
\tau(\sum_{w} \bigoplus \nu(\sum_{w}) = \tau(\sum_{w} \bigoplus \nu(S^{2n+1}) \bigoplus \nu(f^{-1}(0))
$$

over \sum_{w} . But $\nu(S^{2n+1})$ is trivial and grad f is a cross section of , so that $\nu(f^{-1}(0)) = \mathbf{C} \cdot \text{grad } f$. Define

$$
\varPhi\colon \tau\,(\textstyle\sum_w)\bigoplus R\bigoplus C {\longrightarrow\sum_w\times C^{n+1}}
$$

by

$$
\Phi(v_z,\,r,\,\eta) = (z,\,v + rz + \eta\ \text{grad } f(z)),
$$

where v_z denotes a tangent vector at z and \bm{R}, \bm{C} represent the trivial bundles $\mathbf{R} \times \sum_{\omega} C \times \sum_{\omega}$ respectively. By using ζ grad $f(Tz) = T(\text{grad }$ $f(z)$, we can see that Φ is an equivariant isomorphism from $\tau(\sum_{w}$ \bigoplus **R** \bigoplus C with \mathbb{Z}_p -action given by $dT \bigoplus I \bigoplus (\cdot \zeta)$ to $\sum_{w} \times C^{n+1}$ with \mathbb{Z}_p action given by $T \times T$. Therefore, by taking quotients, it is proved.

Remark. In Theorem 2.1, if $L(p; w; b)$ is defined as an orbit space of a Brieskorn sphere, then we have

$$
\tau \oplus \varepsilon \oplus r \varepsilon(\gamma) \simeq r \varepsilon (\gamma^{b_1} \oplus \gamma^{b_2} \oplus \ldots \oplus \gamma^{b_{n+1}}).
$$

This is the correction of Orlik's theorem 3 ([12], p. 252).

Recall that the standard lens space $L^{2n-1}(p)$ is defined as the orbit space of S^{2n-1} by the linear action. Since the principal \mathbb{Z}_p -bundles

 $S^{2n-1} \longrightarrow L^{2n-1}(p)$ and $\sum_{w} \longrightarrow L(p:w:b)$

are $2n - 1$ universal, there are maps

$$
f: L^{2n-1}(p) \longrightarrow L(p:w:b) \text{ and } g: L(p:w:b) \longrightarrow L^{2n-1}(p)
$$

such that the induced bundles $f^*\gamma = \gamma$ and $g^*\gamma = \gamma$, where γ is the canonical bundle over the suitable orbit space. Hence, Theorem 2. 1 implies the following:

Lemma 2.2. The space $L(p:w:b)$ is stably parallelizable if and only *if* re *(f) is stably isomorphic to*

$$
\operatorname{re}(\gamma^{b_1})\bigoplus \operatorname{re}(\gamma^{b_2})\bigoplus \ldots \bigoplus \operatorname{re}(\gamma^{b_{n+1}})
$$

over the standard lens space $L^{2n-1}(p)$, where γ represents the canonical bundle *over* $L^{2n-1}(p)$.

Recall that the mod *p* cohomology ring of the standard lens space $L^{2n-1}(p)$ is the tensor product

$$
H^*(L^{2n-1}(p): \mathbf{Z}_p) \simeq \Lambda(u) \bigotimes \mathbf{Z}_p[v]/(v^n)
$$

of the exterior algebra $A(u)$ and the truncated polynomial ring generated by *v*, where deg $u = 1$, deg $v = 2$, and $\beta^*_{p}(u) = v$ for the Bockstein isomorphism

$$
\beta^*{}_p \colon H^1(L^{2n-1}(p): \mathbf{Z}_p) \longrightarrow H^2(L^{2n-1}(p): \mathbf{Z}_p).
$$

Lemma 2.3. If the space $L(p:w:b)$ is stably parallelizable, then $1 + v^2 = (1 + b_1^2 v^2) (1 + b_2^2 v^2) \cdots (1 + b_{n+1}^2 v^2)$

in $\mathbb{Z}_p[v]/(v^n)$.

Proof. By Lemma 2. 2 and the hypothesis, the mod *p* reduction of the total Pontrjagin class of $re(\gamma)$ is equal to that of

$$
{\rm re}\,(\gamma^{b_1})\mathop{\oplus}{\rm re}\,(\gamma^{b_2})\mathop{\oplus}\dots\mathop{\oplus}{\rm re}\,(\gamma^{b_{n+1}}),
$$

where γ is the canonical line bundle over $L^{2n-1}(p)$. Let ξ be the canonical line bundle over $CP(n-1)$, then the induced bundle $\pi^*(\xi)$ over $L^{2n-1}(p)$ is clearly the line bundle γ , where $\pi: L^{2n-1}(p) \longrightarrow$ $CP(n-1)$ is the natural projection. Note that $H^*(CP(n-1) : \mathbb{Z}_p) \simeq \mathbb{Z}_p$ $[w]/(w^*)$. The Gysin sequence of the principal bundle $S^1 \longrightarrow L^{2n-1}(p)$ $\longrightarrow CP(n-1)$ with \mathbf{Z}_{p} coefficients is

$$
\longrightarrow H^1(CP(n-1)) \xrightarrow{\pi^*} H^1(L^{2n-1}(p)) \longrightarrow H^0(CP(n-1))
$$

$$
\longrightarrow H^2(CP(n-1)) \xrightarrow{\pi^*} H^2(L^{2n-1}(p)) \longrightarrow H^1(CP(n-1)),
$$

in which $H^2(CP(n-1)) \xrightarrow{\pi^*} H^2(L^{2n-1}(p))$ must be an isomorphism. By the naturality of Chern classes,

$$
c_1(\gamma) = c_1(\pi^*(\xi)) = \pi^*(c_1(\xi)) = \pi^*(w) = v.
$$

The first Pontriagin class $P_1(re(\gamma))$ comes from the identity

 $1-P_1(re(\gamma)) = (1-\epsilon_1(\gamma))(1+\epsilon_1(\gamma)) = 1-v^2.$

Hence, the total Pontriagin class of re(γ) in mod p is $P(re(\gamma)) = 1 +$ $P_1(re(\gamma)) = 1 + v^2$. Since $c_1(\mu \otimes \nu) = c_1(\mu) + c_1(\nu)$ for any line bundles $\mu, \nu,$

812 JIN HO KWAK

$$
P_1(\text{re}(\gamma^{b_j})) = (c_1(\gamma^{b_j}))^2 = (b_jc_1(\gamma))^2 = b_j^2v^2.
$$

 $\text{Therefore, } P\left(\text{re} \left(\gamma^{b_j}\right)\right) = 1 + b_j{}^2 v^2, \text{ and}$

$$
1 + v^{2} = P(\text{re } (\gamma))
$$

= $P(\text{re } (\gamma^{l_{1}}) \oplus \text{re } (\gamma^{b_{2}}) \oplus \dots \oplus \text{re } (\gamma^{b_{n+1}}))$
= $P(\text{re } (\gamma^{b_{1}})) \cdot P(\text{re } (\gamma^{b_{2}})) \cdots P(\text{re } (\gamma^{b_{n+1}}))$
= $(1 + b_{1}^{2}v^{2}) (1 + b_{2}^{2}v^{2}) \cdots (1 + b_{n+1}^{2}v^{2})$

in $\mathbb{Z}_p[v]/(v^n)$, by the product formular of the Pontrjagin class.

From theorem 2. 1, one can also get the total Pontrjagin and Stiefel-Whitney classes of the space $L(p; w; b)$.

Corollary 2. 4.

$$
P(L(p:w:b)) = (1+v^2)^{-1} \prod_{i=1}^{n+1} (1+b_i^2v^2),
$$

$$
w(L(p:w:b)) = (1+u)^{-1} \prod_{i=1}^{n+1} (1+b_iu),
$$

v is a prefered generator for $H^2(L(p \, ; w \, ; b) \, ; \mathbb{Z})$, so that the total *Chern class of* γ *is* $1 + v$ *, and u is its mod 2 reduction.*

In [5], $KO(L^{2n-1}(p))$ is computed. Setting $\bar{\sigma} = \text{re}(\gamma) - 2$, the ptorsion part of $\widetilde{KO}(L^{2n-1}(p))$ is a direct summand of cyclic groups generated by $\bar{\sigma}^i$, $1 \leq i \leq (p-1)/2$, where if $n-1 = s(p-1) + r$, $0 \leq r <$ $p-1$, the order of $\bar{\sigma}^i$ is p^{s+1} for $i \leq [r/2]$ and p^s for $i > [r/2]$.

Lemma 2.5. If $L(p; w; b)$ is stably parallelizable, then $n - 1$ is less *than p.*

Proof. Let $L(p:w:b)$ be stably parallelizable, then $re(\gamma)$ is stably isomorphic to

$$
re(\gamma^{b_1}) \bigoplus re(\gamma^{b_2}) \bigoplus \ldots \bigoplus re(\gamma^{b_{n+1}})
$$

over the standard lens space $L^{2n-1}(p)$, which gives

$$
re(\gamma) - 2 = (re(\gamma^{b_1}) - 2) + \ldots + (re(\gamma^{b_{n+1}}) - 2)
$$

in $\widetilde{KO}(L^{2n-1}(p))$. Since $\widetilde{KO}(L^{2n-1}(p))$ is abelian, we can assume that $b_1 \leq b_2 \leq \ldots \leq b_{n+1}$. By taking the diffeomorphic copy of $L(p; w; b)$ under the complex conjugation of the i -th coordinate, if it is needed,

we may assume that $b_1 \leq b_2 \leq \ldots \leq b_{n+1} \leq (p-1)/2$. Let $n-1 = s(p-1)$ $+r$, $0 \le r \le p-1$, and set $\bar{\sigma} = \text{re}(\gamma) - 2$, then $\bar{\sigma}^i$, $1 \le i \le (p-1) / 2$, are generators of the cyclic subgroups of the p-torsion part of $KO(L^{2n-1}(p))$, and their orders are p^s or p^{s+1} . On the other hand,

$$
(re(\gamma^{b_1})-2)+(re(\gamma^{b_2})-2)+\ldots+(re(\gamma^{b_{n+1}})-2)
$$

can be written as a polynomial of $\bar{\sigma}$. So, we can set

$$
\bar{\sigma}\!=\!\alpha_{\scriptscriptstyle b_{n+1}}\!+\!\alpha_{\scriptscriptstyle b_{n+1}-1}\bar{\sigma}\!+\}\ldots+\alpha_0\bar{\sigma}^{\scriptscriptstyle o_{n+1}}
$$

with some coefficients α_i 's, so that $\alpha_{b_{n+1}-1} = 1 \pmod{p^s}$, and all other coefficients are divided by p^s . And α_0 is also the number of b_j 's such that $b_j = b_{n+1}$ in $b_1 \leq b_2 \leq \ldots \leq b_{n+1}$, because

 $\mathrm{re}(\gamma^{\mathfrak{b}_{n+1}}) - 2 \! = \! \bar{\sigma}^{\mathfrak{b}_{n+1}} + \mathrm{terms}$ of lower degree of $\bar{\sigma}$.

Similarly, for any b with $1 < b \le (p-1)/2$, the number of copies of $re(\gamma^b) - 2$ in

$$
(re(\gamma^{b_1})-2)+(re(\gamma^{b_2})-2)+...+(re(\gamma^{b_{n+1}})-2)
$$

must be divided by p^s . Now, let β be the number of copies of $re(\gamma) - 2$ in

$$
(re(\gamma^{b_1})-2)+(re(\gamma^{b_2})-2)+...+(re(\gamma^{b_{n+1}})-2),
$$

then $\beta + \beta' = \alpha_{b_{n+1}-1} = 1 \pmod{p^s}$, where β' is the coefficient of $\bar{\sigma}$ in the polynomial of $\bar{\sigma}$ for

$$
(re(\gamma^{b_1})-2)+...+(re(\gamma^{b_{n+1}})-2)-\beta(re(\gamma)-2).
$$

On the other hand, β' is divided by p^s , so $\beta = 1 \pmod{p^s}$. Since the total number of b_i 's is $n + 1$, $\beta + h p^s = n + 1$ for some h, so $n = s(p - 1)$ $+r+1$ (mod p^s). The only possibility is $s=0$, or $s=1$ and $r=0$. In both cases, $n-1$ is less than p .

The next lemma will be useful to prove the main theorem.

Lemma 2.6([3]). Let ξ , η be oriented vector bundles over a finite *CW complex X, and suppose that*

- i) dim (X) < 2p + 2, p an odd prime, and
- ii) $H^{4*}(X;\mathbb{Z})$ has no q-torsion for any $q \leq p$.

If their Pontrjagin classes $P(\xi)$, $P(\eta)$ are equal, then $(\xi - \eta) - (\dim \xi - \eta)$ $\dim \eta$) \in KO(X) is a 2-torsion element.

814 **IIN HO KWAK**

Theorem 2.7. The space $L(p:w:b)$ is stably parallelizable if and *only if*

i) $n-1$ is less than p , and

ii) $(1 + b_1^2 v^2) (1 + b_2^2 v^2) \cdots (1 + b_{n+1}^2 v^2) = 1 + v^2 \text{ in } \mathbb{Z}_p[v]/(v^n)$, or $lently$

 $b_1^{2j}+b_2^{2j}+\ldots+b_{n+1}^{2j}=1$ (mod *b*) for $j=1,2,\ldots$, $\lceil (n-1)/2 \rceil$.

Proof. The "only if" part comes from Lemmas 2. 3-2. 5. Let us assume i) and ii). Then, the mod p Pontrjagin class of $re(\gamma)$ is equal to that of $re(\gamma^{b_1}) \bigoplus re(\gamma^{b_2}) \bigoplus \ldots \bigoplus re(\gamma^{b_{n+1}})$. By Lemma 2.6,

 $re(-\gamma \bigoplus \gamma^{b_1} \bigoplus \gamma^{b_2} \bigoplus \ldots \bigoplus \gamma^{b_{n+1}}) - 2n$

is a 2-torsion element in $KO(L^{2n-1}(p))$. But it is clearly in the image of

$$
\mathrm{re} \colon \widetilde{K}(L^{2n-1}(p)) \longrightarrow \widetilde{KO}(L^{2n-1}(p)),
$$

which does not contain any 2-torsion element. So it must be a zero element. Therefore, re (γ) is stably isomorphic to re $(\gamma^{\mathfrak{b}_1})\bigoplus$ re $(\gamma^{\mathfrak{b}_2})\bigoplus\cdots$ \bigoplus re($\gamma^{b_{n+1}}$) over $L^{2n-1}(p)$, and $L(p\,;w\,;b)$ is stably parallelizable.

§3B Some Examples

Milnor and Orlik [9] gave the computation of $\Delta(1)$ as follows: Let $C^* = C - \{0\}$ denote the group with the multiplication. To each monic polynomial

$$
(t-\alpha_1)\ (t-\alpha_2)\ \cdots\ (t-\alpha_k),\ \alpha_i\!\in\!\mathbf{C}^*,
$$

assign the divisor

$$
\begin{aligned} \text{divisor} \quad & \left((t - \alpha_1) \left(t - \alpha_2 \right) \cdots \left(t - \alpha_k \right) \right) \\ &= \langle \alpha_1 \rangle + \langle \alpha_2 \rangle + \cdots + \langle \alpha_k \rangle \end{aligned}
$$

as an element of the rational group ring *QC*.* Denote

$$
A_k = \text{divisor} \, (t^k - 1)
$$

= <1> + \leq + ... + \leq ^{k-1}>,

where $\xi = e^{2\pi i/k}$. Note that $A_aA_b = (a, b) A_{[a, b]}$, where [a, b] denotes their least common multiple and (a, b) the greatest common divisor. Then, for a weighted homogeneous polynomial $f(z_1, z_2, \ldots, z_{n+1})$ of type $w = (w_1, w_2, \ldots, w_{n+1})$, the characteristic polynomial $\Delta(t) =$ determinant

 (tI_*-h_*) of the linear transformation $h_*: H_*(F; C) \longrightarrow H_*(F; C)$ is determined by

divisor
$$
\Delta = (v_1^{-1}A_{u_1} - 1) (v_2^{-1}A_{u_2} - 1) \dots (v_{n+1}^{-1}A_{u_{n+1}} - 1),
$$

where $w_i = u_i/v_i$, $i = 1, 2, ..., n+1$, is the expression in irreducible form.

To make the computation of $\Delta(1)$ easy, we cite two Milnor-Orlik's theorems.

Theorem 3.1 ([9]). By using $A_aA_b = (a, b)A_{[a, b]}$, divisor Δ can be *expressed as a linear combination of the divisors A^r , Let*

divisor $A = a_1 A_1 + a_2 A_2 + \ldots + a_s A_s$

and define two numbers $k(\Delta)$ and $\rho(\Delta)$ by the formular

$$
k(\Delta) = a_1 + a_2 + \ldots + a_s
$$
, and $\rho(\Delta) = 2^{a_2} 3^{a_3} \ldots s^{a_s}$.

Then, $k(\Delta)$ and $p(\Delta)$ are non-negative integers, and

Theorem 3.2 ([9]). *Let*

$$
f(z_1,\ldots,z_{n+1})=f_1(z_1,\ldots,z_k)+f_2(z_{k+1},\ldots,z_{n+1})
$$

where f_1 and f_2 are weighted homogeneous polynomials, and let A_1 and A_2 be *the characteristic polynomials associated to* f_1 *and* f_2 *. For the weight* $w =$ $(w_1, \ldots, w_k, \ldots, w_{n+1}),$ express $w_i = u_i/v_i, i = 1, 2, \ldots, n+1,$ in an irreduci*ble form.* Suppose that each of the numbers u_1, \ldots, u_k is relatively prime *to each of* u_{k+1}, \ldots, u_{n+1} . Then the numbers $k(\Delta)$, $\rho(\Delta)$ corresponded to *the polynomial* $f=f_1+f_2$ are determined by the integers $k_j = k(d_j)$ and $\rho_j =$ $\rho(\Delta_j)$ corresponded to f_j , $j=1, 2$ according to the formulars

$$
k(\Delta) = k_1 k_2
$$
 and $\rho(\Delta) = \rho_1^{k_2} \rho_2^{k_1}$.

The next theorems show how one can construct topological spheres using the weighted homogeneous polynomial.

Theorem 3.3. Let $g(z_1, z_2, \ldots, z_m)$ be a weighted homogeneous poly*nomial with weight* $w = (w_1, w_2, \ldots, w_m)$, $w_i = u_i/v_i$ as before, $i = 1, 2, \ldots$, *Choose any two positive integers* w_{m+1} *and* w_{m+2} *such that* $(w_{m+j}, u_i) = 1$ *for all* $i = 1, 2, \ldots, m$; $j = 1, 2$. *Then a polynomial f defined by*

816 JIN HO KWAK

$$
f(z_1,\ldots,z_m,z_{m+1},z_{m+2})=g(z_1,\ldots,z_m)+z_{m+1}^{w_{m+1}}+z_{m+2}^{w_{m+2}}
$$

is also a weighted homogeneous polynomial of weight (w_i) , and \sum_{w} $f^{-1}(0) \cap S^{2m+3}$ is a topological sphere.

Proof. Let k , $k(g)$, k_1, k_2 and ρ , $\rho(g)$, ρ_1 , ρ_2 be numbers defined in Theorem 3. 1 associated to $f, g, z_{m+1} \xrightarrow{w_{m+1}} z_{m+2} \xrightarrow{w_{m+2}}$ respectively. Clearly, divisor $A_i = A_{\omega_i} - 1$, for $i = 1, 2$, so that $k_i = 1 - 1 = 0$. Hence $k = k_1 k_2 k$ (g) =0, and then $\Delta(1) = \rho = (\rho_g^{k_1} \rho_1^{k(g)})^{k_2} \rho_1^{k(g)k_1} = 1$. Therefore, \sum_{w} is a topological sphere.

Theorem 3.4 ([11]). Let $g(z)$ be a weighted homogeneous polynomial *in* \mathbb{C}^n with an isolated critial point at the origin, and let $f(z, w)$ be a *weighted homogeneous polynomial in* $C^{n} \times C^{2}$ defined by $f(z, w) = g(z) + w_1w_2$ ** Then* $g^{-1}(0) \cap S^{2n-1}$ is a topological sphere if and only if $f^{-1}(0) \cap S^{2n+3}$ is *a topological sphere. (Here,*

We conclude with an example. Let

$$
f(z_1, z_2, \ldots, z_7) = f_1(z_1, \ldots, z_5) + f_2(z_6, z_7),
$$

where

$$
f_1(z_1, z_2, \ldots, z_5) = z_1^{3} + z_2^{6k-1} + z_3^{2} + z_4^{2} + z_5^{2},
$$

$$
f_2(z_6, z_7) = z_6z_7.
$$

Then, f is a weighted homogeneous polynomial with weight (w_i) = (3, 6k – 1, 2, 2, 2, 1/2, 1/2). By Theorem 3. 4, $\sum_{w} f^{-1}(0) \cap S^{13}$ is an 11 -dimensional topological sphere. First, we are interested in the diffeomorphic type of this sphere \sum_{w^*} Let F, F_1 , and F_2 be the fibre in the Milnor's fibering corresponding to the polynomials f_1, f_2 , and f_2 respectively. Then F, F ₁, and F ₂ are diffeomorphic to $f^{-1}(1)$, $f_1^{-1}(1)$, and $f_2^{-1}(1)$ respectively (cf. [8], Lemma 9.4.), and $f^{-1}(1)$ is homotopy equivalent to the join $f_1^{-1}(1) * f_2^{-1}(1)$ (cf. [11]). Note that $f_2^{-1}(1)$ has the same homotopy type as *S¹ .* Hence,

$$
H_6(F; \mathbb{Z}) = H_6(F_1 * F_2; \mathbb{Z})
$$

= $\sum_{i+j=5} \tilde{H}_i(F_1; \mathbb{Z}) \otimes \tilde{H}_j(F_2; \mathbb{Z}) \bigoplus_{p+q=4} \tilde{H}_p(F_1; \mathbb{Z}) * \tilde{H}_p(F_2; \mathbb{Z})$
= $H_4(F_1; \mathbb{Z}) \otimes H_1(F_2; \mathbb{Z}) = H_4(F_1; \mathbb{Z}).$

(See [7] for the 2nd isomorphism). Hence, the signature of the intersection pairing of F is equal to that of F_1 . Also it is well-known

that $f_1^{-1}(0) \cap S^9 = k \cdot g_2$ and the signature of F_1 is equal to 8k, where *g2* is a generator of the cyclic group of all 28 7 -dimensional homotopy spheres. Therefore, we get $\sum_{w} f^{-1}(0) \cap S^{13} = k \cdot g_3$ for a generator of the cyclic group of all 992 11-dimensional homotopy spheres.

To get a cyclic group action on these spheres which induces stably parallelizable orbit spaces, it is required to choose a prime *p* and numbers b_1 's such that

$$
w_1b_1 = w_2b_2 = \dots = w_7b_7 \quad (\text{mod } p),b_1^2 + b_2^2 + \dots + b_7^2 = 1 \quad (\text{mod } p),b_1^4 + b_2^4 + \dots + b_7^4 = 1 \quad (\text{mod } p).
$$

Hence,

$$
(1/3)^{2} + b_{2}^{2} + 3(1/2)^{2} = -7 \quad (\text{mod } p),
$$

$$
(1/3)^{4} + b_{2}^{4} + 3(1/2)^{4} = -31 \quad (\text{mod } p)
$$

must be satisfied. Accordingly, $120524 = 0 \pmod{p}$, so $p = 29$ or $p = 12$ 1039.

For example, if $p = 29$, then we can take

 $(b_1, b_2, \ldots, b_7) = (10, 1, 15, 15, 15, 2, 2),$

and then, for $k = 10 + 29q, q = 1, 2, ..., 992, \sum_{w}$ represent all 992 11dimensional homotopy spheres. Furthermore, on these 992 homotopy spheres, the cyclic group action defined by the given b_i 's is well defined, and all their orbit spaces are stably parallelizable.

ibliography

- [1] Atiyah, M. F., *K-theory,* Benjamin Inc., New York, 1967.
- [2] Brieskorn, E., Beiespiele zur Differential-Topologie von Singulatitaten, *Inventiones Math., 2* (1966), 1-14.
- [3] Ewing, J., S. Moolgavkar, L. Smith and R.S. Stong, Stable parallelizability of lens spaces,/, *of Pure and Applied Algebra,* 10 (1977), 177-191.
- [4] Hirzebruch, F., Singularities and exotic spheres, *Seminaire Bourbaki,* 19e annee, (1966/67), no 314.
- [5] Kambe, T., The structure of K_A -rings of the lens space and their applications, *J. Math. Soc. Japan,* 18 (1966), 135-146.
- [6] Kervaire M. and J. Milnor, Groups of homotopy spheres I, *Annals of Math., 77* (1963), 504-537.
- [7] Milnor J., Constructions of universal bundle II, *Annals of Math.,* 63 (1956), 430-436.
- [8] , *Singular points of complex hypersurfaces,* Annals of Math., Studies 61, Princeton University Press, New Jersey, 1968.
- [9] _______ and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, *Topology,* 9 (1969), 385-393.

818 JIN Ho KWAK

- [10] and J. Stasheff, *Characteristic Classes,* Annals of Math., Studies 76, Princeton Univ. Press, New Jersey, 1974.
- [11] Oka M., On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, *Topology, 12* (1973), 19-32.
- [12] Orlik P., Smooth homotopy lens spaces, *Michigan Math. J.,* 16 (1969), 245-255.