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Harmonic Mappings and Disc Bundles over
Compact Kahler Manifolds

By

Klas DlEDERlCH* and Takeo OHSAWA**

Introduction and Results

Let M be a complex manifold and Q^M a domain. For the
convenience of the reader and in order to avoid any confusion we
repeat the following definitions.

Definition., a) Q is called locally pseudoconvex near z^dQ if
there exists a neighborhood U=U(zQ) and a plurisubharmonic C°°
function p on U^Q such that

Such a function <p is called a local plurisubharmonic exhaustion
function of Q near £05 and 42 is called pseudoconvex, if it is locally
pseudoconvex near all £0E:<%2.

b) Q is called weakly 1 -complete if there is a C°° plurisubhar-
monic function (p on Q with

(a C°° plurisubharmonic exhaustion function) .

The following result is well-known:

Theorem. // M is a Stein manifold and Q^M a domain, then the
following conditions on Q are equivalent'.

i) Q is pseudoconvex,
ii) Q is weakly \-complete,
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iii) Q is I -convex,

iv) Q is holomorphic ally convex,

v) Q is Stein,

For an arbitrary complex manifold M and a domain Q^M one
still has (with the same notation as in the previous theorem) :

Theorem* v) =>iv) =>iii) =^>ii) =^>i) and also iii) =>iv) .

The deep fact that iii) =>iv) was first shown by Grauert in [5]. On
the other hand, it is also known from concrete counterexamples by
H. Grauert [8], [6] and others that in general:

ii)7^>iii) and iv):£>v).

Furthermore, in [3] Diederich and Fornaess constructed a locally
trivial holomorphic disc bundle Q-^X over the Hopf surface X=C2/
(£~2£) which is, of course, pseudoconvex in the corresponding P1-

XX

bundle Q-+X, but, nevertheless, cannot be exhausted by relatively
compact pseudoconvex domains. In particular, Q is not weakly 1-
complete, such that, in general

In other words, even for plurisubharmonic exhaustion functions the
passage from the local to the global situation is non-trivial (as in the
case of the Levi-problem) . Since, however, weakly 1 -complete mani-
folds satisfy several vanishing and finiteness theorems (for a survey
of these results see T. Ohsawa [9]), one would like to know under
which additional assumptions pseudoconvex domains are necessarily
weakly 1 -complete. This article is a contribution towards this question.
We want to show:

Theorem 1. Let X be a compact Kdhler manifold and Q-*X a locally

trivial holomorphic disc bundle. Then Q is weakly 1 -complete.

Remarko Theorem 1 will be generalized in §5, which also contains
an extendibility result for harmonic maps.

The proof is another example for the usefulness of harmonic maps
in complex analysis, the idea being as follows:
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Suppose, there exists a holomorphic section s '. X-+Q, i. e. 7r°,y = id.

Then the function

(1) <p(py.=dist2(p, ho

where dist (• , •) is the Poincare distance in the fiber n~lo7c(J))9 is a
plurisubharmonic C°° exhaustion of Q, as can easily be seen. However,

most bundles Q-+X do not allow holomorphic sections. Therefore, we
try to replace them by harmonic sections, where "harmonic" refers to
a given Kahler metric ds2

x on X and the Kahler metric ds2 induced

on Q by ds\ and the Poincare metric dsl on A. (Notice that because of

the hyperbolicity of A the transition functions of Q^X

<p{j'. U{ n f/;-> Aut A

for a trivializing open covering {f/J of X are locally constant) For

definitions and elementary facts about harmonic mappings we refer

the reader to § 1 and Eells-Sampson [4], Hamilton [7] and Siu [13].

The crucial part of the proof of Theorem 1 is then the following

existence theorem for harmonic sections.

Theorem 2. Let Q->X be as in Theorem I and suppose that the

corresponding Pl -bundle Q->X does not allow a flat section in dQB Then

there exists a harmonic section s : X—>@.

Remark* A section s : X->Q is called flat if its fiber coordinates
over any connected trivializing open set UdX are constant.

In the situation of Theorem 2 a function (p similar to (1) will do

the job, as we will show in § 2 by using an important result of Siu

[13]. For bundles where Q->X has a flat section in dQ Theorem 1

has to be proved by a different method (see § 4) .
For the proof of Theorem 2 we use the method of Eells-Sampson

[4] (see also Hamilton [7]). More precisely, we want to deform

an arbitrary given C°° section SQ : X->Q into a harmonic section s : X->Q

by taking SQ as initial condition for the heat equation

(2) -^ CM) -4* CM)

associated with the generalized Laplace operator A. Two difficulties

arise :

1) The curvature of ds2 need not be negative as is required in
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[4] and [7] and other existence theorems for harmonic maps,

2) Q is not compact.

The first problem can be overcome because s0 is a section and, at least,

the curvature of ds\ is negative.

The second problem is solved by showing that a solution s (/?, f)

of (2), roughly speaking, converges for increasing t either to a harmonic

section of Q-*X or to a flat section of Q^>X. For details see § 3.

The first author learned a lot about harmonic maps during a

visit to the Institute for Advanced Study, Princeton in the academic

year 1982/83 in conversations with J. Eells whom he would like to

thank for his patience in answering many questions. And he also

wants to thank the Institute for its hospitality and support.

§ 1. Harmonic and Pluriharmonic Maps

For the convenience of the reader we will put together in this

section some basic definitions and formulas concerning harmonic and

pluriharmonic maps.

We always suppose that M and N are Kahler manifolds with fixed

Kahler metrics dsu and ds2
N, the metric tensors of which are denoted

by gM and gN. Furthermore,

/: M-»N

is a fixed C°° map.

a) The manifolds (M, dsH) and (TV, ds$i) can be considered as

Riemannian manifolds in the usual way. Then the fundamental form

£(/) °f / is defined as fi(f) =Pdf where V is covariant differentiation
with respect to the connection induced on T*M®f*TN, The map/

is totally geodesic if

(1) £(/)=0

and if is called harmonic if

(2) 4f: -trace 0(/) =0.

b) Since M and N are hermitian manifolds, one also can consider

the tensor PliQ3f, which is a section of T*l'QM®T*0-lM®f*TL'°N9 and

represents one part of j$(f). In local coordinates one has

(3) (F1-03/) & =ffj + rsKfl. (f)f?f; -F^afi

Notice that on Kahler manifolds M one has /TJf>i;=0.
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Definition 1. The map / is called pluriharmonic if Fli03/=00

Remark. For M Kahler, pluriharmonicity obviously does not

depend on the choice of

Simple calculations show that for M Kahler the following formula

holds

(4) (4f) a = 2r {/?/ + rSU (f)fff}} •

In particular, pluriharmonic maps are indeed harmonic.

We will need in § 3 the following two notions of energy which

play a fundamental role in the theory of harmonic maps:

Definition 2. a) For an arbitrary C°° map / : M->N we define

I '• ~ -rH^/l25 where the length of Vf is measured with respect to ds^

and dsN, as the potential energy density of / on M,

b) Let /: Mx[a,b]-*N be a C°°-mapping. Then the kinetic
XN I df

energy density of/ is defined as K=— -±-
2 dt

2

where the length is

measured with respect to

§2. Disc Bundles with Harmonic Sections

In this section we want to show the following part of Theorem 1:

Proposition 1. Let Q-+X be a locally trivial holomorphic disc bundle

over a compact Kahler manifold X. Let Q be equipped with the Kahler

metric ds2 induced by a Kahler metric ds2
x on X and the Poincare-metric

ds2
A on A. Suppose there exists a harmonic section s : (X, ds2x) -»(£, ds2)

(in the sense of (1)). Then Q is weakly I-complete.

The proof of Prop. 1 is based on the following

Key lemma. Let (J, ds2^) be the unit disc with the Poincare metric

and h : (J, &j)->(J5 ds2^) a harmonic map. Define on the bidisc J2cC72

the function
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Then the function <p(z, w} : =<fi(h(z)9 w) is plurisubharmonic on J2.

Proof. A simple calculation using (1) and (4), which can be left to
the reader, shows that the harmonicity of h is equivalent to the following
differential equation

.„ S2h 2h dh dh^
1- |A | 2 dz dz

We want to check that the Levi form of <p is positive semidefinite at

an arbitrary fixed point (£03 ̂ o) £=d2. We choose an automorphism T
of J with T(h(Zo)) =0 and introduce new complex coordinates (£', wr)
on A2 by putting z'=z and w' = T(w). Then we have to show that
the Levi-form of the function

V'(t', w') =v(z'9 T-^0 =

is positive semidefinite at (^Oj T(WQ)).
But, notice that

Furthermore, since T is an isometry with respect to ds%, the map

is also harmonic. Because of T°h(z,o) =0 this shows that returning to
the old notation we only have to estimate the Levi form of <p at points
(£0, "0 with /z(^ 0 )— 0. One has at such points

?>.,= I*. I2+ |Af |2-2
P^=(1-K I2)"2

9*»= ~"*«-

It, therefore, suffices to show that

One obtains easily

(5a) /,= (!- |^0|2)-2{l^o|2(2- \w0^ \h,

But

\w0 1
4- |a;0 1

2(2- |w0 1
2) =2 jw, |2

Hence L^O.
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How does Proposition 1 follow from the key lemma? The decisive
step is contained in the following

Lemma 1. The given harmonic section s : X-*Q is pluriharmonic.

Proof. We adopt a method developed by Y. T. Siu [13] to our
situation.

For this we call g the fundamental tensor of the Kahler metric
ds2 on Q and denote by RQ its curvature tensor. Siu proved the follow-
ing identity, which does not use the harmonicity of s:

(6) dd<g, 5sf\ds> = <RQ, ds/\ds/\dsf\ds>-<g, Fll03jAPo.i3C>

where <C% a^> denotes contraction.
Over a trivializing neighborhood UdX with Q \U=Ux A = {(z, t) l

Z^U, t^A] the section s is of the form

(7) *CO = (*,ACO)

with a map h : U->A. Therefore, on Q | U the identity (6) becomes

where gj is the metric tensor of dsl on Ax and R the corresponding
curvature tensor. Since /2<0 we can now apply identity (4. 3) from
[13] on Q\U and obtain

<R9 dh/\dh/\dh/\dh>/\o)n-2 = ao)n

with a nonnegative function 0-^0 on U.
Therefore, we even have

(8) <RQ9 ds/\dsj\ds/\5s>/\a)n-2 = aa)n

with a nonnegative function a on X.
Finally, we use the following formula (4. 1) of [13], which requires

the harmonicity of si

(9) <g, rli03jA^o.i3C>A^~2=^"
with a function %^0 on X.

After substituting (8) and (9) in (6) and integrating over the
compact manifold X we obtain immediately

a = X = Q on X.

Now Siu also shows in [13], p. 82, that s is pluriharmonic if and
only if X = 0 in (9). This proves the lemma.
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Proof of Proposition 1: Let UdX be a trivializing neighborhood

for Q-^X and h : U->A as above. Since on Q\U=UxA we have
ds2 = ds2x@dsz

A the pluriharmonicity of s implies that also h is plurihar-
monic. If now f : A->U is any holomorphic map, also h°f '. A->A is
(pluri-) harmonic. We define on Q \ U the function

p(*,0 :=#(*(*), 0

with (p as in the key lemma.
Then </>(h°f(Q,t) on Ax A is plurisubharmonic, proving that (p is

plurisubharmonic on Q \ U.

On the other hand, because 0(h(3, t) = <l)(T(h(z)}, T(f>) for Te
Aut A the function (p is well defined on Q and obviously also exhaus-
tive.

§ 3o Existence of Harmonic Sections

In this section we want to prove Theorem 2. As indicated in the
introduction we will construct the desired harmonic section by defor-
ming an arbitrary C°° section s0: X->Q into a harmonic one. For
this purpose, we use the heat equation for the generalized Laplacian
A:

00) ^QM)=MjM)

for a map s : Xx[0, r]—>Q r^>0, according to the original method of
Eells and Sampson [4], As initial conditions we take

(11) s(p,0y*=s0(p).

Since we, finally, are looking for a section, which is harmonic, it is
natural to add to (10) and (11) the side condition

(12) *°s(p,f)=p VA

At first, this might look like an additional complication. But we can
show at first:

Lemma 2, Suppose s is a solution of (10) and (11). Then (12)

is automatically satisfied.

Proof. The map n is obviously totally geodesic. Therefore, it
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follows from (10) that also

(see [4] 9 p. 131) where Ax is the generalized Laplacian for maps from
X to X. As initial condition we obtain from (11)

(13) n°s(p90)=p VA

But, since X is compact the solutions of

are uniquely determined by the initial condition and since $(p, £) =p
is also a solution of (14) with (13) we obtain xos = id : X->Xe

As a next step we want to use the fact that solutions of (10)
always exist for small periods of time (without any curvature assump-
tion) :

Lemma 3. Let for some tQ^0 the C°° map

be given. Then there is an e^>0 and a uniquely determined C°° map

s : Xx[t09tQ+e]-*Q

such J ( B , £ O ) is the given map and (10) is satisfied,

This is the theorem on p. 122 of [7] for X compact

Now we define

/ L t : = s u p { e : 3s : Xx[Q, e]->0 with (10) and (ll)}^oo.

Because of the uniqueness in Lemma 3 we then have a C°°-map

s : Xx[0,^)->£

satisfying (10) and (11).

The following proposition contains the main result of the theory of
Eells and Sampson (for simplicity we use R. S. Hamilton [7] as a
reference) .
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Proposition 2. Suppose that for any family s solving (10) the follow-

ing two a priori-estimates for the potential energy density 1 and the kinetic
energy density K of s hold:

(15) -y^X + CX- IFF/I2

2

(16) 7 dt
Then one has'.

a) The family ( s t = s ( 9 , f ) :£e[0, //)} is uniformly equicontinuous on
X with respect to ds2

x and ds2.
b) If there is a compact set KdQ such that st(X) dK V^^[05^)

then /^ = oo and there exists a sequence ti<^t2<^t3<^-" with lim^ = oo such

that s^i = limsk: X-^Q exists as a C°°-map. Any such s^ is harmonic.

Proof. Part a) follows essentially from the corollary on p. 156,
[7], if one only observes that the curvature conditions are only used
in the proofs of the corollaries on pages 128 and 134, [7] (correspond-
ing to the verifications of (15) and (16)). Part b) is the theorem
m [7] ? p. 1573 the compactness assumption for the target being
replaced by the assumption on K.

Next we have to ask why the a-priori estimates (15) and (16) are
satisfied in our case,,

Lemma 4. The estimates (15) and (16) hold for any family s solving

(10).

Proof. Notice that the energy densities for s split over any
trivializing neighborhood UC.X with s(z)=(z9 h(g)) as follows:

(17) % = % +n ic = Kh

where ^ (resp. ich) is the potential (resp. kinetic) energy density of
h : U-*d. Since the curvature Rj is negative we obtain as on p. 128
resp. 134, [7], the following estimates on £7:

dt
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From this (15) and (16) follow with (17).

Now we can easily give the

Proof of Proposition 1. We know from Lemma 4 that a) and b) of

Prop. 2 hold. Suppose the assumption of b) is not satisfied. Since

X is compact, there is a point p^X and a sequence £i<O2<^3</"j

lim tk = fji such that

3 ]ims(p9tk) = q<=dQ.
fe->00

Notice that on the other hand because of the uniform equicontinuity

of st there is a C>0 such that

diams(X9tk)^C \/k

in the metric ds2. Because of the completeness of ds2 we get immedi-

ately that

s(X,tk)->dQ.

But even more : since

J W ( 1 - I C I 2 ) 2

one obtains over each trivializing neighborhood UdX with s(z, £)

3 Hm h(z, tk) = const.
£-»<*>

Therefore, lim s(*, tk) would be a flat section of Q in 9£, a contradic-
^->oo

tion.

Remark. Not all locally trivial holomorphic disc bundles Q-^X

over a compact Kahler manifold X allow harmonic sections as can

be seen from the following example:

We take as X the elliptic curve A r=C/<l, V:=T> and define Q

as upper half-plane bundle over X given by the transformations

ti >t and ti > J + l.

Then, for any C°°-section s'.X-*Q and any a>0 also 5 + ^ — 1 «= 'sa

is a well-defind section. It is easy to see that, however, I(sa) ^I(s).
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§4, The Case of Flat Sections in the Associated ^-Bundle

The proof of theorem will be complete after we show

Proposition 3. Let Q * >X be as in Thm. 1 . Suppose that the associated

Pl-bundle Q - > X has a flat section in dQ. Then Q is weakly 1 -complete.

The following lemma, which we will prove first, will make it
possible to construct the desired exhaustion function on Q almost as
in the case of domains in Cn,

Lemma 5. Let s : X->Q be a flat section. Then the complex manifold
~ /s

Q : =Q\s(X) has the structure of a locally trivial holomorphic C-bundle
over X with group G= fci - >az + b : \a\=l9a9b^C}.

Proof. Since s is flat, it is clear that @ * >X, 7t = fi/Q9 is a locally
trivial holomorphic C7-bundle with a trivializing covering {C/J of X
such that the transition function U{ fl U, are locally constant. Since

s (X) C 942, which is a C^-smooth real hypersurface in £?, the normal
/^

bundle N^ of s(X) in Q is topologically trivial. Notice that we can

associate a holomorphic line bundle L->X to Q * >X by ignoring
the translation part in the transition function of Q^>X. A small
calculation shows that L is analytically dual to N^ such that L-^X
is also topologically trivial. Since X is Kahlerian, it follows from
Hodge theory, that the group of L-+X can be reduced to rotations
(details can, for instance, be found in [2]). Therefore, the group
of Q->X can be reduced to G.

An easy consequence of Lemma 5 is:

Lemma 6. The manifold Q is weakly I -complete.

Proof. We choose a trivializing cover {C/J of Q-+X with transition
functions

(where t{ is the fiber coordinate over [/,•).
Using again the Kahler structure of X and Hodge theory, one can
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find pluriharmonic functions c{ : C7f->C such that

bij = ci — aijcj

on UtftUj (for details see [2]).
Therefore, the function

0: = l*i-*,-l2

is a well-defined plurisubharmonic exhaustion function on O.

Now we can finish the

Proof of Proposition 3. Notice that the group G consists of isometrics
for the euclidean metric on C.
Therefore, a metric ds\ is induced on each fiber ft"1 (/?),/? e X. We define
for

where distff(ff) is the distance in ft~l7u(q') with respect to
According to Oka, [11], the C°° function

is then plurisubharmonic on Q. Therefore, the function

<p(<iY- =$>(?) +«K?)
is the desired plurisubharmonic exhaustion function on £?, because
near oo the function <p grows in local coordinates like the square of
the distance from J = 0.

Remark, This argument also shows, that any locally Stein domain
Dc<0 has a continuous plurisubharmonic exhaustion function.

§ 5. Some Supplements

Using the main result of [10] we can extend Theorem 1 to the
following

Theorem 3. Let X be a compact complex manifold which is bimero-
morphically equivalent to a compact Kdhler manifold. Then any locally
trivial holomorphic disc bundle Q - >X is weakly l-complete.
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We give a brief sketch of the

Proof. There is a compact Kahler manifold X' with a proper
holomorphic modification map

f:X' >X

The critical set of / has codimension 2 in X. We lift Q >X and
obtain

gl V
Q-^X

Qr resp. Q are again the associated J^-bimdles. Notice that one has

a) Q—L-*x has a flat section in d(2 if and only if Q'-^-^X' has
a flat section in dQ' (trivial).

b) Q - >x has a pluriharmonic section (in the sense of Def. 1)
if and only if Q - >X' has a pluriharmonic section. This is a con-
sequence of the theorem in [10].
The rest of the proof is left to the reader.

In [10] the proof of the Proposition 2 was promised to be given
in this paper since it is another application of our key lemma. We
want to show the following extendibility result for harmonic maps:

Proposition 4. Let h : A\ {0} — > (J5 ds%) be a harmonic map and
suppose that A(J\{0}) is contained in a compact set Kd.A. Then h
has a harmonic extension n: A—>A.

Proof. We use all notations of §2. It is well-known that the
(potential) energy density of h can be written as

where lengths are measured with respect to ds%. For any
we choose Tz^Autd with T x ( h ( z ) ) =0. Then we get by applying
(5a) to the harmonic map Tz°h the following inequality

A) (<) = T
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We choose a disc A^A with KdAQ and integrate (18) in w over AQ:

\ l9(z,w)dvw^ci(K)(&
JAQ

with c>0. Another integration over J' (:=J\{0}) yields

(18)

Since <p is bounded and plurisubharmonic on A'xAQ it extends to a
bounded plurisubharmonic function on A x J0. Therefore, according to
Bedford-Taylor [1] the right side of (18) finite, which shows that h
has finite energy on A1 '. Hence h extends to a harmonic map from
A to A according to a result of Sacks and Uhlenbeck [12].
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