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§ 0. Introduction

Many authors have investigated about null-solutions of character-
istic Cauchy problems. When the coefficients are real-analytic, many

systematic results have been obtained. When the coefficients are only

C°°, however, few results are known. In this paper, as one of the

cases when we can get well-parametrized null-solutions, we consider

Goursat problems on Rn+l(n^l).

To give more explanation, we introduce some notations as follows;

(£, x,y) = (£, x,yi,..., yn~i) are variables in Un+1,

dt = d/dt, Dt = ~idt etc, Z)J = Z)"|... Z)"*~J where

a — (ai, ' •' 3 an-i) is a multi-index,

for a polynomial p(t, x,y; r, f, 77) of (r, f, 57) with C°° (J2"+1) -coeffi-

cients, we denote the homogeneous part of degree h by ph(t, x,y; r, f, 57).

For a differential operator P =p (t, x, y\ Dt, Dx, Dy) of order m

and an integer r such that 0<V<7?2, consider the following Goursat

problem'.

Pu =/(*, x, y) on Q = [0, T] X Rn (7>0),

(G. P.) dtU\t=o=gj(x,y) on Rn (0^j<m—r),

dlu\x=o = hk(t,y} on QQ = [0, T] XRn~ l (0;^A;<Y),

where f, g^ hk are given C°°-functions and satisfy the compatibility-
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condition:

(C) 3Ja(0,jO=%(0,jO on JB-1 (Q

For simplicity, we assume all the coefficients of P belong to
= {/<EC~CRn+1); 3J9J3J/ is bounded for any (/,£,«)}. In the case of
constant coefficients, Y, Hasegawa [1], T. Nishitani [5] have investi-
gated the C°°-well-posedness of Goursat problems. Following them,
we assume that the operator P has the following structure throughout
this paper,,

P= l ^ (X x>y\ Dx, Dy)Drr~j, where ord. Cj^
j=Q

(O^j'^Sm — r) and cQ>r(t9 x9 y\ 1, 0) =1.

Under this assumption, T0 Nishitani [5] found a necessary and
sufficient condition for C°°-well-posedness in the case of constant
coefficients. His condition is the following.

( There exists a positive constant e such that the polynomial
P(T> <?3 if) is hyperbolic with respect to (V, c, rf) =(1, d, 0)
for every d with 0< \d\ ^e,

This condition implies the following two conditions.

(i) pmfa ?? 3?) is divisible by c0tr(£, rf) , that is, there exists a poly-
nomial #m_r(V5 f, 37) such that />w(r, f, 57) =%r(?5 ^)^-r(^ f, fl).
Further, c0ir is hyperbolic with respect to (f, 57) = (1, 0) and
qm_r is hyperbolic with respect to (r, f, r/) =(1, 0, 0).

1 (ii) pm-i(*9£9y)-c0ir-i(£9y)qm-r(T9$,ii) is divisible by £0.r(f, 7).

Taking these results into account, we want to know what kind of
conditions should be imposed in the case of variable coefficients.

§ lo Statement of Results

We set the following assumption.

'pm(t,x9MT9£97fi=c0ir(t9x9y9£,ifiqm-r(t9 x9 y\ r, f, rf), where

(i) the equation qm_r (t, x9 y\ r, f , rf) = 0 with respect to T has

I only real distinct roots for any (t9 x9y; f, 57) e-Ox (U"\{0})5

(ii) either n = l or the equation C0ir(t9x9jr9 £9if) =Q with re-

spect to ? has only real distinct roots for any (^ ^, y\ irj) e
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Definition 1. 1. 1) Put Z't= {( t , 'x, y; T, f , TJ) efl X (Rn+l\ {0} ) ; c0if.

qm-r = 0}.
2) For a positive number M9 put

=
°'W n; \y~yQ\ ^M(*-*0),*^0} (if *0^0),

Theorem 1. Assume (A-l)

'On-i(P-qm-.r(t, x, y; Dt, Dx, Dy) <>c0tr(t9 x, y\ DX9 Z>,)) =0 on
£'2, where ffm-i(Q) denotes the principal symbol of Q as an
operator of order m — l and o denotes the composition of two

k operators,

Then^ for any /£= C°° (Q), any gj e C°° (Rn) (0 ̂ j<^m —• r) and any hk e C°° (fi0)
(O^A:<r) r«;z7A (C), there exists a unique solution u^C°°(Q} of (G0P0)°
Further, there exists a positive constant M such that for any (t0, xQ,yo) GE-0,
the set F (t09 x0, yQ) is a dependence domain of (tQ, x0, y0), that is, if f= 0

on f ( t Q 9 ^05^0)5 & = 0 °n ^(^o?
 XQ, JVo) fl {^^O} (Q^j<^m— r) fl^rf hk = 0

on F (t^ x0? jv0) n {# = 0} (0;S=A;<y)5 fA^n w = 0 on

If the conclusion of the theorem is satisfied, we say that the Goursat
problem is C°° -well- posed with good dependence domains. This conception
make it easy to get necessary conditions, like the conception of the
existence of a finite propagation speed in the non-characteristic
Cauchy problemsB (Gf. T. Nishitani [6].)

Remark 1.2. (i) If r = 19 this theorem has been essentially proved
by Y_ Hasegawa ([!]).
(ii) If n = l, then 1^ — 0? hence (A-2) is satisfied.

Theorem 2, Assume (A-l) and

ffa«-nco.r} =0 on £'29 where {, } denotes the Poisson bracket with
(A.— 6) \

(respect to (t9 X9y9 r, f, TJ) .

If the Goursat problem is C°° -well-posed with good dependence domains,

then (A-2) is satisfied,

Remark 1.3. Under the condition (A-3), the condition (A-2) is
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equivalent to

CA-2V lPSm-l = ® on ^' wnere Pm-i denotes the subprincipal symbol
\ f r%of P.

It is natural to ask what kind of conditions on lower order terms

are necessary, if (A-3) is not satisfied. As to this question, the

author believes that without any conditions on lower order terms, the

Goursat problem is C°°-well-posed with good dependence domains, if

(A-l) and the following (A-4) is satisfied.

(A-4) {qm_n c0>r] ^0 on 2'2.

We can prove, however, only the following.

Theorem 3. Assume m = n=2, r=\ and that (A-l) is satisfied.
Further, assume (A-4) and

(A-5) qm_r = ql(t,x,y,T,^rf) is independent of ? .

Then, the Goursat problem is C°°- well- posed with good dependence domains.

Example 1.4. Consider P = dtdx — x dxay-}- (lower order terms) on

jR3. The Goursat problem for P is C°°-well-posed with good depen-

dence domains for any lower order terms.

§ 2. Proof of Theorem 1

The idea of our proof is the same as that of Hasegawa's ([!]).
By the assumption of (A-l), the following Cauchy problem is

C°°-well-posed with a finite propagation speed.

9y'9DS9Dy)v = w(x9jf) on R*9

= 0*0 on fl-1 (0^

Solving suitable equations of this type, we can determine dj
tult=0

(j^m — r} uniquely from (G. P.), hence we may assume gj(x, jO =0

(0^/<m — r) and f9hk (0^£<r) are flat at ^ = 0, that is, all the

derivatives vanish at £ = 0. In this case, the solution u of (G. P.) is

also flat at J = 0.
Let Q, be an arbitrary differential operator whose principal symbol

is qm^r and put C0(£0) =^0(^0? %, y\ Dx, Dy}. To avoid ambiguity, we fix
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some terminologies.

Definition 2. 1. 1) The set FdO (resp. ^cl?") is called a uniqueness

domain of the Gauchy problem for Q (resp. C0(f0)) , if u^C°°(Rn+1*)
(resp. v^C°°(Rn)) satisfies Qu = Q on F and 3{MU=0 = 0 on

-r) (resp. CoW^O on 7- and dk
xvlx=0 = Q on rn

? then w = 0 on F (resp. y = 0 on 7-).
2) A dependence domain of (£0, #0, Jo) (resp. (^03 jy0)) of the

Cauchy problem for Q (resp. C0(^0)) is a uniqueness domain including

(^o, *o3 Jo) (resp. (*0,

Let M and TQ be positive numbers such that T0^2T. Put

r f={(*5 j)6E,Rw ; |j;|^Af(r0-0(2A/r0- *|), |*|^Af(r0-0} for fe
[0, T]. The following lemma is easy, hence the proof is omitted.

Lemma 2. 20 For sufficiently large M, the set rt (resp. Ft = (_) {t}0 ° Q£tgtQ

X^ f ) u a uniqueness domain of the Cauchy problem for C0(£o) (resp. Q) for

any ^0^[0, T\.

The following energy inequalities are the main points of the proof.
(See Lemma 6. 1 and 6. 2 in [1].)

Lemma 2. 3. For any non-negative integers p, q, s, there exists a
constant C such that the following two inequalities hold.

/O 1 \ p + m-r-l
( '

j=ojo

for any y e C+ (/J"+1) = {&eC0
03(JR'>+1); v = Q on

(2-2) S P*~'
j=0

Z
j=0

sz;i
j=0 fe=0

|^| ^M(TQ-f)),for any

Here, \\\ • |||Sif denotes the Sobolev norm of order s on the domain ?t and
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II e \\s,t,Xl denotes the Sobolev norm of order s on the domain ftfl [x = xj.

Proof. Let ||| • |||s (resp. || • ||s) denote the Sobolev norm of order
s on R^j) (resp. J?*"1).

(1) It is well-known that there holds the following energy in-
equality for (£ on an arbitrary compact set K.

P+ zy=o

J = Q J Q

for any z>eC+(JSK+1) with suppvdK.

Since Ft is a uniqueness domain of the Cauchy problem for Q, the
inequality (2-1) follows from this.

(2) It is also well-known that there holds the following energy
inequality for C0(0-

j=Q k

, for any

If Xi^Q (resp. %i^0)3 then ft n {O^^^^J (resp. ftH {^i^^^O}) is a
uniqueness domain of the Cauchy problem for C0(0> Therefore, the
following holds.

Jb=0

We can easily obtain

{a(*, 0,
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j=o

Further, we have

7=0 I JO

Thus, we get (2-2). D

Corollary 2. 4. For any non-negative integers p and s, there exists a
constant C such that the following inequality holds.

p+m-r-l s+m-2-j

E 2
j=0 k=0

S Z I I S W , 0, •) lls-Hn-2-j-M.o}
k=Q j=0

Lemma 2.5. ^jwm^ (A-l) and (A-2). Then, the operator P can
be decomposed as follows.

Here, Q is a differential operator with the principal symbol qm-r and R is
a differential operator whose total order is less than m — l and whose order
with respect to dt is less than m — r.

Proof. Put r(f , x, y\ r, f, ^ =am_l(P-qm_r(t, x, y, Dt9 Dn D,) o
can write

r(t, x,y\ r, f, 57) =c0ir_l(t, x,y\ f , rj)qm-r(t, x,y; r, f,

where the degree of rf with respect to r is less than m~r. By the
assumption (A-2), we have ^ = 0 on 2'2. Let T = Tj(t, x, y\ f, ij)

(l^j^m — r) be the roots of gOT_r = 0. We have d(t, x, y; Tj(t, x, y;

f, 7), f, 7)=0 d^j^m-r) if c0.ra, ^ j;; f, 17) -0. Put rf(f, ^ j;;

^5 f, ^)=mS dj(t, x, y\ f, 7)r"-r-1-^. Since ry (l^j^m-r) are
j=0
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distinct for (?, 77) :£ (0, 0), we have dj(t, x, y\ ?, tf) = 0 (0^j<m —r)

if cQir(t, x, y\ ?, 57) =0 and (?, 57)^(0, 0). Since £0,r = 0 nas only
real distinct roots f for 57^0, there follows that dj (Q^j<^m — r) are

divisible by c0ir. Put d = cQirqm-r^i. Put Q,= (?m-r + ?m-r-i) (^ ^? J5
Dh Dx, Dy) and R = P — Q,°C0(0. Then, the operator ^ has the
desired properties. Q

Now, we shall construct the solution of (G. P.). Solving Cauchy

problems for Q and C0(03 we can determine ut (/^O) by the following
iteration.

a°C0(OHo=/(*,*,.)0 on fl,

3/(Co (0«o) 11.0 = 0 on

luolx=<1 = hk(t,y) on X

'Q,oC0(0«n-i=--Raj on £,

3/(C0(Oai+i)i«-o = 0 on /Z" (0^j<m-r),

By Corollary 2. 4, there holds

(2-3) S{|||3//Z«a,-, Olll.-y.,

;=OjO

+ "Z P+mE~l\\dtd*u(t, 0, 0 ll.+«-2-y-*.«.o} •
fc=0 ;=0

00

Therefore, the infinite series £X converges in C°°(Q} and gives a
1=0

solution u of (G. P.). The uniqueness of the solution also follows

from (2-3). Since for sufficiently large M, the set ^1(^0? ^o* Jo) (resp.

AC-^ojJo)) is a dependence domain of (£0, ^0,^0) (resp. (^o, Jo)) of
the Cauchy problem for Q^ (resp. C 0(^o)) j it follows from the construc-

tion of solutions that F'(^0, x0, J0) is a dependence domain of (£0, x0,

jy0) of the Goursat problem for P.

§ 3. Proof of Theorem 2

For a positive constant 5, consider the following coordinate trans-

formation: s = t±dx, z = x, w=y. Let P± be the transformed operator

from P, that is, P±=p(s=F3z, z, w\ Ds, D2±dDs, DJ. From the
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assumption that the Goursat problem is C°°-well-posed with good

dependence domains, it follows that for any (£0, x^ jy0) e£?, there

exist a neighborhood U of (£05 #o; J^o) an(i constants N, C such that

sup |3/3*3?PM|

for any u^C^(U) and any (£l5 #l5 jh) e U.

From this inequality, there holds the following inequality for sufficiently

small positive number d: For any (t0, #0, jy0) with =b*0>05 there exist

a neighborhood t/~ of (j0, £o, WQ) = (t0±dxQ9 XQ, jy0) and constants TV,

C, Af~ such that

!^C 2 sup
j + fc + lc t l^ iV r~ (Sj. JZj.

for any u~^C™(U~) and any (% £l3 w

where r- (jl9 ^, a;1) = {(j, ^5 w); (k-^i!24- I w-wl \ 2}^M~ (s1-s)} .

Now, put q~-r(s, z, w\ ff, C, <0)=qm-r(s±8z, Z9 w\ o, t>±da, w) and

Co,r(s, z, w\ ff, C, <») =cQif(s±dz9 Z9 vo\ C±5a, CM). Then, we have

P±.n(s9 Z9 w\ a, C, <o)=pm(s±8z> z, w, 0, C±3(j, (w)=^_ r(j , ^ n;; a,

C, ^)^r(^, ^, ^; 0, C, <w). By the assumption (A-3) and the in-
variance of the Poisson bracket with respect to coordinate transfor-

mations, we have {g~_,, ^r}"=0 on Z'2~ = { ( s , Z, w\ a, C, <o) ; g^_r =
%r~0}, where {, } ~ is the Poisson bracket with respect to (s, z, w,

o, C, <N). Since we can apply Theorem 2 of Ivrii-Petkov [2], we have

pm-i = 0 on £'2~, where /?~s_! is the subprincipal symbol of P~. By the

invariance of the subprincipal symbol, we have (A-2) '. It is an easy

calculation to show that (A-2) ' is equivalent to (A-2) under the

assumption (A-3) .

§ 4. Proof of Theorem 3

Assume that n = m = 2 and p2=(T~^(t-> x, jO^X? — b(t, x, y}rf),
where fr — ay, ^ — br]}^ on £'2= [ ( t , x, y\ r, f, 77) ^QxR3; T = a%

£ = br], 77^0}. Note that 2'2 is the critical set of p2, that is, I>'2 =

{(t, x, y\ r, f, ^^QxR3; p2 = 0, t7(t,x,y,T,t,r»p2 = Q, ^^0}. As shown
in §2, we can reduce the Goursat problem to the case where £0(^3 jO

= 0 and f, A0 are flat at ^ = 0. Similarly, by the assumption (A-5),

we can further reduce to the case where gQ = hQ = 0 and f is flat on

{£ = 0 or x = Q}. Thus, we have only to solve the folio wihg reduced
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problem.

(R.G.P.) =

°n

u± \t =0 = 0 on R2,
_J_ |£_Q — u on "*oj

where/±eC°°(jR3) and/±=0 on S±=[(t, x9 j>); ̂ 0, or
Consider the coordinate transformation; s = t±x, z = x, w=y. Let

P± be the transformed operator from P. The principal symbol /?±>2

= ±(0 — aco) (ffztCT&w) is effectively hyperbolic on the critical set of /?±iZ.
Therefore, by Theorem 2 of V. Ya. Ivrii [3] (cf. N, Iwasaki [4]),
we can solve the following Cauchy problem for P±;

: — f± (*9 Z, ^) — f± (^T^5 ̂ , w) on jR3,

Note that/^=0 on 5'±={(j, ^, w); 5=F^^O, ±<e^0}0 By the well-
known sweep-out method, we can prove that

is a dependence domain of (s0, ZQ, WQ) of the Gauchy problem for P±.
Hence, the solution M± of (G. P.)± satisfies u± = Q on »S±. This means
that u±(t9 x,y)=u±(t±x, x, y) =Q on S±. Thus, we can solve (R. G,
P.)±. We can also prove the existence of good dependence domains
from the fact that F± (SQ, £05 z^o) is a dependence domain of (j0, ̂ o? ^o)
of the Gauchy problem for P±.
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