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On the C~-well-posedness of Goursat Problems
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By

Takeshi MANDAT*

§0. Introduction

Many authors have investigated about null-solutions of character-
istic Cauchy problems. When the coefficients are real-analytic, many
systematic results have been obtained. When the coeflicients are only
C=, however, few results are known. In this paper, as one of the
cases when we can get well-parametrized null-solutions, we consider
Goursat problems on R*"*'(n=1).

To give more explanation, we introduce some notations as follows;
(¢, x, ) = (&, %, Y1, - ., Yu_1) are variables in R"*,

0,=9/dt, D;= —id, etc, D5=Dj.. .. Dy where

-1
a=(ay,...,a, ;) is a multi-index,

for a polynomial p(¢, x, y;7, &, 7) of (r,&,7) with C°(R") -coeffi-
cients, we denote the homogeneous part of degree & by p,(t, x, y; 7, &, 7).

For a differential operator P=p(t, x, y; D,, D,, D,) of order m
and an integer 7 such that 0<r<{m, consider the following Goursat
problem:

Pu=f(t,x,y) on =[0, TIXR* (T>0),
(G.P) Oupo=gj(x,y) on R* (0=j<m—r),
*uyco=hy(t, ) on 2,=[0,T]xX R (0=k<r),

where f, g, h, are given C~-functions and satisfy the compatibility-
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condition:

(®) 0:g;(0, 9) =0}, (0,9) on R*' (0=j<m—r, 0=k<r).

For simplicity, we assume all the coefficients of P belong to #>(R")
= {feC~(R""); 0{0%0%f is bounded for any (j,k,a)}. In the case of
constant coeflicients, Y. Hasegawa [1], T. Nishitani [5] have investi-
gated the C~-well-posedness of Goursat problems. Following them,

we assume that the operator P has the following structure throughout
this paper.

P= Ercj (t, x, y; D,, D,) Dy~"~%, where ord. ¢;=r+j
=0

(0=j=m—r) and c,,(t, %, y;1,0) =1.

Under this assumption, T. Nishitani [5] found a necessary and
sufficient condition for C=-well-posedness in the case of constant
coefficients. His condition is the following.

There exists a positive constant ¢ such that the polynomial
p(r, & 1) is hyperbolic with respect to (zr, § 7)) =(1, 9, 0)
for every 8 with 0< |6] <e.

This condition implies the following two conditions.

nomial ¢,_,(z, & 7) such that p,(z, & 9) =co, (& 9) gu-, (7, &, 7).

Further, ¢,, is hyperbolic with respect to (&, ») =(l, 0) and
1 Gm-. 18 hyperbolic with respect to (z, &, n) =(1, 0, 0).

(1) pm-1(z, & 7)) —co.,-1(&, D) gm—r (7, &, 1) is divisible by ¢, (&, 7).

Taking these results into account, we want to know what kind of
conditions should be imposed in the case of variable coefficients.

[ (1) pa(z, & m) is divisible by ¢, ,(§, 7), that is, there exists a poly-

§1. Statement of Results

We set the following assumption.

Dty %, 957, 6, 1) =Co,, (8, %, 93 & D) qm—r (&, %, 95 T, & 7), where
(i) the equation ¢,_,(t, x, ;7, &, 1) =0 with respect to = has
only real distinct roots for any (¢, x,y; &, 7) €2X (£\{0}),
(ii) either n=1 or the equation ¢,,(t, x,; §,7) =0 with re-
spect to & has only real distinct roots for any (¢, x, ;%) €
2x (R~1\{0}).

(A-D)
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Definition 1.1. 1) Put Z;={(, %, »; 1, £ 3) €2 X (B"\{0}); ¢,
=qm—r=O}-

2) For a positive number M, put
Iy (to, %1, p) = {(t, %, 9) €25 (|x— x| 24 |y — 0| D= M (G — 1)},
Ty, yo) = | {0V ER |y =yl M (xy—2), 220} (if %20),

2R T (x,) €RY |y — 0l SM(x—x), xS0} (i %=0),

I’ (to, %0, p0) = U {1 (o, x1, 31); (%1, y0) €173 (%0, 30) } .

Theorem 1. Assume (A-1) and

o'm—l(P_QM—r(t9 Xy Vs Dt’ D,, Dy) 060_,(t, Xy Vs Dm Dy)) =0 on

(A-2) 25, where o, _3(Q) denotes the principal symbol of Q as an
operator of order m—1 and o denotes the composition of two
operators.

Then, for any fEC=(2), any g;€C>(R") (0=j<m—r) and any h,eC>(2y)
(0=k<r) with (C), there exists a unique solution u€C=(2) of (G.P.).
Further, there exists a positive constant M such that for any (fo, xo, yo) E2,
the set I'(ty, xo, 90) is a dependence domain of (4, %o, o), that is, if f=0
on I' (4, %o, 0), =0 on I'(ty, xo y0) N {t=0} (0=j<m—r) and hy=0
on L' (8, x5, po) N {x=0} (0=k<r), then u=0 on I (ty, x5, o).

If the conclusion of the theorem is satisfied, we say that the Goursat
problem is C=-well-posed with good dependence domains. This conception
make it easy to get necessary conditions, like the conception of the
existence of a finite propagation speed in the non-characteristic
Cauchy problems. (Cf. T. Nishitani [6].)

Remark 1.2. (i) If r=1, this theorem has been essentially proved
by Y. Hasegawa ([1]).

(i) If n=1, then 2,=¢, hence (A-2) is satisfied.

Theorem 2. Assume (A-1) and

(A-%) {{qm_” o} =0 on 23, where {,} denotes the Poisson bracket with
respect to (t,%,9;7, &, 7).

If the Goursat problem is C<-well-posed with good dependence domains,
then (A-2) is satisfied.

Remark 1.3. Under the condition (A-3), the condition (A-2) is



846 TAKESHI MANDAI

equivalent to

(A-2) {pi,._lzo on X, where p5,_; denotes the subprincipal symbol
of P

It is natural to ask what kind of conditions on lower order terms
are necessary, if (A-3) is not satisfied. As to this question, the
author believes that without any conditions on lower order terms, the
Goursat problem is C~-well-posed with good dependence domains, if
(A-1) and the following (A-4) is satisfied.

(A_‘l') {qm—n CO.r} #0 on Z’;-

We can prove, however, only the following.

Theorem 3. Assume m=n=2, r=1 and that (A-1) is satisfied.
Further, assume (A-4) and

(A-5) Gy =q:1(t, %, 937, &, ) is independent of &.
Then, the Goursat problem is C~-well-posed with good dependence domains.

Example 1.4. Consider P=0,0,—x0d,0,+ (lower order terms) on
R?®. The Goursat problem for P is C~-well-posed with good depen-
dence domains for any lower order terms.

§2. Proof of Theorem 1

The idea of our proof is the same as that of Hasegawa’s ([1]).
By the assumption of (A-1), the following Cauchy problem is
C~-well-posed with a finite propagation speed.

{60(0, x,9; D,, D))v=w(x,y) on R"
0vi0=03(p) on R (0=k<r).

Solving suitable equations of this type, we can determine 0u;_,
(j=m—r) uniquely from (G.P.), hence we may assume g;(x, ) =0
(0=j<m—r) and f, h, (0=k<r) are flat at t=0, that is, all the
derivatives vanish at t=0. In this case, the solution u of (G.P.) is
also flat at ¢=0.

Let Q be an arbitrary differential operator whose principal symbol
1S ¢m-, and put Cy(t) =co(to, %, ¥; D,y D,). To avoid ambiguity, we fix
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some terminologies.

Definition 2.1. 1) The set I'C®2 (resp. y CR") is called a uniqueness
domain of the Cauchy problem for Q (resp. C,(ty)), if usC=(R"")
(resp. veC=(R")) satisfies Qu=0 on I" and 0u;,-,=0 on I'N {t=0}
0=j<m—r) (resp. Co({)v=0 on y and %,.,=0 on rN {x=0} (0=
k<r)), then u=0 on I" (resp. v=0 on 7).

2) A dependence domain of (i, x4, yo) (resp. (xo, y0)) of the
Cauchy problem for Q (resp. Cy(f)) is a uniqueness domain including
(2o, %0, 20) (resp. (xo, J0o)).

Let M and 7T, be positive numbers such that 7,=27. Put
1e={(x, ») €R% | SM(To—1) CMTo— |x]), x| =M (Ty—0)} for i€
[0, T]. The following lemma is easy, hence the proof is omitted.

Lemma 2.2. For sufficiently large M, the set Tt (resp. FtO: osLtht {z}
stshy

X71:) 1s a uniqueness domain of the Cauchy problem for Cy(t,) (resp. Q) for
any ty,e[0, T].

The following energy inequalities are the main points of the proof.
(See Lemma 6.1 and 6.2 in [1].)

Lemma 2.3. For any non-negative integers p, q, s, there exists a
constant C such that the following two inequalities hold.

2-1 pt+m—r-1 i
2D DG TR ||| —

i=0

b (t .
éczogomaszu', ey Mg odt’  (OSEST),

Jor any v€C3(R™Y) = {veC (R"Y); v=0 on t<0}.

q p+r-1

2-2) 578 1010 5, ) lperhes

=0 k=

=C

J

it

I“a{co(t)u(t, °s ')I”p—j.t

<

q 1 .

_Z Ha{aﬁu @, 0, ) Hp-i-r—-l—k—j.t.O}
=0 k=0
1=

T, |x| SEM(T,—t)), for any usCs(R"™).

N+

©

Here, ||| « ||\, denotes the Sobolev norm of order s on the domain y, and



848 TAKESHI MANDAI

[l * lls.e.z, denotes the Sobolev norm of order s on the domain 1, {x=x}.

Proof. Let ||| «||l; (resp. || «||) denote the Sobolev norm of order
s on R? , (resp. Rx™).
(1) It is well-known that there holds the following energy in-
equality for Q on an arbitrary compact set K.
p+m—r—1

_Z: I”a{v(ta %y ')”'s+m—y—1‘j

j=0
bt
<cx (10i0o ', -, Dl (0=e=T),
for any v=C3(R*') with supp vCK.
Since I'; is a uniqueness domain of the Cauchy problem for Q, the
inequality (2-1) follows from this.

(2) It is also well-known that there holds the following energy
inequality for C,(%).

q p+r—1—j .
28 o0kt 5, e aeacs
=0 &=0
a  p=ilCx .
<c3, (2|[1oocout, ', s

b+r—1—j .
2 1107052, 0y ) llprr1-a-3}

(0=t=T, |x| =MTy), for any ueCy(K).

If x,=20 (resp. x=0), then 7,N {0=x=x;} (resp. 7:N {x=x=0}) is a
uniqueness domain of the Cauchy problem for C;(¢). Therefore, the
following holds.

g p+r—1—j .
y Z ”agaxu (ta xs ') ||p+r—-1—k—j.t.x
j=0 k=0
a p=jlCcx .
<3 (2| {1020 @utt, 5, ) lp-sos s’

ptr—1-j
=+ ZE) Ha{a,’iu(t, 0, -) ”p+r—1-k—i,t.o}-

We can easily obtain

q p+r—1-j -

22 2 llofowu(t, 0, ) |lprr—1-s-jt0

o
q p-1-j

écjé){ ,‘Z‘; [10§0.Co () u (2, 0, *) |lp-1-1-j.t.0
r—1

+ 211070k (2, 0, *) [lp4r—1-2—j. 1.0}

k=0

[l
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g .
écz{:} {IHBE’CO (t) u (ta ® ') ]HP—J’.t
j=

r—1 .
+k§liaia;€u (t, 0, ) Hp+r—1—k—j,t,0} .

Further, we have
—ilcx .

5 l1ai0Ca0uct, , ) s’

=ClIBIC (Y ult, 5 llpsr if x| SM(To—1).

Thus, we get (2-2). ]

Corollary 2.4. For any non-negative integers p and s, there exists a
constant C such that the following inequality holds.

p+m—r—1 s+m—2—j

k;) 100%u(t, %, *) [ls4mzjt bz

j=0

b (t .
<G {3 | 1010-Coru’ -, lllosdt’

r=1 p+m—r—

1 :
TE & 1080 llinssnid
O=:=T, |x| =M(T,—1)), for any usC3(R™).

Lemma 2.5. Assume (A-1) and (A-2). Then, the operator P can
be decomposed as follows.

P=00Cy(t) +R.

Here, Q is a differential operator with the principal symbol q,-, and R is
a differential operator whose total order is less than m—1 and whose order
with respect to 0, is less than m—r.

Proof. Putr(t, x, 3; 7, & ) =0u1(P—qu-,(t, %, 3; Dy D,, D))o
o,y x, y; D,, D,)). We can write

(%, 2357, & 1) =60, 1(4, %, 95 &, ) qu—r (4, %, 95 7, €, 7))
+d(t, %, 937, §,7),
where the degree of d with respect to z is less than m—r. By the
assumption (A-2), we have d=0 on 2, Let v=7;(t, x, »; & 1)
(1=j=m—r) be the roots of ¢,_,=0. We have d(¢, x, y; 7;(¢, x, y;
g, ), & =0 (I=Sj=m—r) if ¢, x, y; & 7)=0. Put d(¢, x, y;

m—r—1

7, & p)= JZ}O d;(t, x, y; & n)T™ "' Since t; (1=j=m—r) are
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distinct for (&, ) # (0, 0), we have d;(¢, x, »; & 1) =0 (0=j<m—r)
if ¢, (t, %, y; & 7) =0 and (&, 5) #(0, 0). Since ¢,,=0 has only
real distinct roots & for n=0, there follows that d; (0=<j<m—r) are
divisible by ¢,,. Put d=c¢o,gm_r1. Put Q= (@noy+qur) & %, ;
D,, D,, D,) and R=P—QoCy(t). Then, the operator R has the
desired properties. ]

Now, we shall construct the solution of (G.P.). Solving Cauchy
problems for Q and C,(f), we can determine u; ([=0) by the following
iteration.

QeoCo(Duy=f(t,x,5) on £,

0 (Co(B)ty) 4=0=0 on R* (0=j<m—r),
| Oty =P (t, ) on 2y (0=k<r).
(QoCo(B)uryy=—Ru; on £,

0 (Co®)u141) y=0=0 on R* (0=j<m—r),
Oit14112=0=0 on 2y (0=k<n), =0).
By Corollary 2.4, there holds

@3 ZAIRuC -, gt 5 -, lllrmossd

<CIR{ IR0 Cotyut’, -, )l

r—1 p+m—r—1

+ Z Z Ha{aﬁu(t, 0, ) Hs+m—2—-j—k.t.0} .
k=0 j=0

Therefore, the infinite series ) u; converges in C~(£2) and gives a
1=0

solution u of (G.P.). The uniqueness of the solution also follows
from (2-3). Since for sufficiently large M, the set I';(4, xo, o) (resp.
I'y(x0, 3)) is a dependence domain of (Zy, xo, y;) (resp. (%o, %)) of
the Cauchy problem for Q (resp. C,(%)), it follows from the construc-
tion of solutions that I (4, x5, %) is a dependence domain of (&, x,
90) of the Goursat problem for P.

§3. Proof of Theorem 2

For a positive constant J, consider the following coordinate trans-
formation: s=¢+40x, z=x, w=y. Let P be the transformed operator
from P, that is, P;=p(sFdz, 2, w; D,, D,+06D,, D,). From the
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assumption that the Goursat problem is C~-well-posed with good
dependence domains, it follows that for any (fy, x,, y)) £, there
exist a neighborhood U of (¢, xy, y,) and constants N, C such that

Iu(th xbyl) ! gc Z Sup |3{3,’§3‘,’,‘Pu{

jtk+ialSN F(tl.xl.yl)

for any u=Cy(U) and any (&, x1, y1) €U.

From this inequality, there holds the following inequality for sufficiently
small positive number d: For any (tg, x,, ) with +x,>0, there exist
a neighborhood U~ of (s, 20, wo) = (fo0%9, %, ¥o) and constants N,
C, M~ such that

lu~ (s, 2, w) | SC 35 sup |0{0%02Pzu"|

j+k+jal =N I‘~(s1.z1.w1)
for any u~€Cy(U~) and any (s, 23, wy) €U",

where I (sy, 21, wy) = {(s, 2, w); (|z2—2!°+ |w—w |H’=EM" (s51—9)}.
Now, put ¢,_,(s, 2, w; g, {, w) =q,_,(s+0z, z, w; 0, {+do, w) and
6. (s 2, w; 0, &, @) =c,(s+0z, 2z, w; {+0o, ). Then, we have
pin(s, 2, wy 0, §, @) =p,(s+0z, 2, w; o, {+d0, 0)=q,,(s5, 2, w; 0,
L, )¢5, (s, 2, w; 0, {, ). By the assumption (A-3) and the in-
variance of the Poisson bracket with respect to coordinate transfor-
mations, we have {g._,, ¢5,} =0 on 2, ={(s, 2, w; 0, {, ©); qn_,=
¢;,=0}, where {,}~ is the Poisson bracket with respect to (s, z, w;
o, {, w). Since we can apply Theorem 2 of Ivrii-Petkov [2], we have
pai1=0 on 237, where p;*, is the subprincipal symbol of P~. By the
invariance of the subprincipal symbol, we have (A-2)’. It is an easy
calculation to show that (A-2)’ is equivalent to (A-2) under the
assumption (A-3).

§4. Proof of Theorem 3

Assume that n=m=2 and p,=(r—a(t, x, »)n) (E—b(t, x, »)7n),
where {t—ay, §—bn} #0 on 2;={{, x, y; 7, & %) E2XR% r=ay,
E=by, n+0}. Note that 37 is the critical set of p, that is, X,=
(% 35 7, & DERXRY p,=0, Vyryonpr=0, 7#0}. As shown
in §2, we can reduce the Goursat problem to the case where g,(x, »)
=0 and f, A, are flat at ¢=0. Similarly, by the assumption (A-5),
we can further reduce to the case where gy=/,=0 and f is flat on
{t=0 or x=0}. Thus, we have only to solve the followihg reduced
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problem.

Pu,=f,(t,x,y) on 2,
(R.G.P.), Usi=o=0 on R?

Usiz=0=0 on £,
where f,€C~(R% and f.=0 on S,={(t, x, »); t=0, or +x=0}.

Consider the coordinate transformation; s=¢+x, z=x, w=y. Let

P; be the transformed operator from P. The principal symbol p3,
=+ (06 —aw) (6 £LFbw) is effectively hyperbolic on the critical set of p3 ,
Therefore, by Theorem 2 of V. Ya. Ivrii [3] (cf. N. Iwasaki [4]),
we can solve the following Cauchy problem for P3;

Piui=ji(s, 2, w) =f.(sF% 2,w) on R
Urjs=0= asu;';s=o=0 on R%

Note that f1=0 on S:i={(s, 2, w); sF2=0, +£z=0}. By the well-
known sweep-out method, we can prove that

(C.P).

I’z (50, 20, wo) = {(5, 2, w) 5 (|2—20| >+ | —wyo| DV
SM(sp—5), §—5=+ (z2—2z0) =0}

is a dependence domain of (s, 2, w,) of the Cauchy problem for P3.
Hence, the solution u; of (C.P.), satisfies u;=0 on S§7. This means
that u, (¢, x, y) =uz(t+x, x, ») =0 on S,. Thus, we can solve (R. G.
P.).. We can also prove the existence of good dependence domains
from the fact that I'; (s, 25, w,) is a dependence domain of (s, 2o, wp)
of the Cauchy problem for Pj.
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