On the C^{∞} -well-posedness of Goursat Problems

Dedicated to Professor S. Mizohata on the occasion of his 60th birthday

By

Takeshi MANDAI*

§ 0. Introduction

Many authors have investigated about null-solutions of characteristic Cauchy problems. When the coefficients are real-analytic, many systematic results have been obtained. When the coefficients are only C^{∞} , however, few results are known. In this paper, as one of the cases when we can get well-parametrized null-solutions, we consider Goursat problems on $\mathbb{R}^{n+1}(n \geq 1)$.

To give more explanation, we introduce some notations as follows;

$$(t, x, y) = (t, x, y_1, \dots, y_{n-1})$$
 are variables in \mathbb{R}^{n+1} , $\partial_t = \partial/\partial t$, $D_t = -i\partial_t$ etc, $D_y^{\alpha} = D_{y_1}^{\alpha_1} \dots D_{y_{n-1}}^{\alpha_{n-1}}$ where $\alpha = (\alpha_1, \dots, \alpha_{n-1})$ is a multi-index,

for a polynomial $p(t, x, y; \tau, \xi, \eta)$ of (τ, ξ, η) with $C^{\infty}(\mathbf{R}^{n+1})$ -coefficients, we denote the homogeneous part of degree h by $p_h(t, x, y; \tau, \xi, \eta)$.

For a differential operator $P = p(t, x, y; D_t, D_x, D_y)$ of order m and an integer r such that 0 < r < m, consider the following Goursat problem:

$$\begin{cases} Pu = f(t, x, y) \text{ on } \Omega = [0, T] \times \mathbb{R}^n & (T > 0), \\ \partial_i^j u_{|t=0} = g_j(x, y) \text{ on } \mathbb{R}^n & (0 \le j < m - r), \\ \partial_x^k u_{|x=0} = h_k(t, y) \text{ on } \Omega_0 = [0, T] \times \mathbb{R}^{n-1} & (0 \le k < r), \end{cases}$$

where f, g_j, h_k are given C^{∞} -functions and satisfy the compatibility-

Communicated by S. Matsuura, March 20, 1985.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. Present Address: Department of Mathematics, Faculty of General Education, Gifu University, Yanagido, Gifu 501-11, Japan.

condition:

(C)
$$\partial_x^k g_i(0, y) = \partial_i^j h_k(0, y)$$
 on \mathbb{R}^{n-1} $(0 \le i < m-r, 0 \le k < r)$.

For simplicity, we assume all the coefficients of P belong to $\mathscr{B}^{\infty}(\mathbb{R}^{n+1})$ = $\{f \in C^{\infty}(\mathbb{R}^{n+1}); \partial_x^i \partial_x^k \partial_y^\alpha f \text{ is bounded for any } (j, k, \alpha)\}$. In the case of constant coefficients, Y. Hasegawa [1], T. Nishitani [5] have investigated the C^{∞} -well-posedness of Goursat problems. Following them, we assume that the operator P has the following structure throughout this paper.

$$P = \sum_{j=0}^{m-r} c_j(t, x, y; D_x, D_y) D_t^{m-r-j}, \text{ where ord. } c_j \leq r+j$$

$$(0 \leq j \leq m-r) \text{ and } c_{0,r}(t, x, y; 1, 0) = 1.$$

Under this assumption, T. Nishitani [5] found a necessary and sufficient condition for C^{∞} -well-posedness in the case of constant coefficients. His condition is the following.

There exists a positive constant ε such that the polynomial $p(\tau, \xi, \eta)$ is hyperbolic with respect to $(\tau, \xi, \eta) = (1, \delta, 0)$ for every δ with $0 < |\delta| \le \varepsilon$.

This condition implies the following two conditions.

(i) $p_m(\tau, \xi, \eta)$ is divisible by $c_{0,r}(\xi, \eta)$, that is, there exists a polynomial $q_{m-r}(\tau, \xi, \eta)$ such that $p_m(\tau, \xi, \eta) = c_{0,r}(\xi, \eta) q_{m-r}(\tau, \xi, \eta)$. Further, $c_{0,r}$ is hyperbolic with respect to $(\xi, \eta) = (1, 0)$ and q_{m-r} is hyperbolic with respect to $(\tau, \xi, \eta) = (1, 0, 0)$.

(ii) $p_{m-1}(\tau, \xi, \eta) - c_{0,r-1}(\xi, \eta) q_{m-r}(\tau, \xi, \eta)$ is divisible by $c_{0,r}(\xi, \eta)$.

Taking these results into account, we want to know what kind of conditions should be imposed in the case of variable coefficients.

§ 1. Statement of Results

We set the following assumption.

(A-1) $\begin{cases} p_m(t,x,y;\tau,\xi,\eta) = c_{0,r}(t,x,y;\xi,\eta) \, q_{m-r}(t,x,y;\tau,\xi,\eta), & \text{where} \\ (i) \text{ the equation } q_{m-r}(t,x,y;\tau,\xi,\eta) = 0 & \text{with respect to } \tau \text{ has} \\ \text{only real distinct roots for any } (t,x,y;\xi,\eta) \in \Omega \times (\mathbb{R}^n \setminus \{0\}), \\ (ii) \text{ either } n = 1 \text{ or the equation } c_{0,r}(t,x,y;\xi,\eta) = 0 & \text{with respect to } \xi \text{ has only real distinct roots for any } (t,x,y;\eta) \in \Omega \times (\mathbb{R}^{n-1} \setminus \{0\}). \end{cases}$

Definition 1.1. 1) Put $\Sigma_2' = \{(t, x, y; \tau, \xi, \eta) \in \Omega \times (\mathbb{R}^{n+1} \setminus \{0\}); c_{0,r} = q_{m-r} = 0\}$.

2) For a positive number M, put

$$\begin{cases} \Gamma_{1}(t_{0}, x_{1}, y_{1}) = \{(t, x, y) \in \Omega; (|x - x_{1}|^{2} + |y - y_{1}|^{2})^{1/2} \leq M(t_{0} - t)\}, \\ \Gamma_{2}(x_{0}, y_{0}) = \begin{cases} \{(x, y) \in \mathbb{R}^{n}; |y - y_{0}| \leq M(x_{0} - x), x \geq 0\} \text{ (if } x_{0} \geq 0), \\ \{(x, y) \in \mathbb{R}^{n}; |y - y_{0}| \leq M(x - x_{0}), x \leq 0\} \text{ (if } x_{0} \leq 0), \end{cases} \\ \Gamma(t_{0}, x_{0}, y_{0}) = \bigcup \{\Gamma_{1}(t_{0}, x_{1}, y_{1}); (x_{1}, y_{1}) \in \Gamma_{2}(x_{0}, y_{0})\}. \end{cases}$$

Theorem 1. Assume (A-1) and

(A-2)
$$\begin{cases} \sigma_{m-1}(P-q_{m-r}(t,x,y;D_t,D_x,D_y)\circ c_{0,r}(t,x,y;D_x,D_y))=0 & \text{on} \\ \Sigma_2', \text{ where } \sigma_{m-1}(Q) & \text{denotes the principal symbol of } Q & \text{as an operator of order } m-1 & \text{and } \circ & \text{denotes the composition of two operators.} \end{cases}$$

Then, for any $f \in C^{\infty}(\Omega)$, any $g_j \in C^{\infty}(\mathbb{R}^n)$ $(0 \le j < m-r)$ and any $h_k \in C^{\infty}(\Omega_0)$ $(0 \le k < r)$ with (C), there exists a unique solution $u \in C^{\infty}(\Omega)$ of (G, P_1) . Further, there exists a positive constant M such that for any $(t_0, x_0, y_0) \in \Omega$, the set $\Gamma(t_0, x_0, y_0)$ is a dependence domain of (t_0, x_0, y_0) , that is, if f = 0 on $\Gamma(t_0, x_0, y_0)$, $g_j = 0$ on $\Gamma(t_0, x_0, y_0) \cap \{t = 0\}$ $(0 \le j < m-r)$ and $h_k = 0$ on $\Gamma(t_0, x_0, y_0) \cap \{x = 0\}$ $(0 \le k < r)$, then u = 0 on $\Gamma(t_0, x_0, y_0)$.

If the conclusion of the theorem is satisfied, we say that the Goursat problem is C^{∞} -well-posed with good dependence domains. This conception make it easy to get necessary conditions, like the conception of the existence of a finite propagation speed in the non-characteristic Cauchy problems. (Cf. T. Nishitani [6].)

Remark 1.2. (i) If r=1, this theorem has been essentially proved by Y. Hasegawa ([1]).

(ii) If n=1, then $\Sigma_2'=\phi$, hence (A-2) is satisfied.

Theorem 2. Assume (A-1) and

(A-3) $\begin{cases} \{q_{m-r}, c_{0,r}\} = 0 \text{ on } \Sigma'_2, \text{ where } \{,\} \text{ denotes the Poisson bracket with } \\ \text{respect to } (t, x, y; \tau, \xi, \eta). \end{cases}$

If the Goursat problem is C^{∞} -well-posed with good dependence domains, then (A-2) is satisfied.

Remark 1.3. Under the condition (A-3), the condition (A-2) is

equivalent to

(A-2)' $\begin{cases} p_{m-1}^s = 0 \text{ on } \Sigma_2', \text{ where } p_{m-1}^s \text{ denotes the subprincipal symbol of } P. \end{cases}$

It is natural to ask what kind of conditions on lower order terms are necessary, if (A-3) is not satisfied. As to this question, the author believes that without any conditions on lower order terms, the Goursat problem is C^{∞} -well-posed with good dependence domains, if (A-1) and the following (A-4) is satisfied.

(A-4)
$$\{q_{m-r}, c_{0,r}\} \neq 0 \text{ on } \Sigma_{2}'$$

We can prove, however, only the following.

Theorem 3. Assume m=n=2, r=1 and that (A-1) is satisfied. Further, assume (A-4) and

(A-5)
$$q_{m-r} = q_1(t, x, y; \tau, \xi, \eta) \text{ is independent of } \xi.$$

Then, the Goursat problem is C^{∞} -well-posed with good dependence domains.

Example 1.4. Consider $P = \partial_t \partial_x - x \partial_x \partial_y + (\text{lower order terms})$ on \mathbb{R}^3 . The Goursat problem for P is C^{∞} -well-posed with good dependence domains for any lower order terms.

§ 2. Proof of Theorem 1

The idea of our proof is the same as that of Hasegawa's ([1]). By the assumption of (A-1), the following Cauchy problem is C^{∞} -well-posed with a finite propagation speed.

$$\begin{cases} c_0(0, x, y; D_x, D_y) v = w(x, y) \text{ on } \mathbf{R}^n, \\ \partial_x^k v_{|x=0} = v_k(y) \text{ on } \mathbf{R}^{n-1} (0 \le k < r). \end{cases}$$

Solving suitable equations of this type, we can determine $\partial_t^j u_{|t=0}$ $(j \ge m-r)$ uniquely from (G. P.), hence we may assume $g_j(x, y) = 0$ $(0 \le j < m-r)$ and f, h_k $(0 \le k < r)$ are flat at t=0, that is, all the derivatives vanish at t=0. In this case, the solution u of (G. P.) is also flat at t=0.

Let Q be an arbitrary differential operator whose principal symbol is q_{m-r} and put $C_0(t_0) = c_0(t_0, x, y; D_x, D_y)$. To avoid ambiguity, we fix

some terminologies.

Definition 2.1. 1) The set $\Gamma \subset \Omega$ (resp. $\gamma \subset \mathbf{R}^n$) is called a uniqueness domain of the Cauchy problem for Q (resp. $C_0(t_0)$), if $u \in C^{\infty}(\mathbf{R}^{n+1})$ (resp. $v \in C^{\infty}(\mathbf{R}^n)$) satisfies Qu = 0 on Γ and $\partial_x^i u_{|x=0} = 0$ on $\Gamma \cap \{t=0\}$ ($0 \le j < m-r$) (resp. $C_0(t_0)v = 0$ on γ and $\partial_x^k v_{|x=0} = 0$ on $\gamma \cap \{x=0\}$ ($0 \le k < r$), then u = 0 on Γ (resp. v = 0 on γ).

2) A dependence domain of (t_0, x_0, y_0) (resp. (x_0, y_0)) of the Cauchy problem for Q (resp. $C_0(t_0)$) is a uniqueness domain including (t_0, x_0, y_0) (resp. (x_0, y_0)).

Let M and T_0 be positive numbers such that $T_0 \ge 2T$. Put $\gamma_t = \{(x, y) \in \mathbb{R}^n; |y| \le M(T_0 - t) (2MT_0 - |x|), |x| \le M(T_0 - t)\}$ for $t \in [0, T]$. The following lemma is easy, hence the proof is omitted.

Lemma 2.2. For sufficiently large M, the set γ_{t_0} (resp. $\Gamma_{t_0} = \bigcup_{0 \le t \le t_0} \{t\}$ $\times \gamma_t$) is a uniqueness domain of the Cauchy problem for $C_0(t_0)$ (resp. Q) for any $t_0 \in [0, T]$.

The following energy inequalities are the main points of the proof. (See Lemma 6.1 and 6.2 in [1].)

Lemma 2.3. For any non-negative integers p, q, s, there exists a constant C such that the following two inequalities hold.

$$(2-1) \sum_{j=0}^{p+m-r-1} |||\partial_{t}^{j}v(t,\cdot,\cdot)|||_{s+m-r-1-j,t}$$

$$\leq C \sum_{j=0}^{p} \int_{0}^{t} |||\partial_{t}^{j}Qv(t',\cdot,\cdot)|||_{s-j,t'}dt' \quad (0 \leq t \leq T),$$
for any $v \in C_{+}^{\infty}(\mathbb{R}^{n+1}) = \{v \in C_{0}^{\infty}(\mathbb{R}^{n+1}); v=0 \text{ on } t < 0\}.$

$$(2-2) \sum_{j=0}^{q} \sum_{k=0}^{p+r-1-j} ||\partial_{t}^{j}\partial_{x}^{k}u(t,x,\cdot)||_{p+r-1-k-j,t,x}$$

$$\leq C \{\sum_{j=0}^{q} |||\partial_{t}^{j}C_{0}(t)u(t,\cdot,\cdot)|||_{p-j,t}$$

$$+ \sum_{j=0}^{q} \sum_{k=0}^{r-1} ||\partial_{t}^{j}\partial_{x}^{k}u(t,0,\cdot)||_{p+r-1-k-j,t,0}\}$$

$$(0 \leq t \leq T, |x| \leq M(T_{0}-t)), \text{ for any } u \in C_{+}^{\infty}(\mathbb{R}^{n+1}).$$

Here, $|||\cdot|||_{s,t}$ denotes the Sobolev norm of order s on the domain γ_t and

 $||\cdot||_{s,t,x_1}$ denotes the Sobolev norm of order s on the domain $\gamma_t \cap \{x=x_1\}$.

Proof. Let $|||\cdot|||_s$ (resp. $||\cdot||_s$) denote the Sobolev norm of order s on $\mathbb{R}^n_{(x,y)}$ (resp. \mathbb{R}^{n-1}_y).

(1) It is well-known that there holds the following energy inequality for Q on an arbitrary compact set K.

$$\sum_{j=0}^{p+m-r-1} |||\partial_t^j v(t, \cdot, \cdot)|||_{s+m-r-1-j} \\
\leq C \sum_{j=0}^{p} \int_0^t |||\partial_t^j Q v(t', \cdot, \cdot)|||_{s-j} dt' \quad (0 \leq t \leq T),$$

for any $v \in C^{\infty}_{+}(\mathbb{R}^{n+1})$ with supp $v \subset K$.

Since Γ_t is a uniqueness domain of the Cauchy problem for Q, the inequality (2-1) follows from this.

(2) It is also well-known that there holds the following energy inequality for $C_0(t)$.

$$\sum_{j=0}^{q} \sum_{k=0}^{p+r-1-j} ||\partial_{i}^{j} \partial_{x}^{k} u(t, x, \cdot)||_{p+r-1-k-j}
\leq C \sum_{j=0}^{q} \left\{ \sum_{k=0}^{p-j} \left| \int_{0}^{x} ||\partial_{i}^{j} \partial_{x}^{k} C_{0}(t) u(t, x', \cdot)||_{p-k-j} dx' \right| \right.
\left. + \sum_{k=0}^{p+r-1-j} ||\partial_{i}^{j} \partial_{x}^{k} u(t, 0, \cdot)||_{p+r-1-k-j} \right\}
(0 \leq t \leq T, |x| \leq MT_{0}), \text{ for any } u \in C_{0}^{\infty}(K).$$

If $x_1 \ge 0$ (resp. $x_1 \le 0$), then $\gamma_t \cap \{0 \le x \le x_1\}$ (resp. $\gamma_t \cap \{x_1 \le x \le 0\}$) is a uniqueness domain of the Cauchy problem for $C_0(t)$. Therefore, the following holds.

$$\begin{split} &\sum_{j=0}^{q} \sum_{k=0}^{p+r-1-j} ||\partial_{t}^{j} \partial_{x}^{k} u\left(t, x, \cdot\right)||_{p+r-1-k-j, t, x} \\ &\leq C \sum_{j=0}^{q} \left\{ \sum_{k=0}^{p-j} \left| \int_{0}^{x} ||\partial_{t}^{j} \partial_{x}^{k} C_{0}(t) u\left(t, x', \cdot\right)||_{p-k-j, t, x'} dx' \right| \right. \\ &\left. + \sum_{k=0}^{p+r-1-j} ||\partial_{t}^{j} \partial_{x}^{k} u\left(t, 0, \cdot\right)||_{p+r-1-k-j, t, 0} \right\}. \end{split}$$

We can easily obtain

$$\begin{split} &\sum_{j=0}^{q} \sum_{k=0}^{p+r-1-j} ||\partial_{t}^{j} \partial_{x}^{k} u(t,0,\cdot)||_{p+r-1-k-j,t,0} \\ &\leq C \sum_{j=0}^{q} \left\{ \sum_{i=0}^{p-1-j} ||\partial_{i}^{j} \partial_{x}^{l} C_{0}(t) u(t,0,\cdot)||_{p-1-l-j,t,0} \right. \\ &+ \sum_{k=0}^{r-1} ||\partial_{i}^{j} \partial_{x}^{k} u(t,0,\cdot)||_{p+r-1-k-j,t,0} \end{split}$$

П

$$\leq C \sum_{j=0}^{q} \{ |||\partial_{t}^{j} C_{0}(t) u(t, \cdot, \cdot)|||_{p-j,t}$$

$$+ \sum_{k=0}^{r-1} ||\partial_{t}^{j} \partial_{x}^{k} u(t, 0, \cdot)||_{p+r-1-k-j,t,0} \}.$$

Further, we have

$$\begin{split} &\sum_{l=0}^{p-j} \left| \int_{0}^{x} ||\partial_{t}^{j} \partial_{x}^{l} C_{0}(t) u(t, x', \bullet)||_{p-l-j, t, x'} dx' \right| \\ &\leq C |||\partial_{t}^{j} C_{0}(t) u(t, \bullet, \bullet)|||_{p-i, t}, \text{ if } |x| \leq M(T_{0}-t). \end{split}$$

Thus, we get (2-2).

Corollary 2.4. For any non-negative integers p and s, there exists a constant C such that the following inequality holds.

$$\begin{split} & \sum_{j=0}^{p+m-r-1} \sum_{k=0}^{s+m-2-j} || \partial_t^j \partial_x^k u(t,x,\bullet) ||_{s+m-2-j-k,t,x} \\ & \leq C \left\{ \sum_{j=0}^{p} \int_{0}^{t} || || \partial_t^j Q \circ C_0(t') u(t',\bullet,\bullet) ||_{s-j,t'} dt' \right. \\ & + \sum_{k=0}^{r-1} \sum_{j=0}^{p+m-r-1} || \partial_t^j \partial_x^k u(t,0,\bullet) ||_{s+m-2-j-k,t,0} \right\} \\ & (0 \leq t \leq T, \ |x| \leq M(T_0-t)), \ for \ any \ u \in C_+^{\infty}(\mathbb{R}^{n+1}). \end{split}$$

Lemma 2.5. Assume (A-1) and (A-2). Then, the operator P can be decomposed as follows.

$$P = Q \circ C_0(t) + R$$
.

Here, Q is a differential operator with the principal symbol q_{m-r} and R is a differential operator whose total order is less than m-1 and whose order with respect to ∂_t is less than m-r.

Proof. Put $r(t, x, y; \tau, \xi, \eta) = \sigma_{m-1}(P - q_{m-r}(t, x, y; D_t, D_x, D_y) \circ c_{0,r}(t, x, y; D_x, D_y))$. We can write

$$r(t, x, y; \tau, \xi, \eta) = c_{0,r-1}(t, x, y; \xi, \eta) q_{m-r}(t, x, y; \tau, \xi, \eta) + d(t, x, y; \tau, \xi, \eta),$$

where the degree of d with respect to τ is less than m-r. By the assumption (A-2), we have d=0 on Σ_2' . Let $\tau=\tau_j(t,\ x,\ y;\ \xi,\ \eta)$ $(1\leq j\leq m-r)$ be the roots of $q_{m-r}=0$. We have $d(t,\ x,\ y;\ \tau_j(t,\ x,\ y;\ \xi,\ \eta),\ \xi,\ \eta)=0$ $(1\leq j\leq m-r)$ if $c_{0,r}(t,\ x,\ y;\ \xi,\ \eta)=0$. Put $d(t,\ x,\ y;\ \tau,\ \xi,\ \eta)=\sum_{j=0}^{m-r-1}d_j(t,\ x,\ y;\ \xi,\ \eta)\tau^{m-r-1-j}$. Since τ_j $(1\leq j\leq m-r)$ are

distinct for $(\xi, \eta) \neq (0, 0)$, we have $d_j(t, x, y; \xi, \eta) = 0$ $(0 \leq j < m - r)$ if $c_{0,r}(t, x, y; \xi, \eta) = 0$ and $(\xi, \eta) \neq (0, 0)$. Since $c_{0,r} = 0$ has only real distinct roots ξ for $\eta \neq 0$, there follows that d_j $(0 \leq j < m - r)$ are divisible by $c_{0,r}$. Put $d = c_{0,r}q_{m-r-1}$. Put $Q = (q_{m-r} + q_{m-r-1})$ $(t, x, y; D_t, D_x, D_y)$ and $R = P - Q \circ C_0(t)$. Then, the operator R has the desired properties.

Now, we shall construct the solution of (G. P.). Solving Cauchy problems for Q and $C_0(t)$, we can determine u_i ($l \ge 0$) by the following iteration.

$$\begin{cases} Q \circ C_0(t) u_0 = f(t, x, y) & \text{on } \Omega, \\ \partial_t^j (C_0(t) u_0)_{|t=0} = 0 & \text{on } \mathbf{R}^n \quad (0 \le j < m - r), \\ \partial_x^k u_{0|x=0} = h_k(t, y) & \text{on } \Omega_0 \quad (0 \le k < r). \end{cases}$$

$$\begin{cases} Q \circ C_0(t) u_{l+1} = -Ru_l & \text{on } \Omega, \\ \partial_t^j (C_0(t) u_{l+1})_{|t=0} = 0 & \text{on } R^n \quad (0 \le j < m - r), \\ \partial_x^k u_{l+1|x=0} = 0 & \text{on } \Omega_0 \quad (0 \le k < r), \quad (l \ge 0). \end{cases}$$

By Corollary 2.4, there holds

(2-3)
$$\sum_{j=0}^{p} \{ |||\partial_{t}^{j}Ru(t, \cdot, \cdot)|||_{s-j,t} + |||\partial_{t}^{j}u(t, \cdot, \cdot)|||_{s+m-2-j,t} \}$$

$$\leq C \{ \sum_{j=0}^{p} \int_{0}^{t} |||\partial_{t}^{j}Q \circ C_{0}(t')u(t', \cdot, \cdot)|||_{s-j,t'}dt'$$

$$+ \sum_{k=0}^{r-1} \sum_{j=0}^{p+m-r-1} ||\partial_{t}^{j}\partial_{x}^{k}u(t, 0, \cdot)||_{s+m-2-j-k,t,0} \}.$$

Therefore, the infinite series $\sum_{l=0}^{\infty} u_l$ converges in $C^{\infty}(\Omega)$ and gives a solution u of (G. P.). The uniqueness of the solution also follows from (2-3). Since for sufficiently large M, the set $\Gamma_1(t_0, x_0, y_0)$ (resp. $\Gamma_2(x_0, y_0)$) is a dependence domain of (t_0, x_0, y_0) (resp. (x_0, y_0)) of the Cauchy problem for Q (resp. $C_0(t_0)$), it follows from the construction of solutions that $\Gamma(t_0, x_0, y_0)$ is a dependence domain of (t_0, x_0, y_0) of the Goursat problem for P.

§ 3. Proof of Theorem 2

For a positive constant δ , consider the following coordinate transformation: $s=t\pm\delta x$, z=x, w=y. Let P_{\pm} be the transformed operator from P, that is, $P_{\pm}=p(s\mp\delta z, z, w; D_s, D_z\pm\delta D_s, D_w)$. From the

assumption that the Goursat problem is C^{∞} -well-posed with good dependence domains, it follows that for any $(t_0, x_0, y_0) \in \Omega$, there exist a neighborhood U of (t_0, x_0, y_0) and constants N, C such that

$$|u(t_1, x_1, y_1)| \leq C \sum_{j+k+|\alpha| \leq N} \sup_{\Gamma(t_1, x_1, y_1)} |\partial_t^j \partial_x^k \partial_y^\alpha P u|$$

for any $u \in C_0^{\infty}(U)$ and any $(t_1, x_1, y_1) \in U$.

From this inequality, there holds the following inequality for sufficiently small positive number δ : For any (t_0, x_0, y_0) with $\pm x_0 > 0$, there exist a neighborhood U^{\sim} of $(s_0, z_0, w_0) = (t_0 \pm \delta x_0, x_0, y_0)$ and constants N, C, M^{\sim} such that

$$|u^{\sim}(s_1, z_1, w_1)| \leq C \sum_{j+k+|\alpha| \leq N} \sup_{\Gamma^{\sim}(s_1, z_1, w_1)} |\partial_s^j \partial_s^k \partial_w^\alpha P_{\pm}^{\sim} u^{\sim}|$$

for any $u^{\sim} \in C_0^{\infty}(U^{\sim})$ and any $(s_1, z_1, w_1) \in U^{\sim}$,

where $\Gamma^{\sim}(s_1, z_1, w_1) = \{(s, z, w); (|z-z_1|^2 + |w-w_1|^2)^{1/2} \leq M^{\sim}(s_1-s)\}$. Now, put $q_{m-r}^{\sim}(s, z, w; \sigma, \zeta, \omega) = q_{m-r}(s \pm \delta z, z, w; \sigma, \zeta \pm \delta \sigma, \omega)$ and $c_{0,r}^{\sim}(s, z, w; \sigma, \zeta, \omega) = c_{0,r}(s \pm \delta z, z, w; \zeta \pm \delta \sigma, \omega)$. Then, we have $p_{\pm,m}^{\sim}(s, z, w; \sigma, \zeta, \omega) = p_m(s \pm \delta z, z, w; \sigma, \zeta \pm \delta \sigma, \omega) = q_{m-r}^{\sim}(s, z, w; \sigma, \zeta, \omega) c_{0,r}^{\sim}(s, z, w; \sigma, \zeta, \omega)$. By the assumption (A-3) and the invariance of the Poisson bracket with respect to coordinate transformations, we have $\{q_{m-r}^{\sim}, c_{0,r}^{\sim}\}^{\sim} = 0$ on $\Sigma_2^{\prime \sim} = \{(s, z, w; \sigma, \zeta, \omega); q_{m-r}^{\sim} = c_{0,r}^{\sim} = 0\}$, where $\{,\}^{\sim}$ is the Poisson bracket with respect to $(s, z, w; \sigma, \zeta, \omega)$. Since we can apply Theorem 2 of Ivrii-Petkov [2], we have $p_{m-1}^{\sim} = 0$ on $\Sigma_2^{\prime \sim}$, where p_{m-1}^{\sim} is the subprincipal symbol of P^{\sim} . By the invariance of the subprincipal symbol, we have (A-2)'. It is an easy calculation to show that (A-2)' is equivalent to (A-2) under the assumption (A-3).

§ 4. Proof of Theorem 3

Assume that n=m=2 and $p_2=(\tau-a(t, x, y)\eta)$ ($\xi-b(t, x, y)\eta$), where $\{\tau-a\eta, \xi-b\eta\}\neq 0$ on $\Sigma_2'=\{(t, x, y; \tau, \xi, \eta)\in\Omega\times R^3; \tau=a\eta, \xi=b\eta, \eta\neq 0\}$. Note that Σ_2' is the *critical set* of p_2 , that is, $\Sigma_2'=\{(t, x, y; \tau, \xi, \eta)\in\Omega\times R^3; p_2=0, \nabla_{(t,x,y;\tau,\xi,\eta)}p_2=0, \eta\neq 0\}$. As shown in §2, we can reduce the Goursat problem to the case where $g_0(x, y)=0$ and f, h_0 are flat at t=0. Similarly, by the assumption (A-5), we can further reduce to the case where $g_0=h_0=0$ and f is flat on $\{t=0 \text{ or } x=0\}$. Thus, we have only to solve the following reduced

problem.

$$\left\{ \begin{aligned} &Pu_{\pm} = f_{\pm}(t, x, y) & \text{on } \Omega, \\ &u_{\pm|t=0} = 0 & \text{on } R^2, \\ &u_{\pm|x=0} = 0 & \text{on } \Omega_0, \end{aligned} \right.$$

where $f_{\pm} \in C^{\infty}(R^3)$ and $f_{\pm} = 0$ on $S_{\pm} = \{(t, x, y); t \leq 0, \text{ or } \pm x \leq 0\}$.

Consider the coordinate transformation; $s=t\pm x$, z=x, w=y. Let P_{\pm}^{\sim} be the transformed operator from P. The principal symbol $p_{\pm,2}^{\sim}$ = $\pm (\sigma - a\omega)$ ($\sigma \pm \zeta \mp b\omega$) is effectively hyperbolic on the critical set of $p_{\pm,2}^{\sim}$. Therefore, by Theorem 2 of V. Ya. Ivrii [3] (cf. N. Iwasaki [4]), we can solve the following Cauchy problem for P_{\pm}^{\sim} ;

$$(\text{C. P.})_{\pm} \begin{cases} P_{\pm} \tilde{u}_{\pm} = f_{\pm}(s, z, w) = f_{\pm}(s \mp z, z, w) & \text{on } R^3, \\ u_{\pm|s=0} = \partial_s u_{\pm|s=0} = 0 & \text{on } R^2. \end{cases}$$

Note that $f_{\pm} = 0$ on $S_{\pm} = \{(s, z, w); s \mp z \le 0, \pm z \le 0\}$. By the well-known sweep-out method, we can prove that

$$\Gamma_{\pm}^{\sim}(s_0, z_0, w_0) = \{(s, z, w); (|z-z_0|^2 + |w-w_0|^2)^{1/2} \le M(s_0-s), s-s_0 \le \pm (z-z_0) \le 0\}$$

is a dependence domain of (s_0, z_0, w_0) of the Cauchy problem for $P_{\tilde{\pm}}$. Hence, the solution $u_{\tilde{\pm}}$ of $(C. P.)_{\pm}$ satisfies $u_{\tilde{\pm}} = 0$ on $S_{\tilde{\pm}}$. This means that $u_{\pm}(t, x, y) = u_{\tilde{\pm}}(t \pm x, x, y) = 0$ on S_{\pm} . Thus, we can solve (R. G. P.)_{\pm}. We can also prove the existence of good dependence domains from the fact that $\Gamma_{\tilde{\pm}}(s_0, z_0, w_0)$ is a dependence domain of (s_0, z_0, w_0) of the Cauchy problem for $P_{\tilde{\pm}}$.

References

- [1] Hasegawa, Y., On the C[∞]-Goursat problem for equations with constant coefficients,
 J. Math. Kyoto Univ., 19 (1979), 125-151.
- [2] Ivrii, V. Ya. and Petkov, V. M., Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed, Russian Math. Surveys, 29 (1974), 1-70. (Uspekhi Mat. Nauk, 29 (1974), 3-70.)
- [3] Ivrii, V. Ya., Sufficient conditions for regular and completely regular hyperbolicity, Trans. Moscow Math. Soc., 33 (1978), 1-65. (Trudy Moskov. Mat. Obšč., 33 (1976), 3-66.)
- [4] Iwasaki, N., The Cauchy problem for effectively hyperbolic equations (a special case), J. Math. Kyoto Univ., 23 (1983), 503-562.
- [5] Nishitani, T., On the &-well-posedness for the Goursat problem with constant coefficients, J. Math. Kyoto Univ., 20 (1980), 179-190.
- [6] ———, Une remarque sur le problème de Goursat, Séminaire sur les équations aux dérivées partielles hyperboliques et holomorphes (1981-82), J. Vaillant, Université de Paris VI.