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A Condition in Constructing
Chain Homotopies

Dedicated to Professor Nobuo Shimada on his 60th birthday
By

Masatsugu NAGATA*

§1. Introduction

The following question was asked by M. Morimoto:

(1.1) Let G be a finite group and R=Z[G] be the group ring.
Let Cy and Dy be chain complexes of free R-modules, f. and g be
chain equivalences from Cy to D,. If

Jx=8x * Hy(Cy) —Hy(Dy),
then is it true that f. and g. are chain homotopic to each other (and
hence have the same torsion invariant)?

In this note we show by an example that the answer is negative,
namely that f.~g. does not always hold. We also consider the case
R=K[G] where K is a field, and show that the answer is negative
if and only if the characteristic of the field K divides the order of G
when G is a finite group. We also obtain some condition for an
infinite group G.

If 1. 1 were true, then the arguments of Morimoto in [3], which
computes a homology class of the torsion invariant (cf. Theorem 8. 4
of Dovermann-Rothenberg [2]), would be considerably simplified.
Thus the negativeness of 1. 1 suggests that we cannot do without
delicate arguments as in [3] in computing torsion invariants.
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K. Motose for valuable conversations. He would also like to thank
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Professors Akira Hattori and Shizuo Endo for wvaluable comments.
The simple proof of Proposition 2. 4 c¢) was suggested by Professor
Akira Hattori.

§2. The Example

Let G be a group, K be a ring and R=K[G] be the group ring.
We consider the negativity of the following:

Statement 2.1. Let Cy, Dy be chain complexes of (free) modules over
R=K[G] and f., g. be chain equivalences from Cy to Dy. If we assume
that

Jx=8x t Hy(Cy) —H(Dy),
then we state that

Sf-=g.: chain homotopic.

Lemma 2.2. If there exist elements a, B of R which satisfy the
Sollowing conditions:
i) af=0
(2.3) i) Aa+pp#l for any A4, p=R, and
i) if ar=0 then y=pB0 for some 6ER,

then there is an example which shows that Statement 2.1 does not hold.

Proof. Put
[
Cy=Dy= [0e—R R Rec 0},
with
00 0
5=(0 a) #=(0b)
Then

Ker go= {(;‘) ay=0}, Im ¢= K%z)} ’

and Cy is a chain complex of free R-modules. Put

f'= {ﬁlafbfZ} : Cy—Dy

to be



CONSTRUCTING CHAIN HOMOTOPIES 837

= (s a3

Clearly f. is a chain map and has an inverse. Further put
g.=id.: Cy——D,.

Now we have

— 2\ _ [0 1N/ x\ _ AN )
=a)(5)=(0 0)(;)=()=(7)cm 5.
for (;)eKcr &, and 50 fy=gy: Hy(Cy)——Hy(Dy).
Assume that f.~g. Then there are homomorphisms ¢, ¢; which

satisfy

fi—ga=dPo+ 1.

If we put gb(,:(f q), ¢1=<k l), this means

N m n

(60)=(0 5)+(%" )

which contradicts with condition ii). This completes the proof.

Proposition 2.4. Let R be one of the following:

a) G is any group and R=Z[G],

b) K is a ring, G is a group which contains a finite subgroup of order
multiple of the characteristic of K, and R=K[G],

c¢) K is a ring, G is a group which contains an element of infinite

order, and R=K[G].
Then Statement 2.1 does not hold.

Proof. When R contains an element a« which is neither a divisor
of zero nor a unit, Condition 2.3 is satisfied if we put 8=0. In case
a), a=2&Z satisfies this.

In case b), let x&G be of order £ with £=0 in K, and put

k-1
a=) x* and f=1—ux.
i=0
Clearly Condition 2.3 i) holds. Define a K-linear map
¢: R=K[G]—K by
e(Lc(@g=2¢().
geG - =le
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¢ is a ring homomorphism and e(a) =¢(8) =0, and hence Condition 2. 3
ii) holds.
Assume that ay=0 with y= )} ¢(g)g. Then
geG

k-1 . k-1 )
0=>2 2cl@xg=2 Lclx79g
i=0 g g i=0
and
E-1 )
2. c(x'g) =0 for any g=G.
i=0

Let {g.}»ca be a representative of the set of right cosets <x)\G. Then
G={x'g,; i=0,--,k—1, ws4}. Put

0= 5d@s @ =3c(de)  for g=xg.
Then

Bo=(1—-x)2d@g=20d —dx7g)e
If g=x'g,, 1Si<k—1, then

d(g) —d(x7'g) =c(x'g,) =c(g).
If g=xg,, then

4(®) ~ (9 =0~ 3 c(x'8) = () = (@).

Hence po=y, and Condition 2.3 iii) holds.
In case c), let x=G be of infinite order and put
a=1—x.

Then e(a) =0 and « is not a unit in R=K[G]. On the other hand,
if we assume that ay=0 with y= > ¢(g)g, then we have
geG

0= 2 (c(9 —¢c(x78)g,

geG
namely
¢(g) =c(x'g) for any i.
Because x is of infinite order, this means that y=0, and that « is not

a divisor of zero. Hence a=1—x and =0 satisfy Condition 2. 3.
The proof is complete.
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§3. The Semisimple Case

In this section let G be a finite group and K be a field whose
characteristic does not divide the order of G (including the case ch K
=0). 1In this case any K[G]-module is completely reducible by
Maschke’s theorem ([1], §10), namely any K[G]-submodule is a direct
summand. Now we prove:

Proposition 3.1. Let R=K[G] be as above. Then Statement 2.1
holds.

Proof. Let Cy={Ch, ¢} and Dy= {D,, ¢»} be R-chain complexes,
and let h.=f.—g.: C4y——>D4 be an R-chain map which satisfy
he=0: Hy (Cy) —H(Dy).
We shall construct an R-chain homotopy {1.} between A. and 0,
as in the diagram:

$u—1 by bp+1

Cor G

n
1;1”_1 \Yn J/h"
N
¢,

n ¢n-!-l

Dn-1 D,,

bu—1

Let Ci=Ker ¢,. Then C,=CiPC: (direct sum of R-modules) and
$ula: Co——C,-1 is 2 monomorphism.

Since %4=0 on homology, #,(C)) C¢p41(D,i1) ©D,. Thus we also
have a direct sum decomposition

D,=Ker ¢n+1®D}t+1®D12H~1,
where
Dnirl 1 :D}i—h, (CD)
Dn+1
is an isomorphism and
Dur1 |D2 : Di,,—D,
n+1

is a monomorphism.
Now define 2,,;: C%——D,,; to be the composite
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K= lgg ) ki Gl (C) ——>Dia Dy,
We shall define 4;,,: C3——Ker ¢,,, D, later. Put

A1 = L+ 20D 0: C,=CPC—— D,
Then on Ci=Ker ¢,, we have

200Gt 11021 =Pn11020 1= Ppi104 1 =1,

as is needed, for any 4,,;.
On the other hand, on G,

200 Pnt Pr11°2ni1 =200, =209+ 2,09,
since ¢,(C%) CcCl;,. Now we have
¢n°2:|° $u=hu-10$n=Prohy,
namely
(hy—2y08,) (C;) CKer ¢,
Using the decomposition
1= 0.(C) DCi-y,

where
Pl -5, (CD

is an isomorphism, we define 2;: C_;,——Ker ¢, by
B, gy = (e Hiod) o (607

and

Then on C, we have
2"0¢”+¢n+101"+1=2;c¢n+lzo¢":2;0¢n+ (hn_—'z;osbn) —_—hm

as is needed. This completes the proof.
Combining the results of Sections 2 and 3, we have:

Main Theorem. a) For any group G and R=Z[G], Statement 2. 1
does not hold.
b) When K is a field, G is a finite group and R=K[G], Statement
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2.1 holds if and only if (ch K, |G|)=1 (including the case ch K=0).

c)

When K is a ring, G is a group which contains an element of

infinite order and R=K[G], Statement 2.1 does not hold.
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