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The Asymptotic Behavior of a Variation
of Polarized Hodge Structure

By

Masaki KASHIWARA*

Introduction

0.1. The purpose of this paper is to give the asymptotic behavior
of variation of polarized Hodge structures in the several-dimensional
case. We do not discuss here why and how the notion of variation
of Hodge structures arises and it is developed by P. A. Griffiths, P.
Deligne, W. Schmid and others. What motivates us is to generalize
Zucker’s result to the several-dimensional case. His result is as follows:
the cohomology groups of a variation of Hodge structure on the
compact curve with finite singular points have also a Hodge structure.
He proceeds his proof as follows. As an analytic tool, he uses the
harmonic analysis (Hodge-Kodaira theory) and as a geometric tool
he uses W. Schmid’s result that we discuss later. By using the
Kghler metric on the curve which behaves with the special property
at singular points and the Hermitian metric of the vector bundle which
arises from the polarization of Hodge structure, he succeeds to
express the cohomology groups of the variation as the L*-cohomology
groups. Since the L?-cohomology group is isomorphic to the space
of harmonic forms, by decomposing harmonic forms into (p, ¢)-forms,
he obtains the Hodge decomposition of the cohomology group of
Hodge structure. However, in order to prove the first step—to express
the cohomology group by L*-cohomology group—he is obliged to use
the result of W. Schmid on the asymptotic behavior of variations of
Hodge structures at singularity.

In this paper, we generalize W. Schmid’s result to the several-
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dimensional case and in the forthcoming paper, we discuss the genera-
lization of Zucker’s result.

0.2. Now we are going to recall Schmid’s result. For an integer z,
a Hodge structure of weight n is a couple (Hy F) consisting of a
finitely generated Z-module H, and a finite decreasing filtration F of
HC=C(>Z§HZ such that He= @ (F*NF9. Here, F is the complex
conjugate of F. The Weil opnf;;;or C is the automorphism given by

C | p=1""" where H**=F" F. A polarization § is a non-degenerate
bilinear form on Hg=Q®H, such that S(F?, Fr*'?) =0 and that
z

S(Cu, 8) is a positive definite Hermitian form on He.

Let X be a complex manifold. A variation of Hodge structure of
weight #n on X consists of data (Hg F,S): H; is a local system on
X and § is a non-degenerate bilinear form §: Hy®Hq—>Qx and F is
a finite filtration of holomorphic vector bundles such that at any point
x the stalk (Hy F,S) gives a polarized Hodge structure and, for any
holomorphic vector field », vF? CF*7L,

Let D be the open unit disc of € and D* the pictured disc.
Let (Hyz F,S) be a variation of Hodge structure and let M be the
monodromy of Hy. Then M is quasi-unipotent (i.e. its eigenvalues
are the root of unity).

Set Nz—%—log M™ taking m>1 so that M™ is unipotent. Then N

is a nilpotent endomorphism of H, Let W(N) be the monodromy
weight filtration, i. e. the unique filtration such that NW,(N) CW,_,(N)
and N*: grf® ~gr"M™,

Then the theorem of W. Schmid says
Theorem. For a flat section u€EW, with u&EW,_,, we have

|u|2~(—log |z|)* when z—0.

Here | |, is the norm given by the polarization of the Hodge structure at
z2E D¥*,

In this paper, we give its generalization to several-dimensional case.
To simplify the explanation, we consider the two-dimensional case.
Let us consider a variation of Hodge structure on (z,2,) €ED* X D*,
Let M;(j=1,2) be the monodromy at z;=0 and define N; from M;
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just as N and M in the one-dimensional case. Let W, W; and W,
be the monodromy weight filtrations of N+ N,, N; and N,, respectively.
We divide D* X D* into two parts

4,= {z&D*x D*; log || /log |z,| >e}
and

A;= {zED* x D*; log |2,| /log |z| >}

Theorem. Let us decompose He=PU,, , with Wok—G—) U,,q and Wy=

(—BUM and take a metric | | on He. Then for a ﬂat sectzon U=D ] Up,
of H¢ with u, ,€U,,, we have

|ul 3"'?%:(—105 221 )P~ (—log [21 ) |upe| * for 2E A,

The estimate on 4, is similar. For the more precise statement see
Theorem 2.4.2, 3.4.1 and 3.4.2.

The author would like to express his gratitude to Professor T.
Kawai for helpful discussions.

After he finished this paper, the author received a preprint by
E. Cattani, A. Kaplan and W. Schmid which contains the same result.
The proofs are different.

§1. Filtrations

1.1. Let A be an abelian category. A finite (decreasing) filtration
F of an object M of A is by definition a decreasing sequence {F?}
of subobjects of M such that F’=M for p&L0 and F*=0 for p>O0.
If there is no fear of confusion, we omit the phrase “finite”. We
write gré=F?/F**', As usual, by F,=F7? we interchange freely
increasing filtrations and decreasing filtrations.

1.2. Let T be an exact contravariant functor from A to another
abelian category. For a filtration F of an object M of A, let us
denote by T'(F) the filtration of 7T'(M) given by

(1.2.1) T(E)=T(M/F?),
so that we have
(1.2.2) gy =T (grs?).

1.3. Let F; and F, be two filtrations.
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Lemma 1.3.1. For any k we have
2 FRnFi= N (F{+F)
p+g=Fk+1

k=p+q

Proof. Set V*(resp. V') the left-hand side (resp. right-hand side).
We have VEC V', In fact, it is enough to show F!NF{CF}+ F{ for
k=p+q and k+1=p"+q". If p=p’ or g=¢q’, this is true. Hence we
may assume p=p’—1 and ¢=¢’—1. Then k=p+¢=(p'—1) + (¢ —1)
=k—1, which is a contradiction.

Now we shall show V*CTV*% In order to see this, it is enough
to prove

(1.3.1) VEN FyCVE+ FitL
Now, we have
VN FC (Fy 1+ F3tY N FiCFiin Fy+ F§ c VE+ Fg,
Q.E.D.

Definition 1.3.1. (Steenbrink-Zucker [S-Z]). We define the amal-
gum FpxF, of Fy and F, by

(1.3.2) (FxF)t= Y FinFi= X 1(F{+F§).

k=p+q pta=k+

Remark 1.3.2. (i) This notion is self-dual, i.e. for an exact
contravariant functor T, T (FyxFy) =T (F)*T(F,).

(ii) For three filtrations F;, F, and Fj, the relation, (FykFy) *xF;=
Fx (FyxF3;) does not hold in general. Its sufficient condition is discussed
in §1.6.

1.4. Two filtrations F, and F, of M are called n-opposed (see Deligne
[D]) if MeFi@F; for p+q=n-+1. This is equivalent to saying that
(FpkFy)*=M and (FixF;)"*'=0. The following is easy to prove (See
[S-ZD.

1.5. Lemma 1.5.1. Let F, F, be two filtrations of an object M.
i) ([S-Z]) (FFy)(grk) =Fi*(erk)

(i) Let G be another filtration of M. Then G=FxF,if and only if
Fi(grt) and F,(grt) is k-opposed for any k.
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1.6. As a generalization of the amalgum of two filtrations, we make
the following definition.

Definition 1.6.1. For a family of filtrations Fi, ..., F, of an object
M, we define
I(Fy...,F)'= 3 (" F)
j=1

k=21’j 1=

S(Fy...,F)t= (3 F).
k .

+n—1=p; j=1

Remark 1.6.2. I and § are the dual notions to each other, i. e.
for an exact contravariant functor 7, we have

(1.6.1.1) TUFye oo, F))=8STFD),..., T(F,))
(1.6.1.2) TSy ..o, F))=I(TFY, ..., T(F,)).

Since the proof of the following lemma is simple and similar to that
of Lemma 1. 3.1, we omit its proof.

Lemma 1.6.2. Let F, ..., F, be a family of filtrations. Then we
have

@ I(Fy,...,F)cSFy, ..., F).

Q) I(Fy...,F)cI((Fy...,F), Fii,..., F)

(i) S(Fy, ..., F) DSy ..o, FD), Frygy ..., F).

Definition 1.6.3. A family {F,..., F,} of filtrations is called
distributive if I(Fy, ..., F,)=SFy ..., F,).

The naming comes from Remark 1.7.3. A single filtration and a
couple of filtrations are distributive (Lemma 1. 3.1).

1.7. We shall study the property of distributive families of filtrations.
The following is a key lemma.

Proposition 1.7.1. A4 family {Fy...,F,} of filtrations of M is
distributive if and only if the following two conditions are satisfied.

1) For any q, {FANF% ..., F,oinNFY is a distributive family of
filtrations of F? and I(FiNF}, ..., F, NF) =I1(Fy, ..., F,_) NFL
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(i) For any q, {(Fy+FY)/F. ..., (Foat+FY)/F3 is a distributive
Samily of filtrations of M/F? and we have
I((F1+F3)/FZ,---, (Fn—1+F3)/Fg) :(I(Fh"',Fn—l) +F3)/FZ-

Proof. Since the implication (i) + (ii) >“{Fy, ..., F,} is distributive”
is easily proven, we shall show only the converse implication. Since
(i) and (ii) are the dual statements, we shall show only (i). Let &
be the family {Fy,...,F,—;}. Then we have

I(FNF) cl(F)NF;
S(fplFﬁ) CS(?)%Fz
Hence it is enough to show
(4p.0): S(PNFiCI(FNFY?
This is clear for >0 or ¢>0. Therefore it is enough to prove
(Ap,4+1) + (Ap11.0) > (45.,). Now, we have, since {&#, F,} is distributive
S(FVNFLC(S(F)«F) ! CS(F, F)t*e
=I(F, F,)t
= & (Fnm
J_E=1Pj+k=ﬁ+q
By dividing the summation into three parts
{Zpi=p k=q}, {Zp;<p—1, k=q+1}
and
{Zpizp+1, k<qg—1},
we obtain
S(FE)VNFiCI(F NFY +FHI(F) M.
This implies
S(PVNFicI(FNFY+I(F)*NFH+I1(F) N FL

Then (4,,+1) and (4,41, imply that the last two terms are con-
tained in I(F NFY? and hence we obtain (4,,). Q.E.D.

Proposition 1.7.2. Let {F,,...,F,} be a distributive family of filtra-
tions. Then we have
() {Fy, Fy...,F,} is also distributive.
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(i) {F*F, Fs, ..., F}, {Fi+F, F,,...,F,} and {FiNF, F,,...,F}
are also distributive. Here Fy+F, (resp. FiN\F,) is the filtration defined by
(Fi+F)?=F+FL (resp. (FiNF)*=FiNFY).

(ili) For q and j we denote by Fi the filtration given by (F9*=M, Fi, 0
for k=0,1,2. Then {F,...,F, F3 is distributive.

(iv) we have

(FP-FHY NFy=(FINFD) + (FinFy).

Since the proof is more or less direct, we omit it.

Remark 1.7.3. {F,...,F,} is a distributive family if and only if
the lattice (by+andn) generated by Fy’s is distributive (i.e.(a+5) N
c=(a+c)N(b+c)).

1.8. Lemma 1.8.1. Let {F,...,F,} be a family of filirations of
M. We assume I(Fy, ..., F)'=M and S(Fy,...,F,)""*=0. Then we
have

I(Fy...,F,)" and the kernel of ¢: M—>@H? is S(F,, ..., F,)"*. Hence
we have @H?*>» M>>@H?. On the other hand, H*—H? is zero for
p#p’. Therefore H*—>H? is an isomorphism and we have @H?=xM
~@H?. Now we have ¢(F)C p@ H? and hence FiC Y, H?. The

2> :
=y 2>

other inclusion is evident and we have (ii). Q. E.D.

Definition 1.8.2. If the assumption in Lemma 1.8.1 is verified we
say {Fy, ..., F,} is l-opposed.

Proposition 1.8.3. Let {F,, ..., F,} be a distributive family of filtra-
tions of M. Set G=I(Fy,...,F)=8Fy...,F,). Then we have
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(1) {F;(gr&)}jor....n is k-opposed.

Corollary 1.8.3. Let {F\,...,F,} be a distributive family of filtrations
of a semi-simple object M. Then there is a direct sum decomposition

M=@I" "
such that
Fi= @ I”l """ b,
;>4

by

H'""* is an isomorphism. Then the last proposition implies the
desired result.

Definition 1.8.4. We call {I"V""'") the splitting of {Fy, ..., F,}.

1.9. Now let M be a finite-dimensional vector space over R, and
{W',..., W"} a distributive family of increasing filtrations of M. For
a multi-index a=(ay,...,a,), we set Wa=/\W£J,. Let T be a set

i

and f,(¢) a non-negative valued function on 7. We assume

(1.9.1) For a and B such that f=a (i.e. f;=a; for any j), there
exists a positive constant C such that f;(2) =Cf,(#).

Let | |; be a family of norms parametrized by t=7. We fix a norm
| | on M.

Lemma 1.9.1. Let M=@I, be a decomposition such that W,=@ I,.

B=a

We assume

(1.9.2) For ucl,, there exists a constant C such that |u|,=Cf,(¢)
Sor any tET.

Then we have the following.

(1.9. %) There exists a constant C such that for any ue M, if we write
u= ) u, with u,1,, then we have

lu] , =C Za]fa(t) lug| for any t.
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Proof. Let us take a base {u;} of I,. Then there exists C>0
such that |y;|,=Cf,(¢). Hence, for any u=Y4u; in I, |u|,=CX
|4;] fo() =C" |u|f,(t). Hence there exists a constant ¢ >0 such that
for any a and any uel,, |u|,=Cf,(t)|u|. Thus if u=u, we have
lul =2 lua| =C ;fa(t) |tta -

Corollary 1.9.2. The following condition on | |, does not depend on
the choice of a splitting M=®I, such that W,= @ I,.
Bza

(1.9.5) there exists a constant C >0 such that for any u= Yu, with
u .1, we have

(1.9.5. 1) lu| (SCY fu(t) lug| for any tET.
(1.9.5.2) 2 Sfa(@®) lual EClu |, for any t=T.

Definition 1.9.3. If the condition (1.9.5) is satisfied, we write
lu| ;~f(t) on ucW, and t<T.

§2. Polarized Hodge Structure

2.1. Let Hy be a finite-dimensional R-vector space with a non-
degenerate bilinear form S(x, %) and let H; be the complexification
C®grHg of Hg. Let us fix a weight n€Z and assume

2.1.1) Su,v) =(=)"S(v,u).

Let G=0O(S, He) and let GR=0(S, Hg) be its real form. Let us
denote by g and gz the Lie algebras of G and Gg, respectively.
Let D be the classifying space of Hodge filtrations, that is,

(2.1.2) D={F;F is a finite filtration of Hg,
F*L=F*'"? and dim F? are the given one}.

Here L denotes the orthogonal complement with respect to S. Then
Dis a projective homogeneous space of G.. A Hodge filtration F is
called a Hodge structure if F and its complex conjugate F is n-
opposed. Then Hc,= @ H?? with H?*=F!\F.. We define the

n=p+q
Weil operator CEGg by C| ,,=i*"% We say that §is a polarization

of the Hodge structure (Hg, F) if the Hermitian form S(Cu, #1) is
positive definite. In this case, we define the norm |%|r by
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2.1.3 lu| 2=8(Cu, @).

We denote by D the set of FE]) such that S gives a polarization of
F. Then D is a homogeneous space of G and the isotropy subgroup
is compact.

2.2. Let N be a nilpotent element in gg.
Then there exists a unique finite filtration W of H¢ such that

(2.2.1) NW,C Wi,
(2.2.2) Nt gr¥ g™, for k= 1.

This filtration W is denoted by W(N) and called the monodromy weight
Sfiltration of N.

We have easily
(2.2.3) W) =W (N) -1
For £=0, the kernel of N**% gr¥ —gr”, , is denoted by P,(N) and called

the primitive part. Then we have

(2.2.4) gfiwggl‘% P 425 (N).

2.3. Let I be a mutually commuting set of nilpotent elements of gg.
We set

(2.3.1) C) = {NZE:ItNN; iy >0}.

Definition 2.3.1. For an FED and I as above, we say that {I, F}
Sforms a nilpotent orbit if the following conditions are satisfied.

(2.3.2) NF'CF* for any NI
(2.3.3) There exists Ny&C(I) such that eé"FED for NeN,+C().

The following theorem is due to W. Schmid.

Theorem 2.3.2 ([S]). Let N be a nilpotent element in gr, FED
and assume that {N, F} forms a nilpotent orbit. Let W be the monodromy
weight filtration of N. Then we have the following properties.

(2.3.4) (F, W) is a mixed Hodge structure of weight n, i.e.
(F(grl), Fgr!)) is (n+k)-opposed.

(2.3.5) The bilinear form S(u, N*v) on grl gives a polarization of the
Hodge structure on the primitive part P,(N).
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We have the partial converse of this theorem. Let FED, N a
nilpotent element of gz and let W be the monodromy weight filtra-
tion of N and P, the primitive part.

Lemma 2.3.3([C-K]). Assume the following conditions.
(2.3.6) (F, W) is a mixed Hodge structure of weight n.

(2.3.7) (F, W) is R-split, that is, if we set IPe=pr\ N Wyigm
then F*=@ I** and W,= @ I*-.

q ptask+n

(2.3.8) S(u, N*) gives a polarization of the primitive part P,.
Then ¢NFeD for >0,

The following theorem is due to Cattani-Kaplan.

Theorem 2.3.4 ([C-K1]). Let I be a mutually commuting set of
nilpotent elements of gr, FE D) and assume that {I, F} forms a nilpotent
orbit. Then we have

(2.3.9) For any JCI, there exists a filtration W(J) such that W(J)
is the monodromy filtration of any NeC(]J).

(2.3.10) There exists geG with the following properties
(2.3.10. 1) g commutes with I.
(2.3.10.2) glg wo =1d for any k.

g

(2.3.10.3) If we set Fy,=gF, then {F,, W)} is R-split and
eVF,eD for any NeC().

2.4. Admitting these results in §2. 3, we shall start our arguments
by the following lemma.

Lemma 2.4.1. Let FED and let I be a commuting finite set of
nilpotent elements in gg.  Assume that {I,F} forms a nilpotent orbit.
Then, for any decreasing sequence I =1,21,D...21, of subsets I,{F, W (l,),
W{€),..., Wd,)} is a distributive family.

Proof. We shall prove this by the induction on m. Therefore,
we may assume that

(2.4.1) {(W(;)}is1 is a distributive family.
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By (2.3.10), there exists g&G commuting with I and satisfying
the conditions (2.3.10.2)~(2.3.10.3). Since gW () =W({,), we
may replace F with gF, which is R-split. Hence we may assume
from the beginning that (F, W(I)) is R-split. Set IPi=FNFN
Wiyign(I). Then we have He=@ I#? and F?=@ I*-.

Let us define Yy, Y,€End(H¢) by !

(2.4.2) Yilpo=p and Y| ,,=q.

Then since NI*CI*"%%! for NI, we have [Y;,, N]=-—N,
[Y,, N]=—N for Nel. Hence Y; and Y, preserves the filtrations ¥ and
W(I,). By setting I4=W(,) NI*% we have W(I,) =@ I}

b.q
Now by the assumption {W([;)};s; is a distributive family, and

hence {I?%;,; is a distributive family of filtrations on I*% This
immediately implies the desired result. Q.E.D.

Theorem 2.4.2. Let K be a compact subset of D and let [={Ny,...,
N} be a commuting set of nilpotent elements in gr.  We set I;={N;;
i=j}.

We assume the following conditions.

(2.4.3. 1) If FEK and NI then NF'C F?
(2.4.3.2) For FEK and NeC(I) we have é"FED

(2.4.3.3) For any p,k and JCI, dim FPOW,(]J) does not depend on

FEK.
Then for any e>0 we have
(2.4.4) lul 2t G/t . (8111

on quéij(Ij) and NZjZi:lt,-Nj with t, >,
t;/tio1>e for 2=j=<I.
For this notation, see Definition 1.9. 3.
Corollary 2.4.3. Under the same notation, we have
(2.4.5) |eVul by~ (/1) (/)

1 1
on uEMN Wy, (Ij) and N= 2 i;N; with 8,2, t;/t;1>¢ for 25j=l.
i= =1
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Proof. We shall prove this by the induction on . Set W=W().
Let us take a semi-simple element Y in g, such that

(2.4.5) [Y, N]=—2N for NeI
(2. 4.6) Y| w=k-id
g"k

For example, take Y;+Y,—n in the proof of preceding lemma. If
V, denotes the eigen-space of Y with eigenvalue k£, then W,=@ V.

Now, (2.4.5) implies =
(2.4.7) N = gY/2giN Y12

for NeC({) and s>0.
Now, let N:Jéllt,-Nj with ¢;>¢ be an element of C(/). We set
N’'=3% t;N;/t,, Then we have N=#;(N;+N’). Therefore (2.4.7)
implii
(2.4.8) eNF=17""% H2F

; iN
— ti-Y/ZelN’ (e 1 t}’/ZF) .

i(N1+N’)

Lemma 2.4.4. For any >0, let K’ be the closure of {eileY/zF; FeKk,
s>e}. Then (2.4.3.1)~(2.4.3.3) for (K', I,) are satisfied.

Admitting this lemma for a while, we shall continue the proof of the
theorem. By the hypothesis of the induction, we can apply the
theorem for I, and K’. Therefore we have for N’=.T: (¢;/t) Ni with
i/t >e (255=0). ~
(2.4.9) ) sy~ (Ga/ 1) (/)™

on uejf_l\z W,,(I;) and F'EK’.
If F'=¢"4Y2F with FEK, 1;>>¢, then(2.4.8) implies ¢VF=77%N F",
Hence, t{2€Gg gives
(2.4.10) ui v, = 1% | e,
Now, W (I;) is invariant by Y. Hence we have W (I;) :Gk—)(W(I,-) V.

Since {W(I;)},<; is distributive, {W(l,) NV,};s, is also a distributive
family of filtrations of V,. Hence we can write

(2.4.11) Vi=@U,.,
t
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where p= (py, ..., 1) EZ'! and

(2. 4.12) W,I)=@U,, forj=2.
bj5q

Then (2.4.9) means that, fixing a norm | | of Hg,

(2.4.13) e G~ 5 8o/ 8D ™ (/1) Lt

where u= Zuk,p with uk,pEUk,p.

Since #%u=7), t#"u; 4, (2.4.10) implies
k

’ ?
u| % o~ 208/ 2 - (/) |6, |2

This is nothing but the meaning of (2.4.4). Q.E.D.

2.5. Proof of Lemma 2.4.4. We shall prove first

Sublemma 2.5.1. () ¢ YF(@ >0, FEK) can be continued to a
continuous function from {(¢, F); t=0, FEK} into D.

(1) If we set Foy=1"YF |,_y, then Fy(gr") =F(gr") and (Fp, W) is R-
split.

(i) eNFoED for any NEC).

Proof. Since dim(F?\W,) is a constant function in FEK, F?(grl)
forms a vector sub-bundle of grf on K. Let FICV, be the inverse
image of F?(gry) by the isomorphism V,=gr?. Then F? depends
continuously on F. Hence, locally in F, there exists an isomorphism
depending continuously on F

(2.5.1) ot D Fix F?
k
such that
P! (FY CF'NW,
and

P (u) =u—¢?(u) EW,_, for uEF;.
Therefore
tY Rt = D {t 7Y (w); uEFi}
=D wtghw); vEF.

Since ¢4(u) EWyy, 7 ¥2(w) is a polynomial in ¢, and hence #7¥.
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(u+¢(w)) is a polynomial in ¢, whose value at t=0 is u. Therefore
we have (i) and Fi=@ F?. Since (F(gr¥), F(grl’)) is a Hodge struc-
k —
ture of weight n+k, we have V,= @ FiNFL  Therefore (F, W)

btg=k+n

is R-split. Then (iii) is an immediate consequence of Theorem 2. 3.2

and Lemma 2. 3. 3. Q. E.D.

Now we resume the proof of Lemma 2.4.4. The condition
(2.4.3.1) for (K',I,) is evident. We shall prove (2.4.3.2) and
(2.4.3.3) for (K', I,).

If F'€K’, then there are two cases by the preceding sublemma.
(2.5.2) F'=¢"Wr2F  for FEK, t;>>.
(2.5.3) F'=¢™F, with Fy=s"YF|,_, for an FEK.

In the first case, for N'eC(ly), ¢¥'F '=t}’/2et1(N1+N')F belongs to D by
the assumption (2.3.3.2) for (X,I). In the second case GV =g Y
F, belongs to D by Sublemma 2. 5.1 (iii). For JC I, we shall calculate
dim F2O\W,(J). In the first case, dim F?O\W,(J) =dim FPOW,(]).
In the second case, we shall show dim(F?NW,(J)) =dim FP"OW,(]),
which completes the proof of Lemma 2.4.4. Now, we shall use the
fact that {F, W(J), W} and {F,, W(J), W} are distributive (Lemma
2.4.1). We have
dim(F*OW, () =dim(FENW,(]))
= ; dim (F3§(grf) NW,(]) (&)
=2 dim (#*(grf) "W (D) (&)
J
=dim(F*OW, ().

2.6. Proof of Corollary 2.4. 3.
1
For u€NW,, (I;), we have
j=1
6 oy S T 8 5 INTL L V)’

Zconst. £1(t,/t)% .. (L/ti) ™,
because N;W,(I;) CW,(I;) and N W,([;) CW,_,(I;) for i:€I;. Then
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Lemma 1.9.1 implies that there exists C >0 such that Ie"Nule,-NFé

C |u| jv, Similarly we have le=*Vu | v, =C lul g, These two imply

le™ul 4N |ul N pe

§3. Variations of Polarized Hodge Structure

3.1. Let X be a complex manifold. A variation of Hodge structure
of weight n on X is a couple (Hgz F) of a locally constant Zx-module
H, of finite rank and a finite filtration {F*},.z of 0 xQH, by vector

z

subbundles, satisfying

(3.1. 1D At each point x€X, (Hz,, F(x)) is a Hodge structure
of weight n.

3.1.2) oF*C F*! for any holomorphic vector field v.

A variation of Hodge structure is called polarized when a bilinear
homomorphism §: H,QH;—@Qx is given in such a way that

(8.1.3) (Hz. F(x),S,) is a polarized Hodge structure at any
xEX.

3.2. Now, let X be a complex manifold and Y a closed analytic
subset. Let (Hg F,S) be a variation of Hodge structure of weight =
on X\Y. For x&X\Y, let us denote by C(x) the Weil operator of the
Hodge structure (Hz,, F(x),S,). Then

(3- 2. 1) <uiv>x:Sx(C(x)ua 5)5 uavEHC‘,x
el = (Cu [up)

defines the Hermitian metric on the vector bundle H¢, which depends
really analytically on xEX\Y.
We shall discuss the behavior |lu||, when x goes to Y.

3. 3. Before studying the asymptotic behavior of variation of Hodge
structure, we shall discuss the canonical extension of integrable con-
nections. Let X be a complex manifold and Y a closed analytic
subset and % a D xy-module coherent over @ xy. Letj: X\YCX be
the open embedding. We shall define the coherent @ x-submodule
E3y(F) of j,(F) as follows.
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3.3.1 Assume first Y to be a normally crossing hypersurface. Then
vy (F) is the unique locally free O x-submodule of j, @ x which has
the following property.

3.3.1.1) For any holomorphic vector field v tangent to Y, we
have
vExv (F) CExv (F).
(3.3.1.2) At any non singular point y of Y and any vector field

v tangent to Y such that v |ly/I}=id, any eigenvalue of
v: B3y (F) /IyE$y(ZF) is contained in {1; 0= +Rel<l1}.
(3.3.1.3) E:JE(\Y(y) I}(\Y"—‘gr
Then, #F—E$y(&F) is an exact functor. Moreover we have
3.3.2) twr(F) CExy (F)
(3.3.3) Exw(F) =(EZw(FY))". Here V=ilm o(*, 0).

3.3.2 In general, let f: X=X be a proper morphism such that
Y’=f"'Y is a normally crossing hypersurface and that X'\Y'—»X\Y
is an isomorphism. We define E%y(F) as

3.3.2.H E3v(F) =f«(Ezny (f'F)).
This does not depend on the choice of f.

3.4. Now, let X be a complex manifold, Y a closed analytic subset
of X and (Hyg, F,S) a variation of polarized Hodge structure.
We assume

(3.4.1) Y is a normal crossing hypersurface.

Let Y=\1Y; be the decomposition to irreducible components. For
jer
a finite subset @ of J set Yo=Y,

jea

Let M; be the monodromy of H; around Y;. Hence M; defines the
automorphism of H, on a neighborhood of Y;. Then by [S], M; is

quasi-unipotent. Taking a positive integer m; such that M;’ is uni-
potent, set szleog Mji. TFor a finite subset a let W(a) be the
i

monodromy weight filtration of X Nj.
jea

Then there exists an open neighborhood U, of Y, such that W(a)
is the filtration of Hg| U\
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Let us take x,&X and a={j; x&Y;} ={ji,...,ji}. Let f; be the
defining function of Yj, and y,= —log|fj|. Set a,={j,; p>}.

Theorem 3.4.1. There exists M >0 such that for any relatively compact
subanalytic set U in X\Y and for any >0, we have, for a flat section u
on Helg,

|u] 2~ /D % - /i)

1
on uEf_\l W,,j(aj), xcU, yp>M (w=l,...,0) and y,/y,.1>¢ for v=2,
A

Theorem 3.4.2. {E*(O QW (a1)),..., EY (O QW (@)} is a distrib-
utive family of filtrations of E*(0 QH¢). Let us take a splitting

E*(He) = @Upl ..... b

E*(0x®H;). Then on a neighborhood of x, we have

[l o~ Tt G/ e - /D)™ Nty 1
on xE {x;9;/y;1>¢ for j=2,...,1},
where u=lu, 5 is a section of the vector bundle E¥( 0 ®H) and

Up

§4. Proof of Theorem 3.4.1 and 3.4.2

4.1. As the question is local, we may assume
4. 1.1) X=4.
Here 4 is the unit disc {z€C; |z] <l1}.
(4.1.2) Y=kEX;2...2:=0}.
Considering a branched covering by z}/m" if necessary, we may assume
from the beginning

(4.1.3) The monodromy AM; is unipotent.

~~
Let p: X\Y=C/—X\Y be a universal covering given by (z,...,7)—
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iT

(z1y+ -5 21) with .z,-=e21r i, We shall trivialize p7*H;. Then at each

point ;?E)/f'\\l'/{, the Hodge filtration F(p(%)) on a fixed vector space
H¢ is given so that this defines a holomorphic map

o~
(4.1.4) @ X\Y—D

to the appropriate classification space D of polarized Hodge structure
(see §2). Let DD be the classification space of Hodge filtration. We
use the notations G, Gg, and g as in §2. Then N;=gr and T (7)

—2miyT,N
=¢

~ I .
7i@(r) gives the holomorphic map ¥:X\Y—D, which are
invariant by t—t+m (m&EZ'). Hence it decomposes

(4.1.5) Yy L. b
/’
J T
X\

By the nilpotent orbit theorem ([S]), we have
(4.1.6) ¥ is continued to a holomorphic map ¥: X—P.
Set Fy=7(0) and define

@y (7) =" = Vio R,

Then Lemmas 8. 25 and 8. 27 in [S] say that there exists g(r) &Gg
such that

(4.1.7) g(v) @(r) =a is a fixed point of D,

and there exist 8, C, M >0 such that

(4.1.8) du(g(®) & (2), a) SC(X Imz)?( X ¢ ™0 for Im T >M.
J

Here dy is a metric invariant by the action of a compact form M of

G.
In particular if 6 is small enough we have

(4.1.9) & () &D
for = with (X Im<z)?(X e—mm") <0 and Imt;>M. Since D is

J
pseudo-convex to the horizontal direction (See [G-W], Lemma 4. 2. 1),
{ctECT; @ (x) ED} is also pseudo-convex. Moreover this contains

E={r; (% Imzc)?(X e ™) <0, Im o;>Mj.
J
Remark that

(4.1.10) A connected tube domain which is pseudo-convex is convex.
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Since the convex hull of a connected component of E contains
{r; Im ;> M’} for M">0, we finally obtain

(4.1.1D) & () ED for Im ;>M’.

Proposition 4.1.1. |u| )~ [4|s¢) for Imz;>M".
If this proposition is proven, then Theorem 3.4.1 and Theorem

3.4.2 are immediate consequence of Theorem 2.4.2 and Corollary
2.4.3.

4.2. In order to prove Proposition 4. 1. 1, we shall introduce 9 (x, x"),
the function on D X D.

For x&D, let G(x) denotes the Weil operator of the Hodge struc-
ture at x. For x,x'ED set

(4.2. 1) d(x, x") =trC(x) "1C(x")

we have

(4.2.2) G TG () u vy, =<u [0De

Hence for a suitable base, C(x) "'C(x") is a positive-definite symmetric
matrix so that its eigenvalues are positive. Since C(x) 'C(x") is

conjugate to its inverse, if 1 is an eigenvalue of C(x) 'C(x"), then
271 is also its eigenvalue with the same multiplicity. Hence we have

(4.2.3) 0(x,x") >dim He.
If the equality holds, then C(x) C(x’) is unipotent. Hence we have
(4.2.4) 0(x,x") =dim H¢ implies C(x) =C(x").
The relation (4.2.2) implies
(4.2.5) lul =6 (x, 27) [ul 4.

Lemma 4.2.1. (i) Let Z be a complex manifold. Let ¢ and ¢’ be
horizontal holomorphic maps from Z to D. Then d(¢(2),9’(2)) is pluri-

subharmonic.
(ii) For any C>0, x,=D, {x=D; d(x,x,) <C} is a compact set.

Admitting this lemma for a while, we shall prove Proposition
4.1.1. By (4.1.8), for 0<e£0K1, we have
(4.2.6) 0(g(t) @y(z), a) <dim Ho+d
for tCE={rECH (N Imz)?(Ne ") <e, Imz;>M}. This implies
J
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(4.2.7) 0(dy(7), ?(r)) <dim H¢+d for t=E.

By Lemma 4.2.1 (i), {r; 6(@(z), @(r)) <a} is pseudo-convex. Hence
(4.1.10) implies

(4.2.8) (P (7), P(r))<dim H¢+0 for Imz; >M’.

Now, it is enough to apply (4.2.5).

4.3. Proof of Lemma 4.2.1. (i) We may assume that Z is an
open set of €. We fix a reference point x, of X. Set ¢(z) =g(z)x
with a C=-function g(2) ©Gr. Set gt ?={Ac=g; AF (x0)*CF (x,)**?
and AF(x,)*CF(x,)*?. Then g=@g”? and g»?=g »%. That ¢ is
holomorphic is equivalent to

4.3.1) g g, =Py 2.
=0

Here g, is the derivative of g with respect to Z. That ¢ is horizontal
is equivalent to

(4.3.2) gl P>
p>-1

Hence h=glg,=g*°@g 1% Set h=hy+h_, with A=g"° and A =g~ th
Then h=g'g,=hy+h, with hy=~h_;&g"%. Then integrability condition
implies

(4.3.3) h.— h,=[h, R].
Hence we obtain
(4.3.4) hy=T[hy, Bl

hoy:=Th_y, ﬁo]-
We have C=C(¢(z)) =gCug™* where C;=C(x,). Hence

(4.3.5) C.=g[h, Colg™

Now, we have

(4.3.6) [Ao, Col=0

(4.3.7) hCo+Coly=h_,Co+Coh_1=0.
Hence we obtain

(4.3.8) C.=2gh_,Cog™.

The easy calculation shows

(4. 3. 9) sz=2g(h1h_1+h_1h1) ng_l.
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We define C'=C(¢"(2)), &', #’, hy, hi, h_; similarly. Then u=4d(¢(2),

¢’ (2)) = (—)"trCC’, and we have, setting ¢o=g¢’,
(4.3.10) Uy =2 (=) "tr ((hoy+ h_ihy) CopCop™!

+ (BhZ1+ R k1) Cop™ Cop +2h_.CophiCopp ™
+2mCoph_1Cop™).
If we denote by * the adjoint with respect to the Hermitian form
S(Cou, 7), then we have trdA*>0 for AEEnd(Hy). If we define ‘A
by S(*4u, v) =S (u, Av), then A*=C,'AC;*. Hence we obtain
(4.3.11) trAC,AC71>0.
By setting
A=¢7 hyy+hip™,
and using ‘Y= —-Y for Y&g, we obtain

trACQTECJI = ( — ) "r (}lil}l:FICo§DCg§0_l + hlzplh;ICng—lCogD
+ hlcOSD}l’_lCng_l + h_lco@h],_cggﬁ—l) 2 0.

This shows u,;>0.

4.4. Proof of Lemma (ii). In order to prove this, let {x,} be a
sequence in D such that {0(x,, xp)}, is bounded and that x, converges
to a point x.&D. It is enough to show x.&D. Then, <[}, tends

to a positive definite Hermitian form < [)..

Let Hc=@H?%? be the Hodge decomposition at x, We may
assume H.?—>H?% Since H%%s are orthogonal to each other with
respect to < l>,,”, {H%% is orthogonal to <|}.. Hence @HL'—H is

injective. Comparing the dimension, we have H¢=@H%% Therefore
this is the Hodge decomposition at x.. and S(C(x..)u, 8) =<u [v).. Thus
x,, belongs to D.
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