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Examples of Extremal Lattice Fields without
the Global Markov Property

by

Christoph KESSLER*

Abstract

We disprove by two examples the outstanding conjecture that every extremal Gibbs
state for a given interaction on a lattice system satisfies the global Markov property.

Introduction

The global Markov property (GMP) of random fields has attracted
quite a lot of attention in connection with problems of quantum field
theory [8], In the case of lattice fields, i.e. lattice spin systems, this
property has been shown under different assumptions ([1], [4], [5],
[2])- [5] sets up a sufficient condition for the global Markov property
which is e. g. applicable in the case of maximal states for attractive
interactions. By application of some heuristic argument, [5] conjec-
tures that this condition should be trivially satisfied in the case of
extremal Gibbs states which thus should be globally Markov; this
conjecture has remained open. We give two examples—one with an
interaction which sometimes has infinities, the other with finite
interaction—where the extremal states violate the GMP.

The interaction given in these examples is far from being translation
invariant. Thus the conjecture mentioned above remains open in the
case of translation invariant interactions (see [6]).

Let us mention that the question of extremal Gibbs states whithout
the global Markov property has been discussed also in [10]. However
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in that paper the definition of "boundary" for a given region in a
lattice differs from the usual one occuring e. g. in [5] or [6], which
we also use in our text. The fact is that the Gibbs measure from
[10]'s example does satisfy the GMP if the "boundary" is correctly
defined.

Content

§ 1. Preliminaries: Statement of the global Markov property, the
sufficient condition from [5], and some remarks on the example of [10],

§ 2. Example of an extremal Gibbs state violating the global Markov
property. This example involves infinite values of the interaction.

§ 3. A one dimensional example of a finite interaction with non-
uniqueness.

§ 4. Example of an extremal Gibbs state violating the global Markov
property, but with finite strength of interaction. The idea of § 3 will
be used.

§ 1. Preliminaries

1.1. Definitions, and statement of the global Markov property

We partly adopt the notations from [5]. We work on a lattice
system @ = Sr where S is a finite state space (in the examples it is
{0, 1}), and F is some lattice (in the examples it is a subset of Z2,
endowed with some diagonal bonds).

If D^F then define QD = SD\ if x is a configuration on F (i. e., an
element of Q) then define xD = x\D^QD.

An interaction 0 is a set {0v\V^r finite} of mappings @v: Qy-^R.
The value @v (x): = @v (xy) is "the energy contributed by the part xv

of the configuration #". 0 is called nearest neighbour if @V=Q unless
each pair (ij) in F is a pair of nearest neighbours.

A probability measure p on (Q, S3) is called a Gibbs measure if it
satisfies the so-called DLR-equations ([3], [7]) (S3 is the natural Borel
algebra on Q = Sr): For all finite AQF, yGQA, x^Qi

p(ZA=y\Zr\A = xr\A) = e x p ( - h % ( y 9 x ) ) / Z A i X - 9 (1. 1)

here p( . . ) denotes the conditional probability, hA(u, #) = S {®v(u, #) I
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}, and ZA,x=^{exp(-h*A(y',X»\
The conditional probability introduced above depends only on the

value of x on dA= {i \i is nearest neighbour of some j^A, or 3F: 0y^0,
Ff l -^^0 , and i&V}. This object is called the boundary of A w.r.t.
0. This is the usual definition of "boundary"; dA has to separate
A and r\(A\j3A) w. r. t. 0,

The left hand side of (1. 1) is abbreviated by p(ZA=y\xr\A)l it
can be regarded as a probability measure pAiX on OA. Following the
terminology of [9], we call (pAlX) A,X the system of finite specifications
for 0.

A Gibbs measure p is called pure if it is a limit of the following
form:

p = ]imp x0, (1.2)
n— >oa n'

where An= { — n, . . . , n}d<^F = Zd, and x° is some fixed configuration on
F (A similar definition could be done for other "well behaved"
lattices /*.).

Eq. (1.2) means that for each tame set B (i. e., B is measurable from
within some An, hence it can be regarded as a subset of £?^for /2>?20)?

p(B)= lim p 0(5).
n^nn, n-*=>° n'

A Gibbs measure is called extremal if it is not a true convex
combination of different Gibbs states. Any extremal state is pure.

Finally, a given Gibbs state p has the global Markov property iff
for all FCF and/egF,

£,(/l?W) =£(/!&*), d.3)
or equivalently, for all F^F, f^^p, and ^^Sc-

£„(/•£ I&F) =£p(/lga^) -^telgdF). (1-4)

Here G = F\(FL)dF); in general, for DC/7, %D denotes the ^-algebra
generated by the projection x^->x\D. A function / is in %D iff / is
gp-measurable and bounded.

p has the local Markov property iff it satisfies (1.3) for all finite

1.2. A sufficient condition, and the conjecture from Goldstein [5]

This is the sufficient condition for the global Markov property
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from [5] :

(C) For all F^F, there is a configuration x°^Q, and a diverging sequence
OJ m(EN such that

(i) p = limp o,
m-»°° nm

and

Here PAFxo is defined by

(B) (1.5)
}

for £e^ n F ; C e ^ F - If we now write

), (1.6)

and compare with (1.5), then "it should be clear" that for a given
Gibbs measure p satisfying (C) , (i) , the measure p XQ is even closer

nm

to the limit p than p 0 is because we replace the "influence" of
nmX

pA XQ on the part ^-nm\F by that of the limit measure p. Thus (C),
nm

(ii) would follow from (C), (i).
This was the heuristic argument from [5] which would imply

that any pure, hence any extremal Gibbs state satisfied the GMP
because it satisfies (C), (i). In the examples we present extremal
Gibbs states for some interaction 0 which violate the GMP, hence
(C), (ii).

1. 3. Remarks on the example from Weizsacker [10]

Weizsacker [10] gives an example of a (unique hence extremal)
Gibbs measure which violates the global Markov property. If we
translate this example into our framework, we have a two-dimensional
lattice Z2

? 5= {0,1}, and an interaction 0=(0y)v where @V^Q only
for the following types of sets V:

a) Certain three-point-sets like {(i,j), (z,j + l), (i+l,j)}; here
$vW =0 or oo if the sum of the three #- values on V is even or odd,
respectively.
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b) Certain two-point-sets like {(z, j), (i+1, j)}, i. e., V contains

a couple of nearest neighbours. Here 0VM =0 or oo if the two x-

values are equal or not equal, respectively.

c) The two-point-set VQ— {( — 1, 0), (1, 0)} which links two non-

neighbouring sites. 0vQ is as in b).

The boundary dA now is denned only in terms of nearest neighbours
(dA= [i&A | ̂ j^A such that (z, j) are nearest neighbours}). Now, if

F is the right half-plane, dF is only the jy-axis; so @VQ links F and

r\(F{ldF}. Thus it is not surprising that—with this definition of dF

and JFdF—the GMP is violated for the (unique) Gibbs state p for 0.

The real "wonder" is that the local Markov property is satisfied if we

admit diagonal bonds; this depends heavily on the choice of the sets

V supporting 0.

As mentioned above, p has the global Markov property if dF is

defined as in 1.1.

§ 2. Counterexample to the Global Markov Property

This counterexample involves infinite energies. Choose F = {( — 1, z),

(0,i)5 (1,0 \i^N}. This is a strip of width 3 along the positive jy-
axis.

0 is supported by the sets F,-= {(0, 0? (~ 1? 0, (~~ 1? *"+1)} and

^'={(0,0, (1,0, ( l , i+ l )} . ®yiW has the value oo or 0 if the sum

of the three ^-values is 0 mod 2 or 1 mod 2, respectively. Similarly

for 0V..

0 can be viewed as nearest neighbour if we admit some diagonal

bonds.

Now, for 7?<EJV, let AH= {(-1,0, (0,0, (1,0 |0^t^w}; dAn then is

{(-1,72+1), ( 0 , f l + l ) , (1,>2+1)}.

We abbreviate the finite specifications pA tX by pniX and look upon

x^QdA as of a triple (x_1? XQ, Xi) with components from {0,1}. If

necessary we specify such an x by "111" etc*

By the definition of 0, we now have for m^n — 2, and each set

B which is measurable from within Am (thus B can be seen as a subset

of QA as well as of QA ):
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Pn,x(B) = (1/4) - E [pm.,(B) b_!=j>J if *-! = *i; (2. 1)

ftijr(5) - (1/4) - 2 {ft,.,(fi) b-i^il if *-i=£*i.

In the first case x will be called good, in the second case bad; the
same terms will be applied for configurations xm= (#_i.w, #0,m5 #i,m).

Since the two probabilities differ in general (example: for w^l
we have ft.mCeo ̂  good/) =1; ft.ooifco w good) =0), the following condition
for the existence of the thermodynamic limit lim pn>x holds:

' n

lim ft iX exists iff xn is good for almost all TzEEJV, (2.2)
n— >°o

or xn is bad for almost all n^Ne

The two limits will be called pgood and pbad ; from the above we conclude
Pgood^pbad- Pgood and pbad are the only pure, hence the only extremal
Gibbs states for our system.

Now, for a contradiction to the global Markov property, let F=

{(l,i) 1*2:0}, thus 9F= {(0,i) |»^0}, and /=/{^.1JS ^=/«._M.i,. (/. is

the indicator function).

Proposition 2, 1.
a) E,(A |^"9F) =1/2 a. s. for p = pgood or pbad, h=f or g.

Thus the GMP is not valid since in b) we had to expect the value
1/4 a.s.

Proof. Call u^S"+1 even if #{z |v f^0} is even; otherwise v is called
odd. For given n^N, u^Sn+1, and some event B we abbreviate
p(B\(Zoo...z<J=v) by /0CB|iO; here p indicates pgood, pbad, or some ft.,
where k is so large that B is measurable from within Ak.

Ad a) E. g., let p = pgood, and h=f. Then we have to show, for n^2
and

l | > > ) = l / 2 (2.3)

Now, in general, for x^@dA

Pgood (Zn+l = X V)= pgood (Zn+l = X) , (2. 4)

because the left hand side is independent of y, see the definition of
0. Thus



GLOBAL MARKOV PROPERTY 883

Pgood (£lQ = 1 I *) = S {/<W (£»+! = X 1 1>) " ft,. x (£10 = 1 | ») \X^ QdA) (2. 5)

= S {|<W (£» + ! = *) ' ft,. , (^10 = 1 I y) | * e flg^} .

But the first factor is 1/4 for exactly the good #, and 0 for the bad
x. The second factor is 1 iff v is even and # = .. 1, or v is odd and
# = ..0; otherwise this factor is 0. (A dot means an arbitrary value.)
In any case it is 1 for exactly two of the four good ^-values. Thus

^(£10=1110=2/4 = 1/2.

Ad b} We prove the first formula; the second one can be shown
similarly. We have to show, for each rag: 2, and yeSn+1,

/ tW(£iD=l=£-iol»)=l/2. (2.6)

Now, as in the proof of a) (see (2. 4) , (2. 5) ) , and by the local
Markov property,

Pgood(ZM= 1 =£-10 1*0 = S {pn.*(Zto=l \ y) °Pn,X(Z-lQ= 1 0 1^ good} .

(2-7)

But the product is 1 if x = 1.1 and v is even, or # = 0.0 and v is odd.
Otherwise the product is zero. In any case it is 1 for exactly two
of the good x\ hence

pgood(Zw= 1 =£-w W =2/4 = 1/2.

If you want to avoid infinite energies, i. e., infinite values of $, you are
referred to §§ 3 and 4. There we replace the infinities by very fastly
increasing finite values which have — for our problem of the GMP —
the same effect.

§ 3o A One Dimensional Example

The following nearest neighbour interaction 0' on the lattice
system Q' = Sr\ S= {0, 1}, rr = N, is an attractive interaction with finite
values which has two different extremal Gibbs states.

Define @'V = Q unless V=Vl= [i9i + l] for i^N. In this case

#/ (*»*.-+i) =0 or i,->0 if *,-=*,-+i or Xi=£xi+l. (3. 1)

Remark. If we put 0^ (xh #i+1) =0 or oo if x{ = or ^ xi+i, then it

is clear that there are exactly two different extremal Gibbs measures.
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If we now choose large enough b{ (the choice will be made later),

then we will obtain the same effect.

Proposition 3o 1. Let ee (0,1/2) be given. Then there exists a

monotonically increasing sequence (bi}i&N such that for all n^>m^0

^:=/»:.iU. = 0)<e. (3.2)

Here p'nti is the finite specification determined by the value 1 on

the only site n + 1 on dAn.

Conclusions.

1) Since always, by the local Markov property,

/CO>K,=*MJ =fl-ri,,(j>«=*J, (3. 3)
where a is a factor independent of n, and since s<l/2, we conclude

lim p'HiX exists iff xn=l for almost all n€=.N (3.4)
n-»oo ' n

or xn = 0 for almost all n^N.

The limits will be denoted by p( and p'^ respectively; the two limit
measures differ.

2) It is clear, since i,->0, that 0' is attractive; thus p{ is maximal,

and p'o is minimal. By (3.4), there are only two pure, hence only two

extremal Gibbs states. So p'Q and p[ are the only two extremal Gibbs

states.

3) For all m^N, and *, y*=S:

p'x(Zm=y} =limp'mn= \p'm<z if x^y\ (3. 5)
n-*oo

P*(Zm=y) =lim^ = ̂ >(l-e) if x=y.
n-»oo

Here q'mn= (I - p'mn) , and q'm=(\-fo.

Proof of proposition 3. 1. Let m<^n be given, and define

Z»...i=Z]{exp(-A..ll.1(v))|ve5«- ..... "J}^1,

where, for v^S(m ..... "', and A:(v)=max{i v; = 0},

Then
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O,

where the last two inequalities hold by an appropriate choice of a mono-
tonically increasing sequence ( i f)» uniformly in n and m,

§ 4o Counterexample to the Global Markov Property

The situation is nearly the same as in example 2 (recall the
definition of F, Vi9 V\ An, and dAJ , but we define the interaction 0 as
follows: 0V = 0 unless F=F* or V1 for some ieJV; 07.00 = dt or 0 if the

sum of the three ^-values on V{ is 0 mod 2 or 1 mod 20 Similarly
we define 0i.

Now we choose the sequence (di)ie=N: Let £<^l/6 be given, and let
(Wiejv be a sequence from example 3 for this e(see the proof of (3. 1)).
Then put

di = arcosh (exp (^) ) >0 (thus bt = In (cosh (dj ) ) (4.1)

These dt will work.

Proposition 4. L // 72>m, ^/z^w, r^z'M /?^n a;zrf qmn from (3,2)
(3.5),

ft,*fe»=7) =^,m(^ w ̂ ^)/4=gL/4>(l -e)/4 (4. 2)
z/ (^ u good iff y is good)

Z/ (^ ZJ ^OOfif Z^JV Z5

Proof. First we compute some probabilities: For k^N? define

** + 2-rM* = 2-(l+*~V. Then

ft.,U*=^)= a)l/Z4, b) rVz», c) e'^/Z* (4.3)

in the case of a) jvi +^0 + #1 = 1 mod 2, Z = ± l (these are exactly two
y of the same "sort" as x, b) jv is good iff x is good, and c)

#i = 0 mod 2, Z = ± l (these are the other two y of the same
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"sort" as x) . We prove the assertion by induction onj = n—m.

Case j=l:
Let x, y be good (the other cases are similar) , and apply (4. 3) for
k = m and & = 772+1 in order to obtain

i.*(Zm+i = u)mpm.u(Zm=y) |M = 000. .. 111}

j - y + 1:
Let n = m+j, and #, jy be good (the other cases are similar). Assume
the assertion for this j and all possible x,y (induction hypothesis).
Then

fi,+i.*U«=J)0 =S{io»+i.*U«+i = M)'io»»..i«U»=Jv) |M = 000... 111}

At (*), we used (4.3) and the induction hypothesis, at ( + ) the
definition of the d{.

Proposition 4. 2.

Km pnx exists iff xn is good for almost all n^N or (4.4)
71— >oo

xn is bad for almost all n^N.

The two limit measures, denoted by pgood and pbad, are different and the only

extremal Gibbs states.

Proof. Let B be a tame set of the form B = fc \Am+1 =y] for some
y^@Am+f let M^m+i- Then, if w>??z+l5 we have by the local Markov

property,

pn,x(B) =pniX(zm+l = u) °p

where r'm+ln=p'm+ln if (x good iff u bad); otherwise rf
m+ln = qm+ln.
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But since £<l/6, \qm^n— /Win ]>2/3>0 uniformly in n&N, so lim pn x
n^oo ' n

exists iff xn is good for almost all n^N or xn is bad for almost all

n^N. The proposition follows from this since each tame set can be

constructed from finitely many sets as above.

Proposition 4, 30 pgood and pbad violate the global Markov property.

Proof. (E. g. for PgMi) Let F= {(1, i) \i^N}, dF= {(0, ») \ i f = N ] ,

and /=/(,10=n, 5 = J{*_u=i), as in example 2. We show

=Ef>goai(g\^F) = 1/2 a. s., (4. 5)

(l/2)-(l-3e) a.s. (4.6)

This is enough since for s<^l/6 the last value never reaches 1/4

which would be expected under the GMP.

First, let p" be the one dimensional measure from example 39 but

the bi replaced by the d{. Similarly define p"mn and q"mn, e. ga,

^»» = rf,iU» = 0). Since —by (4 .1)— exp(-rf,) ^exp(-4f.), we get

p'Ln^p'mn<£, q"mn^q'mn>(l ~s). (4. 7)

For peSn+1 we already know the definition of "even" and "odd", and

the notation p(B\v), see the proof of proposition 2. 1. We compute

easily

go» if *i=l, » even, or ^ = 0, v odd,
„ , . (4.8)

(p0n otherwise,

on if ^_i=l , v even, or *_! = (), v odd,
„ . . (4.9)

(pQn otherwise.

Now, by the local Markov property, we get from (4. 8) and (4. 9) :

pin if # = 0. 0, v even or # = 1.1, u odd,

Pn,x(Zio=l =Z-w W = 'pln-qln if ^ is bad (4. 10)

gol if # = 1. 1, ^ even or # = 0.0, v odd

(a ". " means arbitrary values) .

For a proof of (4.5) and (4.6), let n<=N and yeSn+1 be given.

Then
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- (2/4) - (^Un-u good) + pg,od(Zn+i bad)

-1/2

and

1 = £-10 ly) = 2 {ftwrfCen+l = *) '^ii,*UlO= 1 = £-10

- (2/4) -ft^fe.*! good) - (/42 + ?S

(4. 5) and (4. 6) are valid since n is arbitrary, and ^$F is generated
by the J^-measurable tame sets. At ( + ) we used the identity

Pgood(zn+i = x \v) — pgood(zn+i = x) which follows from the definition of 0.

References

[ 1 ] Albeverio, S., H0egh-Krohn, R. and Olsen, G., The global Markov property for lattice
systems./. Multiv. Anal. 11 (1981), 599-607.

[ 2 ] Bellissard, J., and H0egh-Krohn, R., Compactness and the maximal Gibbs state for
random Gibbs fields on a lattice. Comm. Math. Phys. 84 (1982), 297-327.

[ 3 ] Dobrushin, R. L., Gibbsian random fields for lattice systems with pairwise interactions.
Fund. And. Af)pl. 2 (1968), 292-301.

[4] Follmer, H., On the global Markov property. In: Quantum Fields - Algebras, Processes
(L. Streit, Ed.), Springer Wien, 1980, 293-301.

[5] Goldstein, S., Remarks on the global Markov property. Comm. Math. Phys. 74: (1980),
194-215.

[ 6 ] Higuchi, Y., A remark on the global Markov property for the ^-dimensional Ising
model. Proc. Japan Acad., 60, Ser. A (1984), 49-52.

[ 7 ] Lanford III, O. E. and Ruelle, D., Observables at infinity and states with short range
correlations in statistical mechanics. Comm. Math. Phys. 13 (1969), 194-215.

[ 8 ] Nelson, E., Construction of quantum fields from Markov fields. J. Fund. Anal. 12
(1973), 97-112.

[ 9 ] Preston, C., Random Fields. Lecture Notes in Mathematics 534, Springer Berlin 1976
[10] Von Weizsacker, H., A simple example concerning the global Markov property of

lattice random fields. 8th Winter School on Abstract Analysis, Math. Inst. of the Czech
Acad. of Sciences, Praha, 1980.


