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Examples of Extremal Lattice Fields without
the Global Markov Property

by

Christoph KESSLER*

Abstract

We disprove by two examples the outstanding conjecture that every extremal Gibbs
state for a given interaction on a lattice system satisfies the global Markov property.

Introduction

The global Markov property (GMP) of random fields has attracted
quite a lot of attention in connection with problems of quantum field
theory [8]. In the case of lattice fields, i.e. lattice spin systems, this
property has been shown under different assumptions ([1], [4], [5],
[2]). [5] sets up a sufficient condition for the global Markov property
which is e.g. applicable in the case of maximal states for attractive
interactions. By application of some heuristic argument, [5] conjec-
tures that this condition should be trivially satisfied in the case of
extremal Gibbs states which thus should be globally Markov; this
conjecture has remained open. We give two examples—one with an
interaction which sometimes has infinities, the other with finite
interaction—where the extremal states violate the GMP.

The interaction given in these examples is far from being translation
invariant. Thus the conjecture mentioned above remains open in the

case of translation invariant interactions (see [6]).

Let us mention that the question of extremal Gibbs states whithout
the global Markov property has been discussed also in [10]. However
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in that paper the definition of “boundary” for a given region in a
lattice differs from the usual one occuring e.g. in [5] or [6], which
we also use in our text. The fact is that the Gibbs measure from
[10]’s example does satisfy the GMP if the ‘“boundary” is correctly
defined.

Content

§ 1. Preliminaries: Statement of the global Markov property, the
sufficient condition from [5], and some remarks on the example of [10].

§2. Example of an extremal Gibbs state violating the global Markov
property.  This example involves infinite values of the interaction.

§3. A one dimensional example of a finite interaction with non-
uniqueness.

§ 4. Example of an extremal Gibbs state violating the global Markov
property, but with finite strength of interaction. The idea of §3 will

be used.

§1. Preliminaries

1.1. Definitions, and statement of the global Markov property

We partly adopt the notations from [5]. We work on a lattice
system 2=S" where S is a finite state space (in the examples it is
{0,1}), and I" is some lattice (in the examples it is a subset of Z?
endowed with some diagonal bonds).

If DSI' then define £2,=S8% if x is a configuration on I" (i.e.,an
element of £2) then define xp,=xDEL,.

An interaction @ is a set {@,|V CI finite} of mappings @y 2y—R.
The value @y(x):=®y(xy) is “the energy contributed by the part xy
of the configuration x”. @ is called nearest neighbour if @®,=0 wunless
each pair (i,j) in V is a pair of nearest neighbours.

A probability measure p on (£2,8) is called a Gibbs measure if it
satisfies the so-called DLR-equations ([3], [7]) (B is the natural Borel
algebra on 2=457): For all finite ACT", yER,, xE2:

0(z4=y |ZF\A=xF\A) =€xp(-hﬁ(}’, %))/ Zaxs (1. 1)
here p(.|.) denotes the conditional probability, &, (u, x) = 3, {@y(y, x) |
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VNA# 6, and Zs,= 3 fexp(—hS(", ©)) |y Q).

The conditional probability introduced above depends only on the
value of x on 04= {i |i is nearest neighbour of some jE4, or JV: @, %0,
VNA# @, and i€V}. This object is called the boundary of 4 w.r.t.
®. This is the usual definition of “boundary”; 04 has to separate
A and I'\N(AU94) w.r.t. .

The left hand side of (1.1) is abbreviated by p(z,=ylxra); it
can be regarded as a probability measure p,, on £, Following the
terminology of [9], we call (04.) 4. the system of finite specifications
for @.

A Gibbs measure p is called pure if it is a limit of the following
form:

p=limp, o (1.2)

where 4,={—n,...,n}?CI'=2Z% and «° is some fixed configuration on
I' (A similar definition could be done for other “well behaved”
lattices I'.).
Eq. (1.2) means that for each tame set B (i. e., B is measurable from
within some A"o’ hence it can be regarded as a subset of QAn for n>ny),
oB)= lim p, +(B).

nzng, n->oo

A Gibbs measure is called exiremal if it is not a true convex
combination of different Gibbs states. Any extremal state is pure.

Finally, a given Gibbs state o has the global Markov property iff
for all FCI' and fEg¥s,

Epgl%r\zv‘) ZE(f|%‘aF), (1.3)
or equivalently, for all FCI', fEFy and gEFa
E,(f-g|Ber) =E,(f1Bor) - E,(g|Tor - (1.4

Here G=I'\(FUF); in general, for DCI’, ¥, denotes the o-algebra
generated by the projection x—xD. A function f is in Fp iff f is
Fp-measurable and bounded.

o has the local Markov property iff it satisfies (1.3) for all finite
FCr.

1.2. A sufficient condition, and the conjecture from Goldstein [5]

This is the sufficient condition for the global Markov property
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from [5]:
(C)  For all FCTI', there is a configuration x*E 82, and a diverging sequence
(M) men Such that

@) p=limp D

m—>c0 Anm
and
D) =lim 0.
‘0 Moo ‘OA”M, F.x

Here p, . o is defined by

s BNO = 0@ gy s B (A5

for BEGinm CEFnp If we now write

o BNO=\ 0, 0@ 0,0, L B, 1.6

and compare with (1.5), then “it should be clear” that for a given
Gibbs measure p satisfying (C), (i), the measure p ) is even closer

to the limit p than o, , is because we replace the “influence” of
”m'

p, oon the part A,,m\F by that of the limit measure p. Thus (C),

(ii) would follow from (C), @).

This was the heuristic argument from [5] which would imply
that any pure, hence any extremal Gibbs state satisfied the GMP
because it satisfies (C), (i). In the examples we present extremal
Gibbs states for some interaction @ which violate the GMP, hence

@), @D).

1.3. Remarks on the example from Weizsicker [10]

Weizsdcker [10] gives an example of a (unique hence extremal)
Gibbs measure which violates the global Markov property. If we
translate this example into our framework, we have a two-dimensional
lattice Z?% S=1{0,1}, and an interaction ®= (9y), where @,#0 only
for the following types of sets V:

a) Certain three-point-sets like {(i,7), (i,j+1), (G+1,/)}; here
@,(x) =0 or oo if the sum of the three x-values on V is even or odd,
respectively.
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b) Certain two-point-sets like {(¢, j), (¢+1, )}, i. e, V contains
a couple of nearest neighbours. Here @y(x) =0 or oo if the two x-
values are equal or not equal, respectively.

¢) The two-point-set Vo= {(—1,0), (1,0)} which links two non-
neighbouring sites. @y, is as in b).

The boundary 04 now is defined only in terms of nearest neighbours
(04d={i&A|TjE4 such that (i, j) are nearest neighbours}). Now, if
F is the right half-plane, 0F is only the y-axis; so @y links F and
I'\(FUOF). Thus it is not surprising that—with this definition of 0F
and Z,,—the GMP is violated for the (unique) Gibbs state o for @.
The real “wonder” is that the local Markov property is satisfied if we
admit diagonal bonds; this depends heavily on the choice of the sets
V supporting @.

As mentioned above, ¢ has the global Markov property if 0F is
defined as in 1.1.

§2. Counterexample to the Global Markov Property

This counterexample involves infinite energies. Choose I'={(—1,1),
0,2), (1,7) |ieN}. This is a strip of width 3 along the positive y-
axis.

@ is supported by the sets V;={(0,7), (—1,7), (—=1,i+1)} and
Vi={(0,%), (1,9, (1,i+1)}. @,(x) has the value oo or 0 if the sum
of the three x-values is 0 mod 2 or 1 mod 2, respectively. Similarly
for (DV;'

® can be viewed as nearest neighbour if we admit some diagonal
bonds.

Now, for neN, let 4,={(—1,1%), (0,7), (1,7 |0=i=n}; 94, then is
{(=L,n+1D), O0,n+1), (I, n+1)}.

We abbreviate the finite specifications p4 . by p,. and look upon
xEQ,,An as of a triple (x_j, %o, x;) with components from {0,1}. If
necessary we specify such an x by “111” etc.

By the definition of @, we now have for m=n—2, and each set
B which is measurable from within 4, (thus B can be seen as a subset
of QAm as well as of .QA”):
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0nz(B) = (1/4) * 2 {m.y(B) |y-1=11} if x_y=x 2.1

0n2(B) = (1/4) « X {omy(B) |y1#21 if x_1#x1.
In the first case x will be called good, in the second case bad; the
same terms will be applied for configurations x,= (X_1 m Xo,ms X1.m) -
Since the two probabilities differ in general (example: for n=1
we have p, 11, (2 is good) =1; p, 01 (20 is good) =0), the following condition
for the existence of the thermodynamic limit lim p,, . holds:

n—>c0

lim On., exists iff x, is good for almost all nEN, (2.2)

n—>co

or x, is bad for almost all nEN.

The two limits will be called p,,; and 04,4 ; from the above we conclude
Ogood 7 Obair Pgoa @0A 3,4 are the only pure, hence the only extremal
Gibbs states for our system.

Now, for a contradiction to the global Markov property, let F=
{(1,9) 1i=0}, thus 0F={(0,9) [:=0}, and f=1 -1, g=1 . is

the indicator function).

~10=1"

Proposition 2. 1.
a) E,(h|Fw) =1/2 a.s. for 0=0gu 07 0say h=f or g
b) Epgood(f-glﬁaF) =1/2 a.s., prad(f-glﬂ“ap) =0 a.s.

Thus the GMP is not valid since in b) we had to expect the value
1/4 a.s.

Proof. Call vES"*! even if #{i|v;=0} is even; otherwise v is called
odd. For given nEN, vES"™ and some event B we abbreviate
0(B | (2o « - 2on) =v) by p(B|v); here p indicates oy 05,2 Or some g, ,
where £ is so large that B is measurable from within 4,.

Ad a) E.g., let p=pg4 and hA=f. Then we have to show, for n=2
and veES5*+,

Pgooa (Z0=1]v) =1/2 (2.3)

Now, in general, for x&2;,

pgoad(zn+1:x |U) :pgaad(zn+1=x) 3 (2' 4)

because the left hand side is independent of v, see the definition of
®. Thus
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Pgooa(20=110) = X {0goot (Zas1 =% 1) 0, (20o=1]v) xE25,} (2. 5)
= Z {pgood(Zn+1:x) 'pn,x(zm: 1 l V) !xE‘QZMn} .
But the first factor is 1/4 for exactly the good x, and 0 for the bad
x. The second factor is 1 iff v is even and x=..1, or v is odd and
x=..0; otherwise this factor is 0. (A dot means an arbitrary value.)
In any case it is 1 for exactly two of the four good x-values. Thus
Pgoos (R0 =1 [v) =2/4=1/2.
Ad b) We prove the first formula; the second one can be shown
similarly. We have to show, for each n=2, and v&S§**,
Pgaa.z(Zm: 1 :Z—lo| v) =1/2. (2.6)
Now, as in the proof of a) (see (2.4), (2.5)), and by the local
Markov property,
Peooa(Z0=1=2_10[¥) = 2 {00, - (200=1!V) * 0, ,(2-0=1]v) |x good}.
Q.7

But the product is 1 if x=1.1 and v is even, or x=0.0 and v is odd.
Otherwise the product is zero. In any case it is 1 for exactly two
of the good x; hence

Peooa(Z0=1=2_10|v) =2/4=1/2.

If you want to avoid infinite energies, 1. €., infinite values of @, you are
referred to §§ 3 and 4. There we replace the infinities by very fastly
increasing finite values which have—for our problem of the GMP—
the same effect.

§3. A One Dimensional Example

The following nearest neighbour interaction @’ on the lattice
system 2'=S8", §={0, 1}, I""=N, is an attractive interaction with finite
values which has two different extremal Gibbs states.

Define @,=0 unless V=V;={i,i+1} for i€N. In this case

@;’i (x,-, x,-+1) =0 or b,>0 if X; =X;41 OF X;F X1 (3. 1)

Remark. If we put (D;i (x5, %;41) =0 or oo if x; = or # x;,1, then it

is clear that there are exactly two different extremal Gibbs measures.
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If we now choose large enough b; (the choice will be made later),
then we will obtain the same effect.

Proposition 3.1. Let ¢ €(0,1/2) be given. Then there exists a
monotonically increasing sequence (b;);cn such that for all n>m=0

Dot = 0.1(2,=0) <e. (3.2)
Here p,, is the finite specification determined by the value 1 on
the only site n+1 on 04,

Conclusions.
1) Since always, by the local Markov property,
OO Mn=210) =+ 0, :(yn=2m), (3.3)
where a is a factor independent of n, and since ¢<1/2, we conclude
lim g}, ,, exists iff x,=1 for almost all nEN 3.4

or x,=0 for almost all nEN.

The limits will be denoted by p; and g, respectively; the two limit
measures differ.

2) It is clear, since b;>0, that @’ is attractive; thus pf is maximal,
and g is minimal. By (3. 4), there are only two pure, hence only two
extremal Gibbs states. So g, and p; are the only two extremal Gibbs
states.

3) For all meN, and x, yES:

0 (zn=p) =lim pl,= :p,u<e if x+#y; (3.5)
02 =) =lim g, =g, > (1—¢) if x=y.
Here ¢pn,=(1—pn), and gn=(1—p).

Proof of proposition 3.1. Let m<n be given, and define
Znn1=2.{€xp(—hpp1(0)) [pES™"} =1,
where, for vE8§™ " and k(v) =max{i |v;=0},
b1 W) =2 {bi li=m, ..., ny v, =v;} 2k, (v).
Then
bon=011(Zn=0)
=21{exp(—hnn1()/Zpnr lVES™ ™™, v, =0}
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<o N (# = 0=y, vy =. .. =y, =1} ¢ *|m<k<n)

= "mp Y {2 =1, ... k—m)
ée—”o+ > 2i—1e‘bi

iEN
<,

where the last two inequalities hold by an appropriate choice of a mono-
tonically increasing sequence (b;); uniformly in z and m.

§4. Counterexample to the Global Markov Property

The situation is nearly the same as in example 2 (recall the
definition of I', V,, Vi, 4,, and 94,), but we define the interaction @ as
follows: @y=0 unless V'=V* or V* for some i€ N; @y (x) =d; or 0 if the
sum of the three x-values on V; is 0 mod 2 or 1 mod 2. Similarly
we define @ ..

Now we choose the sequence (d;);cn: Let e<1/6 be given, and let
(b;) ;en be a sequence from example 3 for this e(see the proof of (3. 1)).
Then put

d;=arcosh (exp (6;)) >0 (thus b;=In(cosh(d)))) 4.1)
These d; will work.

Proposition 4.1. If n>m, then, with p,, and ¢, from (3.2) and
(3.5),
Onx(Zn=)) =P (Zn is g00d) /4 =q0/4>(1—¢) /4 (4.2)
if (x is good iff y is good)
pn.x(zm:})) :Aon.lll(zm i.S' bad) /4' :lb:nn/4>s/4
if (x is good iff y is bad).

Proof. First we compute some probabilities: For A€, define

Zo=2+4ee *1 2.0 =2.(1+¢ )2 Then

o =0 = a)1/Z, b) e *Z, ¢ ¢ *Z,  (4.3)

in the case of a) y;+y,+x=1 mod 2, [=21 (these are exactly two
y of the same “sort” as x, b) y is good iff x is good, and c)
1+9+x=0 mod 2, /=41 (these are the other two y of the same
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“sort” as x). We prove the assertion by induction on j=n—m.

Case j=1:
Let x, y be good (the other cases are similar), and apply (4.3) for
k=m and k=m-+1 in order to obtain

Otz Zm=2) = 2 {Oms1.2 @Zmi1=MW) *Om(Zn=0) lu=000... 111}

=[(14e ) (14e "m0 4 4eg "m "m41] /7 o7,

—b,_—b

+) —b —b
=(l+e m m+1)/4 (1+e m) (1+e m+1)
:q:nm+1/4'-

Step j—j+1:
Let n=m+j, and x, » be good (the other cases are similar). Assume
the assertion for this j and all possible £, 7 (induction hypothesis).
Then

pn+1.x(zm=_y) = Z {pn+1,x(5m+1=u) -pm,u(zmzy) IUIOOO. . 111}

() —24 , -, .,
=[2(1+e m)'qm+1n+1+4'e m'l’m+1n+1]/4'Zm
(€] — - —
=Greni/A (e ™) + s € "/4(L+e ™)
zq:rm+1/4'-
At (*), we used (4.3) and the induction hypothesis, at (+) the
definition of the d..

Proposition 4. 2.
lim On.x, exists iff x, is good for almost all nE N or (4. 4)
%, ts bad for almost all neN.

The two limit measures, denoted by Ogpa ANA 03,4, are different and the only
extremal Gibbs states.

Proof. Let B be a tame set of the form B= {z|4,,;=y} for some
yefl, ;5 let u=y,.1. Then, if n>m+1, we have by the local Markov

m+1
property,
pn.z(B) = pn,x (Zm+1 = u) ° Aom,u (z rAm =)’ rAm)
= (1/4) r;n+1n Pm.u (Z TAm =)’ rAm) 9

where 7,41, =pmi1. if (x good iff u bad); otherwise 7, ,1,=@mi1m
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But since e<{1/6, |¢rs1n— Prt1x | >2/3>0 uniformly in nE€ N, so lim O,z (B)
exists iff x, is good for almost all €N or «x, is bad for ;_l);onost all
neN. The proposition follows from this since each tame set can be
constructed from finitely many sets as above.

Proposition 4.3. g and 0, violate the global Markov property.

Proof. (E.g. for pgg) Let F={(l, i) ieN}, aF={(0,7) [iEN},
and f=Ig -, §=1i. -1, as in example 2.  We show

E, (f|\Fow) =E, (| Fo) =1/2 a.s, (4.5)
E, (f¢|Fw)=(1/2)-(1-3) a.s. (4.6)

This is enough since for e<1/6 the last value never reaches 1/4
which would be expected under the GMP.

First, let p” be the one dimensional measure from example 3, but
the b; replaced by the d;. Similarly define p;, and g¢,,, e.g.,
Prn="031(z2n=0). Since —by (4.1)— exp(—d,) Zexp(—b,), we get

D=l  CunZ o> (1—0). 4.7)
For veS§™**! we already know the definition of “even” and “odd”, and

the notation p(B |v), see the proof of proposition 2.1. We compute
easily

Gon if x1,=1, v even, or x,=0, v odd,

rza =11 = { . 4.8

0,5 (Z10 1) st otherwise, (4.8)
Gon if x_1=1, v even, or x_;=0, v odd,

purzo=119) = {1 . (4.9)
o, otherwise.

Now, by the local Markov property, we get from (4.8) and (4.9):

o2 if x=0.0, v even or x=1.1, v odd,

Pn,x(ZlOzl:Z—m IV) = pgn'qgn if x is bad (4' 10)

goz if x=1.1, v even or x=0.0, v odd

(a “” means arbitrary values).
For a proof of (4.5) and (4.6), let €N and ve S be given.
Then

Pgoos (210 =1 ) =2 {Pgoad (Zns1=% 1Y) 20,2 (200=1 |¥) leQaAn}
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+)
= 2 {0g00a (Znt1=%) * 00,z (z0=1 |») |xEQaAn}

= (2/4') ° ([ogaod(erl gOOd) +pgaod (zn+1 bad) ° (pgn_'_qgn
~1/2

Ogood (z=1=z_11v) @ 2. {Iogoad (Zp1=%) * 05,z (Z00=1=2_1 |V) ]xEQM,,}

=(2/49) * Ogood (Znt1 gOOd) ° (pgs"i_qu
+ (4/4) * Pgoos (2n11 bad)

=((1/2) (-9 (1—9?

= (1/2) (1 —3e).

(4.5) and (4.6) are valid since n is arbitrary, and %, is generated
by the %;-measurable tame sets. At (+) we used the identity
Ogood (Znt1=% |¥) = Pgooa (Zzs1=%) which follows from the definition of @.
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