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A Difference Scheme for Solving Two Phase
Stefan Problem of Heat Equation

(Errata to Vol. 16, No. 2, 1980, 313-341)
By

Tatsuo NoGI*

Professor S. Yotsutani pointed out mistakes of the paper titled above. The first
point is about Lemma 4.1, whose proof was entrusted to Petrowsky’s book [1].
But, the proof is valid only for the difference scheme with a uniform time step,
and its method can not be applied for our scheme with variable time steps.
Therefore, we must prove it with another method. In fact, we have proven it
in Appendix A of our new paper (see Reference [2]).

The second point is about the algorithm in §2. It first has a trivial mistake
in 4°. The suffix n retards by 1. It must be corrected as follows:

“4° i Jpeo<Tni1 > Tn(Jnee>Tne1<Sa), then Jo4; and k.., are revised like
Jus1=Jn and k,.,=b+/h/B, and return to the step 3°”.

The last correction is, however, not sufficient because the obtained solution
through such algorithm does not necessarily satisfy the Stefan condition. This
also was pointed out by Professor S. Yotsutani.

Let us revise the algorithm and given some comments to show that the result
of the paper itself does not get any change.

1 The algorithm on pp. 316-317 is replaced by the following :
“1° wy=¢,(1=7=M-1), vo=Joh=I.

For n=0, 1, 2, -+, successively

2.1° if (u},)s—(u3,):>Bh"8, then Jh.=J,+1 and k,., is determined from
2.2y,

2.2° if (u})o—(u3,):<—Bh"5, then J,u,=J,—1 and k.., is determined
from (2.2)/,

2.3° if [(u},)o—(u},):=Bh"?, then J,u1=/, and k,4=bh"*/p,
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3° wu™* is found from (2.1) and (2.4), and
4° if the obtained solution u™*' satisfies

(ugxi-;[)z—'(uy:ioi < —ﬁh”s (>18h1/8’ alternatively)

in addition to
(uF,)e—u3,)z> BV (< —Bh?)

at the one step before, then J,.; are changed to be J,, while &,+, are kept, and
return again to the step 3° and then skip 4°. (When n=0, J_,=/,)”

By such change, we have

14
instead of (2.7), where V is an upper bound of |(u%).—(u},)zl(n=1,2, ).

h 3h<kn<%w (n=1, 2,3, -,

2 Consider a step of number n+1 through 4° of the above algorithm.

Lemma A. Suppose that, in addition to
(u},)z—u},):>BhY®  (or<—Bh'E, alternatively),
the first trial of solution by 3° produces the inequality
Vi =i De— (i )< —BhYE  (>BRYE).

Then, the value of v}’ by the second trial has the same sign, negative (positive),

as that by the first trial, when h is sufficiently small.

Its proof will given in the next section. We here use it to examine the Stefan
condition. As in the paper, consider the continuous functions, y,(f) and v4.(t) (h,—0
as a—oo) formed by interpolation of {y,} and {(u},)s,(u},)z}. Put v,(t)=va:()
—v,(t), which also is an interpolated function from {v},}. On such an interval
(tn, to+1) that Lemma A holds, we can find a point {5, such that

(2) va(t;J:O (tn<t;t<tn+1),

since v,(t,)>0(<0) and v,(t,.1)<0(>0).
As in the paper (p. 325), we have

Ya®=ya(0)+| 3(6)d8

=yl 5 sign (Gal@epri—ot—

PEM+1t S0ty kpi1

+[52(0)d0+; 52(0)d0

T
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for any 7 and ¢ ((n<t<tp 1<, <t<tn+1). The formula (4.5) is still valid:

m+1,

@ 2=ty S ket 50040+ 32(60)40,
p=m+1 tn

t
where >/ means summation except for number p’s such that y(t,4-0)=0, which
occurrs when i) |v,(t,-+0)] <BAY® holds or ii) the situation of Lemma A holds
with n=p. We can add the corresponding terms of such excepted numbers to
the right hand side of (3), only with error O(h'/%):

1 n- 1 ) ,
Valt)=ya(t)+ ?p=%1+1 kp+1va(tp)+ 'b—zﬂkpﬂv(tp)—l— 7)—2 kp+1va(tp)

@ tm+1, [
+[ 752000+, u01d0+00),
since the terms corresponding to i) are such as

| 2" R prvaltp) | <OWYO)Z kpss,

and those corresponding to ii) are such as

le,kp+1va(t;)):0
due to (2).
Immediately from (4), we obtain the desired relation by taking a—co:

) y(t)zy(r)—}--ll)—S:v(G)dﬁ.

This is the Stefan condition of the integral form. In the previous paper, we
had missed out consideration about the terms corresponding to ii).

3 In order to prove Lemma A, we will estimate the difference between two

values of (u3!%)z by the first and second trials, and that between (u}}}));’s on

such a time t,+; When the procedure 4° is necessary. For distinction, put

wit=(uldtt )z or (ulli)s alternatively by the first trial
and
z®*=that by the second trial (in which J,+;=/,).

Then, we have

Lemma B. |w?*t—z2*|<O(h%8).
From Lemma B, we have
21+1_22+1=w1+1_wz+1+0(h3/8).

By assumption, |w3*t'—w2*!|>Bh'8  Therefore, the sign of z7*'—z"*! coinsides
with that of w?*'—w?”*! for sufficiently small h.
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The remained problem is to prove Lemma B. We will here prove it only
about w™*'—z"*! since the other can be treated by the same way.

3.1 Consider to express w”*! and z"*!' by using the Green function of the
difference equation c,(u}*');=(u?*');z as done in [3]. Put

1 T n . . .
WS_E};IPAEIEEXP(—Z(f’—])wH—eXP(—Z(T-l-]—l)w)]dw
G(X,-, 51; t‘m Tp—l):} (for ngﬁ),
| %5“ (0,7 is Kronecker’s delta) (for n=p—1),
where

o k.

— in2 J—
A;=1+442,sin 5 A= N

We then have

[1+CT‘kn+1G5(y§z+1, 77;z+1; tne1s Tn)JwlH

J n . .
(6) =— nghGE(y;t+17 THRTTEE O)¢J_CT1p§=:1 kyGe(Vrns1s Np; tavss To1)VE

n+1
_CTIPE_:I kpGgg(yim, £ tavn Tp—1)§bli

and
[1+CY1kn+1G§(J’n+1: Na+1; bats Tp) 2%
J n
(7) = .7;1 hGE(yn+1: Ej; tn+1; 0)¢j_CTIZ§1kPGE(y"+1’ 7]11; tn+1: Tp—l)vg

n+1
_chpglkpGEE—(yn+1x &1; tasos Tp—1)¢'lf;

where v2=(u§ )z, Ynr1=Xs44yr Prs1=7syy, a0d Jn=J,1("means the first trial).
For the second trial, y,+1=y, and 9,.1=9,(J/as1=J,). Subtract (7) from (6).
We then get

(147 p1Ge(Yna1s Prsars torss To)J(whH—22%)

:_Clenﬂ[Ge(J};ﬂ: 77;»+1; tatis Tn)_Ge(ynﬂ; Na+1; bntts T,) ]2

J
8 - Elh[Ge(y;wn Ej; tas 0)_Gé(_yn+1! £ tass 0)]¢j
_CTIPZZ:lkp[Ge(;V;ﬂ: Np;5 tat1s Tp—-l)_Gf(yn+1r Np; to+1r 2'1»—1)]1/'2

(2
_"Tlpz::l kp[Gé‘?(y;zﬂ: €15 tasns Tp-l)’—Géf_(yn+1: &5 tatos Tp-1)]¢"{-

In the following, we will estimate every term of (8) successively.
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3.2.
\ , 1
(9) 1+CY1G5(3/7L+1' Nn+1s [FR Tn>>-4—

(See Lemma 2 of [3]).
3.3 We can write Ge(Yn+1r Pn+1; tntrr To) A0 Ge(Yrt1s Nnss; tnsrs Ta) 8S
follows :

’ .
Gs(ylnﬂ: Nn+1s tnt1s Tp)

7

=) At [exp () sin G~ exp (—i(2/hn— Jo)siny | do

and
Gs(yn—HI 7]n+1; [n+17 Tn)
i (= 1 . W
:—7—1_-}72—5_ Anﬂ[exp( 5 >sm?-—exp( (2jn—§>w>sm§:| dw.
Hence
GE(.y;H-l: 7];n+1; la+1s Tn)'—GE(ynﬂ: Nat1s tn+is Ty)
{ —%S:A;Llcos(2]n+l)wsin2%dw (when Jo.=J,+1)
(10 = 2 T @
] " AzTeos 2Tu—Dw+cos 2], — 2wl sint G do
(when Joa=J,—1).

Consider the integrals here appeared. By integration by part, we have

dw

= ., —1 (7 sinKwsin(w/2)cos (w/2)
S_EA"“C"SK“’S‘H 5 do= S (142, 1 5i0° (@) 2)".

K
(K: an integer).

Since |s1nKa)l<|le<7r‘Ksm \ for |w|<m, we hence have

sin? (w/2)
-z (1442, sin® (w/2))?

2

dw

lS::A"“ cos Ko sm2 da)l < nS

. T
T (1420407
The last inequality itself is valid even for K=0. Therefore, we get

z Ch® .
!S A7k, cos K sin® o 2 do| < L (C: a positive constant)
-

for any integer K. By applying this inequality on the right hand side of (10)
and multiplying by c¢7'%2,+:, We obtain

(11) ClenulGe(yim, 7];4-1; tnits To)—Ge(Yns1s Ynt1s tasis Ta)l
Ch

< m <C'/h (due to (1)).
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Here and later, C and C’ are constants chosen appropriately each time.
3.4 We next consider

J
- Elh[Ge(y;zﬂ’ §is tasns 0)—‘G5(J’n+1» £i; et 0)]¢j

J
(12) = jé)lh[G(y;ﬂ, &is tarr, 0)—=G(Yns1s €55 tae, 0)1d;z

HLG(yr+1 €15 trsrs 0)—G(yn+1r €1 tasrs 0)]¢0 (Note that ¢J:0)
Here,

G(¥7+15 €55 tners 0)—G(Yn+15 &5 trsr 0)

=F }ITS:E&[; At [sin (]n——ji—;—)w—]-sin (jn—l—j—li—%—)w]sin%)-dw.

By using Lemma 6 of [3], we get
[G(¥n415 &55 tasr, O—G(Vrs1r &5 tnss 0)]

PN

1 n k
n=i /D AV =k 12— T E1/2) | hltper— k)

(13) <Ch[

+ : + £ ]
|t i—1(1/2) | AVt ye—F | Jati—12(1/2) | h(tr— k)2 I

where f=max k,(1<p=<n-+1). Hence

J
Elh[G(y«Zﬂ, &is than 00— G(¥pt1, §55 tasrs 0)]¢JE

1 k
ChIl ).
<Ch| nh](\/tnﬂ_é + (tm_k)s,g)

For a finite ¢=t,,;, we have tn+1>gﬂl—)h”8 for sufficiently small 4. Then,

tn+1—ﬁ>—;-tn+1>%h”8(due to (1)). Thus

J
(14) Elh[G(y;m fj; tnt1s 0)—G(yn+u THRITS] 0)] iz <Ch*¢|In h|.
Also by (13), we have

(15) |G(31;»+1; El; tn+1: 0)—G(yn+1, Sl; tn+1: 0)] |¢0[ <Ch9/16'

By applying (14) and (15) on (12), we finally obtain
J
(16) - Elh[Gs(y;;ﬂ: E]; tn+17 0)'_Gé(yn+1: E]; tn+1’ 0):|¢j <Ch9/16|1nh|'
3.5 It is essential for our purpose to estimate the sum

a7 “CTIPEZJl kp[Gg(y:Hn Vo tntrs Tp-l)_'GE(yn+lr Np; Lo+ Tp-1)]U£-
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Here
Gf(yim, Np; tnts Tp—l)
:#S” g:l [eXp(_Z<]n+1 Jo— ‘_> )
—exp(—i(ﬂzﬂ—’rjp—%)w)]sin%dw
and
GE(yn+1: Np; ot Tp—l)
=)o e e (~{Ja=ss=5)o)
——exp(—i(jn—}—]p—~%)w>]sin%dw.
Hence

Ge(y%ﬂ, Nps tnsts Tp—1)—G5(yn+1y Np; Lot Tp-1)

_fzgl HA‘l[cos(jn —Jo— -1)w cos(]n+]p ﬂ) }sm2 dw

and further

(18) |G§(3’;:+1; Nps tn+1s Tp-1)— Ge(Yn+1s Np; totns Tp-1)|
4 (= n+1
< vy S_MIIZ)/I‘Ism2 5
We can estimate the right hand side by using Lemma 5 of [3]:
2¢3%h
4 T n+l . L@ \/_Zg(tnﬂ_‘qu—ﬁ)wz or
19) —r | T A sint G do= i ’

A Rk (VEy V)
where 15215(17, n—l—l):q:p g?illa_)f s k. For estimation of the sum (17) with (18)
and (19), we divide the s'um ’ir;to two parts: 1) for fpu—Tp1= 2—‘Bbh”8 and ii) for
tns1—Tp1< ‘Bb k"8, In the former part, we use the upper half of (19) and notice

that tn+1"'fp_1_l§>_;—(tn+1“—fp_1) by (1). Hence

I G I ) __Ch _ 2b s
20) v S_”};E;Aq sin 2dw< C——T for tp4: fp_1>‘8h .

Again by (1), we also have

4 T nt+l 1 22 —C_
ht S IT A;'sin 5 do< Vi

-7q=p

@n
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from the lower half of (19). Thus, the concerned sum (17) is estimated as
follows :

= nd Zn} kolGe(ynsns o5 tasrs Tpo1) —Ge(Ynrn Np5 tness Tp-)J02
p=1
_L 7/8 1 ] 3/8
<C[h Stn+1—r><zb/ﬁm7/s (tnir—1)*/? +h Vi <Ch®8,

3.6 Finally, we consider

n+l
—CTIEI kp[GEE(y;LH: £ taens Tp—])—Geg(ynH: £ tnvts Tp-—l)]¢1;
n+1
(23) :1)2:31 kp[Gr(y;z+1) El; tTL+1’ Tp—l)b‘Gr(yn—H) 51; tn+1: Tp-1)]¢11'

n+1
:—pgl kp[G(y;L+11 51; tn+1r Tp—l)"'G(yn—H, El; Z‘n+1) Tp—l)]SbZ:F

—[G (Y7115 &1 trtr O—G (Y41, &1 trews 0)1¢%.
Here

G(yn+1s &1 totrs Tp-1)—G(Yns1> §15 tnsrs Tp-1)

1 (7 na1 1 . 1 . @
= ~1lsi —1+= +— —dw.
t— S_WI;IPAQ [sm(]n 1+ 2)w+sm(]n“ 2)w]s1n 5 dw
For estimation of the last integral, we apply Lemma 6 of [3]. By taking the
same way of consideration for t,m—-rp_l—lé as in 3.5, we get

lG(yZH, &1} tarn Tp—l)_G(yn+1’ &1 tasns Tp—l)'

1 pirs
<cn| o T/ ity Jee 1= (/20 Aty a) e
1 hs
RNV T v “L’(Jni(l/z»h(tw—r,,-l)m]

fOI‘ tn+1"71p—1> %hvls, or

\/tnﬂ’Tp-l + ‘\/tnﬂ—'fp—x ]

<C[ (Jo=1x(1/2)h  (Jat(1/2)R

Hence

n+1
l'—zfgkp[G(y;zﬂy £ ety Tp-1)—G(Yna1, 15 Tnars Tp»l)jgbI;F

dr dt
24 Ch[g ————»%—h'”sg ———-———~]
(24) < tny1-72(20/ PR8N/ L, —T tnp1-t2 20/ )R8 (fp01—1T)%2

+CS '\/tn_yl“T dT

tp41-7<(2b/8)RT/8

<Ch21/16‘J
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and
H:G(y;Hl: El; ZLn-Hr 0)'—G(yn+1v 51; tn+1; 0)]¢g|
/8
<Ch [\/——1:+I§T]<Ch9’ls for tn+1>2‘£h7/8-

tn+1 tn+1

(25)

We here used the tacit assumption that y,=/J,h is far from the boundary x=0
by a finite distance, and so is ¢,4; from t=0. By applying (24) and (25) on (23),
we get

n+1
(26) —CIIEIkp[GEE(yZH, E15 tasn Tp-0)—GeE(Vna1r &1 Lnvos Tp-l)]¢]; < Chds,

3.7 By applying (9), (11), (16), (22) and (26) upon (8), we obtain, in conclusion,
the desired estimate of Lemma B.
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