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§1. Introduction

Let Z, be the cyclic group of order ¢, where ¢ is an integer >1. A C=-
differentiable map f of a Z,manifold in another Z,-manifold is called a Z,-
equivariant immersion (or simply a Z,immersion) if f is an immersion and a
Z -equivariant map.

Let m and 2 be non-negative integers. Euclidean (m-2k)-space R™*2* has
a structure of a Z,-manifold (R™*2*, Z ) defined by the action: Z,x R™*2t— Rm+2k

(T: (tl, Tty tmy Zm+1r "7 Zm+k)) > (tlt Tty tm: T2m+1: Tty T2m+lz):
where T=exp(2zri/q) is the generator of Z, (CSY), t;, -+, tn are real numbers
(€R) and zm41, -+ 5 Zmsy are complex numbers (€C=R?). This Z,manifold is

also written by R™2%,
The unit (2n+1)-sphere S***! in complex {(n-1)-space C"*! has a structure
of a Z,manifold (5***!, Z,) defined by the action: Z,x S**+'—S2n+1;

(T; (ZO’ ) Zn)) — (TZO: Tt Tzn):

where z,, -, z, are complex numbers with >7,|z;{?=1. This action is free
and differentiable of class C~. The orbit differentiable manifold S***!/Z, is the
mod ¢ standard lens space L"™(g). As is easily seen, there is a Z,immersion
of (S*»*!, Z,) in R™° if and only if there is an immersion of L™(g) in R™.

A. Jankowski obtained in [1] some non-existence theorems for Z,-immer-
sions. In [2] we considered Z ,~-immersions, where p is an odd prime. In this
note we prove some non-existence theorems for Z,-immersions.

§2. Statements of Results

Theorem 1. Let r be an integer >1, and n and k be integers with 0=k=n.
Assume that there is an integer m satisfying the following conditions:
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(i) 0<k+m=n/2,

(ii) (ZIZ)E(——I)“"%%%—W mod 2" for some integer s,

(iii) n-+m-+1z=0mod 27~ ™~ *-1,

Then there does not exist a Zy-immersion of (S*™*1, Zy) in (R2r2m+2k+l 7 )
— Ren+2m+1, 2k

If k=0, we have a new result on the non-existence of an immersion of
Ln(zr) in R2n+2m+1.

Corollary 2. Let r be an integer >1. Assume that there is an integer m
satisfying the following conditions:
(i) 0<m=n/2,

(ii) (n;;m)E(—l)"‘(23~}—1)3 mod 27 for some integer s,

(iii) n+m—+1==0mod 27~ ™1,
Then there does not exist an immersion of L™27) in R*"+2m+i

For integers », n and k such that r>1 and 0<k=<n, define the integer
L(r, n, k) as follows:

n—k+

J .
L(r, n, k)=max {J'EZ I1=5=n/2, ( )EEO mod 2’*"‘2”1-5},

;
where ¢=0 or 1 according to n being even or odd respectively. Then we have

Theorem 3. There does not exist a Zy-immersion of (S*™*', Zy) in (R*™+2E,
Zy)=Rom¥2L2k2k  hore [L=L(r, n, k).

Corollary 4. There does not exist an immersion of L™27) in R*™**L where
L=L(r,n, 0).

This corollary is known (cf. [3, Corollary 1.5] or [4, Chapter 6, Proposition
4.16]).

Corollary 2 is very restricted. But, in some cases, this gives better results
than Corollary 4. For example, L?'(4) (resp. L%(4)) is not immersible in R
(resp. R'®) by Corollary 4, but L?%(4) (resp. L?%*(4)) is not immersible in R
(resp. R'*®) by Corollary 2.

§3. Preliminaries

In this section we recall some known results according to [2, Lemmas 2.1-
2.3 and Proposition 2.4].

For a Zspace (X, Z,), let §(X, Z,) denote a Z,-vector bundle (XX R? X, =, R*)
defined as follows:
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(1) m:XXR?*>X is the projection onto the first factor.
(2) Z, acts on XX R* diagonally; T'(x, z)=(Tx, Tz), where x€ X, z= R* and
T =exp(2xi/q).

Lemma 3.1. If X and Y are Zgspaces and f:X—=Y is a Zymap, then
f*0Y, Z)=0(X, Z).

A G-vector bundle E—X determines a vector bundle E/G—X/G and this
correspondence induces a homomorphism p : KOg(X)—KO(X/G).

Let ry be the real restriction of the canonical complex line bundle 7 over
L™g). Then we see

Lemma 3.2. p(0(S*"*1, Z))=r7.

Define the action of Z, on the total space of the Whitney sum m@ko
(R™*2k Z ) of the m-dimensional trivial bundle m over R™ 2* and k(R™***, Z ) by

T((u: tl)’ R (u: tm)y (u: Z-m.+1)r tty (u: Zm-Hz))

:((Tur tl)) B (Tu, tm): (Tu) TZm-‘-l); ) (Tu, sz-f-k)))

where ue R™2*, {,€R (i=1, -+, m), zZn+,€R?(j=1, ---, k) and T is the generator
of Z,, Then we have

Lemma 3.3. There is a Zgbundle isomorphism of the tangent Zgibundle
T(R™2*) onto the Z;bundle mPrO(R™ %, Z,).

Using y-operations, we obtain
Proposition 3.4. Let n and k be integers with 0=<k=n, and put

n—k+jg
( ) )(hy—Z)JiO}.
7

Then there does not exist a Z immersion of (S**, Z,) in (R*" 2L, Z )= R*n+2L-2k 2k,

L=max {j

§4. Proofs of Theorems 1 and 3

Two spaces X and Y are said to be mod ¢ S-related, if there are non-negative
integers m and »n and a map f:S™X—S"Y which induces isomorphisms of all
homology groups with Z,-coefficients, where S*Z denotes the k-fold suspension
of a space Z. The following is proved in the line of the proof of Proposition
3.1 of [2].

Proposition 4.1. Let » be a positive integer, and | and n be integers with
0<i=n/2. Assume that there is a positive integer t satisfying the following con-
ditions :
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(i) (+t)ry has linearly independent 2t cross-sections, where ry is the real
restriction of the canonical complex line bundle 7 over L™(2").

(ii) (l-j—t)E(ZS—H)2 mod 27 for some integer s.
Then the stunted lens spaces L™(27)/L'~*(2") aud L™+%(27)/L'~*%(2") are mod 2"

S-related.

Combining this proposition with Proposition 3.2 in [2], we have

Proposition 4.2. Let r be an integer >1. Then, under the assumption of
Proposition 4.1, t=0mod 2" "1,

Proof of Theorem 1. Put ¢=2", r>1. Suppose that there exists a Z, -
immersion f:(S*"*!, Z,)— R#"+2m+L2k Tet y be the normal Z,bundle of f.

Then we have
z.(‘S27L+1’ ZQ)®U:f*T(R2n+2m+I’ 2/2) .

Since p(7(S*"*!, Z))=7(L™4g)) (=the usual tangent bundle of L"(g)), we have,
by Lemmas 3.1-3.3,
(L™@)PDpv=pf*((2n-+2m-+1)DrO(R* Fem+1+2k 7 )
=2n+2m+1)Dkpl(S**, Z)=2n-+2m-+1)Dkry.
It is well-known that 7(L™(g))P1=(n+1)ry. Thus
(n+1—k)ry+pv=2n+2m-+2.

Let A=u-2™*""', where u is some positive integer. Then A(ry—2)=0, be-

cause ry)—2 (ef%(L"(g))) is of order 27*"~1~¢ where ¢=0 or 1 according to n

being even or odd respectively (cf. [3, Theorem 1.41). Hence, if we take u such
that 24A—2n—2+4+2k>2n+1, we have

(A—n—1+k)yrp=02A—2n—2m—2)Pov.

Put /=k+m and t=A—n—m—1. Then the above equality implies that ({+t)ry

has linearly independent 2¢ cross-sections. Since we may choose u so that

(A—n—l+k):(—n—1+k
k+m “\ k+m

[+t A—n—1+k —n—1+k n—+m
— = =(—1)km =(2s+1)’mod 2".
/ k+m k+m k+m
We therefore see, by Proposition 4.2, that t=0mod 2” ™ %*-! and hence n+m-1
=0mod 2" ™-*-1, But this contradicts (iii). g.e.d.

)mod 2r, we have, by (i),

There are errors in [2]. As is seen in the proof of Theorem 1, we must
correct them as follows:
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Line 14 in p. 344 should be replaced by
(ii) (Z:}:Z)E(—l)k“"(apﬂ'—b)zmod p™ for some integers a and b with (b, p)=1
Line 14 in p. 347 should be replaced by

(ii) (Hl—t)z(ap+b)2 mod p™ for some integers a and b with (b, p)=1.

Proof of Theorem 3. For 1<j<n/2, the order of (rp—2) (€ KO(L™27)) is

equal to 2r+""%+1=¢ where ¢=0 or 1 according to n being even or odd respec-
tively (cf. [3, Theorem 1.4]). Thus the result follows from Proposition 3.4.

(1]
[21]
£3l
[4]

q.ed.
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