On Z_q -Equivariant Immersions for $q=2^r$

Dedicated to Professor Nobuo Shimada on his 60th birthday

Ву

Teiichi Kobayashi*

§ 1. Introduction

Let Z_q be the cyclic group of order q, where q is an integer >1. A C^{∞} -differentiable map f of a Z_q -manifold in another Z_q -manifold is called a Z_q -equivariant immersion (or simply a Z_q -immersion) if f is an immersion and a Z_q -equivariant map.

Let m and k be non-negative integers. Euclidean (m+2k)-space R^{m+2k} has a structure of a Z_q -manifold (R^{m+2k}, Z_q) defined by the action: $Z_q \times R^{m+2k} \to R^{m+2k}$;

$$(T, (t_1, \dots, t_m, z_{m+1}, \dots, z_{m+k})) \longmapsto (t_1, \dots, t_m, Tz_{m+1}, \dots, Tz_{m+k}),$$

where $T\!=\!\exp{(2\pi i/q)}$ is the generator of Z_q ($\subset S^1$), t_1, \cdots , t_m are real numbers $(\in\!R)$ and z_{m+1}, \cdots, z_{m+k} are complex numbers $(\in\!C\!=\!R^2)$. This Z_q -manifold is also written by $R^{m,\,2k}$.

The unit (2n+1)-sphere S^{2n+1} in complex (n+1)-space C^{n+1} has a structure of a Z_q -manifold (S^{2n+1}, Z_q) defined by the action: $Z_q \times S^{2n+1} \longrightarrow S^{2n+1}$;

$$(T, (z_0, \dots, z_n)) \longmapsto (Tz_0, \dots, Tz_n),$$

where z_0, \dots, z_n are complex numbers with $\sum_{j=0}^n |z_j|^2 = 1$. This action is free and differentiable of class C^{∞} . The orbit differentiable manifold S^{2n+1}/Z_q is the mod q standard lens space $L^n(q)$. As is easily seen, there is a Z_q -immersion of (S^{2n+1}, Z_q) in $R^{m,0}$ if and only if there is an immersion of $L^n(q)$ in R^m .

A. Jankowski obtained in [1] some non-existence theorems for Z_2 -immersions. In [2] we considered Z_{pr} -immersions, where p is an odd prime. In this note we prove some non-existence theorems for Z_{2r} -immersions.

§ 2. Statements of Results

Theorem 1. Let r be an integer >1, and n and k be integers with $0 \le k \le n$. Assume that there is an integer m satisfying the following conditions:

Communicated by N. Shimada, January 11, 1985.

^{*} Department of Mathematics, Faculty of Science, Kochi University, Kochi 780, Japan.

- (i) $0 < k + m \le n/2$,
- (ii) $\binom{n+m}{k+m} \equiv (-1)^{k+m} (2s+1)^2 \mod 2^r$ for some integer s,
- (iii) $n+m+1 \not\equiv 0 \mod 2^{n-m-k-1}$.

Then there does not exist a Z_{2r} -immersion of (S^{2n+1}, Z_{2r}) in $(R^{2n+2m+2k+1}, Z_{2r}) = R^{2n+2m+1,2k}$.

If k=0, we have a new result on the non-existence of an immersion of $L^{n}(2^{r})$ in $R^{2n+2m+1}$.

Corollary 2. Let r be an integer >1. Assume that there is an integer m satisfying the following conditions:

- (i) $0 < m \le n/2$,
- (ii) $\binom{n+m}{m} \equiv (-1)^m (2s+1)^2 \mod 2^r$ for some integer s,
- (iii) $n+m+1 \not\equiv 0 \mod 2^{n-m-1}$.

Then there does not exist an immersion of $L^n(2^r)$ in $R^{2n+2m+1}$.

For integers r, n and k such that r>1 and $0 \le k \le n$, define the integer L(r, n, k) as follows:

$$L(r,\,n,\,k)\!=\!\max\left\{j\!\in\!Z\,|\,1\!\leq\!j\!\leq\!n/2,\!\binom{n-k+j}{j}\!\!\not\equiv\!\!0\bmod2^{r+n-2j+1-\varepsilon}\!\right\}\!,$$

where $\varepsilon = 0$ or 1 according to n being even or odd respectively. Then we have

Theorem 3. There does not exist a Z_{2r} -immersion of (S^{2n+1}, Z_{2r}) in $(R^{2n+2L}, Z_{2r}) = R^{2n+2L-2k,2k}$, where L = L(r, n, k).

Corollary 4. There does not exist an immersion of $L^n(2^r)$ in R^{2n+2L} where L=L(r, n, 0).

This corollary is known (cf. [3, Corollary 1.5] or [4, Chapter 6, Proposition 4.16]).

Corollary 2 is very restricted. But, in some cases, this gives better results than Corollary 4. For example, $L^{21}(4)$ (resp. $L^{36}(4)$) is not immersible in R^{62} (resp. R^{108}) by Corollary 4, but $L^{21}(4)$ (resp. $L^{36}(4)$) is not immersible in R^{63} (resp. R^{109}) by Corollary 2.

§ 3. Preliminaries

In this section we recall some known results according to [2, Lemmas 2.1–2.3 and Proposition 2.4].

For a Z_q -space (X, Z_q) , let $\theta(X, Z_q)$ denote a Z_q -vector bundle $(X \times R^2, X, \pi, R^2)$ defined as follows:

- (1) $\pi: X \times R^2 \rightarrow X$ is the projection onto the first factor.
- (2) Z_q acts on $X \times R^2$ diagonally; T(x, z) = (Tx, Tz), where $x \in X$, $z \in R^2$ and $T = \exp(2\pi i/q)$.

Lemma 3.1. If X and Y are Z_q -spaces and $f: X \rightarrow Y$ is a Z_q -map, then $f*\theta(Y, Z_q) = \theta(X, Z_q)$.

A G-vector bundle $E \rightarrow X$ determines a vector bundle $E/G \rightarrow X/G$ and this correspondence induces a homomorphism $\rho: KO_G(X) \rightarrow KO(X/G)$.

Let $r\eta$ be the real restriction of the canonical complex line bundle η over $L^n(q)$. Then we see

Lemma 3.2.
$$\rho(\theta(S^{2n+1}, Z_q)) = r\eta$$
.

Define the action of Z_q on the total space of the Whitney sum $m \oplus k \theta$ (R^{m+2k}, Z_q) of the m-dimensional trivial bundle m over R^{m-2k} and $k\theta(R^{m+2k}, Z_q)$ by

$$\begin{split} T((u, t_1), & \cdots, (u, t_m), (u, z_{m+1}), \cdots, (u, z_{m+k})) \\ = & ((Tu, t_1), \cdots, (Tu, t_m), (Tu, Tz_{m+1}), \cdots, (Tu, Tz_{m+k})), \end{split}$$

where $u \in R^{m,2k}$, $t_i \in R$ $(i=1, \dots, m)$, $z_{m+j} \in R^2$ $(j=1, \dots, k)$ and T is the generator of Z_q . Then we have

Lemma 3.3. There is a Z_q -bundle isomorphism of the tangent Z_q -bundle $\tau(R^{m,2k})$ onto the Z_q -bundle $m \oplus k\theta(R^{m+2k}, Z_q)$.

Using γ -operations, we obtain

Proposition 3.4. Let n and k be integers with $0 \le k \le n$, and put

$$L\!=\!\max\left\{j\left|\binom{n-k+j}{j}(r\eta-2)^j\neq 0\right\}.$$

Then there does not exist a Z_q -immersion of (S^{2n+1}, Z_q) in $(R^{2n+2L}, Z_q) = R^{2n+2L-2k, 2k}$.

§ 4. Proofs of Theorems 1 and 3

Two spaces X and Y are said to be mod q S-related, if there are non-negative integers m and n and a map $f: S^m X \rightarrow S^n Y$ which induces isomorphisms of all homology groups with Z_q -coefficients, where $S^k Z$ denotes the k-fold suspension of a space Z. The following is proved in the line of the proof of Proposition 3.1 of [2].

Proposition 4.1. Let r be a positive integer, and l and n be integers with $0 < l \le n/2$. Assume that there is a positive integer t satisfying the following conditions:

(i) $(l+t)r\eta$ has linearly independent 2t cross-sections, where $r\eta$ is the real restriction of the canonical complex line bundle η over $L^n(2^r)$.

(ii)
$$\binom{l+t}{l} \equiv (2s+1)^2 \mod 2^r$$
 for some integer s.

Then the stunted lens spaces $L^n(2^r)/L^{l-1}(2^r)$ and $L^{n+t}(2^r)/L^{l-1+t}(2^r)$ are mod 2^r S-related.

Combining this proposition with Proposition 3.2 in [2], we have

Proposition 4.2. Let r be an integer >1. Then, under the assumption of Proposition 4.1, $t \equiv 0 \mod 2^{n-l-1}$.

Proof of Theorem 1. Put $q=2^r$, r>1. Suppose that there exists a Z_q -immersion $f:(S^{2n+1},Z_q)\to R^{2n+2m+1,2k}$. Let ν be the normal Z_q -bundle of f. Then we have

$$\tau(S^{2n+1}, Z_q) \oplus \nu = f * \tau(R^{2n+2m+1, 2k}).$$

Since $\rho(\tau(S^{2n+1}, Z_q)) = \tau(L^n(q))$ (=the usual tangent bundle of $L^n(q)$), we have, by Lemmas 3.1-3.3,

$$\begin{split} \tau(L^n(q)) \oplus \rho \nu &= \rho \, f * ((2n + 2m + 1) \oplus k \, \theta \, (R^{2n + 2m + 1 + 2k}, \, Z_q)) \\ &= (2n + 2m + 1) \oplus k \, \rho \, \theta \, (S^{2n + 1}, \, Z_q) = (2n + 2m + 1) \oplus k r \eta \, . \end{split}$$

It is well-known that $\tau(L^n(q)) \oplus 1 = (n+1)r\eta$. Thus

$$(n+1-k)r\eta + \rho\nu = 2n+2m+2$$
.

Let $A=u\cdot 2^{r+n-1}$, where u is some positive integer. Then $A(r\eta-2)=0$, because $r\eta-2$ ($\in \widetilde{KO}(L^n(q))$) is of order $2^{r+n-1-\varepsilon}$, where $\varepsilon=0$ or 1 according to n being even or odd respectively (cf. [3, Theorem 1.4]). Hence, if we take u such that 2A-2n-2+2k>2n+1, we have

$$(A-n-1+k)r\eta = (2A-2n-2m-2) \oplus \rho \nu$$
.

Put l=k+m and t=A-n-m-1. Then the above equality implies that $(l+t)r\eta$ has linearly independent 2t cross-sections. Since we may choose u so that $\binom{A-n-1+k}{k+m}\equiv \binom{-n-1+k}{k+m} \mod 2^r$, we have, by (ii),

$$\binom{l+t}{l} = \binom{A-n-1+k}{k+m} \equiv \binom{-n-1+k}{k+m} = (-1)^{k+m} \binom{n+m}{k+m} \equiv (2s+1)^2 \bmod 2^r.$$

We therefore see, by Proposition 4.2, that $t \equiv 0 \mod 2^{n-m-k-1}$, and hence $n+m+1 \equiv 0 \mod 2^{n-m-k-1}$. But this contradicts (iii). q. e. d.

There are errors in [2]. As is seen in the proof of Theorem 1, we must correct them as follows:

Line 14 in p. 344 should be replaced by

- (ii) $\binom{n+m}{n-k}\equiv (-1)^{k+m}(a\,p+b)^2 \mod p^r$ for some integers a and b with (b,p)=1 Line 14 in p. 347 should be replaced by
- (ii) $\binom{l+t}{l} \equiv (ap+b)^2 \mod p^r$ for some integers a and b with (b, p)=1.

Proof of Theorem 3. For $1 \le j \le n/2$, the order of $(r\eta - 2)^j$ ($\in \widetilde{KO}(L^n(2^r))$) is equal to $2^{r+n-2j+1-\varepsilon}$, where $\varepsilon = 0$ or 1 according to n being even or odd respectively (cf. [3, Theorem 1.4]). Thus the result follows from Proposition 3.4.

References

- Jankowski, A., Note on Z₂-equivariant immersions, Ann. Soc. Math. Polonae, Comment. Math. Prace Mat. 17 (1973), 81-85.
- [2] Kobayashi, T., Some Z_q -equivariant immersions, *Hiroshima Math. J.* **6** (1976), 343-351.
- [3] Kobayashi, T. and Sugawara, M., Note on KO-rings of lens spaces mod 2^r, Hiro-shima Math. J. 8 (1978), 85-90.
- [4] Mahammed, N., Piccinini, R. and Suter, U., Some applications of topological K-theory, *North-Holland Math. Studies* Vol. **45**, North-Holland, Amsterdam, 1980.