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On a Sufficient Condition for Well-posedness
In Gevrey Classes of Some Weakly

Hyperbolic Cauchy Problems

By

Shigeharu ITOH*

Introduction

In this paper we shall study well-posedness of the Cauchy problem for some
weakly hyperbolic operators in Gevrey classes. That is to say, we consider
whether we can determine a function space in which the Cauchy problem for
given weakly hyperbolic operator is well-posed or not.

This question has been studied by several mathematicians.
The results independent of the lower order terms were obtained by Ohya

[8], Leray-Ohya [6], Steinberg [9], Ivrii [3], Trepreau [10], Bronstein [1],
Kajitani [5] and Nishitani [7], which show that the multiplicity of the charac-
teristic roots determines the well-posed class.

On the other hand, in [4] Ivrii presented two interesting examples.
(I) Let P=dz

t—t2f*dlj
ratvdx, where p, v are non-negative integers and a is

a non-zero constant. When 0^p</*—1, the Cauchy problem for Pis 7^-well-
posed, if and only if l^«<(2/i—v)/(/i—P—1).

(n) Let P—dl—xZftd3;+axJJdx, where /*, v are non-negative integers and a
is a non-zero constant. When 0^y<^, the Cauchy problem for P is 7^^-well-
posed, if and only if l^K<(2p—u)/(fji—v). These two cases show that the lower
order terms have a great effect on the well-posed class.

Igari [2] and Uryu [12] extended (I) for more general operators respectively
and Uryu-Itoh [13] extended (n) for second order weakly hyperbolic operators.

In this article we shall consider the most general case of (n) .

§ 1. Statement of the Result and Remarks

Let (x, f )e=f i»x[0 , T] and (Dx, Dt) = (DXl, - , DXn, Dt] = (--s/^dx„ ••• ,
— V^dx , —V^ldt). Let us denote by (f, r) the dual variable of (x, t}.
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Next we shall define the Gevrey classes.

Definition 1.1. (rfjj, r ( e ); *>D fM^Tiol implies that f(x^C°°(Rn) and
for any compact set KdRn there exist constants c, R>Q such that

(1.1) D % f ( x ) \ ^ c R l a ] \ a \ \K, x^K, for any a.

f ( x } ^ ? ( K } implies that f(x}^C°°(Rn] and (1.1) holds for any x^Rn.

Let L = L(x, t, Dxy Dt)=L0(x, t, Dx, DJ+L^x, t, DX9 Dt\ where

and

fl T) T (r f D D "I— V (T(rYa'Jn (r f}DaD^\±.OJ l^/l\A,f Lj l^Xj U I) / ' W \ - ^ / t * f «,J \^ '> I'jL'xL't'

We assume the following conditions on L.

(1.4) r-roots of

are real and distinct.

(1.5) a a . j ( x , 0^^([0, T], ru)).

(1.6) (7(^)e7U) and is a real-valued function.

(1.7) /* is a positive integer and va,j are non-negative integers.

Now we shall define p as follows.

(1-8) p=^^maxm_^(m-j-vajj/fjt}/(m-j-\a\), 1}.

Then we have

Theorem 1.1. Under (1.4)-(1.7), // l^ic<p/(p—l\ the Cauchy problem for L :

Lu(x, t ) = f ( x , 0 in I
(1.9)

D\u(x, OU=o=M*U), i=Q, ••• , m-1 on Rn

is Tiol-well-posed, i.e. for any z^M^rS^O, ••• , m— 1) flnJ £2713; f ( x ,
0, T], 7^c), ̂ ere ejcfsfs a i/ni^Me solution u(x, Oe^([0, T], 7^) o/ (1.9).

Remark 1.1. When p=l, (1.9) is C°°- well-posed.
Remark 1.2. In the case of the finite degeneracy our sufficient condition

is best.
Remark 1.3. From Remark 1.1, we may only consider the case that Q^va,j
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§2. Proof of Theorem 1.1

In this section we shall reduce Theorem 1.1 to Theorem 2.1.

Definition 2.1. We say that f(x}^H°° belongs to F (K} if there exist con-
stants c, R>Q such that

(2.1) \\Da
xfW\\^cRlal\a\ \K for any a,

where ||-|| denotes L2-norm with respect to x.

Let P=P(x, t, DX) Dt)=P0(x, t, Dx, DJ+P^x, t, Dx, Dt

(2.2) P0(x, t, f, T)=n(r-(j
.7=1

where ^(x, t, f)e^([0, T], S1^)) are real-valued and |(^-^)(x, f, f) |^<5<<?> for
some constant d>0 if i=£j. Further

771-1

(2.3) PjU-, f, f, r)= S 2 aW^a^U, ^f ) r ' ,
& = 0 i a i + j = *

where a a , j ( x , t, f)e^([0, T], S l a l(/c)). Here S-7"^) are symbol classes defined in
Appendix.

Then we get the following theorem.

Theorem 2.18 Under (1.4)-(1.7), if l^K<p/(p — l\ the Cauchy problem for
P is ru) -well-posed.

In order to prove Theorem 1.1, it is sufficient to show Theorem 2.1. For
since an operator L is changed into above operator P by spacelike transforma-
tion, we can see that a domain of dependence is finite. Hence using a partition
of unity Theorem 1.1 follows from Theorem 2.1.

We shall prove Theorem 2.1 by the method of successive approximations.
Therefore we decompose P as follows and consider the following scheme.

P(x, t, Dx, Dt}=QQ(x, t, Dx, DJ+Q^x, t, Dx, DJ,

where as u a , j = \ a \ / j .
m-l

(2.4) Qa(x, t, Dx, Dt)=P0(x, t, Dx, Dt}+ E S a(xY"'jaa,](x, t, DX)D{
k = Q \a\ + j=-k

and as 0^v0 > J-< \a\fj.
m-l

(2.5) Qfc, t, Dx, Dt)= S E ffU)""--' ae. ,(x, t, DX)D{.
k = l \a\+j=k,

la 1^=0

f Q0u,(x, t ) = f ( x , t) in fl»x(0, T]
(2.6).

1 on Rn
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and for /^l

( Qnuj(x, O^-CiMj-iU, 0 in fl»x(0, T]
(2.6),

I D\u3(x, OU=o=0, Og/g?n-l on ft71

Here we refer to Uryu [11].

Proposition 2.1. TTzg Cauchy problem for QQ is H™ -well-posed.

Since r(K)dH°°, UQ(X, t] which is a solution of (2.6)0 belongs to ^([0, T],
H°°(Rn)) by Proposition 2.1. If we note that Qi is a pseudo-differential operator
in x, then we obtain that QiUQ^&([Q, T], H°°(Rn)}. Hence it follows from (2.6)i
and Proposition 2.1 that iii(x, £)^-®([0, T], H°°(Rn)). Repeating these steps we
get that for any /^O, u3(x, f)e.s([0, T], H°°(Rn)). Therefore it is sufficient to
show that the formal solution

(2.7) u(x, 0= S u,(x, t}
J=o

converges in ^([0, T], TU)).
Our plan is as follows. In § 3 we shall get an energy inequality for Q0 in

L2. In § 4 we shall estimate derivatives of a solution of (2.8) :

, t)=g(x, t)
(2.8)

where g(x, Oe^([0, T], T ( f f )) such that for any fixed integer s^lD\g(x, t)\t=0

=0, O^z'^s— 1. And in §5 we shall obtain estimates of Qiv(x, t). Using the
consequence in §4 and §5, we shall prove Theorem 2.1 in §6.

§ 3. Energy Inequality for QQ

The aim of this section is to show the following lemma.

m-l
Lemma 3.1. Let 0(t)-= 2 am~(k+1) S IkOO'M^MH, where A is the

pseudo-differential operator with symbol ^^(l+lfl2)1 7 2 and a^l. Then there
exists a constant c'>0 such that

(3.1)

for u(x, f)e^([0, T],

In order to prove Lemma 3.1 we prepare several lemmas.
Let d}=Dt-o(xy]ij(x, t, Dx), l^j^m. We note that ^e^([0, T], S1) and

there exists a constant 5>0 such that | (>U— ̂ )(*, f, f ) |^3<f> if «>;.

Lemma 3.2. For f, / with l^i, j^m, there exist pseudo-differential operators
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Ai39 BIJ and C^e^([0, T], S°) such that

(3.2) [3l,3J]=^.A+5lJ3J+Ci;,

where [•, •] zs J/ig commutator.

Proof. Let <70([9t, 3J) be the principal symbol of [917 9;]. Then by the
product formula of pseudo-differential operators, we get

tfo([A, 3,])= So {d,k(^-a(xYll}DXk(^-a(xY^}

where DlJ^<B(iQ, T], S1). Here we use the notation x0=t, ^Q=r.
If we set Ai3=Di3/(^-^ and BlJ=DiJ/(ti-AJ\ then Ai;, 5tJEE.S([0, T], S°)

and AlJ(^-a(xyi^+BiJ(^-a(xY^)=ff(xYDlJ. Q. E. D.

Now we consider the modules Wk(Q^k^m— 1) over the ring of pseudo-
differential operators in x of order zero.

Let nm=d1d2 ••• 9TO. Let FFm_! be the module generated by the monomial

operators /7m/9£=9i ••• 9i ••• 9m of order ??z— 1 and let P7m-2 be the module
generated by the operators nm/Sidj(i^j) of order m— 2 and so on.

Lemma 3.3. For any monomial &% ^W k(^^k^m— 1), £/?0r0 e^zs^ 9t and
i such that

(3.3)

0, T],

Proof. For any ft>?=9Jl ••• 9Jfe(/i< •••</*), there exists some /£ {/i, ••• , 7^
with l^j^m. Hence if we use Lemma 3.2, we easily obtain (3.3). Q. E. D.

Lemma 3.4. L^ F(0 be

(3.4)

for u(x, 0^^([0, T], //°°) and a^l. T/^e?2 w;g /zfl^e the following energy in-
equality

(3.5) -

Proof. By Lemma 3.3
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If we set v=a)%u and g=a)^k+1u+ S ^CrJQ)r
k+1-jU, then

dt

Hence we get

d
j=i r J

For any & with Q^k^m—2, we have

j=i r J

Similarly when k=m—l, we obtain

.a . Q.E.D.

Lemma 3.5. Let Us=dil ••• dis(l^ii<---<is^m). Then a (IIs\ the symbol of
I I s , is expressed in the form

(3.6) a(II',)= n (T—</W>

>= S
p+q=S-j

pj(xf t, f)r9 /or some ^e^([0, T], S*), /=!, ••• , s.

Proof. We carry out the proof by induction on s. When s=l, (3.6) is
trivial. Suppose (3.6) holds for s. Since ns+1=nsdis+1,

Substituting the right hand side of (3.6) for a(TIs\ we have (3.6) with s+1.
Q. E. D.

Corollary 3.1. There exist pseudo-differential operators Cij(x, t, Dx}

, T], S*) such that
m-l(3.7) Q0-nm=z s owcttx, t,
k=0l+j=k
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Proof. From Lemma 3.5 with s=m and the form of Q0, (3.7) is verified.
Q. E. D.

Lemma 3.6. There exists a constant c7>0 such that

(3.8) c

Proof. In order to see that 0(t)^c8W(t}, it is sufficient to show the follow-
ing. There exist A,(x, t, f)e^([0, T], S°) such that for i'+j'=m-k, l^k^m,

(3.9) *(*)*'*<£>*'*'•= S ^U, f,

Substituting o(xYl3 for r, then we obtain

a/*, t, f)<e>m-*=>M*, f, f)nU,-^), where flje^([0, T], S°).
1SJ*

Therefore we set
A,(X, t, f )= flj<f >»-* { n w,- w} -1 .i¥=j

is ft

On the other hand, it is trivial to see that W(t)^cQ@(t). Q. E. D.

Proof of Lemma 3.1. By Corollary 3.1 and Lemma 3.6, we have

And from Lemma 3.4,

Using Lemma 3.6 again, we can obtain

This completes the proof. Q. E. D.

§4. Estimate of Arv

We assume the existence of solutions of the following Cauchy problem :

QQv(x, t)=g(x, t)

D\V(X, O U = o = 0, 0^/^771-1

where g(x, 0^^([0, T], r(/c)) such that for any fixed integer s^l D\g(x, t)\t=Q

Therefore we may assume that for any r^O there exist constants c, R,
M>0 such that

(4.1) \\Arg(x, t}\\^
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For simplicity we use the notation

wr(s, t, R} = Rrr\KtseMrt .

We shall prove the basic lemma of this section.

Lemma 4.1. Let 0r(t) be
771-1

S ||<700*Mr+*£^ll.
fc=o t+.; = fe

for any r^O £/zerg e^fsifs a constant A>Q such that for sufficiently large
R, M, s

(4.2) 0r(t}^cAs-1wr(s, t, R).

Proof. We carry out the proof by induction on r.
When r=0, it follows from Lemma 3.1 and (4.1) that

By Gron wall's inequality, we get

00(t}^cAs-1w0(sf t, R)

if we choose A such that A^cfTec'T.
We assume that (4.2) is valid for any r such that O^r^n.
Let us show that (4.2) is valid for r=n+l. For r>0, operating the pseudo-

differential operator Ar on both sides of Q0v=g, we get

We shall estimate the commutator [Q0, Ar~\v. We note that

Q0(x, t, f, r)-rTO+ 2 aWat(x,t,&T*,
i+j^m
j^m-l

where Gle^([0, T], S'(/c)). Therefore we have

By the fomula of pseudo-differential operator, we obtain

,(*,*,£).
k^i \a\ = k (X. I

It follows from Lemma A.3 in Appendix and fi^l that
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+ cRrr\K\\D{v\\

clzr{\\0(xy«-1>Ar+l-1DJ
tv\\ + ••• +r*-1\\slrD{v\\}

,R\k-ir /f\\k-i/r\/ r \-K
S (TT) ( , ) ( , .) (r+i-=i+i\R / \k/\k—i/

\ r
j CAS-^XS, t, R).

Hence we make R^2R, and get

||[Q0, ^vll^Cisir^CO+rc^s-^Xs, t, R^+cAs-hv^s, t, R)}

-iwrte, t, R}} .

We note that cu is independent of r.
From Lemma 3.1,

s, r,

S J
{cu;r(s, r, R^+CurcAs'hv^s, T, R}}dr, then

0

Therefore we obtain

Now we calculate

o

^c'cTs-lwr(s, t, R^c'c^cAs^M^w^s, t, R)

-*wT(s, t, R), if we make A^4c'T and

Hence we get

-1s-1wr(s, t,

-^-^^s, f, R)+cA2-1s-1c16(M-c16)-
1wr(s, t, R)

^w^s, t, R),
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where M is a sufficiently large number such that cle(M— c^}'1^!. Q. E. D.

Lemma 4.2. For any r^O there exists a constant A>Q such that for i-\-j—k
with &=0, ••• , m— 1

\\a(x)^Ar+iD{v\\^cAs-(m-k)wr(s+?n-k-l, t, R).

Proof. It follows from Lemma 4.1 that

\\a(x)tf>Ar*iDJ
t
+n-k-1v\\^cAs-1wr(s, t, R).

Hence we get that

^*/}^
Jo Jo

o o

-k-l, t} R). Q.E.D.

§ 5. Estimate of ArQ1v

We begin with the following lemma.

Lemma 5.1. // a(x)<=E$(Rn) and 0^p</£, then

(5.1) lkU)VM||^||M||1

Proof. By Holder's inequality,

-U)yw 1 2dx =

S(J,.,,
—— \\U\\ " I] (T^JK J W (I . (oi. lif. D.

Lemma 5.2, Let p(a, j)=m—j—vaij/[jt,

771-1

(5.2) 2 2 lk(%ra '^r+lalZ)^||

771-1

- Si,.,?-«
l a l ^ O

Proof. From Lemma 4.2 and Lemma 5.1, we obtain that for a\+j=
and |a |=£0



WELL-POSEDNESS IN GEVREY CLASSES 959

-j-l, t, R)}^*j'^^

X {cAs-(m-k}wr(s+m-k-l, t, R)}»« j/la]f

(a,j)-l>tf R).

Q.E.D.

We note that

(5.3) va,j=Q or there exists a non-negative integer p a i j such that

Lemma 5.3. For any r^O, the following estimate holds.

m-l
(5.4) HA'QiVll^ccA ^ S Kf(s, r}wr+lal(s+p(a, ;)-!, t, R) ,

k = l\a\-rj=k
l a l ^ O

where

K«(s, r) = s-()(a'

X{(r+\a\-i)-(r+\a\-paiJ)}-K.

Proof.
m-l

Since

m-l

S S
k = l \a\+j=k

m-l

i^is S S {
k=l \a\+]=k

the first term has been estimated by Lemma 5.2 and the second term will be
estimated within Iz.

The estimate of 72 is similar to the proof of Lemma 4.1. In fact since

<r(lA*9 c/U) l '«^fla.J]) = r+S1"1 S 4r9!<f>r^{^Ur«-^a,,}+rU', f, f),
*=i | j3i=i p I

if we note that ua.j-\P\ =(Pa.3+l- \P\)t*+(va.3-pa.,p-U+(\P\ -D(j«-l) and
use Lemma A. 3 and Lemma 4.2, then we have
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m-l Pa , j+

2^c19 S E E
k = l \a\+j=k i = l

\a\ -f) ••- (r

Xwr+lai(s+?n-j-pa,j
Jri-2> t, R).

And if we note that m—j—pai]~{-i—l.'^p(at /), then we can get (5.4).

§ 6. Proof of Theorem 2.1

In order to prove Theorem 2.1, we prepare several lemmas.

Q. E. D.

Lemma 6.1. For any ui(x)^r(K\^i^m-l] and any £(*,f)e.S([0, T],F(/£)),
e;as£s a unique solution u(x, £)e.®([0, T], .F(A:)) 0/ £/2£ equation:

Q0(x, t, Dx, Dt)u(x, t)=g(x,
(6.1)

Dtu(x, 0 | t=0=M*W, O^i^m-1.

especially, if u^x^Q^^i^m-l) and D\g(x9 Olt=o=0(0gi '^s—l), ^72 i^
obtain that D\u(x, t)\t=Q=Q(Q^i^s-{-m—T), where s zs a positive integer.

Proof. It follows from Proposition 2.1 that there exists a unique solution
u(x, Oe^([0, T], f/00) of (6.1). Therefore let us show that u(x, Oe^([0, T],

For any fixed integer s^l, let us(x, t) be

s+m-l I '

.7=0 j

then us(x, t) satisfies the equation

Q0us(x, t)=g(x, t)-Q0

Therefore we get that g,(x, 0^^([0, T], F ( f f )) such that Digs(x, OU=o=0, O^z"
^5—1. From the consequence of §4, it is easily seen that u g ( x , 0^-S([0, T],
r(fi)). Hence we obtain that u(x, ^)e^([0, T], r(ff)).

As to the latter, since Dfu=(Dfu — QQu)+g} we can get that DFu\t=o=Q.
And since Df+1u=Dt(Dfu — Q0u)+Dtg} we get that Df+1u t=Q=Q. Hence if
we repeat these steps, we have that DJwI^o^O, 0^/^s+?n— 1. Q. E. D.

Lemma 6.2. Let u3(x, t) be the solution of (2.6)^, then Uj(x, f)e^([0, T],
( f f ) ) for y^O. Moreover for j^l, Diufa, OU=o=0, Ogjg

Proof. It follows from the first assersion of Lemma 6.1 that
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0, T], r(K)). Since Q&*<=&([$, T], FU)), If we use Lemma 6.1 once more,
we can get that Ui(x, t)^<B([_Q, T], jTU)). Therefore repeating these steps we
have U j ( x , f)e.3([0, T], ru)) for /^O.

Next from the second assersion of Lemma 6.1 and the form of (2.6)1,
Diui £=o=0, 0^/^m—1. Since D*QiWiL=o=0 for z'=0, 1, we obtain that DjM 2 | t = 0

=0 for Q^i^m+1. Similarly, we conclude the second assersion of Lemma 6.2.
Q. E. D.

From Lemma 6.2, for any fixed integer s^l, there exists N=N(s}^N such
that for any j^N—1, D\u3(x, t)\i=0=Q, O^z'^s—1. Therefore we may assume
that for any r^O

(6.2) \\ArQ1uN-1\\^cwr(s,tf R),

where c and R are positive constants.

Lemma 6.3. Under (6.2), if l^/c<p/(p — l\ there exist constants A, B,
which are independent of r such that

(6.3) \\AruN+n\\^cABnn-rnwr(s, t, 2KR)

for 7i=0, 1, 2, • • • „

Proof. From (6.2) and Lemma 4.2, we get that

\\a(^ai^Ar+]a^D^uN\\^cAs-(m-j-la^Tm-lwr(s, t, R}.

It follows from Lemma 5.3 that

\\ATQiUN\\^ccA S1 2 Kaj\(s, r)wr+l^(s + p(a1} j\)-l, t} R).
k1=l\a1\+jl=k1

 l l

l a i l ^ O

If we use Lemma 4.2, we have that
771-1

' ^^ ^^

tt!, yj-i,
where cT=cTm~l.

Applying Lemma 5.3 again, we obtain, that

, /J-l,

1, /i)

From Lemma 4.2, we get that
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ft?*(s, r)

X(s+p(al9 jj-l+pfa, / ,)-l)-<»-J8-i«8i>

(az, /2) — 1, t, R),

where K*fc**(s, r)=K%(s+p(alt /i)-l, r+kil) .
We set

Inductively we obtain that for any n^

} ;"i)-H ----- \-p(an, ;») — 1

By the way,

X ••• X(s+p(al9 ji)-l+ ••• +p(an-l9 jn-i)-l)-an

where aktE {p(ak, j k ) , m—jk—pakijk+ik-l} and bl
k^ { K v a k , j k / \ a k \ p , K—l, K, 0}.

We note the following.

(6.4) If ak=p(ak, j k ) , then b\, ••• , V?v=KvaktJk/\ak\p.

(6.5) If ak=m-jk-paklJk+ik-l, then 6i, - , ft^*-^*^*-1^,

W a*'~P a*>- '* , ••• , Wa*'-**=A: and ^a*'-**+1, ••• , &ia*'=A:— 1.

Let s^max{1o(a, ;)—!}, co=rain{|o(a, ;)— 1} and G = min{a^} and if we use
Lemma A. 4, then we have

Let r=0, them by Lemma A.4 again,

X
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Further we estimate

(m-l)Tn

Using Lemma A. 5,

Therefore we obtain that

\\AruN+n\\

,o)~aRm-l2(m-l^TweM(m-^T)nwr(s, t, 2KR)

Let # be the number of p(ak, jkY$ in { f l A } i ^ & g n and if we remember (6.4),
(6.5) and (5.3), then we obtain that

(flx+ ••• +an)+(b\+ - +&!fB l)-( |a i l+ •••

+(m-jn-pan Jn+/n-

H

=(m—j\— ki 1 ) {(m— ;'i-pai ;i
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— ((m— ji— vai.jJ[JL)l(m— /i— l a i l ) — !}K}+

— ((in—jn—»an,jn/fjL)/(m—jn— a J) — 1)4

^n{p-(p-l)K}.

This completes the proof. Q. E. D.

Corollary 6.1. // l^tc<p/(p — l), the formal solution

u(x, t)= 2 Uj(x, 0
j=o

converges in ^([0, T], F(/c)).

Proof. If we devide w(;c, 0 as

w(*, 0=^"^, 0+ S ^U, 0,
J=0 j = N

then this Corollary immidiately follows from Lemma 6.2 and Lemma 6.3.
Q. E. D.

Hence we obtain the existence of solutions.
Next we shall show the uniqueness of solutions.

Lemma 6.4. // u(x, 0^^([0, T], FU)) is a solution of the Cauchy problem :

P(x, t, Dx, Dt)u(x, 0-0

where l^tc<p/(p — l), then u(x, 0=0.

Proof. We may assume that for sufficiently large s there exist constants
c, R>Q such that

\\Aru\\^cwr(s, t, R} for any r^O.

Therefore similar to the proof of Lemma 6.3, we can obtain that

\\Aru\\^cABnn-rnwr(s, t, R}.

Let n be infinity, then we have that u(x, 0=0. Q. E. D.

Acknowledgement: The author would like to thank Prof. Shoji Irie and
Prof. Hitoshi Uryu for their useful advices.

Appendix

Following Igari [2] and Uryu [12], we introduce a certain class of pseudo-
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differential operators.

Definition A.I. 1) For any mejR and /c>l, we denote by Sm(ic) the set
of functions h(x, g)^C°°(RnxRn) satisfying the property that for any a, /3, there
exist constants ca and R such that

\djDxh(x, £ ) i^c j? l / n l j8 | !<<f> m - | a l for (x,&^RnxRn.

2) For any /i(#, f)eSmOt), we shall define a semi-norm of h(x, ?) such that
for any integer /^O

| A ( * , £ ) l i = max sup |

Now we can define a pseudo-differential operator with a symbol /z(x, f)e
Sm(K) as follows.

Lemma A.I (s^g /garf [2]). Ls^ /z(^, f)eS7ri(A:) fl?irf r be non-negative ir-
tegers. Then

where N=rjrm. And for any integer /^O, if/zgrg g^z'sf constants GI, R>0 such
that

and

The following lemma is well-known.

Lemma A.20 For ^723; h(x, f)eS°, ^/i^re ^zzs^ a constant c and non-negative
integer I dependent only on dimension n such that

Lemma A.3 (see Uryu [12]). Under the assumptions of Lemma Al, if we
denote h3(x, f) ^

M^,f )= s -V3?<f> r^;/iU,f),
\a\ = j Oi \

then there exist c, R>Q such that

\\Hj(x, Dx)u\\^cfr-m(j-m)l*(r}\\Am+r-'u\\ for l^j^r,
^J

\\Hj(x, Dx)u\\^cRJ-m(j-m)!K\\Am+r-iU\\ for

\\RN(x, Dx}u\\^cRrrlK\\u\\.
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Lemma A.4. Let {ily ••• , in} be a subset of {alf ••• , am}, then there exist

constants Al9 J?i>0 such that

Proof. Set S=nil+'"+in/lil — ni*. Then

S=(n/l)*i(n/2)i»

=(nn/n\)a, where a=max{a1, ••• , am}.

Using Stirling's formula, we can get the desired inequality. Q. E. D.

Lemma A.5. Let {ilf • • • , / „ } C{1, --^m—l}, then there exist constants A2,

#2>0 such that

(z'H ----- Hn}

Proof. By Stirling's formula, we obtain that

Q. E. D.
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