On a Sufficient Condition for Well-posedness in Gevrey Classes of Some Weakly Hyperbolic Cauchy Problems

By

Shigeharu ITOH*

Introduction

In this paper we shall study well-posedness of the Cauchy problem for some weakly hyperbolic operators in Gevrey classes. That is to say, we consider whether we can determine a function space in which the Cauchy problem for given weakly hyperbolic operator is well-posed or not.

This question has been studied by several mathematicians.

The results independent of the lower order terms were obtained by Ohya [8], Leray-Ohya [6], Steinberg [9], Ivrii [3], Trepreau [10], Bronstein [1], Kajitani [5] and Nishitani [7], which show that the multiplicity of the characteristic roots determines the well-posed class.

On the other hand, in [4] Ivrii presented two interesting examples.

(I) Let $P = \partial_t^2 - t^{2\mu} \partial_x^2 + at^{\nu} \partial_x$, where μ, ν are non-negative integers and a is a non-zero constant. When $0 \leq \nu < \mu - 1$, the Cauchy problem for P is $\gamma_{loc}^{(\kappa)}$ -well-posed, if and only if $1 \leq \kappa < (2\mu - \nu)/(\mu - \nu - 1)$.

(II) Let $P=\partial_t^2 - x^{2\prime\prime}\partial_x^2 + ax^{\nu}\partial_x$, where μ , ν are non-negative integers and a is a non-zero constant. When $0 \leq \nu < \mu$, the Cauchy problem for P is $\gamma_{loc}^{(\kappa)}$ -well-posed, if and only if $1 \leq \kappa < (2\mu - \nu)/(\mu - \nu)$. These two cases show that the lower order terms have a great effect on the well-posed class.

Igari [2] and Uryu [12] extended (I) for more general operators respectively and Uryu-Itoh [13] extended (II) for second order weakly hyperbolic operators.

In this article we shall consider the most general case of (II).

§1. Statement of the Result and Remarks

Let $(x, t) \in \mathbb{R}^n \times [0, T]$ and $(D_x, D_t) = (D_{x_1}, \dots, D_{x_n}, D_t) = (-\sqrt{-1}\partial_{x_1}, \dots, -\sqrt{-1}\partial_{x_n}, -\sqrt{-1}\partial_t)$. Let us denote by (ξ, τ) the dual variable of (x, t).

Communicated by S. Matsuura, February 16, 1985.

^{*} Department of Mathematics, School of Science and Engineering, Waseda University, Tokyo 160, Japan.

Next we shall define the Gevrey classes.

Definition 1.1. $(\gamma_{loc}^{(\kappa)}, \gamma^{(\kappa)}; \kappa > 1)$ $f(x) \in \gamma_{loc}^{(\kappa)}$ implies that $f(x) \in C^{\infty}(\mathbb{R}^n)$ and for any compact set $K \subset \mathbb{R}^n$ there exist constants c, R > 0 such that

$$(1.1) |D_x^{\alpha}f(x)| \leq cR^{|\alpha|} |\alpha|!^{s}, x \in K, \text{ for any } \alpha.$$

 $f(x) \in \gamma^{(x)}$ implies that $f(x) \in C^{\infty}(\mathbb{R}^n)$ and (1.1) holds for any $x \in \mathbb{R}^n$.

Let
$$L = L(x, t, D_x, D_t) = L_0(x, t, D_x, D_t) + L_1(x, t, D_x, D_t)$$
, where

(1.2)
$$L_0(x, t, D_x, D_t) = D_t^m + \sum_{\substack{|\alpha|+j=m\\j\leq m-1}} \sigma(x)^{|\alpha|+\mu} a_{\alpha,j}(x, t) D_x^{\alpha} D_t^{j}$$

and

(1.3)
$$L_1(x, t, D_x, D_t) = \sum_{|\alpha|+j \le m-1} \sigma(x)^{\nu_{\alpha, j}} a_{\alpha, j}(x, t) D_x^{\alpha} D_t^j.$$

We assume the following conditions on L.

(1.4) τ -roots of

$$\widetilde{\mathcal{L}}_{0}(x, t, \xi, \tau) = \tau^{m} + \sum_{\substack{|\alpha|+j=m \ j \leq m-1}} a_{\alpha, j}(x, t) \xi^{\alpha} \tau^{j} = 0$$

are real and distinct.

(1.5)
$$a_{\alpha,j}(x, t) \in \mathscr{B}([0, T], \gamma^{(\kappa)}).$$

(1.6) $\sigma(x) \in \gamma^{(\kappa)}$ and is a real-valued function.

(1.7) μ is a positive integer and $\nu_{\alpha,j}$ are non-negative integers.

Now we shall define ρ as follows.

(1.8)
$$\rho = \max_{0 \le |\alpha| + j \le m-1} \{ (m - j - \nu_{\alpha, j} / \mu) / (m - j - |\alpha|), 1 \}.$$

Then we have

Theorem 1.1. Under (1.4)-(1.7), if $1 \le \kappa < \rho/(\rho-1)$, the Cauchy problem for L:

(1.9)
$$\begin{cases} Lu(x, t) = f(x, t) & in \quad \mathbb{R}^n \times (0, T] \\ D_t^i u(x, t)|_{t=0} = u^i(x), \ i = 0, \cdots, m-1 \quad on \quad \mathbb{R}^n \end{cases}$$

is $\gamma_{loc}^{(\kappa)}$ -well-posed, i. e. for any $u^i(x) \in \gamma_{loc}^{(\kappa)}(i=0, \dots, m-1)$ and any $f(x, t) \in \mathscr{B}([0, T], \gamma_{loc}^{(\kappa)})$, there exists a unique solution $u(x, t) \in \mathscr{B}([0, T], \gamma_{loc}^{(\kappa)})$ of (1.9).

Remark 1.1. When $\rho = 1$, (1.9) is C^{∞} -well-posed.

Remark 1.2. In the case of the finite degeneracy our sufficient condition is best.

Remark 1.3. From Remark 1.1, we may only consider the case that $0 \leq \nu_{\alpha,j} \leq |\alpha| \mu$.

§2. Proof of Theorem 1.1

In this section we shall reduce Theorem 1.1 to Theorem 2.1.

Definition 2.1. We say that $f(x) \in H^{\infty}$ belongs to $\Gamma^{(\kappa)}$ if there exist constants c, R > 0 such that

(2.1)
$$||D_x^{\alpha}f(x)|| \leq cR^{|\alpha|} |\alpha|!^{\kappa} \quad \text{for any } \alpha,$$

where $\|\cdot\|$ denotes L^2 -norm with respect to x.

Let
$$P=P(x, t, D_x, D_t)=P_0(x, t, D_x, D_t)+P_1(x, t, D_x, D_t)$$
.

(2.2)
$$P_0(x, t, \xi, \tau) = \prod_{j=1}^m (\tau - \sigma(x)^{\mu} \lambda_j(x, t, \xi)),$$

where $\lambda_j(x, t, \xi) \in \mathcal{B}([0, T], S^1(\kappa))$ are real-valued and $|(\lambda_i - \lambda_j)(x, t, \xi)| \ge \delta \langle \xi \rangle$ for some constant $\delta > 0$ if $i \neq j$. Further

(2.3)
$$P_{1}(x, t, \xi, \tau) = \sum_{k=0}^{m-1} \sum_{\alpha_{1}+j=k} \sigma(x)^{\nu_{\alpha_{1}}j} a_{\alpha_{1}j}(x, t, \xi) \tau^{j},$$

where $a_{\alpha,j}(x, t, \xi) \in \mathcal{B}([0, T], S^{(\alpha)}(\kappa))$. Here $S^{j}(\kappa)$ are symbol classes defined in Appendix.

Then we get the following theorem.

Theorem 2.1. Under (1.4)-(1.7), if $1 \le \kappa < \rho/(\rho-1)$, the Cauchy problem for P is $\Gamma^{(\kappa)}$ -well-posed.

In order to prove Theorem 1.1, it is sufficient to show Theorem 2.1. For since an operator L is changed into above operator P by spacelike transformation, we can see that a domain of dependence is finite. Hence using a partition of unity Theorem 1.1 follows from Theorem 2.1.

We shall prove Theorem 2.1 by the method of successive approximations. Therefore we decompose P as follows and consider the following scheme.

$$P(x, t, D_x, D_t) = Q_0(x, t, D_x, D_t) + Q_1(x, t, D_x, D_t)$$

where as $\nu_{\alpha,j} = |\alpha| \mu$

(2.4)
$$Q_0(x, t, D_x, D_t) = P_0(x, t, D_x, D_t) + \sum_{k=0}^{m-1} \sum_{|\alpha|+j=k} \sigma(x)^{\nu_{\alpha, j}} a_{\alpha, j}(x, t, D_x) D_t^j$$

and as $0 \leq \nu_{\sigma, j} < |\alpha| \mu$

(2.5)
$$Q_{1}(x, t, D_{x}, D_{t}) = \sum_{\substack{k=1 \ |\alpha|+j=k, \\ |\alpha|\neq 0}}^{m-1} \sum_{\substack{k=1 \ |\alpha|+j=k, \\ |\alpha|\neq 0}} \sigma(x)^{\nu_{\alpha, j}} a_{c, j}(x, t, D_{x}) D_{t}^{j}.$$

(2.6)₀
$$\begin{cases} Q_0 u_0(x, t) = f(x, t) & \text{in } R^n \times (0, T] \\ D_t^i u_0(x, t)|_{t=0} = u^i(x), \ 0 \leq i \leq m-1 & \text{on } R^n \end{cases}$$

and for $j \ge 1$

(2.6),
$$\begin{cases} Q_0 u_j(x, t) = -Q_1 u_{j-1}(x, t) & \text{in } \mathbf{R}^n \times (0, T] \\ D_t^i u_j(x, t)|_{t=0} = 0, \ 0 \le i \le m-1 & \text{on } \mathbf{R}^n \end{cases}$$

Here we refer to Uryu [11].

Proposition 2.1. The Cauchy problem for Q_0 is H^{∞} -well-posed.

Since $\Gamma^{(\kappa)} \subset H^{\infty}$, $u_0(x, t)$ which is a solution of $(2.6)_0$ belongs to $\mathscr{B}([0, T], H^{\infty}(\mathbb{R}^n))$ by Proposition 2.1. If we note that Q_1 is a pseudo-differential operator in x, then we obtain that $Q_1u_0 \in \mathscr{B}([0, T], H^{\infty}(\mathbb{R}^n))$. Hence it follows from $(2.6)_1$ and Proposition 2.1 that $u_1(x, t) \in \mathscr{B}([0, T], H^{\infty}(\mathbb{R}^n))$. Repeating these steps we get that for any $j \ge 0$, $u_j(x, t) \in \mathscr{B}([0, T], H^{\infty}(\mathbb{R}^n))$. Therefore it is sufficient to show that the formal solution

(2.7)
$$u(x, t) = \sum_{j=0}^{\infty} u_j(x, t)$$

converges in $\mathscr{B}([0, T], \Gamma^{(\kappa)})$.

Our plan is as follows. In §3 we shall get an energy inequality for Q_0 in L^2 . In §4 we shall estimate derivatives of a solution of (2.8):

(2.8)
$$\begin{cases} Q_0 v(x, t) = g(x, t) \\ D_t^i v(x, t)|_{t=0} = 0, \quad 0 \le i \le m - 1 \end{cases}$$

where $g(x, t) \in \mathcal{B}([0, T], \Gamma^{(s)})$ such that for any fixed integer $s \ge 1 D_t^i g(x, t)|_{t=0} = 0, 0 \le i \le s-1$. And in §5 we shall obtain estimates of $Q_1 v(x, t)$. Using the consequence in §4 and §5, we shall prove Theorem 2.1 in §6.

§3. Energy Inequality for Q_0

The aim of this section is to show the following lemma.

Lemma 3.1. Let $\Phi(t) = \sum_{k=0}^{m-1} a^{m-(k+1)} \sum_{i+j=k} \|\sigma(x)^{i\mu} \Lambda^i D^j u\|$, where Λ is the pseudo-differential operator with symbol $\langle \xi \rangle = (1+|\xi|^2)^{1/2}$ and $a \ge 1$. Then there exists a constant c' > 0 such that

(3.1)
$$\Phi(t) \leq c' \int_0^t \{ \|Q_0 u\| + a \Phi(\tau) \} d\tau$$

for $u(x, t) \in \mathcal{B}([0, T], H^{\infty}(\mathbb{R}^n)), D_t^i u|_{t=0} = 0, 0 \le i \le m-1.$

In order to prove Lemma 3.1 we prepare several lemmas.

Let $\partial_j = D_t - \sigma(x)^{\mu} \lambda_j(x, t, D_x)$, $1 \leq j \leq m$. We note that $\lambda_j \in \mathcal{B}([0, T], S^1)$ and there exists a constant $\delta > 0$ such that $|(\lambda_i - \lambda_j)(x, t, \xi)| \geq \delta(\xi)$ if $i \neq j$.

Lemma 3.2. For *i*, *j* with $1 \leq i$, $j \leq m$, there exist pseudo-differential operators

 A_{ij} , B_{ij} and $C_{ij} \in \mathcal{B}([0, T], S^0)$ such that

$$[\partial_{i}, \partial_{j}] = A_{ij}\partial_{i} + B_{ij}\partial_{j} + C_{ij}$$

where $[\cdot, \cdot]$ is the commutator.

Proof. Let $\sigma_0([\partial_i, \partial_j])$ be the principal symbol of $[\partial_i, \partial_j]$. Then by the product formula of pseudo-differential operators, we get

$$\sigma_{0}([\partial_{i}, \partial_{j}]) = \sum_{k=0}^{n} \{\partial_{\xi_{k}}(\xi_{0} - \sigma(x)^{\mu}\lambda_{i})D_{x_{k}}(\xi_{0} - \sigma(x)^{\mu}\lambda_{j}) - \partial_{\xi_{k}}(\xi_{0} - \sigma(x)^{\mu}\lambda_{j})D_{x_{k}}(\xi_{0} - \sigma(x)^{\mu}\lambda_{i})\}$$
$$= \sigma(x)^{\mu}D_{ij}(x, t, \xi),$$

where $D_{ij} \in \mathcal{B}([0, T], S^1)$. Here we use the notation $x_0 = t, \xi_0 = \tau$.

If we set $A_{ij}=D_{ij}/(\lambda_j-\lambda_i)$ and $B_{ij}=D_{ij}/(\lambda_i-\lambda_j)$, then A_{ij} , $B_{ij}\in \mathscr{B}([0, T], S^0)$ and $A_{ij}(\xi_0-\sigma(x)''\lambda_i)+B_{ij}(\xi_0-\sigma(x)''\lambda_j)=\sigma(x)''D_{ij}$. Q. E. D.

Now we consider the modules $W_k(0 \le k \le m-1)$ over the ring of pseudo-differential operators in x of order zero.

Let $\Pi_m = \partial_1 \partial_2 \cdots \partial_m$. Let W_{m-1} be the module generated by the monomial operators $\Pi_m / \partial_i = \partial_1 \cdots \check{\partial}_i \cdots \partial_m$ of order m-1 and let W_{m-2} be the module generated by the operators $\Pi_m / \partial_i \partial_j (i \neq j)$ of order m-2 and so on.

Lemma 3.3. For any monomial $\omega_k^{\alpha} \in W_k (0 \leq k \leq m-1)$, there exist ∂_i and $\omega_{k+1}^{\beta} \in W_{k+1}$ such that

(3.3)
$$\hat{\partial}_{i}\omega_{k}^{\alpha} = \omega_{k+1}^{\beta} + \sum_{j=1}^{k+1} \sum_{j} C_{\gamma j}\omega_{k+1-j}^{j},$$

where $C_{\gamma j} \in \mathcal{B}([0, T], S^{0})$.

Proof. For any $\omega_k^{\alpha} = \partial_{j_1} \cdots \partial_{j_k} (j_1 < \cdots < j_k)$, there exists some $j \in \{j_1, \dots, j_k\}$ with $1 \leq j \leq m$. Hence if we use Lemma 3.2, we easily obtain (3.3). Q. E. D.

Lemma 3.4. Let $\Psi(t)$ be

(3.4)
$$\Psi(t) = \sum_{k=0}^{m-1} \sum_{k=0}^{m-1} a^{m-(k+1)} \| \omega_k^a u \|$$

for $u(x, t) \in \mathcal{B}([0, T], H^{\infty})$ and $a \ge 1$. Then we have the following energy inequality

(3.5)
$$\frac{d}{dt}\Psi(t) \leq c_1 a \Psi(t) + \|\Pi_m u\|.$$

Proof. By Lemma 3.3

$$\partial_{\imath}\omega_{k}^{\alpha}u = \omega_{k+1}^{\beta}u + \sum_{j=1}^{k+1}\sum_{j}C_{jj}\omega_{k+1-j}^{j}u.$$

If we set $v = \omega_k^{\alpha} u$ and $g = \omega_{k+1}^{\beta} u + \sum_{j=1}^{k+1} \sum_{\gamma} C_{\gamma j} \omega_{k+1-j}^{j} u$, then $\frac{d}{dt} \|v\|^2 = 2 \operatorname{Re}\left(\frac{d}{dt} v, v\right)$ $= 2 \operatorname{Re}\left(\sqrt{-1} g + \sqrt{-1} \sigma(x)^{\mu} \lambda_i v, v\right)$ $\leq 2 \|g\| \|v\| + c_2 \|v\|^2.$

Hence we get

$$\frac{d}{dt} \|v\| \leq \|\omega_{k+1}^{\beta}u\| + c_{3} \Big\{ \|\omega_{k}^{\alpha}u\| + \sum_{j=1}^{k+1} \sum_{\gamma} \|\omega_{k+1-j}^{\gamma}u\| \Big\}.$$

For any k with $0 \leq k \leq m-2$, we have

$$\begin{aligned} a^{m-(k+1)} \frac{d}{dt} \| \omega_{k}^{\alpha} u \| \\ &\leq a^{m-(k+1)} \| \omega_{k+1}^{\beta} u \| + c_{3} \Big\{ a^{m-(k+1)} \| \omega_{k}^{\alpha} u \| + \sum_{j=1}^{k+1} \sum_{\gamma} a^{m-(k+1)} \| \omega_{k+1-j}^{\gamma} u \| \Big\} \\ &\leq a a^{m-(k+2)} \| \omega_{k+1}^{\beta} u \| + c_{3} \Big\{ a^{m-(k+1)} \| \omega_{k}^{\alpha} u \| + \sum_{j=1}^{k+1} \sum_{\gamma} a^{m-(k-j+2)} \| \omega_{k+1-j}^{\gamma} u \| \Big\} \\ &\leq a \Psi(t) + c_{4} \Psi(t) \\ &\leq c_{5} a \Psi(t). \end{aligned}$$

Similarly when k=m-1, we obtain

$$\frac{d}{dt} \|\boldsymbol{\omega}_{m-1}^{\alpha}\boldsymbol{u}\| \leq \|\boldsymbol{\Pi}_{m}\boldsymbol{u}\| + c_{6}\boldsymbol{\mathcal{Y}}(t). \qquad \text{Q. E. D.}$$

Lemma 3.5. Let $\Pi_s = \partial_{i_1} \cdots \partial_{i_s} (1 \le i_1 < \cdots < i_s \le m)$. Then $\sigma(\Pi_s)$, the symbol of Π_s , is expressed in the form

(3.6)
$$\sigma(\Pi_s) = \prod_{j=1}^s (\tau - \sigma(x)^{\mu} \lambda_{ij}) + R_{s-1} + \cdots + R_0,$$

where $R_{s-j} = \sum_{p+q=s-j} \sigma(x)^{p\mu} b_{pj}(x, t, \xi) \tau^q$ for some $b_{pj} \in \mathcal{B}([0, T], S^p), j=1, \cdots, s$.

Proof. We carry out the proof by induction on s. When s=1, (3.6) is trivial. Suppose (3.6) holds for s. Since $\Pi_{s+1}=\Pi_s\partial_{i_{s+1}}$,

$$\sigma(\Pi_{s+1}) = \sigma(\Pi_s)(\xi_0 - \sigma(x)^{\mu}\lambda_{i_{s+1}}) + \sum_{\alpha \neq 0} \partial_{\xi}^{\alpha} \sigma(\Pi_s) D_x^{\alpha}(\xi_0 - \sigma(x)^{\mu}\lambda_{i_{s+1}}).$$

Substituting the right hand side of (3.6) for $\sigma(\Pi_s)$, we have (3.6) with s+1. Q. E. D.

Corollary 3.1. There exist pseudo-differential operators $C_{ij}(x, t, D_x) \in \mathscr{B}([0, T], S^i)$ such that

(3.7)
$$Q_0 - \Pi_m = \sum_{k=0}^{m-1} \sum_{i+j=k} \sigma(x)^{i\mu} C_{ij}(x, t, D_x) D_t^j.$$

Proof. From Lemma 3.5 with s=m and the form of Q_0 , (3.7) is verified. Q. E. D.

Lemma 3.6. There exists a constant $c_7 > 0$ such that

(3.8)
$$c_7^{-1} \Phi(t) \leq \Psi(t) \leq c_7 \Phi(t).$$

Proof. In order to see that $\Phi(t) \leq c_s \Psi(t)$, it is sufficient to show the following. There exist $A_j(x, t, \xi) \in \mathcal{B}([0, T], S^0)$ such that for i'+j'=m-k, $1\leq k\leq m$,

(3.9)
$$\sigma(x)^{i'\,\mu} \langle \xi \rangle^{i'} \tau^{j'} = \sum_{j=k}^{m} A_j(x, t, \xi) \prod_{\substack{i\neq j\\ i \ge k}} (\tau - \sigma(x)^{\mu} \lambda_i).$$

Substituting $\sigma(x)^{\mu}\lambda_{j}$ for τ , then we obtain

$$a_{j}(x, t, \xi) \langle \xi \rangle^{m-k} = A_{j}(x, t, \xi) \prod_{\substack{i \neq j \\ i \geq k}} (\lambda_{j} - \lambda_{i}), \text{ where } a_{j} \in \mathcal{B}([0, T], S^{0}).$$

Therefore we set

$$A_{j}(x, t, \xi) = a_{j} \langle \xi \rangle^{m-k} \{ \prod_{\substack{i \neq j \\ i \geq k}} (\lambda_{j} - \lambda_{i}) \}^{-1}.$$

On the other hand, it is trivial to see that $\Psi(t) \leq c_{\mathfrak{g}} \Phi(t)$. Q. E. D.

Proof of Lemma 3.1. By Corollary 3.1 and Lemma 3.6, we have

$$\|\Pi_{m}u\| \leq \|(Q_{0}-\Pi_{m})u\| + \|Q_{0}u\| \leq c_{10}\Phi(t) + \|Q_{0}u\|$$
$$\leq c_{7}c_{10}\Psi(t) + \|Q_{0}u\|.$$

And from Lemma 3.4,

$$\Psi(t) \leq c_{11} \int_{0}^{t} \{ \|Q_{0}u\| + a\Psi(\tau) \} d\tau.$$

Using Lemma 3.6 again, we can obtain

$$\Phi(t) \leq c' \int_0^t \{ \|Q_0 u\| + a \Phi(\tau) \} d\tau$$

This completes the proof.

§4. Estimate of $\Lambda^r v$

We assume the existence of solutions of the following Cauchy problem:

$$\begin{cases} Q_0 v(x, t) = g(x, t) \\ D_t^i v(x, t)|_{t=0} = 0, \quad 0 \leq i \leq m-1 \end{cases}$$

where $g(x, t) \in \mathcal{B}([0, T], \Gamma^{(x)})$ such that for any fixed integer $s \ge 1$ $D_i^{t}g(x, t)|_{t=0} = 0, 0 \le i \le s-1.$

Therefore we may assume that for any $r \ge 0$ there exist constants c, R, M > 0 such that

$$\|\Lambda^r g(x, t)\| \leq c R^r r !^{\kappa} t^s e^{Mrt}.$$

Q. E. D.

For simplicity we use the notation

$$w_r(s, t, R) = R^r r !^{\kappa} t^s e^{Mrt}$$

We shall prove the basic lemma of this section.

Lemma 4.1. Let $\Phi_r(t)$ be

$$\Phi_{r}(t) = \sum_{k=0}^{m-1} (r+1)^{m-(k+1)} \sum_{i+j=k} \|\sigma(x)^{i\mu} A^{r+i} D_{i}^{j} v\|.$$

Then for any $r \ge 0$ there exists a constant A > 0 such that for sufficiently large R, M, s

(4.2)
$$\Phi_r(t) \leq c A s^{-1} w_r(s, t, R).$$

Proof. We carry out the proof by induction on r. When r=0, it follows from Lemma 3.1 and (4.1) that

$$\Phi_0(t) \leq c' \int_0^t c w_0(s, \tau, R) d\tau + c' \int_0^t \Phi_0(\tau) d\tau.$$

By Gronwall's inequality, we get

$$\Phi_0(t) \leq cAs^{-1}w_0(s, t, R)$$

if we choose A such that $A \ge c'Te^{c'T}$.

We assume that (4.2) is valid for any r such that $0 \leq r \leq n$.

Let us show that (4.2) is valid for r=n+1. For r>0, operating the pseudodifferential operator Λ^r on both sides of $Q_0v=g$, we get

$$Q_0 \Lambda^r v = \Lambda^r g + [Q_0, \Lambda^r] v.$$

We shall estimate the commutator $[Q_0, \Lambda^r]v$. We note that

$$Q_0(x, t, \xi, \tau) = \tau^m + \sum_{\substack{i+j \le m \\ j \le m-1}} \sigma(x)^{i\mu} a_i(x, t, \xi) \tau^j,$$

where $a_i \in \mathcal{B}([0, T], S^i(\kappa))$. Therefore we have

$$[Q_0, \Lambda^r] = \sum_{\substack{i+j \leq m \\ j \leq m-1}} [\sigma(x)^{i\mu} a_i, \Lambda^r] D_t^j.$$

By the fomula of pseudo-differential operator, we obtain

$$\sigma([\sigma(x)^{i\mu}a_{\iota}, \Lambda^{r}]) = \sum_{k=1}^{r+i-1} \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} \langle \xi \rangle^{r} D_{x}^{\alpha} \{\sigma(x)^{i\mu}a_{\iota}\} + r_{\iota}(x, t, \xi).$$

It follows from Lemma A.3 in Appendix and $\mu \ge 1$ that

$$\begin{split} \| [\sigma(x)^{i\mu}a_{\iota}, \Lambda^{r}]D_{\iota}^{j}v \| \\ & \leq \hat{c}r \|\sigma(x)^{i\mu-1}\Lambda^{r+i-1}D_{\iota}^{j}v \| + \dots + \hat{c}r^{i}\|\sigma(x)^{i\mu-i}\Lambda^{r}D_{\iota}^{j}v \| \\ & + \sum_{k=\iota+1}^{r} \hat{c}\hat{R}^{k-i}(k-i) ! {}^{\kappa} {r \choose k} \| \Lambda^{r+i-k}D_{\iota}^{j}v \| \end{split}$$

$$\begin{split} &+ \sum_{k=r+1}^{r+i-1} \hat{c} \hat{R}^{k-\iota} (k-i) \,!^{\kappa} \| A^{r+\iota-k} D^{j}_{\iota} v \| \\ &+ \hat{c} \hat{R}^{r} r \,!^{\kappa} \| D^{j}_{\iota} v \| \\ &\leq c_{12} r \,\{ \| \sigma(x)^{\nu(\iota-1)} A^{r+\iota-1} D^{j}_{\iota} v \| + \cdots + r^{\iota-1} \| A^{r} D^{j}_{\iota} v \| \} \\ &+ \sum_{k=i+1}^{r} \left(\frac{\hat{R}}{R} \right)^{k-i} {r \choose k} {r \choose k-i}^{-\kappa} (r+i-k+1)^{-(m-j-1)} c A s^{-1} w_{\iota} (s, t, R) \\ &+ \sum_{k=r+1}^{r+\iota-1} \left(\frac{\hat{R}}{R} \right)^{k-i} {r \choose k-i}^{-\kappa} c A s^{-1} w_{\tau} (s, t, R) \\ &+ \left(\frac{\hat{R}}{R} \right)^{r} c A s^{-1} w_{\tau} (s, t, R) . \end{split}$$

Hence we make $R \ge 2\hat{R}$, and get

$$\|[Q_0, \Lambda^r]v\| \leq c_{13} \{r \Phi_r(t) + rcAs^{-1}w_r(s, t, R) + cAs^{-1}w_r(s, t, R)\}$$

$$\leq c_{14} \{r \Phi_r(t) + rcAs^{-1}w_r(s, t, R)\}.$$

We note that c_{14} is independent of r.

From Lemma 3.1,

$$\begin{split} \Phi_{r}(t) &\leq c' \int_{0}^{t} \{ \|\Lambda^{r}g\| + \|[Q_{0}, \Lambda^{r}]v\| + (r+1)\Phi_{r}(\tau) \} d\tau \\ &\leq c' \int_{0}^{t} \{ cw_{r}(s, \tau, R) + c_{15}(r+1)\Phi_{r}(\tau) + c_{14}rcAs^{-1}w_{r}(s, \tau, R) \} d\tau \,. \end{split}$$

Let $f(t) = c' \int_0^t \{ c w_r(s, \tau, R) + c_{14} r c A s^{-1} w_r(s, \tau, R) \} d\tau$, then

$$\Phi_r(t) \leq f(t) + c_{16} r \int_0^t \Phi_r(\tau) d\tau.$$

Therefore we obtain

$$\Phi_r(t) \leq f(t) + c_{16} r \int_0^t f(\tau) e^{c_{16} r (t-\tau)} d\tau.$$

Now we calculate f(t).

$$\begin{split} f(t) &= c'c \int_{0}^{t} R^{r} r \, ! \, {}^{s} \tau^{s} e^{Mr\tau} d\tau + rc'c_{14} cAs^{-1} \int_{0}^{t} R^{r} r \, ! \, {}^{s} \tau^{s} e^{Mr\tau} d\tau \\ &\leq c'cTs^{-1} w_{r}(s, t, R) + c'c_{14} cAs^{-1} M^{-1} w_{r}(s, t, R) \\ &\leq (cA/2)s^{-1} w_{r}(s, t, R), \text{ if we make } A \geq 4c'T \text{ and } M \geq 4c'c_{14}. \end{split}$$

Hence we get

$$\begin{split} \Phi_{r}(t) &\leq cA2^{-1}s^{-1}w_{r}(s, t, R) + c_{16}r \int_{0}^{t} cA2^{-1}s^{-1}w_{r}(s, \tau, R)e^{c_{16}r(t-\tau)}d\tau \\ &\leq cA2^{-1}s^{-1}w_{r}(s, t, R) + cA2^{-1}s^{-1}c_{16}(M-c_{16})^{-1}w_{r}(s, t, R) \\ &\leq cAs^{-1}w_{r}(s, t, R), \end{split}$$

where M is a sufficiently large number such that $c_{16}(M-c_{16})^{-1} \leq 1$. Q. E. D.

Lemma 4.2. For any $r \ge 0$ there exists a constant A > 0 such that for i+j=k with $k=0, \dots, m-1$

$$\|\sigma(x)^{i\mu}\Lambda^{r+i}D_t^{j}v\| \leq cAs^{-(m-k)}w_r(s+m-k-1, t, R).$$

Proof. It follows from Lemma 4.1 that

$$\|\sigma(x)^{i\mu}\Lambda^{r+i}D_t^{j+m-k-1}v\| \leq cAs^{-1}w_r(s, t, R).$$

Hence we get that

$$\|\sigma(x)^{i\mu}A^{r+i}D^{j}_{t}v\| \leq \int_{0}^{t} \cdots \int_{0}^{\tau_{2}} \|\sigma(x)^{i\mu}A^{r+i}D^{j+m-k-1}_{t}v\| d\tau_{1} \cdots d\tau_{m-k-1}$$
$$\leq cAs^{-1}R^{r}r!^{k}e^{Mrt}\int_{0}^{t} \cdots \int_{0}^{\tau_{2}}\tau_{1}^{s}d\tau_{1} \cdots d\tau_{m-k-1}$$
$$\leq cAs^{-(m-k)}w_{\tau}(s+m-k-1, t, R). \qquad Q. E. D.$$

§ 5. Estimate of $\Lambda^r Q_1 v$

We begin with the following lemma.

Lemma 5.1. If
$$\sigma(x) \in \mathcal{B}(\mathbb{R}^n)$$
 and $0 \leq \nu < \mu$, then
(5.1) $\|\sigma(x)^{\nu}u\| \leq \|u\|^{1-\nu/\mu} \|\sigma(x)^{\mu}u\|^{\nu/\mu}$.

Proof. By Hölder's inequality,

$$\|\sigma(x)^{\nu}u\|^{2} = \int |\sigma(x)^{\nu}u|^{2} dx = \int |u|^{2(1-\nu/\mu)} |\sigma(x)^{\mu}u|^{2\nu/\mu} dx$$

$$\leq \left(\int |u|^{2} dx\right)^{1-\nu/\mu} \left(\int |\sigma(x)^{\mu}u|^{2} dx\right)^{\nu/\mu}$$

$$= \|u\|^{2(1-\nu/\mu)} \|\sigma(x)^{\mu}u\|^{2\nu/\mu}.$$
 Q. E. D.

Lemma 5.2. Let $\rho(\alpha, j) = m - j - \nu_{\alpha, j} / \mu$, then

(5.2)
$$\sum_{k=1}^{m-1} \sum_{\substack{|\alpha|+j=k \\ |\alpha|\neq 0}} \|\sigma(x)^{\nu_{\alpha,j}} A^{r_{+|\alpha|}} D_{t}^{j} v\| \\ \leq \sum_{k=1}^{m-1} \sum_{\substack{|\alpha|\neq 0 \\ |\alpha|\neq 0}} cA s^{-\rho(\alpha,j)} \{(r+|\alpha|) \cdots (r+1)\}^{-\nu_{\alpha,j} k/\mu} \\ \times w_{r+|\alpha|}(s+\rho(\alpha,j)-1,t,R).$$

Proof. From Lemma 4.2 and Lemma 5.1, we obtain that for $|\alpha|+j=k$ and $|\alpha|\neq 0$

$$\begin{aligned} \|\boldsymbol{\sigma}(x)^{\boldsymbol{\nu}\alpha, j} \boldsymbol{\Lambda}^{r+|\alpha|} \boldsymbol{D}_{t}^{j} \boldsymbol{v}\| \\ & \leq \|\boldsymbol{\Lambda}^{r+|\alpha|} \boldsymbol{D}_{t}^{j} \boldsymbol{v}\|^{1-\boldsymbol{\nu}\alpha, j/|\alpha|} \|\boldsymbol{\sigma}(x)^{|\alpha|} \boldsymbol{\Lambda}^{r+|\alpha|} \boldsymbol{D}_{t}^{j} \boldsymbol{v}\|^{\boldsymbol{\nu}\alpha, j/|\alpha|} \end{aligned}$$

$$= \{cAs^{-(m-j)}w_{r+|\alpha|}(s+m-j-1, t, R)\}^{1-\nu_{\alpha}, j/|\alpha|\mu} \\ \times \{cAs^{-(m-k)}w_{\tau}(s+m-k-1, t, R)\}^{\nu_{\alpha}, j/|\alpha|\mu} \\ = cAs^{-\rho(\alpha, j)}R^{r+|\alpha|(1-\nu_{\alpha}, j/|\alpha|\mu)}(r+|\alpha|)!^{\kappa}\{(r+|\alpha|)\cdots(r+1)\}^{-\kappa\nu_{\alpha}, j/|\alpha|\mu} \\ \times t^{s+\rho(\alpha, j)-1}e^{M(r+|\alpha|(1-\nu_{\alpha}, j/|\alpha|\mu))t} \\ \leq cAs^{-\rho(\alpha, j)}\{(r+|\alpha|)\cdots(r+1)\}^{-\kappa\nu_{\alpha}, j/|\alpha|\mu}w_{r+|\alpha|}(s+\rho(\alpha, j)-1, t, R). \\ Q. E. D.$$

We note that

(5.3) $\nu_{\alpha,j}=0$ or there exists a non-negative integer $p_{\alpha,j}$ such that $p_{\alpha,j}\mu < \nu_{\alpha,j} \leq (p_{\alpha,j}+1)\mu$.

Lemma 5.3. For any $r \ge 0$, the following estimate holds.

(5.4)
$$\|\Lambda^{r}Q_{1}v\| \leq \tilde{c}cA \sum_{\substack{k=1 \ |\alpha|+j=k \\ |\alpha|\neq 0}}^{m-1} \sum_{\substack{k=1 \ |\alpha|+j=k \\ |\alpha|\neq 0}} K_{j}^{\alpha}(s, r)w_{\tau+|\alpha|}(s+\rho(\alpha, j)-1, t, R)$$

where

$$K_{j}^{\alpha}(s, r) = s^{-\rho(\alpha, j)} \{ (r + |\alpha|) \cdots (r + 1) \}^{-\kappa \nu_{\alpha, j}/|\alpha|/r} + \sum_{i=1}^{p_{\alpha, j+1}} s^{-(m-j-p_{\alpha, j}+i-1)} \{ (r + |\alpha|) \cdots (r + |\alpha|-i+1) \}^{1-\kappa} \\\times \{ (r + |\alpha|-i) \cdots (r + |\alpha|-p_{\alpha, j}) \}^{-\kappa}.$$

Proof.

$$\begin{split} \|\Lambda^{r}Q_{1}v\| &\leq \sum_{k=1}^{m-1} \sum_{\substack{|\alpha|+j=k\\|\alpha|\neq 0}} \|\Lambda^{r}(\sigma(x)^{\nu_{\alpha,j}}a_{\alpha,j}(x,t,D_{x})D^{j}_{t}v)\| \\ &\leq \sum_{k=1}^{m-1} \sum_{\substack{|\alpha|+j=k\\|\alpha|\neq 0}} \{\|\sigma(x)^{\nu_{\alpha,j}}a_{\alpha,j}\Lambda^{r}D^{j}_{t}v\| + \|[\Lambda^{r},\sigma(x)^{\nu_{\alpha,j}}a_{\alpha,j}]D^{j}_{t}v\|\} \\ &= I_{1} + I_{2}. \end{split}$$

Since

$$I_{1} \leq c_{18} \sum_{\substack{k=1 \ |\alpha|+j=k \\ |\alpha|\neq 0}}^{m-1} \{ \|\sigma(x)^{\nu} \alpha, j \Lambda^{r+|\alpha|} D^{j}_{t} v \| + \|\Lambda^{r+|\alpha|-1} D^{j}_{t} v \| \},$$

the first term has been estimated by Lemma 5.2 and the second term will be estimated within I_2 .

The estimate of I_2 is similar to the proof of Lemma 4.1. In fact since

$$\sigma([\Lambda^r, \sigma(x)^{\nu_{\alpha,j}}a_{\alpha,j}]) = \sum_{i=1}^{r+|\alpha|-1} \sum_{|\beta|=i} \frac{1}{\beta!} \partial_{\xi}^{\beta} \langle \xi \rangle^r D_x^{\beta} \{\sigma(x)^{\nu_{\alpha,j}}a_{\alpha,j}\} + r(x, t, \xi),$$

if we note that $\nu_{\alpha,j} - |\beta| = (p_{\alpha,j} + 1 - |\beta|)\mu + (\nu_{\alpha,j} - p_{\alpha,j}\mu - 1) + (|\beta| - 1)(\mu - 1)$ and use Lemma A.3 and Lemma 4.2, then we have

Shigeharu Itoh

$$\begin{split} I_{2} &\leq c_{19} \sum_{k=1}^{m-1} \sum_{|\alpha|+j=k \atop |\alpha|\neq 0} \sum_{i=1}^{p_{\alpha,j}+1} cAs^{-(m-j-p_{\alpha,j}+i-1)} \\ &\times \{(r+|\alpha|) \cdots (r+|\alpha|-i+1)\}^{1-\kappa} \{(r+|\alpha|-i) \cdots (r+|\alpha|-p_{\alpha,j})\}^{-\kappa} \\ &\times w_{r+|\alpha|}(s+m-j-p_{\alpha,j}+i-2, t, R). \end{split}$$

And if we note that $m-j-p_{\alpha,j}+i-1 \ge \rho(\alpha, j)$, then we can get (5.4). Q.E.D.

§6. Proof of Theorem 2.1

In order to prove Theorem 2.1, we prepare several lemmas.

Lemma 6.1. For any $u^{i}(x) \in \Gamma^{(\kappa)}(0 \leq i \leq m-1)$ and any $g(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$, there exists a unique solution $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ of the equation:

(6.1)
$$\begin{cases} Q_0(x, t, D_x, D_t)u(x, t) = g(x, t) \\ D_t^i u(x, t)|_{t=0} = u^i(x), \quad 0 \le i \le m-1 \end{cases}$$

And especially, if $u^i(x) \equiv 0$ $(0 \leq i \leq m-1)$ and $D^i_t g(x, t)|_{t=0} = 0$ $(0 \leq i \leq s-1)$, then we obtain that $D^i_t u(x, t)|_{t=0} = 0$ $(0 \leq i \leq s+m-1)$, where s is a positive integer.

Proof. It follows from Proposition 2.1 that there exists a unique solution $u(x, t) \in \mathcal{B}([0, T], H^{\infty})$ of (6.1). Therefore let us show that $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(x)})$.

For any fixed integer $s \ge 1$, let $u_s(x, t)$ be

$$u_{s}(x, t) = u(x, t) - \sum_{j=0}^{s+m-1} \frac{t^{j}}{j!} \partial_{t}^{j} u(x, t)|_{t=0},$$

then $u_s(x, t)$ satisfies the equation

$$Q_{0}u_{s}(x, t) = g(x, t) - Q_{0} \left(\sum_{j=0}^{s+m-1} \frac{t^{j}}{j!} \partial_{t}^{j} u(x, t) |_{t=0} \right)$$

= $g_{s}(x, t).$

Therefore we get that $g_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ such that $D_t^i g_s(x, t)|_{t=0} = 0, 0 \leq i \leq s-1$. From the consequence of §4, it is easily seen that $u_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$. Hence we obtain that $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$.

As to the latter, since $D_t^m u = (D_t^m u - Q_0 u) + g$, we can get that $D_t^m u|_{t=0} = 0$. And since $D_t^{m+1}u = D_t(D_t^m u - Q_0 u) + D_t g$, we get that $D_t^{m+1}u|_{t=0} = 0$. Hence if we repeat these steps, we have that $D_t^i u|_{t=0} = 0$, $0 \le i \le s + m - 1$. Q.E.D.

Lemma 6.2. Let $u_j(x, t)$ be the solution of $(2.6)_j$, then $u_j(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ for $j \ge 0$. Moreover for $j \ge 1$, $D_t^i u_j(x, t)|_{t=0} = 0$, $0 \le i \le m+2j-3$.

Proof. It follows from the first assersion of Lemma 6.1 that $u_0(x, t) \in$

 $\mathscr{B}([0, T], \Gamma^{(\kappa)})$. Since $Q_1 u_0 \in \mathscr{B}([0, T], \Gamma^{(\kappa)})$, if we use Lemma 6.1 once more, we can get that $u_1(x, t) \in \mathscr{B}([0, T], \Gamma^{(\kappa)})$. Therefore repeating these steps we have $u_j(x, t) \in \mathscr{B}([0, T], \Gamma^{(\kappa)})$ for $j \ge 0$.

Next from the second assersion of Lemma 6.1 and the form of $(2.6)_1$, $D_t^i u_1|_{t=0}=0, 0 \le i \le m-1$. Since $D_t^i Q_1 u_1|_{t=0}=0$ for i=0, 1, we obtain that $D_t^i u_2|_{t=0}=0$ for $0 \le i \le m+1$. Similarly, we conclude the second assersion of Lemma 6.2. Q. E. D.

From Lemma 6.2, for any fixed integer $s \ge 1$, there exists $N=N(s)\in N$ such that for any $j\ge N-1$, $D_t^i u_j(x, t)|_{t=0}=0$, $0\le i\le s-1$. Therefore we may assume that for any $r\ge 0$

(6.2)
$$\|\Lambda^{r}Q_{1}u_{N-1}\| \leq c w_{r}(s, t, R),$$

where c and R are positive constants.

Lemma 6.3. Under (6.2), if $1 \le \kappa < \rho/(\rho-1)$, there exist constants \tilde{A} , B, $\gamma > 0$ which are independent of r such that

(6.3)
$$\|\Lambda^{r}u_{N+n}\| \leq c\widetilde{A}B^{n}n^{-\gamma n}w_{r}(s, t, 2^{\kappa}R)$$

for $n=0, 1, 2, \cdots$.

Proof. From (6.2) and Lemma 4.2, we get that

$$\|\sigma(x)^{|\alpha_1|\mu}\Lambda^{r+|\alpha_1|}D_t^{j_1}u_N\| \leq cAs^{-(m-j-|\alpha_1|)}T^{m-1}w_r(s, t, R).$$

It follows from Lemma 5.3 that

$$\|\Lambda^{r}Q_{1}u_{N}\| \leq \tilde{c}cA \sum_{\substack{k_{1}=1 \ |\alpha_{1}|\neq j \\ |\alpha_{1}|\neq 0}}^{m-1} K_{j_{1}}^{\alpha_{1}}(s, r)w_{r+|\alpha_{1}|}(s+\rho(\alpha_{1}, j_{1})-1, t, R).$$

If we use Lemma 4.2, we have that

$$\begin{aligned} \|\sigma(x)^{|\alpha_{2}|\mu} \Lambda^{r+|\alpha_{2}|} D_{t}^{j_{2}} u_{N+1} \| &\leq c_{T} c \Lambda^{2} \sum_{k_{1}=1}^{m-1} \sum_{|\alpha_{1}|+j_{1}=k_{1} \atop |\alpha_{1}|\neq 0} \\ (s+\rho(\alpha_{1}, j_{1})-1)^{-(m-j_{2}-|\alpha_{2}|)} K_{j_{1}}^{\alpha_{1}}(s, r) w_{r+|\alpha_{1}|}(s+\rho(\alpha_{1}, j_{1})-1, t, R), \end{aligned}$$

where $c_T = \tilde{c} T^{m-1}$.

Applying Lemma 5.3 again, we obtain, that

$$\begin{split} \|\Lambda^{r}Q_{1}u_{N+1}\| &\leq \tilde{c}c_{T}cA^{2}\sum_{k_{1},k_{2}=1}^{m-1}\sum_{|\alpha_{1}|+j_{1}=k_{1}||\alpha_{2}|+j_{2}=k_{2}\atop |\alpha_{2}|\neq0} \\ K_{j_{1}}^{\alpha_{1}}(s,r)K_{j_{2}}^{\alpha_{2}}(s+\rho(\alpha_{1},j_{1})-1,r+|\alpha_{1}|) \\ &\times w_{r+|\alpha_{1}|+||\alpha_{2}|}(s+\rho(\alpha_{1},j_{1})-1+\rho(\alpha_{2},j_{2})-1,t,R) \end{split}$$

From Lemma 4.2, we get that

Shigeharu Itoh

$$\begin{aligned} \|\sigma(x)^{|\alpha_{3}|\mu}A^{r+|\alpha_{3}|}D_{t^{j_{3}}}u_{N+2}\| &\leq cA(c_{T}A)^{2}\sum\sum \sum K_{j_{1}}^{\alpha_{1}}(s, r)K_{j_{1},j_{2}}^{\alpha_{1},\alpha_{2}}(s, r) \\ &\times (s+\rho(\alpha_{1}, j_{1})-1+\rho(\alpha_{2}, j_{2})-1)^{-(m-j_{3}-|\alpha_{3}|)} \\ &\times w_{\tau+|\alpha_{1}|+|\alpha_{2}|}(s+\rho(\alpha_{1}, j_{1})-1+\rho(\alpha_{2}, j_{2})-1, t, R), \end{aligned}$$

where $K_{j_1,j_2}^{\alpha_1,\alpha_2}(s, r) = K_{j_2}^{\alpha_2}(s + \rho(\alpha_1, j_1) - 1, r + |\alpha_1|).$

We set

$$K_{j_{1},\dots,j_{l}}^{\alpha_{1},\dots,\alpha_{l}}(s,r) = K_{j_{l}}^{\alpha_{l}}(s+\rho(\alpha_{1}, j_{1})-1+\dots+\rho(\alpha_{l-1}, j_{l-1})-1, r+|\alpha_{1}|+\dots+|\alpha_{l-1}|).$$

Inductively we obtain that for any $n \ge 0$

$$\|\Lambda^{r} u_{N+n}\| \leq cA(c_{T}A)^{n} \sum \cdots \sum K_{j_{1}}^{\alpha_{1}} \cdots K_{j_{1},\cdots,j_{n}}^{\alpha_{1},\cdots,\alpha_{n}} \\ \times w_{r+|\alpha_{1}|+\cdots+|\alpha_{n}|}(s+\rho(\alpha_{1}, j_{1})-1+\cdots+\rho(\alpha_{n}, j_{n})-1, t, R).$$

By the way,

$$\begin{split} K_{j_{1}}^{\alpha_{1}} \cdots K_{j_{1}}^{\alpha_{1}, \cdots, j_{n}} \\ = & \sum \cdots \sum s^{-a_{1}} (r+1)^{-b_{1}^{1}} \cdots (r+|\alpha_{1}|)^{-b_{1}^{1}\alpha_{1}} \\ & \times (s+\rho(\alpha_{1}, j_{1})-1)^{-a_{2}} (r+|\alpha_{1}|+1)^{-b_{2}^{1}} \cdots (r+|\alpha_{1}|+|\alpha_{2}|)^{-b_{1}^{1}\alpha_{2}} \\ & \times \cdots \times (s+\rho(\alpha_{1}, j_{1})-1+\cdots +\rho(\alpha_{n-1}, j_{n-1})-1)^{-a_{n}} \\ & \times (r+|\alpha_{1}|+\cdots +|\alpha_{n-1}|+1)^{-b_{n}^{1}} \cdots (r+|\alpha_{1}|+\cdots +|\alpha_{n}|)^{-b_{n}^{1}\alpha_{n}}, \end{split}$$

where $a_k \in \{\rho(\alpha_k, j_k), m-j_k-p_{\alpha_k, j_k}+i_k-1\}$ and $b_k^l \in \{\kappa \nu_{\alpha_k, j_k}/|\alpha_k|\mu, \kappa-1, \kappa, 0\}$. We note the following.

(6.4) If $a_k = \rho(\alpha_k, j_k)$, then $b_k^1, \cdots, b_k^{|\alpha_k|} = \kappa \nu_{\alpha_k, j_k} / |\alpha_k| \mu$.

(6.5) If
$$a_k = m - j_k - p_{\alpha_k, j_k} + i_k - 1$$
, then $b_k^1, \dots, b_k^{\alpha_k - p_{\alpha_k, j_k} - 1} = 0$,
 $b_k^{|\alpha_k| - p_{\alpha_k, j_k}}, \dots, b_k^{|\alpha_k| - i_k} = \kappa$ and $b_k^{|\alpha_k| - i_k + 1}, \dots, b_k^{|\alpha_k|} = \kappa - 1$.

Let $s \ge \max\{\rho(\alpha, j)-1\}$, $\omega = \min\{\rho(\alpha, j)-1\}$ and $a = \min\{a_k\}$ and if we use Lemma A.4, then we have

$$s^{-a_{1}} \cdots (s + \rho(\alpha_{1}, j_{1}) - 1 + \cdots + \rho(\alpha_{n-1}, j_{n-1}) - 1)^{-a_{n}}$$

$$\leq (\rho(\alpha_{n}, j_{n}) - 1)^{-a_{1}} \cdots (\rho(\alpha_{1}, j_{1}) - 1 + \cdots + \rho(\alpha_{n}, j_{n}) - 1)^{-a_{n}}$$

$$\leq \omega^{-(a_{1} + \cdots + a_{n})} 1^{-a_{1}} \cdots n^{-a_{n}}$$

$$\leq \omega^{-a_{n}} A_{1} R_{1}^{n} n^{-(a_{1} + \cdots + a_{n})}.$$

Let r=0, them by Lemma A.4 again,

$$(r+1)^{-b_1^1} \cdots (r+|\alpha_1|)^{-b_1^{|\alpha_1|}} \\ \times \cdots \times (r+|\alpha_1|+\cdots+|\alpha_{n-1}|+1)^{-b_n^1} \cdots (r+|\alpha_1|+\cdots+|\alpha_n|)^{-b_n^{|\alpha_n|}}$$

$$\leq A_1 R_1^n (|\alpha_1| + \dots + |\alpha_n|)^{-(b_1^1 + \dots + b_n^{|\alpha_n|})}$$

$$\leq A_1 R_1^n n^{-(b_1^1 + \dots + b_n^{|\alpha_n|})}.$$

Further we estimate

$$w_{r+|\alpha_{1}|+\dots+|\alpha_{n}|}(s+\rho(\alpha_{1}, j_{1})-1+\dots+\rho(\alpha_{n}, j_{n})-1, t, R).$$

$$R^{r+|\alpha_{1}|+\dots+|\alpha_{n}|} \leq R^{r}R^{(m-1)n},$$

$$t^{s+\rho(\alpha_{1}, j_{1})-1+\dots+\rho(\alpha_{n}, j_{n})-1} \leq t^{s}T^{\varpi n}, \text{ where } \tilde{\omega}=\max\{\rho(\alpha, j)-1\},$$

$$e^{M(r+|\alpha_{1}|+\dots+|\alpha_{n}|)t} \leq e^{Mrt}e^{M(m-1)Tn}.$$

Using Lemma A.5,

$$(r+|\alpha_{1}|+\cdots+|\alpha_{n}|)!^{\kappa} \leq 2^{(r+|\alpha_{1}|+\cdots+|\alpha_{n}|)\kappa}r!^{\kappa}(|\alpha_{1}|+\cdots+|\alpha_{n}|)!^{\kappa}$$
$$\leq 2^{r\kappa}2^{(m-1)n\kappa}r!^{\kappa}A_{2}R_{2}^{n}n^{(|\alpha_{1}|+\cdots+|\alpha_{n}|)\kappa}.$$

Therefore we obtain that

$$\begin{split} \|A^{r}u_{N+n}\| \\ &\leq cAA_{1}^{2}A_{2}(c_{T}AR_{1}^{2}R_{2}\omega^{-a}R^{m-1}2^{(m-1)\kappa}T^{\varpi}e^{M(m-1)T})^{n}w_{r}(s, t, 2^{\kappa}R) \\ &\times \sum \cdots \sum n^{(|a_{1}|+\cdots+|a_{n}|)\kappa-(a_{1}+\cdots+a_{n})-(b_{1}^{1}+\cdots+b_{n}^{|a_{n}|})}. \end{split}$$

Let q be the number of $\rho(\alpha_k, j_k)$'s in $\{a_k\}_{1 \le k \le n}$ and if we remember (6.4), (6.5) and (5.3), then we obtain that

$$\begin{aligned} (a_{1} + \dots + a_{n}) + (b_{1}^{1} + \dots + b_{n}^{|\alpha_{n}|}) - (|\alpha_{1}| + \dots + |\alpha_{n}|)\kappa \\ &= \rho(\alpha_{1}, j_{1}) + \dots + \rho(\alpha_{q}, j_{q}) \\ &+ (m - j_{q+1} - p_{\alpha_{q+1}, j_{q+1}} + i_{q+1} - 1) + \dots + (m - j_{n} - p_{\alpha_{n}, j_{n}} + i_{n} - 1) \\ &+ \kappa \nu_{\alpha_{1}, j_{1}} / \mu + \dots + \kappa \nu_{\alpha_{q}, j_{q}} / \mu \\ &+ \kappa (p_{\alpha_{q+1}, j_{q+1}} + 1 - i_{q+1}) + \dots + \kappa (p_{\alpha_{n}, j_{n}} + 1 - i_{n}) \\ &+ (\kappa - 1)i_{q+1} + \dots + (\kappa - 1)i_{n} - (|\alpha_{1}| + \dots + |\alpha_{n}|)\kappa \end{aligned}$$

$$= (\rho(\alpha_{1}, j_{1}) + \kappa \nu_{\alpha_{1}, j_{1}} / \mu - |\alpha_{1}|\kappa) + \dots + (\rho(\alpha_{q}, j_{q}) + \kappa \nu_{\alpha_{q}, j_{q}} / \mu - |\alpha_{q}|\kappa) \\ &+ (m - j_{q+1} - p_{\alpha_{q+1}, j_{q+1}} - 1 + p_{\alpha_{q+1}, j_{q+1}}\kappa + \kappa - |\alpha_{q+1}|\kappa) \\ &+ \dots + (m - j_{n} - p_{\alpha_{n}, j_{n}} - 1 + p_{\alpha_{n}, j_{n}}\kappa + \kappa - |\alpha_{n}|\kappa) \end{aligned}$$

$$\geq (m - j_{1} - \nu_{\alpha_{1}, j_{1}} / \mu + \kappa \nu_{\alpha_{n}, j_{n}} / \mu - |\alpha_{n}|\kappa) \\ = (m - j_{1} - |\alpha_{1}|) \{(m - j_{1} - \nu_{\alpha_{1}, j_{1}} / \mu) / (m - j_{1} - |\alpha_{1}|) \}$$

$$\begin{aligned} &-((m-j_{1}-\nu_{\alpha_{1},j_{1}}/\mu)/(m-j_{1}-|\alpha_{1}|)-1)\kappa\} + \cdots \\ &+(m-j_{n}-|\alpha_{n}|)\{(m-j_{n}-\nu_{\alpha_{n},j_{n}}/\mu)/(m-j_{n}-|\alpha_{n}|) \\ &-((m-j_{n}-\nu_{\alpha_{n},j_{n}}/\mu)/(m-j_{n}-|\alpha_{n}|)-1)\kappa\} \\ &\geq n\{\rho-(\rho-1)\kappa\}. \end{aligned}$$

This completes the proof.

Corollary 6.1. If $1 \leq \kappa < \rho/(\rho-1)$, the formal solution

$$u(x, t) = \sum_{j=0}^{\infty} u_j(x, t)$$

converges in $\mathscr{B}([0, T], \Gamma^{(\kappa)})$.

Proof. If we devide u(x, t) as

$$u(x, t) = \sum_{j=0}^{N-1} u_j(x, t) + \sum_{j=N}^{\infty} u_j(x, t),$$

then this Corollary immidiately follows from Lemma 6.2 and Lemma 6.3.

Q. E. D.

Hence we obtain the existence of solutions. Next we shall show the uniqueness of solutions.

Lemma 6.4. If $u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)})$ is a solution of the Cauchy problem:

$$\begin{cases} P(x, t, D_x, D_t)u(x, t)=0\\ D_t^i u(x, t)|_{t=0}=0, \quad 0 \le i \le m-1, \end{cases}$$

where $1 \leq \kappa < \rho/(\rho-1)$, then $u(x, t) \equiv 0$.

Proof. We may assume that for sufficiently large s there exist constants c, R > 0 such that

$$||\Lambda^r u|| \leq c w_r(s, t, R)$$
 for any $r \geq 0$.

Therefore similar to the proof of Lemma 6.3, we can obtain that

$$\|\Lambda^{r}u\| \leq c\widetilde{A}B^{n}n^{-\gamma n}w_{r}(s, t, \widetilde{R}).$$

Let *n* be infinity, then we have that $u(x, t) \equiv 0$. Q. E. D.

Acknowledgement: The author would like to thank Prof. Shoji Irie and Prof. Hitoshi Uryu for their useful advices.

Appendix

Following Igari [2] and Uryu [12], we introduce a certain class of pseudo-

964

Q. E. D.

differential operators.

and

Definition A.1. 1) For any $m \in \mathbb{R}$ and $\kappa > 1$, we denote by $S^{m}(\kappa)$ the set of functions $h(x, \xi) \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n})$ satisfying the property that for any α , β , there exist constants c_{α} and \mathbb{R} such that

$$|\partial_{\xi}^{\alpha}D_{x}^{\beta}h(x,\xi)| \leq c_{a}R^{|\beta|}|\beta|!^{\kappa}\langle\xi\rangle^{m-|\alpha|} \quad \text{for} \quad (x,\xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}.$$

2) For any $h(x, \xi) \in S^m(\kappa)$, we shall define a semi-norm of $h(x, \xi)$ such that for any integer $l \ge 0$

$$|h(x,\xi)|_{l} = \max_{|\alpha+\beta| \leq l} \sup_{(x,\xi) \in \mathbb{R}^{n \times \mathbb{R}^{n}}} |\partial_{\xi}^{\alpha} D_{x}^{\beta} h(x,\xi)| \langle \xi \rangle^{-m+|\alpha|}.$$

Now we can define a pseudo-differential operator with a symbol $h(x, \xi) \in S^m(\kappa)$ as follows.

$$H(x, D_x)u(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} h(x, \xi) \hat{u}(\xi) d\xi.$$

Lemma A.1 (see Igari [2]). Let $h(x, \xi) \in S^m(\kappa)$ and r be non-negative irtegers. Then

$$\sigma(\Lambda^r H) = \sum_{j=1}^{N-1} \sum_{|\alpha|=j} \frac{1}{\alpha !} \partial_{\xi}^{\alpha} \langle \xi \rangle^r D_x^{\alpha} h(x, \xi) + r_N(x, \xi),$$

where N=r+m. And for any integer $l \ge 0$, there exist constants c_l , R > 0 such that

$$|D_x^{\alpha}h(x,\xi)\langle\xi\rangle^{-m}|_{l} \leq c_l R^{|\alpha|-m}(|\alpha|-m)!^{\kappa}$$
$$|r_N(x,\xi)|_{l} \leq c_l R^{r}r!^{\kappa}.$$

The following lemma is well-known.

Lemma A.2. For any $h(x, \xi) \in S^{\circ}$, there exist a constant c and non-negative integer l dependent only on dimension n such that

$$||H(x, D_x)u|| \leq c |h(x, \xi)|_{\iota} ||u||.$$

Lemma A.3 (see Uryu [12]). Under the assumptions of Lemma A.1, if we denote $h_j(x, \xi)$ by

$$h_{j}(x, \xi) = \sum_{|\alpha|=j} \frac{1}{\alpha !} \partial_{\xi}^{\alpha} \langle \xi \rangle^{r} D_{x}^{\alpha} h(x, \xi),$$

then there exist \hat{c} , $\hat{R} > 0$ such that

$$\begin{aligned} \|H_{j}(x, D_{x})u\| &\leq \hat{c}\hat{R}^{j-m}(j-m) \,!^{\kappa} {r \choose j} \|\Lambda^{m+r-j}u\| \quad for \quad 1 \leq j \leq r, \\ \|H_{j}(x, D_{x})u\| &\leq \hat{c}\hat{R}^{j-m}(j-m) \,!^{\kappa}\|\Lambda^{m+r-j}u\| \quad for \quad r+1 \leq j \leq N-1, \\ \|R_{N}(x, D_{x})u\| &\leq \hat{c}\hat{R}^{r}r \,!^{\kappa}\|u\|. \end{aligned}$$

Lemma A.4. Let $\{i_1, \dots, i_n\}$ be a subset of $\{a_1, \dots, a_m\}$, then there exist constants $A_1, R_1 > 0$ such that

$$n^{i_1+\cdots+i_n} \leq A_1 R_1^n 1^{i_1} 2^{i_2} \cdots n^{i_n}.$$

Proof. Set $S = n^{i_1 + \dots + i_n}/1^{i_1} \cdots n^{i_n}$. Then

$$S = (n/1)^{i_1} (n/2)^{i_2} \cdots (n/n)^{i_n}$$
$$\leq (n/1)^a (n/2)^a \cdots (n/n)^a$$

$$=(n^{n}/n!)^{a}$$
, where $a=\max\{a_{1}, \dots, a_{m}\}$.

Using Stirling's formula, we can get the desired inequality. Q. E. D.

Lemma A.5. Let $\{i_1, \dots, i_n\} \subset \{1, \dots, m-1\}$, then there exist constants A_2 , $R_2 > 0$ such that

$$(i_1+\cdots+i_n)! \leq A_2 R_2^n n^{i_1+\cdots+i_n}.$$

Proof. By Stirling's formula, we obtain that

$$(i_1 + \dots + i_n)! \leq A_2(i_1 + \dots + i_n)^{(i_1 + \dots + i_n)}$$

 $\leq A_2 \{n(m-1)\}^{(i_1 + \dots + i_n)}$
 $\leq A_2(m-1)^{n(m-1)} n^{i_1 + \dots + i_n}.$ Q. E. D.

References

- [1] Bronstein, M.D., The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, *Trans. Moscow Math. Soc.*, 41 (1982), 87-103.
- [2] Igari, K., An admissible data class of the Cauchy problem for non-strictly hyperbolic operators, J. Math. Kyoto Univ., 21 (1981), 351-373.
- [3] Ivrii, V. Ja., Correctness of the Cauchy problem in Gevrey classes for nonstrictly hyperbolic operators, Math. USSR Sb., 25 (1975), 365-387.
- [4] ——, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, *Siberian Math. J.*, **17** (1976), 921–931.
- [5] Kajitani, K., Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto Univ., 23 (1983), 599-616.
- [6] Leray J. and Ohya, Y. Equations et Systémes Non-Linéaies Hyperboliques Non-Stricts, Math. Ann., 170 (1967), 167-205.
- [7] Nishitani, T., Energy inequality for non strictly hyperbolic operators in the Gevrey class, J. Math. Kyoto Univ., 23 (1983), 739-773.
- [8] Ohya, Y., Le problème de Cauchy pour les équations hyperboliques à caractéristique multiple, J. Math. Soc. Japan, 16 (1964), 268-286.
- [9] Steinberg, S., Existence and Uniqueness of Solutions of Hyperbolic Equations Which are Not Necessarily Strictly Hyperbolic, J. Diff. Eq., 17 (1975), 119-153.
- [10] Trepreau, J.M., Le problem de Cauchy hyperbolique dans les classes d'ultrafonctions et d'ultradistributions, Comm. in P.D.E., 4 (1979), 339-387.
- [11] Uryu, H., The Cauchy problem for weakly hyperbolic equations (II); Infinite degenerate case, Tokyo J. Math., 3 (1980), 99-113.

- [12] ——, Conditions for well-posedness in Gevrey classes of the Cauchy problems for Fuchsian hyperbolic operators, *Publ. RIMS Kyoto Univ.*, **21** (1985), 355-383.
- [13] Uryu, H. and Itoh, S. Well-posedness in Gevrey classes of the Cauchy problems for some second order weakly hyperbolic operators, to appear in Funkcial. Ekvac.