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Quantum Mechanics and Nilpotent Groups
I The Curved Magnetic Field

By

P. E. T. JORGENSEN* and W. H. KLINR*

Abstract

The quantum mechanics of massive spinless particles in an external magnetic field
polynomial in position variables is shown to be related to nilpotent Lie groups. By using
the known representation structure of such groups, the Hilbert spaces of the quantum
mechanical systems can be decomposed into irreducible representations of the nilpotent
groups. Such a decomposition is given explicitly for constant and curved magnetic fields.

Since the Hamiltonian for polynomial magnetic fields is quadratic in the Lie algebra
elements, its spectrum can be found using the representation structure of nilpotent groups.
The explicit time dependence of the system can also be found by solving the heat equa-
tion on nilpotent groups. These ideas are worked out for the constant magnetic field,
where the solution is well known, and the curved magnetic field, where it is not. Gene-
ralizations to other systems whose interaction terms are polynomial are also given.

§ 1. Introduction

When the Hamiltonian of a quantum mechanical system is related to a Lie
algebra, it is often possible to use the representation structure of the Lie algebra
to decompose the Hilbert space of the quantum mechanical system into simpler
(irreducible) pieces. For example, if a Hamiltonian commutes with the generators
of a Lie algebra, the Hilbert space of the system can be decomposed into irre-
ducibles of the Lie algebra, and the Lie algebra elements themselves can be used
as elements in a set of commuting observables.

In this paper we will analyze quantum mechanical systems whose Hamil-
tonians are quadratic in generators of a Lie algebra. The class of such Hamil-
tonians is quite large; our concern will be with those Hamiltonians whose in-
teraction terms are polynomial in the position variables. Such Hamiltonians are
related to nilpotent Lie algebras. In this and succeeding papers, we will make
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use of the connection between polynomial Hamiltonians and Lie algebras to solve
a variety of problems of physical interest. In all of these problems, we are
interested in finding the spectrum of the Hamiltonian and the full Green's func-
tion which gives the time evolution of the system.

The spectrum is obtained by decomposing the physical space on which the
Hamiltonian acts into irreducible representations of the underlying nilpotent
group. Sometimes this decomposition is decisive, as is the case with a particle
in a constant magnetic field, where the decomposition leads to a harmonic oscil-
lator Hamiltonian. Sometimes the decomposition leads to a new Hamiltonian
that requires further analysis, as is the case with a particle in a curved magnetic
field, also analyzed in this paper.

The time evolution of the system is obtained by solving the heat equation
of the underlying nilpotent Lie group. By writing the Hamiltonian as a quadratic
sum of Lie algebra elements and then using the representation of these Lie algebra
elements arising from the regular representation, it is possible to write e~tH as
the convolution of a kernel (which is a solution of the heat equation) with a
representation acting on the physical Hilbert space.

The other sections of this paper are organized as follows: In Sect. 2 we
convert the problem of a spinless particle in an external field polynomial in x
to a problem in the representation structure of nilpotent groups and algebras.
Sections 3 and 4 deal with mathematical notation, and some general properties
of operators, respectively, needed for this and other papers. Then in Sect. 5 we
begin our analysis of nilpotent groups, while in Sect. 6 the decomposition of the
constant and curved magnetic field examples are given. Section 7 provides a
spectral analysis of the curved magnetic field example while in Sect. 8 the heat
equation for the curved magnetic field is analyzed. We show that the curved field
Hamiltonian decomposes as a direct integral over a single real parameter,
— oo<a<oo, such that each operator Ha in the decomposition has a purely
discrete spectrum, although each Ha is obtained from a representation of a
degenerate elliptic operator 2 on G with absolutely continuous spectrum.

An explicit trace formula is obtained for the operators e~lHa, t>0, a^R.
There is a large amount of fairly recent work by B. Simon [Sim] and co-

workers on the operator e~tH for Schrodinger-Hamiltonians, H. Their work is
quite different from ours: Firstly, their techniques are based on functional
integration (the Feynman-Kac formula being central), and, secondly, the aim
appears, for the most part, to be qualitative estimates. Their work includes a
wider class of Schrodinger operators than does ours. Our work uses only in-
tegration on the line (or a finite number of copies of the line), and we get
explicit formulas for a particular polynomial H.
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§ 2. Physical Motivation

Consider a spinless particle of mass m in an external magnetic field B(x).
The Hamiltonian for such a system is given by

where p — hjiV and ^4 is the vector potential satisfying B—V/A. Consider
the commutators

If B is a polynomial in i, eventually the derivatives of B will give zero, so
that the set of commutators close. The resulting Lie algebra formed by pi—e/cAi}

Bi} Bijt ••• is a nilpotent Lie algebra, and the Hamiltonian (2.1) is quadratic in
the Lie algebra elements (pt—e/c At}.

To show how group theoretical methods can be used to analyze both the
spectrum and the time evolution of systems with Hamiltonians that are quadratic
sums of Lie algebra elements, we will, in this paper, analyze the simple cases
of a constant magnetic field (whose spectrum and time evolution is known, see
Ref. [L-L]) and the more complicated case of a magnetic field linear in x, whose
solution, both classically and quantum mechanically, is—to our knowledge—not
known.

To connect the Hamiltonian (2.1) with specific groups and Lie algebras, it
is best to make all quantities dimensionless. For the constant magnetic field,
of magnitude b0, the vector potential can be chosen to be Ay=hQxt with Bz =
(3Ay/dx}=bQ. Then a natural unit of length is Vhc/eb0, and a natural unit of
energy, heb0/mc. So if bQ is chosen to be any convenient value, die magnitude
of any constant magnetic field can be written as jbQ, where j is a real constant.
Then a dimensionless Hamiltonian can be written as

, =jr 3i_(.^
2 L d.ir \ ay

ifx) — -^
ay / m

or

(2.3)
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Consider the real nilpotent Lie group G={g(a, b, c, d}}, where

f 1 a c d'

1 b 0
g(a, b, c, d) = (2.4)

0

As discussed in Sect. 3, Lie algebra elements are denoted by capital letters, so
that [A, B^=C is the only nontrivial commutation relation in the Lie algebra
of G. Further, as discussed in Sect. 6, a unitary representation for G can be
given on <T2(/23), the quantum mechanical space for a spinless particle of mass
m. This representation is induced from the subgroup of G given by {g(0, 0, c, 0)}
—>e~ i r°, where f is an irreducible representation label. The representation is
given by

(Ugf)(x, y, z)=e-*w»f(x+a, y+b, z+d) (2.5)

and has Lie algebra elements given by

5
dU(A}=

dx

--
dy

\_dU(A),

which give the Hamiltonian (2.3), i.e.,

(2.7)

a quadratic sum of Lie algebra elements. Note that j is a representation label
for G, which gives the strength of the magnetic field (relative to b0). Thus,
dimensionless parameters in the Hamiltonian are related to representation labels.
Note also that G is a direct product of the Heisenberg group and the translation
group, reflecting the fact that the momentum in the direction of the magnetic
field is conserved. In Sect. 6 it will be shown that the representation (2.5) is
reducible; the reduction to irreducible representations will lead to a harmonic
oscillator spectrum (see Ref. [L-L]).

The simplest nonconstant polynomial magnetic field is Bx = a0x, By^ — a^y,
j32=0, for which a suitable vector potential is Az = a0xy. For this field a natural
unit of length is (hc/eaQY/3, and a natural unit of energy, l/m(eaQh2/c)2/5. Again,
if a o is chosen to be a convenient value, any other magnetic field of different
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strength can be gotten from ^=7-00*3;, where 7- is again a real number. The
dimensionless Hamiltonian is then

(2.8)

Associated with this magnetic field is the nilpotent group G={g(alt az, a3,
bi, b2, c}}, where

f 1 a i bz c

1 a, b1

0 i «.
1

(2.9)

the commutation relations for this nilpotent group are easily computed and are
given in Sect. 5 (Ex. 5.3). A representation of G on J72(I23) (the "physical"
space) can be obtained by inducing from the abelian subgroup {g(0, 0, 0, blt bz, c)} ,
with one-dimensional representations el<

(Ugf)(X, y, 2)^=

Xg~^ ( C + : c 6 l~ & 2 a 2-&22/-^ a 2a3-^2/ a 3> (2.10)

i, y+a2,

The infinitesimal generators are easily read off from (2.10):

5

(2.11)

it is seen that this representation of the generators also satisfies the correct
commutation relations.

However, most significant is the fact that if j8i=£2=0, then the Hamiltonian
(2.8) can be written as

\ (2.12)
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again a sum of squares of Lie algebra elements with the representation para-
meters specifying the (dimensionless) strength of the magnetic field. The proper
representation labels have reproduced the correct vector potential for the curved
magnetic field.

As with the constant magnetic field, the representation (2.10) is reducible
and will be reduced to irreducibles in Sect. 6. But, the resulting Hamiltonian
is not transparently solvable; it is, however, a Hamiltonian with a polynomial
interaction, so that the group given in Eq. (2.9) can be used to solve the heat
equation which in turn gives an expression for the Green's function of the
curved magnetic field. This is done in Sect. 9. Before carrying out this analysis,
we introduce notation (Sect. 3) and some further mathematical background (Sect.
4) which will be used in this series of papers.

§ 3. Notation

(i) Lower case Gothic letters, g, 5, etc. will denote finitedimensional
Lie algebras over the reals R. Elements in g will be denoted A, B etc. If
Blf ••• , Bd is a basis for g, then elements in g are expressed in the form ZlblBl,
where the 6/s are real scalars. A subset of g consisting of elements, A1} ••• , Ar,
say, is said to generate g(as a Lie algebra) if the smallest Lie subalgebra 5 of g
containing these elements equals g. If Ij is strictly contained in g, the set Alt

••• , Ar may always be extended to a set of Lie generators. For many of our
considerations it will suffice then to restrict attention to g.

(ii) The upper case Gothic IX will be reserved for the universal enveloping
algebra. If g is given as in ( i) , we shall denote ll(g) the complex (associative)
enveloping algebra, with unit 1, over g. The Poincare-Birkhoff-Witt theorem
states that the monomials, B^B^-'By, where a=(aly ••• , ad), al=Q, 1, • • • , is
a multi-index, form a basis for U(g). (We have adopted the convention that the
trivial multi-index, 0=(0, ••• , 0) corresponds to the identity 1 in tt(g).) Each
element in U(g) may be expressed uniquely in the form IacaB°ll ••• B%d, where
the coefficients ca are complex scalars, and the summation in a is finite.

(iii) In the trivial case where we define the commutator Lie bracket \_A, B~\
—0 for any pair of elements A, B in g, the corresponding universal algebra is
called the symmetric (tensor) algebra, and it is deoted <&(g). Choosing a basis,
Bl} ••• , Bd for g, allows us to realize <S(g) as a polynomial algebra in d variables.
Polynomials of degree ^n give rise to a filtration <5n(g) of <5(g); i.e., for ele-
ments a in @n(g) and b in @OT(g), the product, a-b is in <5n+m(g).

According to the Poincare-Birkhoff-Witt theorem, ll(g) and <5(g) are isomor-
phic as linear spaces. This isomorphism then gives rise to a filtration of elements
in U(g). We have, Un(g)-Um(fl)CUB+m(g) since the corresponding inclusion holds
for the @n(g)'s. We shall be particularly interested in second-order elements, i. e.,
the space, U2(g) because of its physical significance, cf. Sect. 2.
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Dixmier [Dix 1] showed that the elements in the center of ll(g) serve as
labels for the unitary irreducible representations of nilpotent, simply connected,
Lie groups G with Lie algebra g. There is a canonical mapping from ll(g) into
(5(g). It transforms the center into a set of invariants contained in @(Q), and
Dixmier [Dix 1] showed, in the nilpotent case, that the restricted map is an
isomorphism of algebras.

(iv) We shall need an additional structure for U(g) : Using the universal
property of ll(g), it can easily be verified that there is a unique *-operation on
U(g) which satisfies, A*=— A for A eg. Recall that a ^-operation is an involutive,
complex-conjugate-linear, anti-automorphism.

(v) We shall consider representations p of g, and extensions, p say, to
U(g) : Let M be a complex Hilbert space, and S)dM a dense linear subspace.
We shall consider the algebra JL of all linear operators T in M with the following
three properties :

(a) T is defined on £).
(b) S) is invariant, i.e., TQCL3).
(c) The adjoint operator, T* is defined on S).
The operator adjoint,-* equips JL with the structure of a ^-algebra.
A representation p of g is a linear map from g to JL satisfying, p(\_A, B~]}

= [pCA), p(B)'] for A, B eg, and, in addition, the identity, p(A) = — p(A)* on S),
A eg. Using again the universal property of U(g), it can be checked that each
representation p of g extends uniquely to a ^-representation of U(g), p say, i.e.,
p satisfies the identity, p(a*) = p(a)* on S), for aell(g).

(vi) Although the following lemma is well known ([Gar 1, Seg, Pou, J-M]),
we make it explicit here for the benefit of the reader : Let G be a Lie group
with Lie algebra g, and exponential map, exp : g-»G. Let U be a strongly
continuous unitary representation of G in a Hilbert space St. Let dg be a fixed
left-invariant Haar measure on G, and let C~(G) be the algebra of all smooth
compactly supported functions on G. Then the Carding space S) is defined as
the span of the vectors,

$F= F(g)U(g)<f>dg, (3.1)
J G

where FeCT(G), and <p^M. Let J. be defined as in (v) above.

Lemma 3.1. Let U be a unitary representation (strong continuity is always

assumed] of G. Then there is a unique ^-representation p of ll(cj) which is speci-

fied by

0 (3.2)

for .A eg,

The representation p is called the infinitesimal representation, and is also
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denoted dU. The special case where U is the left-regular represenation L,

(L(g)F)(g/)=F(g-1g/)9 g.g'^G, (3.3)

is of particular interest. Let dL be the corresponding infinitesimal left-regular
representation which is specified in Lemma 3.1, i.e.,

tA).g)\t=0. (3.30

Then it can easily be checked that

G), (3.4)
and

dU(A)(<f>F)=<l>*Lu>F, A^. (3.40

(The latter two formulas constitute the main steps in the proof of Lemma
3.1, see, for example, [Pou].)

§4. Continuous Semigroups of Operators

In this paper, we shall study unitary one-parameter groups of operators in
a fixed Hilbert space M. If £7(0 is such a group, then by Stone's theorem
[D-S], it is of the form, £7(0=exp(#/f), H=H*, and spectral resolutions,

(4.1)

=l dE(Z) (4.2)

exist. We shall focus attention on calculating explicitly the projection-valued
measure E in the spectral resolution (4.2) for a class of semibounded Hamiltonians
H, i.e., //^O. The semiboundedness allows us to restrict the integrals in (4.1)-
(4.2) to the half -line [0, oo). Let A0, Alt ••• , Ar be a set of elements in g, and
assume that AQ is in the real span of the Ak's, k^l. Let U be a unitary

representation of G. We showed in [Jo] that the operator, H— — dU(iAQ
Jr

is essentially self-adjoint on the Carding space 3). In the special case when
A0=Q, we have H^Q.

The following more detailed information about H is available from [Jo] :

Theorem 4.1 ([Jo]). Let U be a unitary representation of G, and let AQ,
A1} ••• , Ar be elements in the Lie algebra $ (no restriction on AQ). Then dU(AQ

r
+ 2 ^41) 2'5 the infinitesimal generator of a strongly continuous contraction ^semi-

group {V(t): t^Q} on M.
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Applying this to the left-regular representation L, we get a semigroup
of bounded operators on J72(G)=the space of all square integrable func-

tions on G. It is proved in [Jo, Sect. 3] that V L(t} is a convolution semigroup
determined by a semigroup of probability measures {pt(g)m- ^0} on G, i.e.,

or more briefly,
V L ( t ) f = p t * f (convolution). (4.3)

We recall that there is a heat kernel pt(g), corresponding to the Hamiltonian
H of the curved magnetic field ; we use this to give an explicit kernel for
e~ltH. Spectral representations are also implied. We shall start from a physical
representation U, decompose it into irreducibles, and then give a physical inter-
pretation of the real parameter in the decomposition. When the semigroup,
exp(— tH) is obtained in the case when A0=Q, then the unitary group, e ~ i t H ,
may be obtained by analytic continuation in t.

The advantage of (4.3) is that the equation for pt(g) is right invariant and
"generalized" parabolic. Using right-G invariance, we are able to solve the
corresponding heat equation on G, although the operators in question are variable
coefficients.

More specifically, set Ak = dL(Ak), and 2=A0+^A2
k. Then pt(g) is thei

solution to the Cauchy problem,

dF
, 0 (4.4a)

and
F ( g , t ) \ t = 0 = 3 ( g ) , (4.4b)

where d is the Dirac delta function on G corresponding to the unit mass at the
neutral element e in G.

It is a consequence of [Jo, Thm. 3.1] that pt(g) is supported on the closed
subgroup of G which is generated by |exp(L4fe) : t^R, 0^£^r}. Moreover,
pt(g) is of exponential decrease at infinity, and smooth in the ^--variable. If
AQ=Q, it is smooth in both variables, {(g,t): g^G,t>§}; pt(g) is G-square
integrable, and has analytic continuation to complex t, Re^O. (Most of these
properties are lost in the analytic continuation, although square integrability is
known to hold for Re£>0. Hence, we derive a considerable amount of informa-
tion from the heat equation (4.4) on G. Before getting to this in Sect. 6, we
describe the two nilpotent groups which are used in the analysis of the constant,
respectively, curved, magnetic field.
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§ 5. Nilpotent Lie Groups

Assume the Lie group G from Sect. 4 is simply connected and nilpotent.
Let the elements Alt ••• , Ar in g be fixed. We may assume without loss of
generality (cf. Sect. 3) that these elements generate g. We shall assume that
there is a one-parameter family of automorphisms {ds: s>0} of G such that
the infinitesimal Lie homomorphisms, dds: g—>g, satisfy dds(Ak)=s Ak, l^k^r.
As discussed in [Goo, K-S, K-V], this is only a mild restriction.

Lemma 5.1 ([Hul]). Let the Lie groups G satisfy the assumptions above,

and let 2=2^1 be a sub-Laplacian constructed from elements Ak of g satisfy-

ing, (dds)(Ak) = s Ak. Then the heat kernel pt(g), solving the Cauchy problem
(4.4a-b), scales as follows,

where v is the scaling constant of Haar measure, i.e., d(dsg) = svdg.

The following two examples will be used in our solution of the Schrodinger
equation for the constant, respectively, the curved, magnetic field problem. The
ingredients of Lemma 5.1 can all be calculated explcitly in the examples, and
they enter into the integral kernel for the Schrodinger equation.

Example 5.2

The group G consists of upper triangular matrices g over the reals,

(1 a c d

0 1 6 0
nr:—-

0 0 1 0

0 0 0 1

Each of the four real parameters a, b, c, and d defines elements in the Lie
algebra g. These elements will be denoted A, B, C, and D, respectively. They
form a basis of g, and we have the simple nontrivial commutation relation,

while all other commutators are zero. In particular, the center 3 of g is two
dimensional and spanned by C and D.

We define the sub-Laplacian, 2 in the heat equation (4.4) to be, d=AZjrB2

+DZ, where

(5-2)



THE CLRVED MAGNETIC FIELD 979

- - (5.3)

(5-4)

(Note that formulas (5.2) through (5.4) are easy consequences of (3.2) and
the particular matrix representation for G.)

There is a unitary representation U of G on ^i=j:z(R3) given in Eq. (2.5)
such that [see, Eq. (2.6) with 7 = !]

^5
(5.5)

r (5.6)---dy

-j-. (5.7)
oz

Hence, the constant field Hamiltonian H is,

(5.8)

Example 5.3
The group G consists of upper triangular matrices g over R,

1 al b2 c ]

0 1 a , b l
g= L

0 0 1 f l g i
1

00 0 1 I

Each of the six real parameters alt az, a>z, b1} bz, c define elements, Aif Az, AB}

B^ BZ} C, respectively, in the "infinitesimal" Lie algebra g. These six elements
form a basis for g, and we have,

while all other commutators are zero. In particular, the center 3 of g is one
dimensional, and spanned by the single element C.

The sub-Laplacian, 2, in the heat equation (4.4) is now,

2=iiAi,
*=1
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where

(5-9)

(5'n)

There is a unitary representation U of G on J72(I23) given in Eq. (2.10)
such that

*\
^- (5.12)

(5.13)--
dy

- — ixy. (5.14)

Note that these formulas result as a special case from the system of equa-
tions (2.11), cf. Sect. 2, when the parameters (J3if 7) in the latter formulas are
specialized to : j8i=0, and f=—1. The constant 7-(field strength) is dimensionless,
and we have set it equal to one below for simplicity. The explicit ^-dependence
in the various formulas is worked out in Sect. 2, see, in particular, Eqs. (2.8)
through (2.11).

Hence, the curved field Hamiltonian H is,

2H=-dU(A\ J=2MI. (5.15)

It is easy to check that, in both examples, the Haar measure agrees with
Lebesgue measure in four variables, respectively, six variables. In Example 5.2,
the dilation ds may be constructed subject to the following requirements on
ffs=dds: as(X}=sX, X=A, B, D, and as(C)=szC. Hence, the scaling constant
v for the Haar measure is v=5. In Example 5.3, the corresponding set of
requirements on as is,

Hence, u=lQ in this case.

§ 6. Decomposition of the Physical Representation

Recall [Ma 1, Puk, Kir] that a unitary representation U of a Lie group G
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is said to be monomial if it is induced from a one-dimensional representation of
some subgroup of G. In this section we shall show that the physical represen-
tation U, from each of Examples 5.2 and 5.3, is monomial, and, moreover, U is a
direct integral over a single real parameter of irreducibles where again each of
the irreducible components in the direct integral is monomial. Moreover, we
shall give explicit transforms, in each case, representing the integral decomposition.

In Example 5.2, we reduce H to an explicit integral of "copies" of the
harmonic oscillator Hamiltonian in a single real variable, viz., P2jrQ2 in j:2(R)
with P——i d / d x , Q = x (multiplication).

In Example 5.3, the components in the decomposition of H are given by

Pl+PI+(a+Q1Q2)
2, (6.1)

where a e R is the parameter in the decomposition. Recall, the latter Hamiltonian
(6.1) acts in j:2(R2}, where P3 = -i d/dxj} and Q3 = x3 (multiplication), /=!, 2.

Since the Hermite-f unctions diagonalize P2jrQ2, the constant field case is
trivial.

Proof. (The Constant Case}. The matrices g in Example 5.2 will be denoted,
g=g(a, b, c, d) for typographical convenience, and we shall consider the follow-
ing normal abelian subgroups,

Ni={g(a, b, c, d): a=b=d=Q\
and

Ns={g(a, b, c, d): a=Q}.

(The subscripts refer to the dimensions of the respective groups.)
By Mackey's theorem [Ma 2-3, Oer, Kir], or alternatively, [Dix 1], the

infinite-dimensional unitary irreducible representations of G are all monomial and
induced from one-dimensional representations of Ns, hence, they are parametrized
by the abelian dual group, NZ = RB. Elements in N3 are denoted x=%(/3, 7, d).
where (/3, y, d} are three real parameters :

<X, (b, c, d»=expi(pb+rc+dd). (6.2)

The physical representation U, in turn, is induced from A\ by the character,
c-»e~'c. This representation U is called "physical" because it transforms the
three-vector fields, (5.9) through (5.11), into the corresponding operators, (5.12)
through (5.14). The latter operators are expressed in the coordinates (x, y, z]
with a direct physical meaning with reference to the field variables, and the
constant 7 referring to field strength. [Note that (5.14) changes into dU(A^ =

xy for variable j.~]. An explicit calculation yields the formula,

, y, z)=e-«c+x»</>(x + a, y+b, z+d] (6.3)

"}, g^G. It is easy to check that the infinitesimal representation dU
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gives rise to the constant field, cf. formulas (5.5) through (5.7).
For each %^NS, the induced representation U*(g) acts on XZ(R) since N3\G

=R. It follows that each <f>(x, y, z)e £Z(RZ} is a direct integral of functions in
J72(jR). Let <j)-+f(s, 2) be the corresponing integral transform.

Then we have,

where the integral is supported on the two real parameters 0, d, and ^=
2(0, -1, 3), cf. formula (6.2).

Now, let $ denote the usual Euclidean Fourier transform in the last two
variables y, z. Using Fourier inversion, it follows that,

Proof. (The Curved Case], The matrices g in Example 5.3 will be denoted,
g=g(alt az, 0,3, b1} bz, c}, for typographical convenience. On occasion, we shall
use the more compact terminology, g=g(a, b, c) where it is then understood
that a and b are vector variables:

3, b=(bi,

We shall consider the following two normal abelian subgroups,

N3={g(a, b , c } : a=0}

and

^V4= {g(a, b, c} : a1=az=0} .

Note that N3 is parametrized by (b1} b2, c)e!23, while JV4 is coordinatized by

The characters on A/"4 again form a group JV4 which is naturally isomorphic
to R*. We shall use the labels (as, filf ^82, r)^R4 for elements %e]V4, viz., ^=

> i, 2, r-
There is a well-known action of G on JV4 which we recall is defined by

, v/here

for

Introducing the parameters (a3, 01? 02, 7) on 7V4, this action takes the follow-
ing form,

1' 02, r)-£)=X( f f8 — 01- 02+08' 01

— T ' - G i - f l a * 0i+r- f li ' 02~r-G2, r)-
The isotropy subgroup, Gx enters in Mackey's theory, where



THE CURVED MAGNETIC FIELD 983

Let H be the subgroup of G which is given by H={g(a, b, c}\ a^—bl—b2i

= c=Q}. Then N,-H=G, N^H^ie}, and, GIr\H={e}, whenever f^O in ^=
%(#3> /3i, /32, 7). It follows [Ma 2] that the representations which are induced
from i on JV4 are irreducible when ^=£0.

In general, define Hx=Hr\Gz. Then Gz = N±-Hz. It may happen that
H % ^ { e } . If so, let L^Hx, and consider the representation, (n, /i)->%(n)L(/i),
of GX. It is denoted %L, and it induces an irreducible representation £/*L of G;
and all the unitary irreducibles may be realized this way. (It is known, more
generally, for simply connected nilpotent Lie groups, that all the irreducible
representations are mononical induced from some subgroup ; see, for example,
[Puk] and [Kir].)

Theorem 6.1. In the decomposition of the physical representation U of G,
only irreducibles U*, i^N±, HI = {e}, occur, and, moreover, U is a direct integral
of the U*'s, where x=%(«3, 0, 0, —1), a3eJ2.

Let <])(x, y, z)—»f(xi, xz; %as), be the corresponding integral transform. Then
we have,

<p(x, y, z}= \ e"*'f(x, y ; ^^da,. (6.6)
JR

If $(xi, xzt a 3) denotes the Euclidean Fourier transform in the third variable, then

f(*i, *2', la<)=$(xi> xs, a,}. (6.7)

Proof. We first note that the physical representation U in Example 5.3 is
induced from A^ by the one-dimensional representation, (b1} bz, c}-*e~ic. Hence,
it is monomial, but certainly not irreducible. We shall denote by % this particular
character of N3. As an element in Ns, ^ has the label (0, 0, —1). Using the
isomorphism, N5\G=R3, it follows that the induced representation, U=U*1, is
realized on J:Z(RS) as,

y, z =

for 0e_£2(jR3), and g^G, where

(Compare formula (6.3) in the constant case.) It is also easy to check, by dif-
ferentiation, that the infinitesimal representation dU gives rise to the curved
field, cf. formulas (5.12) through (5.14) in Example 5.3,

Let A={exp(aAs}: a^R}, and note that: N±=N3-A, and NBr\A={e},
where each of the three groups, Af4, N*, and A is abelian. Recall that U acts
on square-integrable functions F on G satisfying,

F(n'g}=Il(n)F(g\ n^N,, g^G. (6.9)
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^ X~x(az> PI> /^2> r)e^4> 7^0; the irreducible representation acts on the
space of functions / ( • , % ) on G satisfying

(6.10)

Since, Nt=Ns-A, the elements n in formula (6.10) factor as, n-a, with
aeA Decomposition of F(satisfying (6.9), according to the Plancherel formula
[Puk, Chapitre III]), leads to the result that the only components of F which
contribute are of the form /(•, #) where %eJV4 satisfies, %i(n)^(a)=^(nfl)=%(n)^(fl)
for all neA/g, and aeA If %=x(as, /3i, /32, T\ ^ follows that, ii(n)=i(ri), since
%(a)^0. Writing n=(b1} bz, c), we conclude that f=—l, and ^=^=0. Let
%(«3, 0, 0, —l)e7V"4. We have established the decomposition,

F(g) = \ f(g> Ha^)daZf (6.11)
J R

where F, respectively, / ( • ,%) , satisfy (6.9), respectively, (6.10). Let
respectively, S((UIas) denote the representation spaces specified by formula (6.9),
respectively (6.10). It can easily be checked that the transformation, W:
<J)(x, y, z)-*F(x, y, z, 0, 0, 0), defines a unitary map of J7W) onto M(U^).
Similarly, (j>(xlt xz)-*f(xi, xz> 0, 0, 0, 0, ^ag), realizes a unitary operator of J:2(RZ)
onto M(UIa*) for all aB^R,

When these unitary equivalences are introduced into (6.11), the desired in-
tegral formula (6.6) follows immediately, since

0(x, y, z)=(Wr*F)(x, y, z, 0, 0, 0)

U, 3^> 0 , 0 , 0 ; %

= /((O, 0, e, -3;z, 0, 0)(x, 3;, 0, 0, 0, 0); xajdas
J R

ia*'2f(x, y, 0, 0, 0, 0; y^da,.

Note that formula (6.7) follows directly from Fourier inversion in the ^-variable.
The net result is a reduction from the three physical (x, y, z) to the two varia-
bles (xlt x2\

Theorem 6.2. Under the decomposition in Theorem 6.1 above, the curved
field Hamiltonian,

decomposes according to the Fourier transform formula (6.6) as a direct integral
over a3^R of two-dimensional Hamiltonians, P\JrPlJr(a5-{-QlQ2}

2
) acting in J72(l£2)

relative to the variables xlf xz, where, Pj = —id/dxj, and Qj = xj} /=!, 2.
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Proof. If %eJV4, %=3t(a8» /3i> /32, 7), then the transformation, W: <f>(x1} *2)-»
/(*!, x2, 0, 0, 0, 0, i\ defines a unitary of J72CR2) onto M(U^ as noted at the
end of the proof of Theorem 6.1. The action of U1 on the space of functions,

f(g)=f(g> %)> satisfying,

f(n-g}=i(n}f(g},

is given by (U*(g)f)(g')=f(g' -g). A direct calculation yields,

=e*^(A:1+a1, *8+aa), (6.12)

where

aj}. (6.13)

For the corresponding infinitesimal representation, dU, we get by differentiat-
ing the above in the variables alf a2, as:

dU(A,}=iPl (6.14.1)

dU(AJ=iP% (6.14.2)

and

Specializing to (a3, /3i, ̂ 82, r)=(a3J 0, 0, —1), we finally get dU(As)=i(as+Q1Q2).
The desired formula for the Hamiltonian now follows from (5.15) and Theorem 6.1.

In the next section we show that each Ha has a purely discrete spectrum
and give properties of the eigenfunctions.

§7. Spectral Theory of Pf+Pi+(l+Qi<p2)2

Theorem 7.1. The operator, PIa = Pl+PlJr(aJrQiQzY) has a purely discrete
spectrum for all a^R. Moreover, there are no bounded functions, <j) satisfying
Ha<j>=§, other than the trivial zero- function.

We shall give the proof only for a— I. Each step applies with only trivial
modifications when a^l. The argument is based on [Sim 2].

Let f/i denote the representation which is induced from A^4 by (1, 0, 0, —1)
eJV4. It follows from [Jo, Corollary 2.1] that the space of C°°-vectors for Ul

coincides with the Schwartz-space S in the two variables xlf x2. Let H=Pl+
PI+(l+QiQ2)\ and &(H) be the domain of H. Since H is self-adjoint, by

[D-S; XII, 2.5, Thm. 6], we have, W(H)={<j>^j:2(R2}: ^2\\dE(Z)<j>\\z<co}. A

similar fact holds for the domain of the n'th power of H. We have ([Jo]),
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. (7.1)

We first note that >l=0 is not an eigenvalue. Assume that some
solves H$=Q. It follows then that 0 belongs to each of the spaces in (7.1). In
particular, $(xlf xz) is smooth and vanishes at oo in R2. For /=!, 2, 3, we
therefore have,

=0,

where <•, •> denotes the inner product in *£2(R2}. Using the estimate above for
/=!, 2, we get Pl^)=Pz(j>^=Q. Since 0 is C°° by (7.1), it must be a constant.
But this is a contradiction, unless the constant is zero.

We now show that there are also no nonzero-bounded solutions 0 to H$=Q.
Suppose 0 is such a function. The real part, and the imaginary part of 0, will
also be a solution, so we may assume <j> real. We shall show 0^0, using a
simple maximum-principle. Since — $ is also a solution, we are done. The
proof is indirect: If 0(#)>0, f°r some x=(xi, x2}<^R2, then there is a local
maximum, 0(x°)>0, say. We have, H^>=—^+V^=Q} where A is the Laplace
operator in R2, and V(x1} *2):=(l+*i*2)

2. Note that, (J0)(;c0)gO, since XQ is a
maximum. We could not have, V(x°)>Q at the point in question, since A$—V<$>
would then be positive at x° which is a contradiction. Pick a neighborhood N
of z° such that 0>0 in N. Since F^O, we have J0^F0^0 in N. Hence, 0

is subharmonic, and 0(% 0 )^< j>0 for every contour in N which is centered at x°.

The curve integral 4 is here taken to be normalized, and we therefore also have
f\$^$(x°), recalling that $(x°) is a maximum. Using 0^0(x°) in N, we con-«/

elude that 0 is constant in N. But then, A$~§—Y<$>. Since F is not identically
zero in N, this contradicts the positivity of <j> in N.

We now show that H has discrete spectrum using a classical argument of
H. Weyl. We shall show that the supremum of the real numbers f such that
H has discrete spectrum under f is infinite. Let f e/2, and assume that

(-00, E]na(#)=(-oo, fln^Off), (7.2)

where 0-(//) denotes the spectrum of H, and ap(H) the set of eigenvalues. Since
#^0, the set D of all numbers f, satisfying (7.2), contains #_. For, if £<0,
then the intersection on both sides of (7.2) is the empty set. Let d be the
supremum, d=supD. Clearly, Q^d. We claim that, in fact, d = oo. This
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follows from an application of Weyl's min-max theorem [Wey] and [Sim 2].
As proved in [Per, Thm. 2.1], the min-max theorem yields the following formula
(7.3) below for d. For &>0, let £Dk denote the compactly supported functions,
<j> which vanish for xl+xl^k2, i.e., $ is supported in the complement of a
disk with radius k and center (0, 0). Let dk be the infimum of the expectation

values, <#0, ̂ > = ( |F0l2+F|^|2)^x1J^;2 when <f>^$k has unit-norm, i.e., ||0

= <0, 0>1/2=1. Then, by [Per], we have,

d=supdk, & > 0 . (7.3)

Proof of discreteness in Theorem 7.1. The proof of discreteness of the
spectrum in [Sim 2] (a=0) is based on earlier work of C. Fefferman and D.
Phong [F-P]. The details for V=(l+x&tf are as follows: Let Cj U>0, /=
(ji> J z ) ^ Z z ) be the square of side length /l"1/2, centered at the point, jl~ll2=
(j\Z~1/z, /2^~1/2). Let N(X) be the number of squares C] with max^ec.| V(x)^L
The Fefferman-Phong-Simon theorem states that H——AX^-V has purely discrete
spectrum if and only if N(X)<oo for all /L For each Cj, the maximum of V is
attained at one of the corners. The orientation of the corner is independent of
/L Let £(/) — (/i±l/2)(/2±l/2), where the signs ± are determined by corner orienta-
tion. Then

so we count the number of points /eZ2 such that U+£(/))2^U3. It follows
that, for fixed ^>0, the values for p(j) are restricted to the finite interval,

The set of values of p(j) in this interval is finite, and for each value, p say,
the set of solutions of /eZ2, to the equation, p(j)=p is again finite.

This leads to the estimate N(/C)^c-/Ls/2'ln 1 which coincides with an estimate
which is known [Sim 2] for the special case a=Q.

Corollary 7.2. For the operator Ha =—Ax
Jr(a+x1x.y2

} the number d in (7.3)
is infinite.

Conjecture 7.3, Let {ZnW '• n=0, 1, • • • } be the spectrum of Ha for each
a^R. We conjecture that each ln('} is continuous in a.

An answer would be interesting since, Ha =—l/2 dUa(A), where the unitary
representations Ua of G are mutually inequivalent. We show in Corollary 8.2
that trace (e~tH(*} is a continuous function of a e R for
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§8. Irreducible Representations

We continue our study of the Hamiitonian, H^Pl+Pl+^+Q^^2. Recall
that H=— A+V, where A=(d/dxi)2+(d/dxz)2 is the Laplace operator, and,
V(xlf xz}=(l+xlXzY, is the potential studied in the previous section. We shall
really need a one-parameter family, Va= (a+XiX2)

z, indexed by a^R. But we
set a=l for notational convenience. The modifications for a^l are easy and
will be postponed.

Recall from Sect. 5, formula (5.15), that we defined H as

-2H=dU(A],

where J=SI=i^I^U2(0). In Sect. 3, formulas (3.3), we introduced the left-
regular representation L. For each X^Q, we have the right-invariant vector
field X=dL(X). Similarly, the operator

A=dL(A) = S dL(Ak)
2= 2 A\ (8.1)

*=i *=i

is right invariant. It is the so-called sub-Laplacian [Jo, J-M, Hul, Goo, K-S,
K-V]. While it is not elliptic (the metric is degenerate semidefinite [0-R]), it
is known to be hypoelliptic, i.e., the equation, Au—f has only smooth solutions
u in open sets where the right hand side / is smooth. Recall from formulas
(5.9) through (5.11) that A has the following representation in local coordinates:

+(d/daz)
2+(3/das+a2d/db1)

2. (8.2)
Since,

dU^A^iP,, y=l ,2 , (8.3)

the two variables alf a*, correspond in the representation dUi to xlt xz, and
hence they play a special role. The following labels for g=g(alf a2, a3, blf bz, c),
cf. (2.9) and Example 5.3, will simplify the formulas and calculations to follow.
Write A for (ai, a2)» and B for the remaining four coordinates, (a s , blf bz, c).
For the Haar measure on G, we then get dg=dAdB, where da = da1da2, and
dB— da^dbidbzdc.

Functions $(xu xz) of vector variables x=(xlt x2) will be written $(X), and
the translated function, $(X+A), where the addition X+A agrees with the
usual one in R2, i.e., (x 1+0,1, xz+az\ Note that the use of upper case letters,
Ay B-" is consistent with Sect. 3 since the corresponding coordinate expressions
may also be regarded as representing elements in the Lie algebra $ of G.

The fundamental solution pt(g) to the heat equation (4.4) on G may then
be regarded as a function of At B via g—g(A, B). We have
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, t)/dt=2 F(g, 0
(8.4)

F ( - , 0)=d(-) (Dirac function at e),

where pt(g)=Pt(A, B), g^G, t>Q.

Theorem 8.1. Let H=P2
1+P'I+(1 + Q1Q.2)'

2, and let the function Kt(X, A) be
defined on R+xR2xR2 by,

Kt(X, A)={ pt(A-X, B)e*"(A'B>~Y>dB, (8.5)
J/24

where
Q(A, B, X}=-ai—c—biXl-\-a.2-(b.2-}-a^l}.

Then K is an integral kernel for the operator e~tn on J?2(J22) in the usual
sense,

, A)<f>(A}dA.

and

Kt(X9A)=0(t-^f (8.6)

at £— > + oo; and e~tH is a positivity preserving semigroup,

Proof. The infinitesimal representation, dU^ is determed by formulas (8.3),
and it follows from Sect. 6 that dUl exponentiates to a representation of G on
J7W). We saw in formulas (6.12) and (6.13) that

)eiE
9 (8.7)

with E = as-{c+b1x1-(b2+a3x1)(xz+aJ}, for p
By [Jo, Proposition 3.2], we also have

where Fubini's theorem was used in the last step. Formula (8.5) follows from
this.

We now use Lemma 5.1 in the proof of the asymptotic property (8.6).
Starting with (8.5), we have
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Kt(X, A)=

where we have used the scaling factor v in formula (5.1); from Lemma 5.1,
u=10 for this group, and dB=d(dt-ifz(B))t*. We have then transformed the
integral in the variables collected in B. An estimate of the resulting integral
yields,

\Kt(X, AK^t-^ptf-u^A-X), B)dB,

where we have used positivity of the heat kernel on G. Since, p^-
C°°(G), and of exponential decay at oo, we conclude, for t-+oo, that,

-X), B) — > p^Q, B),
and

-X, B}dB —> frCO, B)dB,

where the last integral is finite.
The conclusion (8.6) follows. To see that e~ta is positivity preserving (a

known fact), recall that H— — A+V, where F^O. If Ex denotes the expectation
value relative to the Wiener measure for paths a)(t] in R2 starting at X, then
we have, by the Feynman-Kac formula [B-R],

e-tH^(X)=Ez{^((o(t))e'^v^^d8}f (8.8)

and positivity is immediate. Comparison of Theorem 8.1 with (8.8) yields direct
information about the kernel in the Feynman-Kac formula.

Corollary 8.2. The operator e~tH«, for t>Q, and Ha=P2
1+P2

z+(a+Q1Q2)
z
)

is trace class. If pt denotes the Fourier transform of pt(o>i, a2, aB, blt b2, c) in
the last four variables, then

trace (e~tH^ = ( zpt(Q, 0, a4-flifla , — fli, a2, — I ) r f f l i r f a 8 , (8.9)

and it follows that trace (e~tHa) is continuous in the a-variable.

Proof. Substitution into (8.5) yields

Kt(A,A) = \
JR*

where dB = daBdb1dbzdc, and A=(a1} az). (The fact that Kt is a trace class
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operator follows from [Jo, Theorem 2.1] and standard regularity results of Rellich
type. For a discussion of this, see, for example, [Sim 1].) By Mercer's theorem,
and Theorem 8.1, we therefore have

trace (e~tH^=\ pt(0, 0, a,, blt b2, c}

When Fubini is used, and the integrations are carried out in the order c, bz, b^
a 3, the desired formula follows.

The convergence of the two-dimensional integral on the right-hand side of
formula (8.9) may be established by a direct argument, or by an indirect one.
The direct argument is an easy consequence of [Jo, Prop. 3.1], whereas the
indirect argument may be based on Mercer's theorem, and the known multiplicity

estimate, dim£«(0, Z~]^caZ
3/2lnt, Ha=h dEa(X), cf., the proof of Theorem 7.1,

and [Sim 2, F-P]. Since trace (0~cff«)=2;i 0~ u» where the summation is over
the spectrum of Ha, the multiplicity estimate yields,

trace (g-

The latter estimate follows from the above and

= 2 2

^ca 2 (0-T
n

But, for high-energy behavior (£— >0+), a better estimate

trace (0-'*«)gconst r572 \lnt\

may be available.

§ 9. The Heat Equation

It is immediate from (8.2) that the sub-Laplacian 2 has a semidefinite dege-
nerate metric (gij) relative to the six real variables ( a l } az, as, blf bz, c} which
label the points g in the six-dimensional group G from Example 5.3. If we
regard (gti) as a 6x6 matrix, and write A=VT(gi3W, then it can easily be
checked that the eigenvalues of (gtj) are {0, l+f l f+fef , 1, l+a|}, where ^=0 has
multiplicity 3. The gradient V is defined relative to the group coordinates, V —
(d/dalt d/da2, d/da3, d/db1} d/dbz, d/dc], and J7T denotes the transposed vector.
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In a sequel paper, we will carry out the harmonic analysis of 2 and use
this to solve explicitly the equation

2pt(al9 a.2, a,, bl9 b2, c, t) = -~-pt

with p t ( - ) = d ( ' ) on G. The solution is the kernel which was denoted,

Pt(g)=Pt(a, b, c)=pt(A, B)

in Theorem 8.1. Recall that A=(ait a2) and B=(a^ b1} bz, c) in the expression
for pt in Sect. 8.

The following is immediate from this and [Jo, Prop. 3.1]:

Corollay 9.1. The heat equation kernel pt(a, b, c) is of exponential decay at
oo in each of the variables a, b, and c. Moreover,

uniformly in X; and the kernel Kt(X, A) is of Carleman type.

Proof. We are using the terminology of Theorem 8.1. In particular, H—
P2i + P22-^(l+QiQ2)2, 0e j:2(^2), with X denoting vectors in R2.

We saw that for 0e J7*CR2), the solution u(X, t) to the analytically continued
Schrodinger equation,

is given by

u(X, t)=(e-

where the integral in the A- variable runs over Rz, and dA=da1da2. Using
formula (8.5) for Kt(X, A], we get the following estimates,

and

Kt(X,
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The last Integral is finite in view of the first part of the corollary.

It follows that the J72-norm \\Kt(X, Oil 2 is finite for a11 X^R2, and t>Q.
Moreover,

\\Kt(X, OI|8=<Xr1 /B) (9.4)

at £-^+00, uniformly in X, as claimed.
In the next corollary, we use (9.4) to give an asymptotic estimate on the

eigenfunctions for //=P2+P|+(l+QiQ2)2. We saw in Sect. 7 that H is self-
adjoint, J/^0, with purely discrete spectrum.

Using the theory of generalized eigenfunctions, we shall now go into more
detailed properties of the spectrum of the different operators. We refer to
[B-J-S, Suppl. I], [G-S, vol. 3, Chap. IV], [Mau], and [B-S] for background
material on generalized eigenfunctions. It follows from Theorem 7. 1 that H has
a complete set of eigenfunctions {$n(X, x)} , indexed by n=l, 2, ••• (finite), ^>0,
X^R. By elliptic regularity, it follows that each $n(X, 0 is C°° on R2, and is
a solution of the partial differential equation,

iX^nW, *)=^»M, x) (9.5)

in the strong sense. The functions $n(X, x) are specified by the choice of a

SCO
X dE(X), then E is discrete, and

0
dim£(0, Z]=Q(W* In X). Let M be the Hilbert space of functions F(X)=(F1(X)f

F2(X), • • • ) with d(X) denoting the multiplicities and with inner product,

d ( l )
<F,Fy=% 2

n=l

where the summation S^ is over the discrete point spectrum. Then, by [Ga 2],
there is a unitary spectral representation, U : J72CR2)->JT, satisfying
for all (p^j:z(R2\ and,

'>W<f>n(X, x)dx, (9.7)

~ , ^ )
*= S \(U<p)n(X)\z, (9.8)

n=l

e~u(Ud))(X). (9.9)

Note that formula (9.7) makes sense as it stands for <p^S(R2) (the Schwartz
space), and it extends to a unitary map by virtue of (9.6). We also note that,
because of (7.1), e~tH<j>^S, for £>0, and $^£\W\ so that
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Since the potential, V=(lj
rx1x2)

2, in (9.5) is real valued, we may assume
without loss of generality that the functions 0raU, •) are real valued as well.

Corollary 9.2. For the ei gen functions, <f>n(A, •), n = l, 2, •- , A>Q, we have
the estimate,

d(A)
S £ *-2*'i0»W, ^T^constxr1, (9.10)

A 71 = 1

where the constant is independent of the variables £(>0), n, and x.

Remark 9.3. We saw in Theorem 7.1 that the generalized eigenf unctions
are not always bounded in the %-variable. The estimate (9.10) shows that the
functions nonetheless satisfy a property which is "similar" to boundedness.

Proof. We showed, in (9.4), that \\Kt(x, •)\\z=O(r1) at f-»+oo, and that
this estimate is uniform in z(ejR2). It follows that

\\Kt(x, -)f=S S
A 71 = 1

<Kt(x,

»tf, OX*)!

where the constant C is independent of t, n, and x. In particular,

as claimed. In the calculation of ||tf{(x, Oi l 2 above, we used (9.6), (9.7), (9.8),
(9.9), and (9.4), in this order.

We conclude this section by showing that the spectrum of the sub-Laplacian
2 is absolutely continuous with uniform multiplicity.

Theorem 9.4- The spectrum of 2=S!^5 *'s absolutely continuous with uniform
multiplicity.

Proof. On X\G}, we define a family of unitary operators {Vs : s>0} as
follows

s>0.

A direct calculation shows that Vs is indeed unitary relative to the norm on
J72(G) coming from Haar measure on G.

We have,
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by virtue of Lemma 5.1. Writing the spectral representation for —2 in the form,

we get

) . (9.11)

Working with the multiplicative group R+, this may, in turn, be expressed as
saying that the transform, de(szZ) of de(Z), is quasi-equivalent to de(Z). By
Mackey's theorem on quasi-equivalent measures, [Ma 1], this means that de(Z)
is absolutely continuous relative to the Haar measure on R+. Since the latter
Haar measure is just dZ/A, A>0, the desired conclusion follows, taking into
account the s2-f actor in (9.11).

There is, therefore, a spectral representation R say, as in (9.6)-(9.9), a
separable Hilbert space II such that R : «T2(G)->J:2(I2+, U, dX/Z) is unitary onto,
and

(/?/)„«)=(/, e»W, 0), n = l, 2, -
In particular,

dl

(Details of this construction are contained in a sequel paper by the first-named

author.)

§ 10. Conclusion

Whenever the Hamiltonian of a quantum mechanical system is a polynomial
in elements of a Lie algebra, it is possible to analyze the system by using the
representation structure of the Lie algebra. Such an analysis can generally be
broken into two parts. First, since the Hilbert space of the system is a repre-
sentation space of the Lie algebra (or Lie group), if the Hilbert space is reducible,
it can be decomposed into irreducible representation spaces; the Hamiltonian on
these irreducible spaces will generally differ from the original Hamiltonian.
Such was the case for both the constant and curved magnetic fields discussed
in this paper. The Hamiltonian for the constant magnetic field [Eq. (2.3)] acting
on a reducible representation space of the group given by Eq. (2.4) became, as
shown in Sects. 5 and 6, the harmonic oscillator Hamiltonian, while for the
curved magnetic field, the Hamiltonian, Eq. (2.8), associated with the group given
in Eq. (2.9), became the Hamiltonian given in Eq. (6.11). In both of these cases
a decomposition occurred because some (generalized) momenta were conserved
quantities.

Second, if the Hamiltonian is a quadratic sum of Lie algebra elements, it is
possible to use the solution of the heat equation of the underlying Lie group to
compute the time dependent Green's function for the time evolution of the
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quantum mechanical system. This computation proceeds in the following way.
Let (/>Q be the wave function for the system at £=0; we wish to find the wave
function of the system (pt, at £>0, by writing (pt=e~iHt(pQ. To explicitly com-
pute e~iHt, we look instead at e~ZHt. Then [Jo] shows that if H is a quadratic
sum of Lie algebra elements, it follows that

where Ug is the representation of G acting on the physical Hilbert space M,
and pt(g) is the "heat kernel" satisfying

d p t ~ + , , * , ,-^— =Apt, pQ(g)=o(g),
at

and 2 is the sub-Laplacian defined in Eq. (4.4a). Finally, using analytic continua-
tion, the time evolution is given by

For the case of the curved magnetic field, the representation Ug on the
physical Hilbert space is given by Eq. (2.10). Combining these results gives

(e-*Ht$Q)(x, y, *) = dg pt(g)(Ug<f>0)(x, y, z)
JG

X p t ( a l — x , a2—y, a3—z, b1} b2)

It follows that e~2tH is an integral operator with kernel,

Kt(x, y, z\ a1} a2, as}=pt(a1—x, a2—y, aB—z, ?x,

where pt refers to the Euclidean Fourier transform in the last three variables
bi, b2, c.

Letting 2t go to it, we then get the kernel for the Schrodinger operator
e~lLH, given by,

K't(x, y, z\ alf a2, a3)=plt/2(a1—x, a2—y, as—z, ?x, —ya.2, y}
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reflecting the explicit time-dependence of the system. (The problem of evaluat-
ing the heat kernel pt at purely imaginary time is discussed in [Jo, Prop. 3.3],
and [J-M, Chap. 3].) Also note that the conserved quantity pz plays a special
role in the kernel. This result, along with the spectral analysis of the reduced
Hamiltonian given in Sects. 7, 8, and 9 are the major results of our paper.

To conclude, we wish to point out that the analysis carried out in this paper
can be generalized to many systems with polynomial interactions. Consider,
for example, the Hamiltonian

-
Z i=i

where V is a polynomial in xlf ••• , xn. Then the commutators

[ T/l

"3*7' J~

generate Lie algebra elements d/dxl} Vlf V I J , ••• that finally close to give a
nilpotent Lie algebra, because of the polynomial nature of V.

For example, the Hamiltonian

generates a nilpotent Lie algebra consisting of elements p, xz, x, and 1; the
underlying nilpotent group is given by the matrices

1 a az/2 bQ]

1 a

0 1

1 )

and the Hamiltonian is a quadratic sum of Lie algebra elements. Further, the
Hilbert space *£2(R) for this Hamiltonian is an irreducible representation space
for the underlying nilpotent group.

Similarly, the Henon-Hailes potential

generates a nilpotent Lie algebra. If the Lie algebra includes the elements plt

pz, %i, xz, and xQ=X!xl— (l/3)x|, then the Hamiltonian can be written as 2H=
Pl+pl+xl+xl+x0, so that it is again possible to use the structure of the heat
equation (Thm. 4.1) of the underlying nilpotent Lie group to find the time evolu-
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tion of the system. Both the quartic, and Henon-Hailes, potentials will be in-
vestigated in forthcoming papers.

Another class of systems with polynomial interactions is given by a quantum
mechanical particle in an external electromagnetic field. In this case the Hamil-
tonian is of the form

where $ is the electrostatic potential. Consider as Lie algebra elements

-J? -- A,, ;=1,2,3
I OXj

and <j)\ then \_p3—A3, pk—Ak~] generates, as shown in Eq. (2.2), the magnetic
field and its derivatives. If the magnetic field is a polynomial in the coordinates,
then these commutators will close. Also, if 0 is a polynomial in the coordinates,
the commutators generating lpl—Ai, <ji] will eventually close, and again a nil-
potent Lie algebra is generated. In this paper we have analyzed the simplest
systems of this form, where 0=0 and the magnetic field is either a constant
or varies linearly with the coordinates. In a forthcoming paper, we will analyze
a more realistic example which includes a constant electric field.

In all of these cases, the nilpotent group structure plays a crucial role in
analyzing the quantum mechanical system. Since our unitary representations
are induced representations [Dix 1, Puk], it is generally straightforward to find
the inducing subgroup of the given nilpotent group that yields the physical
Hilbert space. Such was the case for the constant and curved magnetic fields,
where the inducing structure is given in Eqs. (2.5) and (2.10).

Finally, we point out that several of the problems we are considering— such
as the curved magnetic field analyzed in this paper— have classical solutions that
are of interest. Thus, another problem to be investigated is the relationship
between the heat kernel generated by nilpotent groups and appropriate classical
limits.
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