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On Saab's Characterizations of Weak
Radon-Nikodym Sets
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§ 1. Introduction

Throughout this paper X and Y denote real Banach spaces with topological
duals X* and F* respectively. The closed unit ball in X is denoted by Bx.
Recently, in parallel with that of dual Banach spaces with the Radon-Nikodym
property (RNP), the study of such spaces with the weak Radon-Nikodym prop-
erty (WRNP) as well as Banach spaces not containing a copy of ^ has been
made by many authors, especially, Pelczynski [14], Rosenthal [18], [19], Odell
and Rosenthal [13], Haydon [7], Musial [11], Janicka [9], Riddle and Uhr [17],
and Saab and Saab [23]. Corresponding to those of dual Banach spaces with the
RNP, a number of characterizations of such spaces with the WRNP have been
obtained, heavily relying on Rosenthal's signal theorem (Theorem 1 in [18] or
Theorem 2.2 in [19]) asserting that the space X contains no copy of /i if and
only if every bounded subset of X is weakly pre-compact (For this terminology,
see § 3). They are collected below.

Theorem A. Each of the following statements characterizes X not containing
a copy of /j.

(a) (Haydon [7]). Every z**eAr** is universally weak*-measurable and satisfies
the barycentric formula (For this terminology, see § 2) on Bx* equipped with the
weak*-topology.

(b) (Pelczynski [14]). Every bounded linear operator T : L^X* is a Dunford-
Pettis operator.

(c) (Musial [11] and Janicka [9]). The space X* has the WRNP.
(d) (Saab and Saab [23]). The restriction of each x**^X** to each non-

empty weak*-compact subset of Bx* has a point of weak*-continuity.

Succeedingly, as in the case of weak*-compact convex sets with the RNP
(for instance, [20]), some attempts to localize the results stated in Theorem A
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have been made by Riddle, Saab and Uhr [16] and Saab [22]. They are stated
as follows. First, by [16],

Theorem B. // K is a weak* -compact absolutely convex subset of X*, then
each of the following statements about K implies all the others.

(a) Every x**^X** is universally weak* -measurable and satisfies the bary-
centric formula on K equipped with the weak* -topology.

(b) The set K is a set of complete continuity (For this terminology, see § 3).
(c) The set K has the WRNP.
(d) The set K has the scalar point of continuity property (For this terminol-

ogy, see §4).

To show this, they proved the following Theorem C, which forms the basis
for most of [16].

Theorem C. Each of the following statements about a bounded linear operator
T : X-+Y implies all the others.

(a) The set T(BX] is weakly pre-compact.
(b) The operator T factors through a Banach space containing no copy of l±.
(c) The set T*(BY*} is a set of complete continuity.
(d) The set T*(BY.} has the WRNP.
(e) The adjoint operator T* factors through a Banach space with the WRNP.

The proof of Theorem C depends on the factorization construction of Davis,
Figiel, Johnson and Pelczynski [3] and Rosenthal's theorem stated above and it
also depends on the following weak*-compact convex version of Janicka's result
(cf. Theorem in [9]) : If K is a weak*-compact convex subset of X* such that
every x**eZ** is universally weak*-measurable and satisfies the barycentric
formula on K equipped with the weak*-topology, then K has the WRNP, which
was proved with the help of an important result (cf. Theorem 7.8.4 in [2])
arising from the theory of lifting (cf. [8]). Since this result also plays an es-
sential role in our paper, we cite it as Theorem I.

Theorem I. Let (Q, 2, p) be a complete finite measure space and let K be a
weak* -compact convex subset of X*. If a:2-^X* is a measure such that a(E}^
fjt(E}-K for each E^I, then the following statements hold.

(a) There is an f\Q-+K such that for each x^X the real-valued function
(f (a)}, x) is p-measurable and

x}
J E

for each E^S and x^X.
(b) (A stronger form of (a)). There is a g : Q-»K such that
( i ) g is 2 — %$(K) (the Borel a -algebra in K equipped with the weak*-
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topology] measurable.
( i i ) g(fj.} (the image measure of /j. by g) is Radon on K equipped with the

weak* -topology.

(iii) (a(E), x) = \ (g((0), x)dfjL(o)} for each E^I and x^X.
J E

Subsequently, making use of Theorem 2F in [1] (A characterization theorem
of point-wise relatively compact sets consisting of continuous functions in the
space of universally measurable functions) and some results in [16] (for instance,
Theorems B and C above), Saab [22] gave a following characterization theorem
of weak*-compact convex sets with the WRNP, which is an extension of
Theorems A and B.

Theorem D. Let K be a weak*-compact convex subset of X*. Then the fol-
lowing statements about K are equivalent.

(a) Every x**^X** is universally weak*-measurable on K equipped with the
weak*-topology.

(b) Every x**<^X** is universally weak*-measurable and satisfies the bary-
centric formula on K equipped with the weak* -topology.

(c) The set K is a set of complete continuity.
(d) The set K has the WRNP.
(e) The set K has the scalar point of continuity property.
(f) Every bounded sequence {xn}n*i in X has a subsequence { * / > ( * ) } ^i such

that for every x*^K, lim(z*, x n ( k ^ ) exists.

As we have seen, Saab's characterization theorem of weak*-compact convex
sets with the WRNP was verified through the factorization theorems (for in-
stance, Theorem C above and Theorem 12 in [23]), the characterization theorem
of weak*-compact absolutely convex sets with the WRNP and Theorem 2F in
[1]. Our first (and main) purpose of this paper is to give a slightly direct and
vector-valued measure theoretic proof of the following Theorem E, a variant of
Theorem D, without invoking any factorization theorem and absolutely convex
argument.

Theorem E. Let K be a weak*-compact convex subset of X*. Then the
following statements about K are equivalent.

(a) Every x**^X** is universally weak* -measurable on K equipped with the
weak* -topology.

(b) Every x**^X** is universally weak* -measurable and satisfies the bary-
centric formula on K equipped with the weak*-topology.

(c) The set K is a set of complete continuity.
(d) The set K is a set of complete continuity with respect to ([0, 1], A, 2)

(For this terminology, see § 3).
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(e) The set K has the WRNP.
(f) The set K has the WRNP with respect to ([0, 1], A, X).
(g) The set K has the scalar point of continuity property.
(h) Every bounded sequence {xn}nsl in X has a subsequence {xn(k^} k^ such

that for every x*^K, limU*, x n ( k } } exists.

Here ([0, 1], A, 2) denotes the Lebesgue measure space on [0, 1]. Now the
most interesting (and different) point of our proof is that we make the best use
of the following Theorem 3.17 in [19] and the well-known lifting theorem for
vector measures rather than Theorem 2.2 in [19] and factorization theorems.
Furthermore it should be noted that each of Rosenthal's Theorems 2.2 and 3.17
in [19] can be proved by the almost same process and the lifting theorem for
vector measures can be proved simply by a Lindenstrauss compactness argument.

Theorem II (Theorem 3.17 in [19]). Let Z be a Polish space and (An, Bn)n^i
a sequence of pairs of subsets of Z with An, Bn closed and Anr\Bn=$. Assume
that (An, Bn)n^i has no convergent subsequence (For this terminology, see § 3).
Then there exist a compact subset F of Z homeomorphic to J(={0, 1}^, the Cantor
set), a homeomorphism a from F onto A, and a sequence n(l)<n(2)< ••• such that
An(k,r\F=a-\Uk) and Bn(k^F=a~l(Uc

k) for all k. Here Uk = {s={sn\ n^tE
J:sh=0}.

Theorem III. Let T:X-^Y be a bounded linear operator and let (0, 2, fjt)
be a finite measure space. If K is a weak*-compact convex subset of Y*, then for
every measure a: Z->X* such that a(E)^fi(E)-T*(K) for each E<=Z, there exists
a measure r: Z-^-Y* such that

(1) T(E)^fjt(E)-K for each
(2) T*r(E)=a(E) for each

The combination of Theorems I, II and III makes us possible to study the
properties of weak*-compact convex sets with the WRNP and to give a proof of
Theorem E in a way (that is, a way parallel with one in the case of Theorem
A) different from Riddle, Saab and Uhr [16] and Saab [22]. This may allow
us to say that Theorems I, II and III are fundamental on the study of weak*-
compact convex sets with the WRNP. Moreover, seeing that a lifting theorem
for vector measures of finite variation is applicable to give some characteriza-
tions of Bx* with the WRNP (cf. [9] and [12]), we think it meaningful to
make the best use of the lifting theorem for vector measures (Theorem III)
which is considered to be convenient for the study of weak*-compact convex
sets with the WRNP.

In § 2, making use of Theorem III, we reconsider the relation among the
statements (a), (b) and (e) in Theorem E by the medium of /i and establish
their equivalence. At this time, we also use Haydon's characterization of bary-
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centric calculus (Proposition 4.1 in [7]). This gives us a more direct and con-
crete proof of the equivalence among these statements. Furthermore, suggested
by this proof, we can give a localization of a corresponding result concerning
the WRNP of dual Banach spaces (cf. Theorem 5' in [11]) making use of
Theorems I, II and III, which is the second purpose of this paper. In § 3, we
first introduce the notion of relative weakly pre-compact sets. Concerning this,
making use of Theorems I, II and III, we give an analogue (that is, a localized
one) of Theorem 1 in [16], which is the third purpose of this paper. We also
establish the equivalence among the statements (c), (d), (e), (f) and (h) in
Theorem E making use of Theorems I, II and III. It should be noted that in
connection with Theorems II and III the negative statement of (h) in Theorem E
is very essential and Theorem III is very effective on this proof. Furthermore,
the equivalence among these statements yields a localization of some parts (that
is, the statements (a), (c) and (d)) of Theorem C and some corollaries. Finally,
in § 4, applying one of the corollaries and a result in the case where X is
separable, we see that the statements (e) and (g) in Theorem E are equivalent.

§ 2. Universal MeasuraMIity, Barycentric Calculus
and the Weak Radon-Mkodym Property

In what follows, we always understand that for every weak*-compact con-
vex subset K of a dual Banach space X*, K is equipped with the weak*~topology.
If 5 is a compact Hausdorff space, then S3(S) denotes the Borel <j-algebra in S.
A real-valued function k defined on S is said to be universally measurable if k
is (T-measurable for every Radon probability measure a on S; that is, by Lusin's
theorem, if and only if there exists for each such measure a and e > 0 a compact
FcS with a(S\F)<£ and k\F (the restriction of k to F) continuous. In the case
where K is a weak*-compact convex subset of X*, we say that a universally
measurable affine function f on K satisfies the barycentric formula if we have

f(b(a}} = { f(x*)da(x*)
JK

for any Radon probability measure a on K. Here b(a) denotes the barycenter of
d, defined to be the unique point of K such that

for every continuous affine function h on K. Following Hay don [7], we also
say that / satisfies the barycentric calculus on K if / is universally measurable
and satisfies the barycentric formula on K. So, for instance, the statement (b)
in Theorem E shows that every x**eX** satisfies the barycentric calculus on K.

In the following, (Q, I, fji) always denotes a complete finite measure space.
For each (Q, I, /*), a function f:Q-*X* is said to be weak*-measurable if for



926 MINORU MATSUDA

each x^X the real-valued function (/(<«), x) is /^-measurable. Two weak*-
measurable function /: Q-^-X* and g : Q-+X* are called weak* equivalent provided,
for every x^X, (/(to), x)=(g(a))> x) /*-a. e. We say that a function f:Q-*X is
weakly measurable if for each x*^X* the real-valued function (x*, /(o>)) is /i-
measurable. A weakly measurable function /: Q-^X is said to be Pettis in-
tegrable if (x*, f(co))^Li(Qf I, ft) for evey x*^X* and moreover for each
there exists an element xE^X that satisfies

(x*, xE} = \ (x*, /
JE

for every x*eZ*.
A closed, bounded and convex subset C of X is said to have the WRNP

with respect to (Q, I, //) if for every measure a: I-*X such that a(E}^^(E}-C
for every E^2, there exists a Pettis integrable function g\Q-*C such that

(**,«(£))=( (x*, g
J -E

for each EeJ and x*^X*. We say that the set C has the WRNP if C has
this property with respect to every (Q, I, /*). Such a set C is called a weak
Radon-Nikodym set. A Banach space X is said to have the WRNP (resp. WRNP
with respect to (Q, 2, /*)) if Bx is a weak Radon-Nikodym set (resp. Bx has
the WRNP with respect to (Q, J, p)).

In this section we want to clarify the equivalence among the statements (a),
(b) and (e) in Theorem E by the medium of l^ (In fact, seeing that the
equivalence between the statements (a) and (c) in Theorem A became clear
through the good offices of 11} it is natural for us to wish to find out a state-
ment about K in terms of l± which acts as intermediary in this case.) To this
end, let us recall some basic facts on /£, the double dual of /i. We first note
that /£ may be regarded as the Banach space of all bounded finitely additive
measure on &(N), the set of all subsets of N. From this we know that there
is a one-to-one correspondence between multiplicative bounded linear functionals
on loo and finitely additive zero-one measures on &(N). Furthermore we see
that the set of finitely additive zero-one measures is in one-to-one correspondence
with the set of all ultrafilters on N by assigning to an ultrafilter 3 on N the
set function r] defined for A^^P(N) by putting ij(A)=l or 0 according as A^3
or A&3. Hence there is a one-to-one correspondence between multiplicative
bounded linear functionals on /«, and ultrafilers on N. We denote by L% the
corresponding element of /* to 3" for each ultrafilter % on N.

Consider the following statement (*) about K which acts as intermediary.

(*) For every bounded linear operator T: li~*X and every nonprincipal
ultrafilter EF on N, L? is universally measurable on T*(K).

Then we have:
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Proposition 1. Let K be a weak*-compact convex subset of X*. Then the
following statements about K are equivalent.

(a) Every x**e:X** is universally measurable on K.
(b) Every %**ey^** satisfies the bary centric calculus on K.
(c) The statement (*) holds.
(d) The set K has the WRNP.

Before proving Proposition 1, we need the

Definition 1 ([18]). A sequence (An, Bn}n^ of pairs of subsets of some set
is called independent provided Anr\Bn=(f) for all n and for any two disjoint
finite subsets Nl and Nz of TV

n Anr\ n Bn*$.
n<EN i n<E.N2

k

That is, for all {en}n=i with en = ±l, r\£nAn^6 where enAn=An if £„ = + !
71 = 1

and enAn = Bn if en = — 1.

Hay don [7] showed that if X contains no copy of llt then every
satisfies the barycentric calculus on BX*. Replacing Bx* by a weak*-compact
convex subset K of X* in Haydon's proof yields the following :

Lemma 1. Let K be a weak*-compact convex subset of X*. If there exists
an x**^X** which does not satisfy the barycentric calculus on K, then there exist
a non-empty compact subset S of K, real numbers r and d with <5 > 0 and a bounded
sequence [xn}n>i in X such that (An, Bn}n^i is independent, where An={x*<^S:
(**, xj^r+d} and Bn={

We are now in a position to prove Proposition 1.

Proof of Proposition 1. (a) First let us prove that (c) implies (b) and that
(a) implies (b). Our proof of this part depends on the argument employed in the
proof of ( i )— »(vi) in Theorem 2F of [1]. Suppose that (b) fails. Then we have
a non-empty compact subset 5 of K, real numbers r and d with <5>0 and a
bounded sequence {xn}n*i in X as stated in Lemma 1. Define a bounded linear

operator Til^-^X by T({an}n^1)= f) anxn for every {an}n^^l^ Especially,
71 = 1

T(en)=xn for all n. Here en denotes the n-th unit vector of llm Further T*%*
= {(**, xn}}n>i^l°* for every x*e^*. Let An and Bn be the same as in Lemma

1. Then f\ ZnAn^6 for all {en}n^i with en = ±l, since (An, Bn)n^ is independent
71 = 1

and S is compact. Putting Cn=T*(An) (={c*eT*(S): (a*, en)^r+d}\ and Dn

=T*(Bn) (={a*eT*(S): (a*, gn)^r}), it is easily seen that (Cn, Dn)n^ is in-
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dependent and so for all {en}n*i with sn = ±l, C^s-nCn^^, where enCn=Cn if71=1 r

en=+l and snCn=Dn if eB = -l. Set £={a*er*(S): (a*, en)^r+3 or (a*, en)

^r for any n^N) ( — H (Cn\jDn} \ Then £ is a non-empty compact subset of
\ 71 = 1 /

T*(K\ Define 0 : E-*3?(N) ( : regarded as the Cantor set with its usual compact
metric topology and its usual measure, that is, normalized Haar measure if we
identify 5»C/V) with {0, 1}^) by writing

for every a*e£. Then <j> is a continuous surjection. Let \> be the normalized
Haar measure on <P(N). Then, by a well-known theorem (see Theorem 2.2 in
[5]), we have a Radon probability measure p on E such that v=<f>(fji). Let
Z,e/* be any weak*-cluster point of a sequence {en}w§1 in /*. Then there ex-
ists a nonprincipal ultrafilter 3" on TV such that L = L3. Furthermore lim(a*, 0J

71-2"

— Lcf(a^) for every <2*e£. Hence we see that for

So ^~1(2 r)={fl*e£: L3-(fl*)^r+^}. But £? is not measurable for v by Lemma
2D in [1] and so (j)~l(^) can not be measurable for /j. (see [24], Chapter 1, § 1,
Theorem 9, p. 35). Consequently, L^ is not measurable for p. where p. is the
Radon probability measure on T*(K) extending /*. Thus L$ is not universally
measurable on T*(K) and so (c) fails. Moreover, we know the existence of a
Radon probability measure 6 on K satisfying T?(0)=/Z, where T* is the restric-
tion of T* to K. Then T**Lg is not measurable for #, since L^ is not
measurable for p. Thus z**=T**LffeZ** is not universally measurable on K.
So (a) fails.

(/3) Next let us prove that (d) implies (c) making use of Theorem III. This
is the part to be emphasized in our proof. Suppose that (c) fails. Then there
exist a bounded linear operator T : l^X and an element L$ of /£ such that L3

is not universally measurable on T*(K}. Let j be a Radon probability measure
on T*(K) such that L% is not measurable for 7. Consider the complete finite
measure space (T*(K), Wlr, 7), where 3ftr denotes the set of all ^-measurable
subsets of T*(K). Define a:mr->L by a(E)=0 if r(£)=0 and a(E)=r(E)'b(7s)
if 7'(£)>0, where ^ denotes the Radon probability measure on T*(K) defined
by r*(£)=r(£n5)/r(£) for every Bt=%(T*(K)). Then a is an /«»- valued vector
measure that satisfies a(E)^7(E)-T*(K) for each E^^lr. So, in virtue of
Theorem III, there exists a measure /3 : 3ftr-»Z* such that

(1) $(E}^?(E)-K for each
(2) T*fi(E)=a(E} for each

Suppose that A" has the WRNP, then by (1), there exists a Pettis integrable
function g : T*(K)^K such that
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)=y***f g(a*))dr(a*)

for each £e$Rr and x**^X**. Now we consider the /«»-valued weakly measur-
able function h(a*) = T*g(a*} on T*(K). Since T**L<^X** for "every Le/2,
we have

(T**L, 0(E))=C (T**L, g-((
J-B

= (L,
E

for each £e$R7 and so

Hence, for every Le/*, we have by (2),

(L, «(£)) = [ (L, h(a*»dr(a*)
J E

for each jEe9ftr. In particular, we have

for each Ee9ftr and ae/j. By the way, it follows from the definition of a that

for each Ee9ft;. and a^li. Thus, by the use of the separability of llt we can
deduce that h(a*)=a* 7-a. e. and so (L f f, /i(a*))=L f f(a*) f-a. e. So (L f f , A(fl*))
is not measurable for 7, which contradicts that h is weakly measurable. Hence
we complete the proof of the fact that (d) implies (c).

(7) To show that (b) implies (d), we may replace Bx- by a weak*-compact
convex subset K of X* in Janicka's proof in [9] (see the remark preceding
Theorem I in § 1). Finally, it is quite clear that (b) implies (a). Hence the
proof is completed.

The proof of Proposition 1 combined with Theorems I, II and III yields the
following Proposition 2. In the statement (b) of Proposition 2, [0, 1] is endowed
with A and L

Proposition 2. Let K be a wsak*-compact convex subset of X*. Then the
following statements about K are equivalent.

(a) The set K has the WRNP.
(b) For any weak*-measurable function f : [0, 1]— >K, f is weak* equivalent to

a weakly measurable function g : [0, !]—»/£
(c) For any (Q, I, p) and any weak*-measurable function f : Q-+K, f is weak*

equivalent to a weakly measurable function g : Q^-K.

Proof, (a) First let us prove that (a) implies (c). Let / : Q-^K be a weak*-
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measurable function. Consider a measure K : I-+X* defined for each E^I by
putting

for every x^X. Then, by the separation theorem, K(E) ^ fjt(E) • K for each
E^I. Hence there exists a Pettis integrable (so weakly measurable) function
g : Q—>K such that

r#*,*(£)) = (x**,
E

for each £ej and jc**e^T**, since A" has the WRNP. Then it is easily seen
that / is weak* equivalent to g, and so g is a desired weakly measurable func-
tion.

(/3) Next let us prove that (b) implies (a). This part is principal in our
proof of Proposition 2. Suppose that (a) fails. Then, from the first part of the
proof of Proposition 1, we have a compact metrizable space T*(K) and an in-
dependent sequence of pairs (Cn, Dn}n^l} where Cn and Dn are closed subsets of
T*(/O- Hence, by virtue of Theorem II, we can choose FdT*(/0, n(l)<n(2)
< ••• and a homeomorphism a from F onto A such that Cn(k}f^r=a~\Uk] and
Dn(k^r=a'1(UO for all k. Set ^=(7"1: J-»F. Then for every weak*-cluster
point Lg of a sequence {en(k}} k^ in /£, L^ is not measurable for fji(=([)(v)) on
F. Here y denotes the normalized Haar measure on A. Moreover we have a
measure f: A-^-l^ defined for each E e ^f by putting

) = f
J

for every ae/1? where <p : [0, 1]-»J denotes the Sierpinski's function (see § 1 in
[10]). Then we have £(E)^]i(E)'T*(K) for each E^A. So, in virtue of
Theorem III, there exists a measure j8 : A-+X* such that ^(E}^X(E}'K and
T*/3(£)=f(£) for each Ee^. Hence, by Theorem I, there exists a weak*-
measurable function / : [0, 1]— >K such that

)= (/(O,
J-E

for each E^A and ^e^T. Suppose that there exists a weakly measurable func-
tion g : [0, !]—>>/£" which is weak* equivalent to /. Then we have

= f
J-

J.EJ

for each £eyl and ae/i, since g is weak* equivalent to /. Hence we have

(T*g(t), a
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for each E^A and fle/lB This yields that <f>($(t)) = T*g(t) Z-a.Q., since ^ is
separable. Thus (L f f, 0(0(0))=(Lff, T*g(0)=(T**Lff, #(0) ^-a. e. and so (L3,
0(0(0)) is measurable for ^, since g is weakly measurable. Consequently Lg- is
measurable for 0(0U))=/j, which is a contradiction. Hence we complete the
proof of the fact that (b) implies (a). Moreover, the fact that (c) implies (b) is
obvious and so the proof is completed.

Remark 1. Without invoking Theorem II, the equivalence between the
statements (a) and (c) of Proposition 2 can be proved. In fact, we have only to
show that (c) implies (a), whose proof goes as follows. Suppose that (a) fails.
Then, by the second part of the proof of Proposition 1, we have a complete
finite measure space (T*(A"), 2R7, f) and a measure f):Wlr-+X* such that £(£)e
r(E}-K and T*fi(E)=a(E) for each EGE^. Hence, by Theorem I, there exists
a weak*-measurable function / : T*(K)-*K such that

(j8(E), *)=( (/(a*), x)dr(a>
JE

for each E^%Rr and x^X. Then, by the same argument as in the proof of
Proposition 2, we know that / is not weak* equivalent to any weakly measur-
able function g : T*(K}-*K. So (c) fails.

§ 3. Weak Pre-Compactness, Complete Continuity
and the Weak Radon-Nikodym Property

A subset H of X is called weakly pre-compact if every bounded sequence in
H has a weakly Cauchy subsequence, that is, every bounded sequence [ x n } n z i
in H has a subsequence {xn(k}}k^ such that for every x*^X*, lim(;c*, xn(k^

exists. As stated in Rosenthal's fundamental paper [18], the notion of weak
pre-compactness is very important on the study of Banach spaces not containing
a copy of /! (as well as dual Banach spaces with the WRNP). Therefore it is
natural for us to find out a corresponding notion which is convenient for the
study of weak*-compact convex sets with the WRNP. Suggested by the state-
ment (f) in Theorem D, we introduce a following notion of relative weakly pre-
compact sets.

Definition 20 A subset H of X is called weakly pre-compact with respect
to a subset K of X* if every bounded sequence {xn} n^ in H has a subsequence
{#TK*)}**I such that for every x*e/C, lim(;t*, xn(k>) exists.

k-*oo

Expressing the weak pre-compactness of H in our notion, H is weakly pre-
compact with respect to Bx*} and the statement (h) in Theorem E can be ex-
pressed in the way that Bx is weakly pre-compact with respect to K.

A subset H of X is called a set of complete continuity with respect to
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(Q, I, //) if for every bounded linear operator S : Li(Q, I, [t)-+X for which
S(IE/fjt(E)} belongs to H for each non null set E^I, the operator 5 is a Dunford-
Pettis operator. We say that a set H is a set of complete continuity if H has
this property with respect to every (Q, I, //). There is a well-known observa-
tion on Dunford-Pettis operators in terms of vector measures (cf. [16], p. 530),
which is used in the following.

Observation. Let 5 : L±(Q, I, /*)->Z be a bounded linear operator. Then
the operator S is a Dunford-Pettis operator if and only if the vector measure a
defined for each E^I by a(E)=S(X^) has a relatively norm compact range.

First, concerning the relative weak pre-compactness defined above, we have :

Proposition 3. A bounded subset H of X is weakly pre-compact with respect
to a weak*-compact convex subset K of X* if and only if for every (Q, S, p) and
every bounded linear operator S : X— ̂ L^Q, 2, /jt) such that S*(X,E)^fjt(E)-K for
each E^2, S takes sequences in H into sequences with almost everywhere con-
vergent subsequences.

This Proposition 3 can be regarded as a localization and extension of
Theorem 1 in [16]. Next we want to show the equivalence among the state-
ments (c), (d), (e), (f) and (h) in Theorem E. That is, we have:

Proposition 4. Let K be a weak* '--compact convex subset of X*. Then each
of the following statements about K implies all the others.

(a) The set K is a set of complete continuity.
(b) The set K is a set of complete continuity with respect to ([0, 1], A, 1}.
(c) The set K has the WRNP.
(d) The set K has the WRNP with respect to ([0, 1], A, X}.
(e) The set Bx is weakly pre-compact with respect to K.

Before proving Propositions 3 and 4, we first prepare some lemmas. View-
ing from our standpoint, Lemmas 3, 4 and ^5 below are fundamental. Before
stating them, we need the

Definition 3 ([18]). Let (An, Bn)n^i be a sequence of pairs of subsets of
some set S with Anr\Bn=0 for all n. We say that (An, Bn}n^ converges if
every point seS belongs at most finitely many An's or finitely many Bn's.

Lemma 2 (Lemma 2.4 in [19]). Let {fn}nzi be a point-wise bounded sequence
of real-valued functions defined on a set S and having no point-wise convergent
subsequence. Then there exist a subsequence {fn(k}}k^i of {/ra}n*i and real num-
bers r and d with <5>0 such that for every infinite subset M of {n(k)i k^l} , there
is an s^S with
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f m ( s ) > r j r d for infinitely many m^M
and

fm(s}<r for infinitely many m^M.

Lemma 3. Let X be a separable Banach space and K a weak*-compact convex
subset of X*. Suppose that there exists a sequence {xn}n>i in Bx having no
point-wise convergent subsequence on K (namely, Bx is not weakly pre-compact
with respect to K). Then there exist a complete finite measure space (Q, I, fjt)
and a bounded linear operator U: L±(Q, 2, fjC)-+X* such that

(1) U(XE) E=p(E)'K for each EtEl,
(2) {U(IE} : E^I] is not relatively norm compact.

Proof of Lemma 3 using Theorem II and Lemma 2. By virtue of Lemma 2,
there exist a subsequence {xn(k-)} fesl of { x n } n ^ i and real numbers r and d with
<5>0 such that for every infinite subset M of (n(k): k^l] , there is an
with

(x*, #m)>7'+5 for infinitely many m^M
and

(x*, xm}<r for infinitely many

Putting Ak={x*t=K: (x*, xn(k^r+d\ and Bk={x*^K: (x*, x n { k > ) ^ r ] , (Akt

Bk)k^i is a sequence of pairs of subsets of K with Ak, Bk closed and AkP\Bk=<f>
for all k. Further (Ak, Bk}k^ has no convergent subsequence. As K is a com-
pact metrizable space, by virtue of Theorem II, there exist a compact subset F
of K homeomorphic to J, a homeomorphism a from F onto J, and a sequence
k(Y)<k(Z)< ••• such that AkMr\r=a-\l\) and BkWr\F=a-\Uc

l} for all i. Let
v be the normalized Haar measure on A. Then there exists a Radon probability
measure p on F such that a(p)=u. Denote by p the Radon probability measure
on ^extending p. Then p(

l}) for
Consider the complete finite measure space (K, Wtp, p] and a measure a :\ffl^

X* defined for each E^Wp by putting

for every x^X. Then, by the separation theorem, a ( E } ^ p ( E ) - K for each
Further we have for i<j
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Let a*^Ak(i}r\Bk(:n and b*<=AkU}r\Bk(i). Then we have (a*,
and —(b*, xn(k(i»)^>—r. Therefore we have

=-<5/4 for

Thus, by the standard argument, the vector measure a induces a bounded linear
operator U: L^K, %RP, p)-*X* that satisfies

(1) U(IE}^p(E}-K for each E^m~p,
(2) {U(7.E}: E^Wp} is not relatively norm compact.

So the proof is completed.

Suggested by this Lemma 3, we become aware of the following Lemma 4.
This can be shown by modifying the proof of Lemma 3.

Lemma 4. Assume the same conditions as in Lemma 3. Then there is a
bounded linear operator V : Li([0, 1], A, /Q->Z* such that

(1) VOfe) e 1(E] - K for each E^A,
(2) {V(IE}: E^A} is not relatively norm compact.

Proof. Under the same notations as in Lemma 3, let <j}—a~l : A^P. Then
<f>(Ui)=Akwnr and (p(U$=Bk(»r\r. Let ^ : [0, 1]->J be the Sierpinski's func-
tion. Consider a measure £ : vl-»Z* defined for each E^A by putting

for every ,reZ. Then we have %(E}^X(E}*K for each E^A. Furthermore
we have

for each 5eS5(J), making use of the change-of -variables formula. Hence we
have for i<j

r
— \

JU

Let Si^Ul\UJ and s2^U3\Ui. Then we have (0(si), ,r r i (^ (0))^r+5 and — (
)^— r. Thus we have
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^
r/4=5/4 for

Consequently, the vector measure £ induces a bounded linear operator V : Li([0,
1], A, ;Q->Z* such that

(1) V(XE)e=*(E)-K for each Es=A,
(2) {V(%e) : Eeyl} is not relatively norm compact.

Thus the proof is completed.

Lemma 5. Assume the same conditions as in Lemma 3. Then there exist a
complete finite measure space (Q, £, /*) and a bounded linear operator S : X-*
Loc(£?, J, p) such that

(1) S*(ZE) e ju(E) • /f /or each E^I,
(2) There exists a subsequence {#mo)}jgi 0/ (^/J^i such that {Sxm(j:>} j^ has

no almost everywhere convergent subsequence.

Proof. The proof of Lemma 3 shows that there exist a complete finite
measure space (K, W-p, p} and a bounded linear operator U: Li(K, 2Rp, p)-*Z*
satisfying U(IE}^p(E)-K for each E^Wp. Define a bounded linear operator
S:X->Lo*(K, yRp, p} by Sx = xlK for every x^X. Then we have

for each £e^ and xeX So S*(ZE)=U(XE) for each £e$^. Moreover, for
a subsequence {xn (* ( <) ,} i 2 i of {^n}^^! in Lemma 3, Sxn{kW} = xn(kW^K has no
almost everywhere convergent subsequence. So the proof is completed.

For convenient reference we remark here that Theorem III easily yields the
following lifting theorem for operators : Let T : X-»Y be a bounded linear
operator. If K is a weak*-compact convex subset of Y*, then for every bounded
linear operator U: L^Q, I, ^)->^* such that U(XE^tt(E)-T*(K) for each
there exists a bounded linear operator V : L^Q, I, ^)-»7* such that
p(E)-K for each Es=S and T*V(f)=U(f) for each f^L^Q, I, p).

Now let us prove Propositions 3 and 4.

Proof of Proposition 3. (Sufficiency). This is the main part of this proof.
Without loss of generality, we may assume that HdBx- Suppose the contrary.
Then there exists a sequence {xn}n^ in H which has no point- wise convergent
subsequence on K. Let XQ denote the closed linear span of the set {xn:n^l}
and let / : X0-~*X be the inclusion map. Then a sequence {xn}n^ in BXo has no
point-wise convergent subsequence on /*(/O- Hence, by virtue of Lemma 5,
there exist a complete finite measure space (Q, I, fjt) and a bounded linear
operator T:X0-*LJQ, I, /*) such that

(1) T*(ZE^n(E)'j*(K) for each E^I,
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(2) There exists a subsequence { x n ( k ) } k ^ i of {xn\n^i such that {Txn(k)}k>i
has no almost everywhere convergent subsequence.
Then, by the preceding remark, there exists a bounded linear operator U:
Li(Q, I, p)-+X* such that

(3) U(XE)£Efjt(E)-K for each E^I,
(4) ;*£/(/)=T*(/) for each f^L^Q, I, ^).

Define a bounded linear operator S:X-*Loo(Q, I, fjt) by Sx = x°h for every *ej£,
where /&: Q-*K is a weak*-measurable function satisfying

) = (
J

,w), x)dfjt(a))
E

for each E^2 and x^X. The existence of such an h is assured by Theorem
I. Then we have for every k

J E

On the other hand, we have for every k

(j*U(XE), *»(»>)=(£/(**),/*»<*>)

Thus we have Sxn<ik^=Txn(k) in LJ.Q, I, p.). Moreover we have

/z(£w), x)dfjt(o>)=(U(XE), x)

for each ^eX So S*(XE) = U(XE)f=p(E)'K for each £ej. The existence of
such an operator S contradicts our assumption. Hence the proof of this part is
completed.

(Necessity). In view of Theorem I, the proof of this part can be given by
the same argument as in the necessity part of Theorem 1 in [16]. That is, we
may replace Bx* by a weak*-compact convex subset K of X* in that place.
Hence we omit it.

Remark 2. Adopting the same argument as in Lemmas 4 and 5, we can
deduce the following : Assume the same conditions as in Lemma 3. Then there
exists a bounded linear operator S:Z-»Loo([0, 1], A, 1) such that

(1) S*(XE)<=l(E)-K for each E^A,
(2) There exists a subsequence {xn(3)}j^ of {*„}„>! such that {Sxn(J)}jzi

has no almost everywhere convergent subsequence.
Hence, by the same argument as in Proposition 3, we have that a bounded subset
H of X is weakly pre-compact with respect to a weak*-compact convex subset
K of Z* if and only if for every bounded linear operator S : A'-*Loo([0, 1], A, 1)
such that S^IE^^E^-K for each E^A, S takes sequences in H into sequences
with almost everywhere convergent subsequence. This is a slight refinement of
Proposition 3.
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Proof of Proposition 4. (a) First let us prove that (b) implies (e). This is
the crucial part of our proof. Suppose that (e) fails. Then there exists a
sequence (xn}n^\ in Bx such that {xn}n^ has no point- wise convergent sub-
sequence on K. Let XQ denote the closed linear span of the set {xn:n^l}, and
let j \ XQ-+X be the inclusion map. Then a sequence {xn}n^ in BXo has no
point-wise convergent subsequence on j*(K). Hence, in virtue of Lemma 4,
there exists a bounded linear operator V : Li([0, 1], A, X)^>X* such that

(1) V(XE)t=lt(E)>j*(K) for each E^A,
(2) [V(%E)- E^A} is not relatively norm compact.

By the remark preceding Proof of Proposition 3, there exists a bounded linear
operator S : Li([0, 1], A, Z)-*X* such that

(3) S(IE)^X(E)'K for each E^A,
(4) j*S(f)=V(f) for each /eL^O, 1], A, 2).

The statement (4) combined with the statement (2) proves that {/*S(%£) : E^A\
is not relatively norm compact and so is {S(IE} '• E^A}. Hence the operator S
is not a Dunford-Pettis operator by the above Observation. Thus (b) fails.

(/3) Next let us prove that (e) implies (a). In view of Theorem I, the proof
of this part can be given by the same argument as in the first part of the proof
of Pelczynski's Theorem in [17]. That is, we may replace Bx* by a weak*-
compact convex subset K of X* in that place. Hence we omit this proof.

(7) Thus we see that the statements (a), (b) and (e) are equivalent since it
is clear that (a) implies (b). To prove that (d) implies (e), suppose that (e) fails.
Then, by (a), there exists a measure f : A-*X* such that !-(E) ^ A(E) - K for each
E^A and {?(£): E^A} is not relatively norm compact. Since K has the
WRNP with respect to ([0, 1], A, X), ? can be represented as an indefinite Pettis
integral. Since ([0, 1], A, X) is a perfect measure space, Stegall's theorem (Prop-
osition 3J in [6]) ensures that f has a relatively norm compact range, which
is a contradiction.

(d) Since it is clear that (c) implies (d), we have only to show that (e)
implies (c) to complete the proof of Proposition 4. Suppose that (c) fails. By
Proposition 1, there exists an element x** of J£** that does not satisfy the
barycentric calculus on K. Then, by virtue of Lemma 1, there exist a non-
empty compact subset S of K, real numbers r and d with d>0 and a bounded
sequence { x n } n ^ i in X such that (An, Bn)n^ is independent, where An = {x*^

S : ( x * , xn}^r+d} and Bn={x*eS:(x*> xn)^r}. So f\ enAn*$ for all {sn}B>1
71 = 1

with sn = ±l. This means that [ x n } n ^ i has no point-wise convergent subsequence
on K. Hence (e) fails.

The following Corollaries 1 and 2 easily follow from Proposition 4. Since it
easily follows from the definition of relative weak pre-compactness that given
a bounded linear operator T : X— >Y , T(BX} is weakly pre-compact with respect
to K if and only if Bx is weakly pre-compact with respect to T*(/O, we f.rst
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have:

Corollary 1. Let T: X-+Y be a bounded linear operator and let K be a
weak*-compact convex subset of Y*. Then each of the following statements about
T and K implies all the others.

(a) The set T(BX} is weakly pre-compact with respect to K.
(b) The set T*(K] is a set of complete continuity.
(c) The set T*(K) is a set of complete continuity with respect to ([0,1], A, X).
(d) The set T*(K) has the WRNP.
(e) The set T*(K] has the WRNP with respect to ([0, 1], A, X).

Setting K—BY* in Corollary 1, we have:

Corollary 2 (cf. Theorem C). Let T: X—>Y be a bounded linear operator.
Then each of the following statements about T implies all the others.

(a) The set T(BX} is weakly pre-compact.
(b) The set T*(£F*) is a set of complete continuity.
(c) The set T*(5F*) is a set of complete continuity with respect to ([0,1], A, X).
(d) The set T*(BY*} has the WRNP.
(e) The set T*(£F*) has the WRNP with respect to ([0, 1], A, X).

Applying the equivalence between the statements (c) and (e) in Proposition
4, we have:

Corollary 3. Let K be a weak*-compact convex subset of X*. Then the set
K has the WRNP if and only if for every closed separable subspace Y of X, the
set j*(K} has the WRNP (where j is the inclusion map: Y-+X\

Proof. Only if part easily follows from Theorem III (or, the equivalence
between the statements (a) and (d) in Proposition 1, see Corollary 2 in [22]).
If part can be proved in the following way. Suppose the contrary. Then, by
Proposition 4, there exists a sequence {xn}n^ in Bx having no point-wise con-
vergent subsequence on K Let Y be the closed linear span of {xn:n^l}.
Then Y is a closed separable subspace of X and a sequence {xn}n*i in BY has
no point-wise convergent subsequence on j*(K\ which implies that j*(K) does
not have the WRNP by Proposition 4. So the proof is completed.

This Corollary 3 is convenient for the study of the relation between the
scalar point of continuity property and the WRNP in §4.

§ 4. Scalar Point of Continuity Property and
the Weak Radon-Nikodym Property

Let K be a weak*-compact convex subset of X*. Following Riddle, Saab
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and Uhr [16], we say that K has the scalar point of continuity property if for
each weak*-compact subset M of K and every x**^X**, the restriction of %**
to M has a point of continuity. Here M is equipped with the weak*-topology.
We first remark concerning this notion that if K does not have the scalar point
of continuity property, then there exist a non-empty compact subset S of K,
real numbers r and d with <5>0 and a bounded sequence {xn}n>i in X such that
putting An={x*^S: (x*, xn}^r+d} and Bn={x*^S: (x*, xn)^r}, then (An,
Bn)n>i is independent, which easily follows from Lemmas 2 and 3 in [13] (that
is, this statement is a special case of Lemmas 2 and 3 in [13]). This fact in-
dicates the relation between the scalar point of continuity property and the weak
pre-compactness. Based on this observation, we show in this section that the
equivalence between the statements (e) and (g) in Theorem E easily follows
from the separable case, making use of our Corollary 3. In fact, in the case
where X is separable, we notice that the Baire characterization theorem on the
first Baire class (see [4], Chapter 7, Theorem 2, p. 67 or [13], p. 376) is very
available for the study of the relation between the scalar point of continuity
property and the WRNP, seeing that affine functions of the first Baire class
satisfy the barycentric calculus (see [15], Chapter 12, Theorem, p. 100). From
this point of view, we think it very important to deduce the equivalence be-
tween above two statements from that in the case where X is separable. To
this end, we first have:

Lemma 6 (Theorem 11 in [16]). Let X be a separable Banach space and K
a weak*~compact convex subset of X*. Then the following statements about K are
equivalent.

(a) The set K has the WRNP,
(b) The set K has the scalar point of continuity property.
(c) For every x**ej^**, the restriction of ;c** to K is a Baire-1 function.

Proof. From our point of view, we give a proof of Lemma 6. The equiv-
alence between the statements (b) and (c) follows from the Baire characteriza-
tion theorem on the first Baire class, since K is a compact metrizable space.
Also the fact that (c) implies (a) follows from Theorem in [15] stated above and
our Proposition 1. Finally, to see that (a) implies (b), suppose that (b) fails.
Then, by the remark stated above, there exist a non-empty compact subset S
of K, real numbers r and d with <5>0 and a bounded sequence {xn}n>i in X
such that putting An={x*^S: (x*, xn}^r+d} and 5n={**eS: (**, xj^r} for

all 71, then H £nAnT=6 for all {en}n^i with en = ±l. This means that a sequence
71 = 1

{xn}n*i has no point-wise convergent subsequence on K. So (a) fails by Prop-
osition 4. Thus the proof is completed.

By the same argument as in Proposition 2 in [23] we have:
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Lemma 7. Let K be a weak*-compact convex subset of X*. If the set K has
the scalar point of continuity property, then so does j*(K) for every closed subspace
Y of X, where j is the inclusion map: Y-+X.

By Lemmas 6, 7 and Corollary 3, we have the following Proposition 5 con-
cerning the equivalence between the statements (e) and (g) in Theorem E.

Proposition 5. Let K be a weak*-compact convex subset of X*. Then the
set K has the WRNP if and only if K has the scalar point of continuity property.

Proof. Only if part can be proved by the same argument as in Lemma 6.
If part can be proved as follows. In virtue of Corollary 3 and Lemma 6, it
suffices for us to show that j*(K) has the scalar point of continuity property
for every closed separable subspace Y of X. But this is guaranteed by Lemma
7. So the proof is completed.

Thus we have studied the properties of weak*-compact convex sets and
proved Theorem E from our standpoint to deal with a weak*-compact convex
set itself and to clarify its structure directly (that is, in a process independent
of Theorem A) by means of Theorems I, II and III. Consequently, setting
K=Bx« in Propositions 1, 4 and 5, Rosenthal's theorem on Banach spaces con-
taining a copy of li yields:

Corollary 4 (cf. Theorem A and the remark after Theorem 2 in [21]).
The following statements about X are equivalent.

(a) Every x**e^T** is universally measurable on Bx*.
(b) Every z**eZ** satisfies the barycentric calculus on Bx*.
(c) The set Bx* is a set of complete continuity.
(d) The set Bx* is a set of complete continuity with respect to ([0,1], A,X).
(e) The space Z* has the WRNP.
(f) The space X* has the WRNP with respect to ([0, 1], A, 1\
(g) The set Bx* has the scalar point of continuity property.
(h) The space X does not contain a copy of /i.
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