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Integration In Abelian ODynamical Systems
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Ola BRATTELi1*, Trond DiGERNES1"**, Frederick GOODMAN"
and Derek W. RoBiNSONnt

Abstract

Let JL = C0(X) be an abelian C*-algebra and t^R^at a strongly continuous group of
""-automorphisms with generator do. We consider derivations d = AOQ, where X is a multi-
plication operator on C 0 ( X ) , and establish conditions on 2 w^hich ensure that a has a
unique generator extension. As a corollary we deduce that each derivation d from
r\n^iD(8") into D(do) is closable and its closure is a generator. An analogous result is
established for derivations defined on the smooth elements associated with the action of a
compact Lie group on <JL Some results on local dissipations are also given.

§ 1. Introduction

Our aim is to analyze derivations d defined on the smooth elements of an
abelian C*-dynamical system as generators of Co-groups of ^-automorphisms.
The basic question is whether d has a unique generator extension, and then a
subsidiary problem is to relate this extension to d. Since each abelian C*-
dynamical system determines a topological dynamical system, based on the
spectrum of the abelian algebra, this question can be viewed as a problem of
integration in topological dynamics. This approach appears particularly useful.
In order to be more precise we introduce the following definition and notation.

Let (JL, R, a] denote an abelian C*-dynamical system. Thus J. is an abelian
O-algebra and t^R^at^AutJi is a strongly continuous one-parameter group
of ^-automorphisms of JL Next let d0 denote the generator of a and define
JLn=D(dft, and
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It follows automatically that <J«, is a norm dense *-subalgebra of Jl. The prin-
cipal object of this paper is a *-derivation d on JL with domain D(d)=JL00. Our
main result, Theorem 3.1, states that if <5 : JU— »J£i then d is closable and its
closure d generates a strongly continuous one-parameter group T of ^-automorphisms
of Jl. In particular d is the unique generator extension of d. The group r is
closely related to a but to describe this relationship it is necessary to introduce
the underlying topological dynamical system.

Let X denote the spectrum of JL. Then JL can be identified with C0(X),
the continuous functions over X which vanish at infinity, and one can associate
with a a continuous one-parameter group S of homeomorphisms of X such that

for all t^R, oj^X, and /eC0(Z). We note that strong continuity of a is
equivalent to joint continuity of the map (t, a))^Sta) (See Lemma 2.2 below).

Now consider the topological dynamical system (X, R, 5). To each point
we associate the orbit

SBft)={Sta);te=R}

and use XQ to denote the set of fixed points of 5, i. e. ,

X0={o); Sto)=a) for all t^R}

Next we associate to each oj^X a period p(<ai) by the definition

and p(o))— + 00 if there is no £>0 such that Sta)=a). Thus, for example,
if, and only if, p(a)}—Q. Finally we associate to each co^X a frequency v(to) by
setting v(a))=Q if />(<«)= + °°, v(<o)=l/p(<o) if 0<£(w)< + oo, and y((o)=+oo if
p(a>)=Q.

The starting point of our analysis is a result of [6] which states that d is a
derivation from JL into Jl if, and only if,

where 1 is a function which vanishes on X0 and is continuous and polynomially
bounded in the frequency on X\X0. By this last statement we mean that there
is a C>0 and an integer n^Q such that

for all o)^X\X0. (For earlier results of this nature see [3], [10], and for
some further remarks on this result see [1].) Moreover d maps JL into JLj.
if, and only if, 50A(<o)=lim(A(Stca?)— Mflft/t exists for o)^X\X0, d02. is a continuous

c-»o

function on X\X0, and both 1 and dQl are polynomially bounded in the frequency.
It is this special form 8=ld0 which is crucial in our construction of an automorphism
group with o as its generator. For example if Ul is bounded and bounded
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away from zero then for s>0 (resp. s<0) sufficiently small, d0—ed is relatively
bounded by dQ with relative bound b<l on the component of X where /l>0
(resp. ^<0), and as ±d clearly are dissipative, d is a generator by perturbation
theory. The general situation is much more complicated. If X is only poly-
nomially bounded in the frequency then difficulties can occur at points with very
large frequency, i.e., at fixed points of S. Different difficulties can occur if X
has zeros on X\XQ. Note that if o)^X\XQ and 2(co)=0 then

for all f^Jioo and thus o) is a fixed point of d but not for 50.
The key observation in our proof that d generates an automorphism group

r is the remark that each orbit of the associated homeomorphism group T on X
should be contained in an orbit of S. Thus if T exists there should also exist
functions (t, ofi^RxX^+xM^R such that

TtQ)=SXQitt>Q>'
Then, formally.

Consequently xm satisfies the first-order differential equation

x'M=*a,(Xa,(t))
where /L is defined by

Uf)=t(Sta)}.

Our main technical result, in Section 2, is a version of the Picard-Lindelof
theorem of ordinary differential equations (see, for example, [12] Theorem 2.3.1).
The latter theorem proves the existence of a flow T on R with the above
structure whenever 1 is a uniformly Lipschitz continuous function. In our ver-
sion of the theorem the construction of T on each orbit follows from the clas-
sical Picard-Lindelof theorem but the new problem, which has some analogue to
stability problems in ordinary differential equations, is the proof of joint con-
tinuity of the map (t, a))^RxX>-*Tta), which is necessary for the existence of T.
For this we need the Lipschitz constants for 1 on the orbits to be uniformly
bounded on each set of bounded frequency, and 2. must satisfy a certain bounded-
ness property at low-frequency points near X0.

In Section 3 we derive our main theorem as a corollary of the technical
results of Section 2, and in Section 4 we discuss the generator question for local
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dissipations (semi-derivations) defined on J.^.
In Section 5 we derive the analogue of Theorem 3. 1 with the action S of R

on X replaced by an action of a compact Lie group. Let JL (resp. jy denote
the algebra of infinitely (resp. once) differentiate elements for an action of a
compact Lie group on Jl=C0(X). If d : Jl^-^JLi is a ^-derivation, then d is closable
and 5 is a generator.

§2. Pieard-Lindelof Theorems for Flows

In this section we establish the generalization of the Pieard-Lindelof theorem
mentioned in the introduction and then characterize the generator of the flow
constructed in this theorem.

Definition 2.1. Let X be a locally compact Hausdorff space, and t^R^>St a
one-parameter family of homeomorphisms of X. We define S to be a flow if

a. S is a group, i. e.

StSs=St+s, t,s<=R,

b. The map

(t, a))^RxX^Sta)

is jointly continuous

Note that joint continuity does not generally follow from separate continuity,
although it does if X is metrizable (see, for example, [17] Theorem 1.1). The
relevance of joint continuity in the C*-algebraic framework is a consequence of
the following well-known lemma.

Lemma 2.2. Let Jl=C0(X} be an abelian C*-algebra with spectrum X,
—>fft a one-parameter group of * -automorphisms of JL} and t^R*-*St the correspond-
ing one-parameter group of homeomorphisms of X, i. e.

The following conditions are equivalent :
1. t^R*-*at is strongly continuous, i. e.

\\0tf-f\\ — ^0 for all f s = J l ,
J-»0

2. (t, a))^RxX*-*St(0 is jointly continuous

Proof. 1=)2. Assume 1, and let (ta, o>a) be a net in RxX converging to
(t,a>). If /eCo(A'), we have

) | g \\ataf -<Jtf\\ + I (atf)(a)a)-(atf)(a)) \ — > 0+0

and as X is locally compact, it follows that
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2=j>l. Assume that 1 is false, i.e. that there exists an f ^ C 0 ( X ) such that

fim||<7t/-/||=2e>0
£->0

Then there exist sequences tn^Q, o)n^X such that Jn-»0 and

\f(Stna)n}-f((on)\>8

for all n. But there exists a compact set /fi=Z such that l / (o>) |<e/2 if
thus it follows for each n that Stna)n^K or a)n^K. If Stna)n^K then replacing
the pair (Jw, o>n) by (— £n, Stna)n), we may assume a)n^K for all n. Since K" is
compact there exists a subnet ( t a , a ) a ) of (tn, a)n) such that £«—>(), a)a

But as

for all a, we cannot have

and 2 does not hold.

Let S be a flow on X. If co^X recall that the period of a) is defined as

and the frequency of a) is

In particular v(o>)=oo if G> is a fixed point, and y(ft>)— 0 if StcD^a) for all
We shall need the following continuity property of the map

Lemma 2.3- The map <i)*-*v(<s)} is upper semi continuous, i. e. if o)a-^cs) then

Furthermore, if in this situation V(O))<GO and £=lim y((ya)>0, then

Remark. Simple examples, like doubling an 8 into a 0, i. e. the standard
flow on the Mobius strip, or the flow generated by y ( d / d x ) on Rz, show that
<D->v(ai) is not continuous in general.

Proof. If p=\\mp((j)a\ it is enough to show that p ( a ) ) ^ p , and

is an integer provided £(<*>) >0 and _p<oo. Assume first that j?<oo. Then it is
enough to show that Spo)=o). We may assume that \imp(o)n)=p exists by pass-

— a
ing to a subnet. But as
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for all a, it follows by limiting, and by joint continuity of 5, that

If p — co, the claim is trivial.

The following characterization of the generator of a flow will be useful, and
is an elaboration of the well-known equivalence of weak and strong generators,
[7], Corollary 3.1.8.

Lemma 2.4. Let S be a flow on X, a the corresponding automorphism group
of CQ(X) and d the generator of a, i. e. f ^ D ( d ) if, and only if, lim \\(at(f}— /)/

t-8(f)\\=Q for some «(/)€= C0(*).
The following conditions are equivalent ;

2. The limit

g((o)=\im(f(St(o)-f((o))/t

exists for each co^X, and g^CQ(X}. In this situation g=d(f).

Proof. 1=}2 and the last statement are trivial. Assume 2. Then

f(St(o)—y(cy)=-:\ ds g(Ss(o)
Jo

and hence

\(f(Sto))—f(a)))/t—g(a))\= —\ ds (g(Ssoj)—g(a)))
t JO

g sup \\a,(g)—g\\.

But the last number is independent of a) and tends to zero as J->0 by strong
continuity. Thus /

For completeness, we state the following well known result on existence and
uniqueness of solutions of first order ordinary differential equations.

Lemma 2.5. (Picard-Lindelof] Let 1 : R*->R be a function which is Lipschitz
continuous in the sense that there exists a constant K>0 such that

for all x, y^R. Then the initial-value problem
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has a unique solution fy: R*-*R for each y^R. These solutions satisfy the group
property

and hence if we define

for y, t^R then T is a flow on R.

Remark. If r is the one-parameter group of *-automorphisms of C0(R)
defined by T, it is easy to see that the generator of r is an extension of d=
A(d/dx). We will show in Theorem 2.6 that this generator is the unique
generator extension of d. The Lipschitz condition on ^ near the zeros of 1 is
of prime importance for this proof. If 1 is merely continuous and bounded, d may
have a continuum of generator extensions, or none at all, see, for example, [4],

In Theorem 2.12 we show that if, in addition, A is continuously differentiate,
then the closure of d is the generator of r. A necessary and sufficient condition
for a closed derivation on C([0, 1]) to be a generator has been given in [15].

Proof. The existence and uniqueness of the solution fy follows by the
method of successive approximations (see [12]). Since K is independent of x, y,
the solution exists on all of R. Since /((/) does not depend explicitly on x, the
group property follows because

are both solutions to the initial value problem

The proof of the joint continuity of (t, y^Tty will be shown in a more general
setting in the proof of Theorem 2.6 (see Observation 1). But as T_ t=(T i)~1,
each Tt is a homeomorphism.

The main theorem of this section is the following.

Theorem 2.6. Let a be a strongly continuous one-parameter group of *-
automorphisms of an abelian C*-algebra JL=C0(X) with generator dQ and associated
flow S on X, and let X0^X denote the fixed points of S. Assume that 1 is a
real continuous (not necessarily bounded) function on ^\^T0 which satisfies bounds
of the type

where K:R+—»R+ is a function which is bounded on bounded intervals. Assume
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also that for any compact subset C^X there exists an s>Q such that X is uni-
formly bounded on

It follows that the derivation d defined by

(a>) if
8f(a>)=

( 0 if
on

D(d)={f^D(d0); the right hand function above is in CQ(X)}

is densely defined and has a unique extension to a generator of a strongly con-
tinuous one-parameter group T of ^-automorphisms of JL.

Remark. The low frequency boundedness of A is necessary because of ex-
amples such as X—RZ, dQ—y(d/dx}, A(x, y}~l/y.

Proof. We prove the existence part of this theorem by explicitly construct-
ing the flow T corresponding to T.

If o)^X\X0 define a function l^'.R^-^R by

JUO=J(S(a>).
Then

i ̂ (O-^(s) I = i Z(St_sSsa))-Z(Ssa)} 1

because v is constant along 5-orbits. It follows from Lemma 2.5 that the initial
value problem

*i(0=-U*»(0)

x.(0)=0

has a unique solution t^R^x^t}. Define

for all ttER, and a)^X\XQ. If a)^X0} define Tt(o=a). Then T is the candidate
for the new flow generated by an extension of d=AdQ. The group properties
TtTs=Tt+s, TQ^l follow immediately from Lemma 2.5. (Note that if i>(o>)>0,
Aa is periodic with period l/v(o>), and hence the function fy(t) of Lemma 2.5 has
the property /y+i/V(fi,)(0 :=/i/(0+lMtt>). Thus the definition of T is consistent).

Observation 1. The map

(t,a>)

is jointly continuous.
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Proof. Let (ta, o>a)-*(*, o>) in RxX. We have to show that Ttofs)a-+Tta)

in J£, i. e.

5j? f l ,a(ta)a>a - > Sara ,< t ) ty .

We divide the discussion into two cases.

Case 1.

Since S is jointly continuous, by Lemma 2.2, it suffices to show that x<oa(ta)
->*„(*)• But as

1 *o,(0-*o,a(*«) I ̂  I SoXO-jJfa) | + | X m(t a) ~ X m a(t a) \

and xMa^xM it suffices to show that

Xm(ta) — Xa>a(ta) - > 0.

For this we first fix a £0>0 and seek an estimate for \x<0(t)—x0>a(t)\ on the
interval [0, £„]• Now it follows from the differential equation for x that

We are assuming that v(co)<oo, and as y(w)^limv(G>a) by Lemma 2.3, it follows
a

that the frequencies jXajJ are uniformly bounded. Hence it follows from the
hypothesis of the theorem that there exists a constant K such that

for all x, y^R and all a, and the same estimates hold for ^ as well. Also,
since ^o,a(0)=^(cO— >^(o>), we can choose the constant K so large that

for all a, and then it follows from the previous estimate that

for all xeR and all a.
Now as x<aa satisfies the differential inequality

and the unique solution of the differential equation

y'=K(\+y)

with y(0)—Q is y(t)=eKt—l, we obtain the estimates

U^WI^'-l, \x»(f)\<eKt

Hence we have the crude first estimate
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We also have

(**) I ̂ a(*»a

where

Now, let M be a constant such that e*s— l^Ms for 0^s^0- Inserting the
crude first estimate into (**) and using K^M we find

inserting this into (*) we then obtain

l*«fl(0-*.(

and inserting this improved estimate into (**) gives

J.tt(*«fl(s))-- *«(*«(«)) I ̂ MV+M

Reinserting this into (*) and iterating we finally find

and

g . B . , , a , ,
71 ! \ Z ! ^72 — L) I

for all n. Thus

where M and Ma are independent of £e[0, #0], It follows that if Q<t<tQ and
lim^a=^, so that £«e[0, ?0] for «^«o, then

for

But since /La(s):=/l(Ss(yJ converges pointwise in s to /^(s)=^(Ssft>), and these
functions are uniformly Lipschitz continuous, it follows that the convergence is
uniform in compacts, and hence

Ma-sup{

Consequently \x(0a(ta}—x<0(ta)\-^^ and thus

limxa>a(ta)=x(u(t).

The case t(=limta)^Q is treated similarly, and thus the proof of Case 1 is
complete.

Case 2. y(
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By passing to subnets it suffices to consider the following two situations :

Case 2.1. v(ft>J->0.

By the low frequency boundedness of 1 it follows that X(a)a) is bounded in
a, and combining this with the Lipschitz condition we deduce as in Case 1 that
the functions xWa are uniformly bounded on compact intervals, e. g.

\x«(ta)\^K for all a.

Again passing to a subnet, we can assume that Xa,a(fa)-^, and then it follows
from the joint continuity of 5 that

Case 2.2. There is an s>0 such that e^y(ewa) for all a.

Then

for all a. Proceeding as in case 2.1 we deduce that

Tta(0a — > a)

This ends the proof of Observation 1, and it now follows from Lemma 2.2
that T determines a strongly continuous one-parameter group r of *-automorphisms
of CQ(X) through

for f^C0(X), t^R, a)^X. Let dT denote the generator of this group.

Observation 2. 5T is an extension of d.

Proof. By Lemma 2.4 it suffices to prove that

lim (f(Tt<ti-f(a>Wt=*(wWof)W
t-*0

for all o)^X\X0 and all /eD(30). But

(f(Tta)}-f(co})/t=(f(SX(u(t}co)-f(a))}/t — > (30/)(o>) •*;(<>;

by the differential equation for XQ, and the chain rule.

Observations 1 and 2 establish the existence of the generator extension of d.
It remains to prove density of D(d) and the uniqueness of the flow T. To do
this and subsequently to discuss the generator dT of the flow T, we introduce
"high frequency cutoffs", that is, algebras of functions which are constant on
orbits of sufficiently high frequency. Recalling that JLn = D(d%) and Jl^—r\n^i^n,
we define
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ln', f has compact support and there exists an M>Q
such that f(St(o)=f((o) whenever v(a))^M and

where n=0, 1, 2, ••• , oo. Then 3)n is clearly a *-algebra which is invariant
under a. Moreover <DQ is also invariant under r.

Lemma 2.7.
(a) // /ecAo has compact support in X\XQ, then f^g)^D(d}.
(b) // /eC0(^0) has compact support and A is a compact subset of X\X0, then

there is a function g^3)oar\D(d) with compact support such that g\x0=
:f and

(c) £)ocr\D(d) is dense in JL.
(d) // a)^X\X0 and /eC(5[_i,i]fl>) is a function such that t-^f(St(o) is infinitely

often differentiate on [—1, 1], then there is a g^3)00C\D(d} with compact sup-
port in X\XQ such that g extends f.

Proof.
(a) It follows from the upper semi-continuity of y, Lemma 2.3, that v is

bounded on the compact set supp (/). Hence / is zero on orbits of sufficiently
high frequency. Also AdQ(f) is continuous with compact support on X\X0. Hence

(b) Let V be an open neighbourhood of supp(/) with compact closure. By
hypothesis there is an £0>0 such that X is bounded on

Let W be an open neighbourhood of supp(/) such that

»^V\Sc-f.(1/.0,+flJf

and let h be a continuous extension of / to the closed set

with compact support in Wr^XEQ. Then define a function k on X£Q by taking
the mean over each orbit, i. e.

f \\JJ J \ wv I V \*~r £\*s ] 11

U(o>) if (O^XQ.

Since V(O)}^£Q on XEQ, it follows that k is well-defined, & has compact support
in S[-a/£o)>0](supp(/z))i=Sc_(1/£o))o]l^n^£(), and k is constant on orbits in X£Q. We
now argue that k is continuous.

Let a)a be a net in X.Q such that o>a—»o/ in XSQ. Then
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By passing to subsets we may assume that v0=\imv(a)a) exists as a finite positive
a

number or as +00. We therefore divide the discussions into these two cases.

Case 1. £o

Since l/v0 is a period for t-+h(Sto)') by Lemma 2.3, we have

k(a>')=v0[
1/V° dt h(St(o

f),
Jo

and

!
l /v (o ; a )

dt h(Sta)a).0

Since the family of functions t-*h(St<t)a) converges pointwise to t-»h(St(D
f) and

this family is uniformly equicontinuous by the strong continuity of a, it follows
that the convergence is uniform on [0, l/v0] and hence

k((o'}=lim k(o)a] .
a

Case 2. y0 — °°.

In this case v(a/; — °°, i.e. cof^X0, and k(o)') = h(a)' ). Hence

\k(wa)-k(a)')\^\k(vj~h(va}\ + \h(a)a}-h(a)f}\.

The latter term converges to zero and the former is dominated by

sup{\\ath-h\\; O^rglMJ,

which also converges to zero by strong continuity of a.

This completes the proof that k is continuous on XSQ.
Next extend k to a continuous function on X, also denoted k, with compact

support in the open set SL-(1/£Q)iQ^W. Let (p^C°°(R] be a positive function with
support in [— 1, 1] and with total integral one, and define

k(St(t)}.

Clearly ge3>«,, g X0=f, and

which is disjoint from A. It remains to show that g
Given a net a)a in X\XQ converging to a point (OQ^XQ, we have to show

that liml(Q)a}d0(g)(a)a}=Q. It suffices to show that any subnet of this net has in
a

turn a subnet such that Xd0(g) has limit zero over the subnet. If d0(g)((t)a) is
eventually zero, there is nothing to do ; otherwise we can extract a subnet (also
called o>a) such that d0(g)((i)a)^Q for all a. It then follows that y(ft> a)<£0

and a>a^Supp(d0(g))£Supp(g)ijSi:_ ( 1 / £ ) _: i iW- Hence for each a there is
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ta^L— 1, (1/£0)+1] such that Stao)a^W, and pass'ng again to a subnet, we can
arrange that t0=limta exists, and therefore

But this means that (o^W^V, so that a)a^V eventually. We can assume (by
again going to a subnet) that for all a

Since 1 is bounded on this set and d0(g)(a)a)->Q, we obtain the desired conclusion.

(c) It follows from (a) and (b) that the *-algebra £)oor\D(d} separate points
of X and is zero at no point of X. Thus (c) follows from the Stone-Weierstrass
theorem.

(d) It follows from [9], Theoreme 3.1, that there exists a finite number m
of functions ^eC°°(E) with supp(^)£[— 1, 1] and functions hl

such that
m fl

=S
1 = 1 J-l

for U|<1. Extend each ht to a continuous function on X with compact support
in X\X0 and define

777. T1

ds 0i(s) 0*(hi).

Then g(St<o)=f(St<&) for U l^ l , g^Jloo, and g has compact support in X\X0.
By part (a),

This ends the proof of Lemma 2.7, and also establishes that D(d) is dense
in Theorem 2.6. Our next task is to prove uniqueness of the flow T constructed
above. Therefore, let U be another flow on X such that the generator dp of
the associated automorphism group extends d. In order to show U=T we need
the following general lemma.

Lemma 2.8. // U and S are general flows on a locally compact Hausdorff
space X, and for each co^X there exists an s>0 such that £/<_£ie>ft>^Sj2ft>, then

for all

Proof. Let t^R, we have to show Uto)^SRco for all o)^X, By compactness
of [— U], \t\~] there is a finite subset tlf ••• , tn of [— \t\, U|] and positive con-
stant £1, ••• , EU such that

and
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But as two S-orbits are either equal or disjoint, it follows that if two of the
intervals <tk— ek, tk + sky and <tm—sm, tm+£my overlap, U < t k - £ k i t k + E k > a ) and
U<tm-Sm,tm+£my(o are contained in the same S-orbit. Since any two elements in
[— UL Ul] can be connected by a finite number of the intervals <£* — ek, tk + e k y ,
it follows that all U<tk-£kitk+£k>(t) are contained in one S-orbit, namely SRa).
Thus £7[_mf m]<y£S*<H and hence URa)^SRQ).

Returning to the proof of Theorem 2.6, let U be the flow on X whose
generator dn extends d.

Observation 3. URa)^SRa) for all co^X.

Proof. We argue by contradiction. If the statement is false, it follows
from Lemma 2.8 that there exist an w^X and a sequence tn^R\{Q} such that
fn->0 but UtnG)&SRo) for n=l, 2, ••• . But then SRUtn(or\SRa)=9 for all n since
two S-orbits are either equal or disjoint. Next set o)n=Utno). Since a)n-*a) one
sees by induction that there is a subsequence of con, which we also denote by
a)n, such that

/n-l
(On & { \J SC_3, a]

But then all the closed sets SL-lina)n are disjoint and we may define a function
/ on

C=(\J Sn-i, i]0>n)

by f(o)f}=tn if ty'eSc-i.i^n and /(o/)=0 if cy'eSc_2)2]ft>. Since (on-^a), the set C
is compact and the function / is continuous on C. Again there are two cases.

Case 1. co^X\X0.

Then limy(a>n)^v(a)}<oo and hence v is uniformly bounded on C. By upper
semi-continuity of v and compactness of C it follows that v is uniformly bounded
in a neighbourhood of C. Let g be a continuous extension of / which vanishes
outside this neighbourhood; then i; is uniformly bounded on supp(g). Next let
(p be a positive ^-function on*R with support in [—1, 1] and total integral one.
Define

r

' <p(t)0t(g).

Then /zeD(<50) and v, and hence ^, is uniformly bounded on supp(/z). Thus
Also
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and as h(Sta))=Q for \t\<l we have

=o(t).

Since h(Utjt(o)=tn this is a contradiction. Thus URa)^SRa) if a)^X

Case 2.

Let D be a neighbourhood of C with compact closure D. By the assump-
tion on 1, there exists an s>0 such that 1 is uniformly bounded on

By passing to subsequences of a)n, we may consider three subcases.

Case 2.1. r/(twn)<s for all n.

In this case we extend / by first defining /—0 on the closed sets {<
and X\D, and then extending / arbitrarily to a function in C0(X). Let 0 be
a positive ^-function on R with support in [—1, 1] and total integral one. Define

h =

Then h^D(d0), supp/iSS:_i,i:-D and /i—0 on {a/; v(a>')^e}, and thus dQh=Q on the
latter S-invariant set. It follows that /I is uniformly bounded on {a/; (50/0(a)')
and thus h^D(d}. As h(a)n)=tn, we deduce a contradiction as in Case 1.

Case 2.2. oo>y(a)n)>e for all n.

Note that the argument in Case 1 actually established that if
there exists an s>0 such that £/<_,,, ̂ a/SS^o/. Thus {t; Uto)'^SRa)'} is open.
But if y(a>0^0, i.e. SRa)' is closed and homeomorphic to a circle, then the set is
also closed, and hence it is equal to R. We have thus shown that URo)f^SRo)f

if oo>y(fl/)>0. Hence Case 2.2. cannot occur, as a) is contained in the UR-orbit
through o)n for any n.

Case 2.3. v(<t)n}—°° for all ?z.

Then twTOeZ0 for all n, and / extends to a function /z in D(d) by Lemma
2.7. b. As h(a)n)=tn, we obtain a contradiction as in Case 1.

To finish the proof of U=Two, need another general lemma, which is known
(see Appendix 2 in [13]).

Lemma 2.9. // U and S are flows on X and URa)^SR(D for all co^X, then
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there exists for each co^X a continuous function y^'.R—^R such that 3^(0) =0 and
Ut(D=Sya)(t)(o for all t^R. The function y^ is uniquely determined by the con-
tinuity requirement if a)^X\XQ, and if (i)^X0 we may put y(u(t)=Q for all t,
where X0 denotes the set of fixed points for the flow S.

Proof. If v(<w)>0, then SRa) is closed in X and is homeomorphic to the
circle T, and the restriction of U to SR(o is a one-parameter group of homeo-
morphisms of the circle, from which the existence and uniqueness of y^ is im-
mediate.

If V(G>)=O, then the map t-*Sta) is one to one, and thus there exists a unique
function 3^(0 such that Ut(i)=Syo)(» for all t&R. Clearly yM=0 and it remains
to show that y^ is continuous. But continuity is clear once we can show that
for any T>0 there is an JV>0 such that UI-T,T-G>=SI-N,N&>, because the map
t^[— N, N^StO) is a homeomorphism (although the map t^R-*Sto) is not neces-
sarily a homeomorphism if the orbit SRa) is not closed in X). The proof of the
existence of N does not follow from straightforward Baire category arguments,
but reduces to the following topological lemma : The interval [0, 1] is not a
countable union of disjoint non-empty closed sets. See the proof of Theorem
2.50 in [13] for the complete argument.

We now finish the proof that U=T. Let 3^00 be the functions defining the
flow U by Observation 3 and Lemma 2.9. It suffices to show that y<u(t)=x<u(t)
for all (o^X and t^R. This is trivial if a)(=X0. If w^X\X0, define

Then Oe V and V is closed, so if we can prove that V is open, then V=R and
the theorem is proved. So let tQ^ V and put a)0=SXoj(tQ}a)=TtQ(o=UtQa). We have
to show that Tta)Q=Uta)Q for if in a neighbourhood of zero. But as (oQ^X\X0j

t-^St(D0 is 1—1 in a neighbourhood [— s, s] of zero, and by Lemma 2.7. d, there
exists a function g^D(d) such that g(Stco0)=t for U l ^ s . Choose ^>0 so that
l3%«l^£, 1*^(01^6 for UK T]. Then

and xQ)Q(t)=g(Tta)0) for \t\<y. Since g^D(d)^D(du), it follows that yWQ is
diff erentiable for \t\^y and

since (dQg)(S 8(1)0)=! for |5|^s. But the unique solution of this equation with
3>»0(0)=0 is
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by Lemma 2.5. Thus Uta)0=Tta)0 for \t\<y, and thus U=T.
This concludes the proof of Theorem 2.6.

Although Theorem 2.6 establishes that d has a unique generator extension
dT and Lemma 2.7 gives some rudimentary information about D(dT), it is unclear
whether the assumptions are sufficient to ensure that dT= 8, the closure of d.
This stronger form of uniqueness follows, however, if one assumes a stronger
smoothness property for L As a preliminary to deriving this result we prove
the following lemmas.

Lemma 2.10. Adopt the assumptions of Theorem 2.6, and let dT ^denote the
unique generator extension of d. Then for all g^D(dT) and all (o^X\XQ such
that A(a))^Q, the limit

) = \im (g(St(ai)—g(a>))/t
i-»o

exists, and furthermore

Proof. Let g and a) be as in the statement of the lemma, and define g^t)
=g(Sta)') and Am(t)=Ji(St<o). As in the proof of Theorem 2.6 let xm be the unique
solution of the initial value problem

*i(0=J«(*«(0), *.(0)=0.

Then xm is a C^f unction with non-zero derivative at £=0 and therefore has a
CMnverse yw in a neighbourhood of t=Q. Now since g&D(dT), gw(x(a(s))=g(TsG))
is a (^-function of s and (ga»

0^J/(0)=5r(g)(tt>). Therefore ^Q,=(ga»
0O03;a> 'IS a

C^function near zero whose derivative at zero is

But g'a,(ty = d/ds\8=0g(S8a)), so both the existence of this derivative and the
formula for 8T(g)(co) are established.

Lemma 2.11. Adopt the assumption of Theorem 2.6, but further assume that
2 is differentiable in the sense that

exists pointwise and is a continuous function of
(a) The formula

(b) If f^&(8), then
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for all o)^X\XQ, where the dQ on the left side is defined as in the heading of the
lemma.

(c) // /e<D,puD(5), then (f^Tt)^^D1r^D(d) for all t^R.

Remark. Our main purpose here is to establish that £Dir\D(d) is invariant
under the group rt, and for this we need to show that for f^^Dlt^D(d) and t^R,
(/°Tt)e.D(5o). But by Lemma 2.4 it suffices to show that the pointwise derivative
d0(f°Tt)((t)} = lim((f°Tt)(Ssa))—f°Tt((t)))/s exists and defines a continuous function

s-»o
on X. Since f^D(S)^D(8T\ f°Tt also lies in D(dT) and Lemma 2.10 already shows
that d0(f°Tt)(a))=A(a))~1dT(foTt)(a)) exists and is continuous on Y={(s)^X\XQ\
^(cy)^O}. But in order to prove the existence and continuity of dQ(f°Tt)(o))
on all of X we have to establish the formula (*) in the statement of the lemma.

Proof.
(a) The hypothesis on 1 implies that /^ is a ^-function with derivative

^=(W)o>- Thus by the chain rule,

The unique solution of this equation with ^Ql(x(u(0))= ^,(0) is

On the space X the relation reads

which proves the first formula in the statement of the lemma.

(b) If fELD(5)^D(dT), f°Tt lies in D(dT) and

For ^^^^{cy'eyYXZo; /£(ft/)=£0} we evaluate the left-hand side using Lemma
2.10 and obtain the equation

Cancelling the factor /l(o>) gives the desired formula (*) for all
Next suppose that a)^X\X0, but ^(o>)=0. Then Tto)=a) for all ?. Let V be

the flow on R corresponding to the flow T on SRa), i. e. Vt(y) is determined by
the usual continuity requirements and
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Then

and since V is the flow on R determined by the vector field Uy^d/dy, and
^w(O)— 0, we have

where we used Taylors formula, and the fact that Xm is continuously differen-
tiate. This formula can be written

where o(-) is a function depending only on ^ such that limo(/i)//i=0. Integrat-
ing, and using VQ(y)=y, we get

Feeding the expression for Vsy back into the integral and iterating we arrive
finally at the expression

where O(-) satisfies limO(t, y)=Q for all t. Hence d / d y \ y = 0 Vty=etl'<»w. For
-

where fw(x}=f(Sxa)) as usual. Therefore by the chain rule

A
ds

f (Ven-
ds

=(30/)(fl»)exp{«oW)(a»)},

using the facts that feD(80) and F(0=0 for all t. This establishes that
So(f °Tt~)(cai) exists, and since Tso)=a) for all s, <50(/°T()(<w) is given by the formula
(*) in this case as well.

(c) Let fe3)1r\D(d) and teR. First we show that /°Tte£>(<50). By part
(b), 5o(/°Te)(a>) exists, as a pointwise derivative, at all co^X and is given by
the formula
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if USE,
o

0 if a)<=XQ.

Since f^^Di, f has compact support, thus f°Tt and then d0(f°Tt) have compact
supports. Thus by Lemma 2.4, to show that f ° T L ^ D ( d Q ) , it suffices to show the
continuity of the right hand side of (*). As / is constant on orbits of frequency
larger than a certain M, (d0f)(Ttco)=Q if v((o)^.M. Thus it suffices to verify

for convergent nets a)a-^o) such that u(a)a)<M for all a. The other cases are
trivial due to the upper semicontinuity of v. Thus two cases remain.

Case 1. v(ftj)<oo.

Because of the formula (*) and the continuity of (dQf)°Tt it suffices to show

[ds (d0X)(T#>a)—+[ds (30J)(7»
Jo Jo

The integrands converge pointwise on [0, if] by continuity of dQ/l on X\X0. Let
<p be a continuous function with compact support in ^T\^0 such that

for all o)'^.{o)a}\J{(s)} and se[0, f]. Then the norm continuity of s-»rs^ implies
that the integrands are uniformly equicontinuous and therefore converge uniformly.

Case 2. v(a))— oo.

Then o>eZ0 and 50(/-T£)(tw)=0. Note that

for to'e^XyYo by the Lipschitz continuity of 2, and thus 00^ is uniformly
bounded on

{a' SEX: v(

The uniform boundedness of expjl ds d02(T8(on)\ together with the continuity
of (d0f)°Tt implies that

This establishes that <50(/°T t)^C0(Z), and (f°Tt)<=D(d0).
Since clearly f°Tt^£>Q, it follows that

Finally we prove that f*Tt^D(o). We already know that foTtSED(dQ\ and
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by parts (a) and (b)

(***)

for all co^X. But as Tt is a homeomorphism of X and /eD(5), the map

a) —

is in CoCX), and thus f*Tt^D(8). (Note that the formula (***) also formally
follows by noting that the generator 5T of the automorphism group r defined by
the flow T extends 8 and commutes with r, and hence

This completes the proof of Lemma 2.11.

The following result is now easily established.

Theorem 2,12, Let a be a strongly continuous one-parameter group of *-
automorphisms on an abelian C*-algebra JL=CQ(X) with generator d0 and associated
flow S on X, and let XQ^X denote the fixed points of S. Assume that 1 is a
continuous (not necessarily bounded) function on X\X0 such that

-at t=

exists and is a continuous function of a) which is bounded on the sets
v(a)}<M} for all M>0. Assume also that for any compact subset C^X there
exists an s>0 such that 2. is uniformly bounded on

It follows that the derivation d=15Q is closable, and its closure generates a
one-parameter group T of * -automorphisms of JL.

Proof. By Theorem 2.6 it suffices to show that D(d) is a core for dT.
But according to Lemmas 2.7 and 2.11, 3)^0(5) is dense in JL and rf(^)i/°\-D(5)) =
3)^0(3) for all t^R. Therefore it follows from [7], Corollary 3.1.7, that 3)^0(6)
is a core for dT.

If ^ and (^ are polynomially bounded in the frequency, the assumptions of
Theorem 2.12 are automatically fulfilled. In this case Jl00

<^D(d\ but although
JL is a common core for § and d0, the domains of these derivations can be quite
different. It is also possible that JL^ and even <Ji fails to be invariant under
the group r generated by d. The following example shows that one can have

even if
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Example 2.13. Let JL=C0(R
i) and a the group defined by

(ctf)(r, 6}=f(r, 0+t/r).

Thus the orbits of the associated flow are concentric circles centred at the origin
and the orbit of radius r has frequency (2nr)~l; the origin is a fixed point. It
follows that Jloo consists of those f^Jl which are infinitely often differentiate
in 6 and such that the partial derivatives of / with respect to 6 go to zero
faster than any power of r as r— >0, uniformly in 6. Next define d on JL by

for some n>l. A simple calculation then shows that

(rt/)(r, 0)=/(r, 2tan-V / r ntan0/2)).

In particular

It follows that 3(uOCcAo but rUJS^L Moreover D(d)^D(dQ) and £>(<50) $£>(<$).

We also remark that the hypotheses in Theorem 2.12 do not generally imply
that ^i£-D(5). An example is obtained by modifying the definition of a and 5
above as follows

(*J)(r, 0)=/(r, 0+f) ,
and

Then /i(r, 6}—l/r is constant on S-orbits, so <50/l=0, and X is bounded on
{o)\v(<i))<l/2x} — <j), so all the hypotheses of Theorem 2.12 are satisfied. In this
case ^)1=D(d0)t but 3)^D(d)t since for example, /(r, $)=rsin# is in £Kd0X but
not in D(S).

Note that if the last assumption in Theorem 2.12 is replaced by "For any
compact subset C^X and any M>0, X is uniformly bounded on Cr\{a)^X;
v(o>)<M}", then a simple argument establishes that ID^Dfi). This is used in
the proof of Theorem 3.1.

Finally we emphasize that the smoothness assumptions on X adopted in
Theorems 2.6 and 2.12 are only essential in a neighbourhood of the zeros of L
These results can be easily generalized by use of the perturbation result men-
tioned in the introduction, e.g. if ^ satisfies the assumptions of Theorem 2.12
and ^2 is bounded continuous on X\XQ and bounded away from zero then I^d~Q

is a generator.
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§ 3. Smooth Derivations

In this section we prove the theorem on derivations stated in the introduction.

Theorem 3.1. Let (Jl, R, a) be an abelian C*-dynamical system and denote
the generator of a by 50. Define JLn=D(d^ and Jl^=r\n^iJ^n-

If d: cJco—>c^i is a ^-derivation then d is closable and its closure o generates a
strongly continuous one-parameter group T of ^-automorphisms of Jl.

Proof. It follows from [6] Theorems 1.2 and 4.2 that the condition on d

implies that d has the form d=ldQ, where 2 is a once differentiate function on
X\XQ such that X and d0A are continuous and polynomially bounded on ^\^Y"0.
Thus 1 satisfies the hypotheses of Theorem 2.12.

The polynomial growth of 1 in the frequency implies that the natural domain
of d, the D(d) defined in the statement of Theorem 2.6, contains <J«,. This fol-
lows because for /ejL, and n^N there exists a Kn>Q such that

by Observation 6 of [6].
Now the extension of d to D(5) has a unique generator extension dT, and it

follows from the argument used in the proof of Theorem 2.12 that 3)i^D(d) is
a core for dT. It remains only to show that Jl^ is a core as well.

To this end, fix /e^)i and let h^C0(R) be a positive, infinitely often differen-
tiable, function with support in [—1, 1] and total integral one. Then defining

h(nt) atf

= \dt h(t) fftlnf

one has fn^JL*>r\3)i. Moreover, /„->/ and dQfn-^d0f by strong continuity of a.
But as / is constant on 5-orbits of frequency larger than a certain M, the fn

are also constant on these orbits, and (5 0 / n)(a>)=0=(d 0 f ) (o)) if v(tt>)^M. But /i
is bounded on the subsets {a);v(a)}^M} and hence

Consequently J-^rMRi is a core for dT or, equivalently <5r=J=the closure of d.

§ 4. Local Dissipations

In this section we discuss various aspects of the generator problem for more

general operators associated with (Jl, R, a\ local dissipations.
An operator H from Jl^ into Jl is defined to be local if
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Supp(#/)gsupp(/)

for all f^Jlcc and it is defined to be a dissipation, or semi-derivation, if Hf — Hf
and

for all /e<Joc. In [6] Theorem 1.2B it was established that H : Jioo-^Jl is a local
dissipation if, and only if,

where the real functions ^OJ Alt lz satisfy the following : A0 is a bounded con-
tinuous function over X, h and /12 vanish on XQ and are continuous functions
on X\X0 polynomially bounded in the frequency, and AQ, /^O. We now argue
that each local dissipation H is dissipative, hence closable, and then discuss prop-

erties of its closure H as a generator.

Lemma 4.1. Let H : Ji^-^Jl be a local dissipation. Then H is dissipative,
hence closable.

Proof. The operator H is defined to be dissipative if for each

for at least one p^Jl* with ||/j|| = l such that j«(/) = ||/||, or, equivalently, if

for all f^Jloo and for all small a>0. (See for example, [2] Section 2.1). But
by an argument of Kishimoto [14] (see [7], page 230, line 9-14) it suffices, for
dissipations, to verify this condition for positive /. Now if /ejL and / is
positive one can find a)^X such that

fW=\\f\\

and choose /JL to be the point measure at a). Then £•— Kat/)(ty)=/(Sca>) must
attain its maximum at t=Q. Therefore (50/)(ty)=0 and — (5§/)((«)^0. But then

and H is dissipative. Finally it is a standard result, [7], Lemma 3.1.14, that a
dissipative operator H is closable, and its closure H is dissipative.

Next for each real f^Jl define the positive and negative parts /±=(±/)VO
and introduce the half-norm A^ by N(f) = \\f+\\. Now, a real operator K on JL is
defined to be ^V-dissipative or dispersive it for each real f

for at least one p^JL* with ||//||=1 such that p(f)=N(f) or, equivalently, if
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for all f<=D(K) and all small a>0. ([2], Section 2.1)

Lemma 4.2. Let H : JL— > JZ be a local dissipation. Then PI is N-dissipative.

Proof. Let /e JL be real. If /^O then M/)=0 and N(l+aH)f)^Q. There-
fore we can assume /+^0. Now choose w^X such that /(o>)=:/+(ty) = ||/+|| and
again note that this implies that t^f(Sta)} has a maximum at £=0, hence (50/)(o>)
—0 and — (5g/)(ft))^0. Then if /£ is the point measure at a)

But since

this proves that N((l+aH)f)^N(f) for all real /ScAo and all a>0.

The following result is now a consequence of these dissipation properties and
standard semigroup theory, see [8].

Proposition 4.3. Let H : JL— > Jl be a local dissipation with closure H. Then
the following conditions are equivalent ;

1. (l+tf#)(jL):=Jl for all small a>0.
2. H generates a CQ-semi 'group,
3. H generates a positive Co-semigroup of contractions.

Remark. It is unclear under what conditions the closure H of a local dis-
sipation is again a dissipation, e. g. it is not evident that D(H] is an algebra.
Note, however, that if H is any operator such that H generates a positive Co-
semigroup of contractions r, then r is strongly positive in the sense

for all f^Jl and t^R, by the generalized Schwarz's inequality for abelian
algebras, [7].

Finally we make some remarks on criteria for H to be a generator. It is
natural to conjecture, in analogy with Theorem 3.1, that if H is a local dissipa-
tion which maps J.^ into J12 then H is a generator. But we have not been able
to prove this.

It does follow that if H : Jl^-^Jlz then the coefficients h in the representation

satisfy the smoothness properties ^eDCSg), and the derivatives d0h, dlh, are
polynomially bounded in the frequency for i=l, 2 and bounded for i=Q. This
follows from [6], Theorem 4.2. These conditions then imply, by an argument
which we sketch below, that the closure of — /I2<5o+^o is a generator. Moreover
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the closure of hdo is a generator by Theorem 2.12. Nevertheless it is unclear
whether the sum of these two generators is a generator without additional as-
sumptions. One such assumption which is sufficient to guarantee that H is a
generator is the condition

for some s>0 or, equivalently, Pi/V% ||oo<+oo. We also sketch the proof of
this below.

Let us first consider the proof that the closure of — ̂ o+^o is a generator,
but for simplicity assume that ^0, 12, 30/(2, dl!2} are bounded. The general case
can then be handled by approximation arguments. But in this case it suffices
to prove that the closure of — lzd

2
Q= — (V^7<5o)2+(l/2)(<50>W<5o is a generator. Now

V/U^o is the generator of a group of *-automorphisms r by Theorem 2.12 and
hence — (V/^^o)2 is the generator of a contraction semigroup p constructed by
the algorithm

Pi—(4rcO 1 /2\ ds e s /u rs.

Now consider the term (8Md0. Since ^2eD(S§) and ||5jU2||<+oo by our simplify-
ing assumption one has

dt,
o

and hence

Consequently

Moreover if r denotes the group generated by the derivation d — — VLd0 then
for

and hence

II5/H ^(f/2)||«'/|| +(2/011/1!

by the triangle inequality. Combining these estimates gives

for all f^JLco and any £>0. Thus (dMd0 is relatively bounded with respect to
— (V/Ud0)2 with relative bound zero. Hence the closure of the sum —(VO0)2

Jr(l/2}(dMdQ=— lzdl is a generator.
Note that the same argument also shows that if ^2 = e^L then XI$Q is relatively
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bounded with respect to — (V/UW2 with relative bound zero. Hence the closure

of -(Vir5o)2+((l/2)(^0^o+^A) = -^o+^A is a generator.

§ 5. Compact Group Actions

In this section we prove an analogue of Theorem 3.1, with the action 5 of
R on X replaced by an action of a compact Lie group. Thus we consider a
locally compact Hausdorff space X, a compact group G, and a topological trans-
formation group (X, G, S), i.e., g^Sg is a homomorphism of G into the group
of homeomorphisms of X such that (g, x)^Sg(x) is jointly continuous. The cor-
responding automorphic action a of G on Jl=C0(X) defined by a gf(o))=-f(Sg-iG})
is strongly continuous. For n^l, Jln denotes the algebra of functions f ^ J L such
that g^>ag(f) is a Cn function from G to Jl, and J100= C\Jln- If J^, ••• Xd is a

71^1

basis for the Lie algebra of G, then f^Jln if, and only if, / is in the domain
of a(Xil ••• Xin) for all choices of ilt ••• , /„, and Jln is a Banach space with the
norm

-.-*(4)/||; O^k^n and l^i^d}.

Jin is a Banach algebra in an equivalent norm and JL is a Frechet algebra,
with topology generated by the norms || ||n

Theorem 5.1. Let X be a locally compact Hausdorff space, Jl=CQ(X) and
a : 6r— > Aut (Jl) a strongly continuous action of a compact Lie group G on Jl. If
d : JL— »cA is a ^-derivation, then d is closable and its closure d generates a
strongly continuous action of R on Jl. Furthermore, the orbits of the correspond-
ing flow on X are contained in the orbits of the action of G on X.

Proof. Fix a £-orbit M in X. Any function f^Jl^ satisfying f\M=® can
be approximated in the jL-topology by functions of the form f<p, where <p : X->
[0, 1] is an element of CQ(X) which is constant on G-orbits and zero in a
neighbourhood of M. Then d(f(p)\M=Q because of the locality property of deriva-
tions defined on a dense domain with a C°°-functional calculus [3]. Consequently
d(/)Lv=0 because d is automatically continuous with respect to the JL-topology
[16, 5].

Thus d restricts to M; that is the formula dx(f\M)=S(f)\M defines a *-
derivation dM in C(M) with domain {f\M ;/e Jl^}. It is convenient here to refer
again to the theorem of Dixmier and Malliavin [9] which states that JI™ is the
linear span of functions of the form

where 9?eC°°(G), and f^Ji. Applying this result also to the action of G on
C(A/), we see that { f \ M ; f ^ J l ^ } is all of the algebra of C°°-elements for the
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action of G on C(M). Now M can be identified with some coset space G/K via
a G-equivariant homeomorphism. Under this identification, the algebra of C°°-
elements for G acting on C(M) is identified with C°°(G/K) and dM becomes a
derivation on C°°(G/K). Since the range of d is contained in JL1} it follows that
da maps C°°(G/K) into Cl(G/K], and SM is given by a C^vectorfield on C/A'
Now the basic existence and uniqueness theorem for ordinary differential equa-
tions implies that OM generates a one-parameter group of automorphisms of C(M),
see [13], Theorem 3.43.

Rather than explicitly patching together the flows on the G-orbits generated
by the vector fields dM, as in the proof of Theorem 2.6, we can use global
criteria for o to be a generator. First it is easy to see that ±d are dissipative
operators ; in fact if / is real valued and achieves its maximum modulus at a
point o), then d(/)(<y)=0, since dG(fo) is given by a vector field. It remains to
check that (id±5)JL are dense subspaces of Jl. For this, one can follow the
argument in [11], Theorem 3.2. Since this argument involves a partition of
unity on the locally compact Hausdorff space X/G, it is essential here again that
G is compact.

Finally the statement regarding orbits: Let { f i t : t ^ R } be the one-parameter
group of homeomorphisms of X corresponding to the automorphism group exp (t§).
Suppose that for some w^X the orbit {/3£(cw)} does not lie in the G-orbit G(a)).
In this case there is a function /e JL which is constant on each G-orbit but not
constant on {/3£(co)}. But by the first part of the proof, <5(/)U/=0 for each orbit
M, /eker(<5). Then / is analytic for d and

a contradiction. (The proof of the corresponding statement concerning orbits in
[11], Theorem 3.2 was incorrect and should be replaced by the present proof.)
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