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Boolean Valued Decomposition Theory of States

By

Hirokazu NISHIMURA*

Abstract

Boolean valued analysis (i.e., analysis based on Boolean valued set theory) enables us
to introduce a natural framework for decompositions of states over C*-algebras with
identity. The development apparently runs parallel with the traditional approach originating
in von Neumann's reduction theory, but our logical approach succeeds in getting rid of
separability restrictions that have haunted the traditional approach.

§ 1. Introduction

For all its simple and intuitive nature, direct integral theory invented by
von Neumann, one of the most revered mathematical figures of this century, is
cumbersome in semblance and has been obsessed with separability restrictions
inherited from measure-theoretic techniques it exploits. There has long been a
strong tendency to make this theory trimmer and more widely applicable by
using Boolean algebras and the like (notable Segal [7] and Tomita [10, 11] as
pioneering work in this vein), but it is very recently that we realized the signi-
ficance of Boolean valued set theory, which has been applied successfully to
independence problems of axiomatic set theory, but on which this tendency is
finally to be based. Indeed Ozawa [6] and Takeuti [8, 9] have applied this new
technique, called Boolean valued analysis, to some rudiments of Hilbert space
theory and the theory of von Neumann algebras.

The main purpose of this paper is to approach to the rudiments of decom-
position theory of states over C*-algebras with identity by rolling our Boolean
valued juggernaut. Our approach, like its predecessor, is based on two principal
facts, say, the one-to-one correspondence between states and cyclic representa-
tions on the one hand and that between orthogonal measures and their com-
mutative von Neumann algebras on the other. These results as well as the
fundamentals of Boolean valued analysis are reviewed in Section 2. The main
results are presented in Section 3, followed by their ergodic counterparts in
Section 4.
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§ 2. Preliminaries

2.1. States

Let 91 be a C*-algebra with identity 1. A linear functional a) over 91 is
called positive if

for any y4e9L A positive linear functional co over A with <y(1)=l is called a
state. We denote by E% the set of all states over 91, which is convex and
weakly* compact. Given two positive linear functionals o)lt a)2 over 91, we write
<DI^O)Z and say that <DI majorizes a)2, provided G^— co2 is positive. A state to
over 91 is called pure if every positive linear functional majorized by a) is of the
form to) with O^gl.

Every nondegenerate representation ?r of 91 on a Hilbert space $ and every
vector Q in § with ||$||=1 give rise to a linear functional

a)a(A)=(Q, x(A)Q),

which is easily seen to be a state. It is known that this construction gives a
one-to-one correspondence between states on 91 and cyclic representations of 91
up to unitary equivalence. Indeed, given a state cw on 91, there is a canonical con-
struction of a cyclic representation TT^ of 91 on a Hilbert space €>w with a unit
vector Qa^&a, such that

for any yle9I. This cyclic representation (§o>, TT^. flj is called the canonical
cyclic representation of 91 associated with a), for which we have the following two
fundamental theorems.

Theorem 2.1.1. The following three conditions are equivalent :
(1) (&„, TCa,) is irreducible ;
(2) cu is pure;
(3) ft) z's an extremal point of E%.

Theorem 2.1.2. The correspondence

a>T(A)=(Qm, Tnm(A)Q»)

from positive operators T in the commutant 7^(91)' with ||T||^1 to positive func-
tionals a)T over 91 majorized by o) is bijective.

A state CD is called a factor state if 7^(91)" is a factor.
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2.2. Orthogonal Measures

Two positive linear functionals a)1} a)2 over $1 are called orthogonal and
written <Wi_L<y2 provided for any positive linear functional a) over 91, ft>^a>i and

0)^0)2 imply a)=Q. A regular Borel measure /j. over Ea is called an orthogonal
measure if for any Borel set Si=£a one has

For any a)^E%, the set of orthogonal probability measures p on E^ with

is denoted by (

Theorem 2.2.1. // fji^Ow(E^)t then there exists a ^-isomorphism K^ from
Loc(fJt) to Tr^W such that for any

Theorem 2.2.2,, By assigning to each fjt^O^E^) the commutative von Neumann
subalgebra K^L^/j.)) of nJW, we obtain a bijective correspondence between

and the commutative von Neumann subalgebras of TT^W.

2.3. Boolean Valued Analysis

Let <B be a complete Boolean algebra. We define V^ by transfinite induc-
tion on ordinal a as follows :

(i)
(2) V^ = {u\u:3)(u}-><B and

£<«

Then the Boolean valued universe V(^ of Scott and Solovay is defined as follows :

where On is the class of all ordinal numbers.

can be considered to be a Boolean valued model of set theory by defining
and \u=v\ for u, v^V(S) as

(1) [MGV]= sup ( v ( y ) / \ [ u = y'\), and
i/e5)(t»

(2) lu=v]= inf (u(x)=3lx<=v])/\ inf

and by assigning a Boolean value [^] to each formula <p without free variables
inductively as

a)
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(2) [piVp,]

(3) [^iApJ

(4) lVx<p(x)]= inf [p(w)L and
weF(^)

(5) [3*p(x)] = sup

The following theorem is of fundamental importance to Boolean valued
analysis.

Theorem 2.3.1. // <p is a theorem of ZFC, then so is [y?] = l.

The class V of all sets can be embedded into V(S} by transfinite induction
as follows:

y = {<£, 1>| x<^ y} for

Then we have

Proposition 2.2.2. For x,

'1 if
(1) lx^yj=\

. 0 otherwise;

{0 otherwise.

A subset {ba} of <£ is called a partition of unity if supba = l ai\.dba/\bp = 0
a.

whenever a^fi. Given a partition of unity {ba} and a subset {wa} of F(j3), it
can be proved easily that

Proposition 2.3.3. There exists an element u of F(j3) such that lu = u&J^ba

for any a. Furthermore this u is determined uniquely in the sense that if v is
another element of "F(j3) with the above property, then [M=V]=!.

The above u is denoted by J^uaba or uaibai+ ••• +uanban if {ba} is a finite
set.

We define the interpretation X ( Q } of X={x\(p(x)} to be {^eF(j2) 1 [p(w)]=l},
assuming that it is not empty. For technical convenience, if # is a set, then
X{3) is usually considered to be a set by choosing a representative from an
equivalence class {v^V(®} \ \u=v\=I}. Such a convention is implicit in the
sequel of the paper.

Let D^V^\ A function g\D-+V{3» is called extensional if [d = d']^
[^•(^)=<g-(^/)] for any rf, d'^D. A 5-valued set weF ( 5 ) is said to be definite
if u(d)—l for any d^S)(u). Then we have the following characterization
theorem of extensional maps.
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Theorem 2.3.4. Let u, t>eF(j3) be definite and D—3)(u]. Then there, is a
bijective correspondence between /eF(j3) satisfying if:u-*vj = l and extensional
maps <]) : D-»z;(j3), where v(^ = {u\lu^vj = l}, The correspondence is given by the
relation [/(d)=0(d)]=l for any

Let (X, S, ft) be a <j-finite measure space. Then its measure algebra (i.e.,
measurable sets modulo null sets) forms a complete Boolean algebra B and C(®}

is represented by the set L(fjt) of all measurable complex valued functions
(modulo /£). The set LJ^p) of all essentially bounded measurable functions on
X can be considered to be a commutative von Neumann algebra acting on the
Hilbert space L2(//) of square /^-integrable functions as multiplication operators.

Now let § be a Hilbert space and 2, be a commutative von Neumann
algebra on €>. Let us suppose also that %> is *-isomorphic to Lco(^) for some o-
finite measure space (X, S, ft). Then obviously the projection lattice <B of 2> is
isomorphic to the measure algebra of (X, <S, ft), so that they can be identified.
The quotient set €> of |> with respect to the equivalence relation

{«a, £>v, e ( a , b)> a, btE®}

(e(a, «=sup{Pej£ Pa=Pb}}

is a Hilbert space in V(^\ where the inner product (a, 5) of the quotient classes
of a and b is defined, using the Radon-Nikodym theorem, to be the unique
function /eL(//) such that

fdp=(a, Pb]

for all Pe^. Each bounded linear operator T on H belonging to the corn-
mutant 3,' of 2, induces a bounded linear operator T in V(^ by

And every bounded linear operator on § is of the form ST^P* for some
^

countable partition {Pt} of $ and T^Z' for any i. In particular, every pro-
jection in V(Q} is of the form P for some P^2>'. We have

^ PP,=PP2}

for any projections Plt Pz^2>f.

% 3. Making States Boolean Valued

Let CD be a state over a C*-algebra SI with identity 1. Let 2, be a com-
mutative von Neumann subalgebra of n^W with a complete Boolean algebra ^
as its projection lattice and let p be the orthogonal probability measure on Eat
corresponding to .2 under Theorem 2.2.2. Then, for each A^W the function
defined on the Borel field of E%
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S i—> (Qm, KpWsfruWQj

is easily seen to be absolutely continuous with respect to ^. Therefore, by
making an appeal to the Radon-Nikodym theorem, there should be a unique /*-
integrable complex valued function / on E% modulo /j. such that

We denote this / by co(A). By Theorem 2.3.3 w can be regarded as a function

from $ to C(5) in F(j3). Since

\(QU,

= \\A\\p(S),

aj is a bounded linear functional on $, which is to be extended uniquely to a
bounded linear functional w on the completion $ of 21 in F(j3). Then we have

Theorem 3.1. £ is a state on i in V(®\

Proof. Now that w is known to be a linear functional, this follows readily
from the following :

(1) (Q»,

(2) (Qn, Kpdsfr MQ J=(fl«, ^(3Ca)fl J=/i(S) . Q. E. D.

Now we would like to determine the cyclic representation of 21 associated
with a). For each A&W, nw(A) induces a bounded linear operator (nJ^AyT and
the function A*-^(n m(Ay)~ on St is bounded linear, so that it can be extended
uniquely to a bounded linear operator 7?^ on $.

Theorem 3.2. (fL> ̂ a» ^o,) is a cyclic representation for &.

Proof. Obviously (1 ,̂ %«,, QJ is a cyclic representation of $, and so it is
sufficient to recall that both &(A) and (5^, TrcyC^l)^^) are the a. e. unique meas-
urable function such that

J s

for any Borel subset S of E*. Q. E. D.
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Theorem 3.3. w is pure in V(^ iff Z is maximal among commutative von
Neumann subalgebras of itJ^K)'.

Proof. If w is pure, then (^mt rcj is irreducible by Theorems 2.1.1 and 3.2.
Thus if P is a projection of (^U^Sl))', [P^/VP = O] should be /, which
implies Pe(2U7rcy(^4))/. Hence 2 is maximal among commutative von Neumann
subalgebras of 7^(51)'. Conversely, if % is maximal among commutative von
Neumann subalgebras of 7r<y(5I)', then every projection commuting with ^(90 in
F(j3) is of the form P for some projection P in 2>, so that

=/.

Thus <& is pure by Theorems 2. LI and 3.2. Q. E. D.

A similar argument gives

Theorem 3.4. & is a factor state in T / ( j3) iff Z> contains the center of ;rto(20".

§4. Boolean Valued Ergodie Decomposition

Let SI be a C*-algebra with identity and G be a group of *-automorphisms
of 5L We denote the action of G by

with g^G. A positive linear functional over 51 is called G-invariant of co(A)
—Q)(Tg(A}}. The set of all G-invariant states over A, denoted by E%, is ap-
parently a compact convex subset of E%. A G-invariant state a), which is an
extremal point of Eg, is called G-ergodic. A G-invariant state CD is said to be
G-pure if every G-invariant positive linear function majorized by o) is of the
form ho with O^U^l. Each action g^G induces a unitary operator U^g) on
the Hilbert space ©^ characterized by the following requirements :

(D Uu(g)n»(AW»(g)*=K«(r8(A)) for all ,4 e 51 ;

(2) U»(g)Q«=Q».

Then the following G-invariant counterpart of Theorem 2.1.1 obtaines for any

Theorem 4.1. The following three conditions are equivalent :
(1) TToXSOUf/JG) is irreducible on €>to ;
(2) CD is G-pure ;
(3) Q) is G-ergodic.



1058 HlROKAZU NlSHIMURA

The discussion of the previous section holds mutatis mutandis with due

regard to G-invariance. In particular, we have the following counterparts of

Theorems 3.3 and 3.4 for any G-in variant state o) and any commutative von

Neumann subalgebra 2> of (7rw(SI)WL/"aJ(G))/ with a complete Boolean algebra $

as its projection lattice.

Theorem 4.2. The state aj is G-ergodic in F(j3) iff 2> is maximal among com-

mutative von Neumann subalgebras of (

Theorem 4.3. The state o> is centrally G-ergodic in V(S} iff 2> contains

)/, where a G-invariant state o)f is called centrally G-ergodic if

G)' consists only of scalar multiples of the identity operator,
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