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The Characterization of Differential Operators
by Locality: Dissipations and Ellipticity
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Abstract

Let 3 be the generator of a Co-group of *-automorphisms of a C*-algebra Ji and H a
differential operator of the form

H= £ *mdm ,
ra=0

where /lmeC. It is known from a previous work that if Ji is abelian then H is a dis-
sipation, i. e.

if, and only if, Am = Q for m>2, /2^0, and ^o^O. This conclusion is no longer generally
true for non-abelian JL, but it is true in a variety of special cases which we discuss, e. g.
if JI is isomorphic to the C*-algebra of all compact operators on a Hilbert space M and
o is unbounded.

§ Oo Introduction

Let d denote a symmetric derivation on a C*-algebra JL and consider the

differential operators H: Jt^-^JL where

and

H= s
If p=2, 20^0, and A2^Q, then H is a dissipation, i.e.

The purpose of this note is to investigate conditions under which the con-

verse is true.
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If JL is finite-dimensional then there are certainly derivations 8 and dif-
ferential operators H of this type which are dissipations but which are not
quadratic in 8. The simplest examples occur if JL=MS, the 3x3 matrices.

Example 0.1. Define the derivation 8 on M3 by d(a)3i=ik3idji where kjL —
—kij and &0i=l, &02—1 + e, &i2=£- Next define H by H(a)3i =—h]ia3i where hjL

— —hij and /z01=l+2e, h02=l—e2, and hlz——£(£+2). Then H is a dissipation,
because it is the square of a derivation. Furthermore H=Azd

2jr^84: with lz —
4(l+£+£2) and ^4=3. But unless £=0 or e = —1 one cannot express H as a
quadratic form in 8. (If £—0 or £ = — 1 one has H=—82.)

Nevertheless if JL is abelian it was established in [2] that the only differential
operators H which are dissipations are perforce quadratic. This is even the case
if the coefficients lm are not constant, e.g. if Xm^JL. A crucial feature in the
abelian case is that if the derivation 8 is non-zero then it is automatically un-
bounded, and it is quite possible that unboundedness of d together with simplicity
of JL is sufficient to ensure that only quadratic H can be dissipations. Although
we have not been able to prove this we will verify a variety of particular cases
in Section 3. These all follow from estimations given in Section 2 which are
based upon several spectral assumptions for 8, which are mostly true if 8 is
unbounded and generates a one-parameter group of ^-automorphisms of JL. Thus
as motivation we begin, in Section 1, by examining the appropriate spectral
properties of generators.

§ 1. Spectral Properties

In this section we assume that 8 generates a strongly continuous one-parameter
group T of ^-automorphisms of JL and examine spectral properties. For this we
adopt the notation of [5], Section 3.2. The main result of this section, Proposi-
tion 1.1, is related to Connes' characterization, [6], Lemma 2.3.5, of the spectrum
of T. Connes' argument can be slightly simplified by using the following known
lemma. (This simplification is implicit in the proof of 2=>3 in [5], Proposition
3.2.40, but the argument there has a gap which is filled by the following lemma.)

Lemma 1.0. Let G be a locally compact abelian group with dual group G,
let ?Q^G and let W be a neighborhood of fQ in G. Let {Fs; s^S} be a collec-
tion of functions in Ll(G) with the properties

la. FS(YQ)=0 for all s^S, where " denotes Fourier transform.
Ib. sup || F, || !<+00.

SEES

Ic. For any 8>Q there is a compact subset E^G such that

dg\Fs(g)\ <8
G\E
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for all s^S.
It follows that for any s>0 there exists a g^L1(G) such that
2a. llglUO+e.
2b. g—l in a neighbourhood of To and g=Q outside W.
2c. ||FS*£||<£ for all s^S.

Proof. In the case that S is a one point set, this is Theorem 2.6.3 in [9].
The proof of the present generalization is almost identical with the original
proof, and is therefore omitted.

In the following proposition, and later in the paper, we use the convention

for the Fourier transform on R.

Proposition 1.1. For each k^R, s>0 and p^Z, there exists an />0 such
that

\\(dm-(ikD\Jir(lk-i,k + ̂ \\<B, 771 = 1, 2, . » , / > .

Proof. First choose an f^Ll(R) such that the Fourier transform is infinitely
often differentiable with compact support and satisfies /=! on an interval
\k— /i, &+/J. This ensures, in particular, that / is differentiable and f'^.Ll(R\
Second, for each s^R define Fs^Ll(R) by

f (/(f-s)-***'/(0)/s if s^O
F,(t)=\

( -f'(t}-ikf(t} if s=0.
One has

for s^O and hence

for all s^R. Furthermore, Fs(k)=0 for all s, and since f^S(R) it is easy to
see that condition Ic is fulfilled if s varies in the compact interval S=[0, 1].
By Lemma 1.0 there is for each s'>0 a g^Ll(G) such that g=l on an interval
[fe-/a, *+/,] and IIF^UKe7 for se[0, 1].

Next let 0</</2 and choose an h^Ll(R] with supp(A)g[A— /2, Jfe-f/J such
that £=1 on [£-/, &+/]. Then r(/z)(a)=a for all GSE Jlr([/^-/, ^+ /]). Moreover
for se[0, 1] and p^\_k—l9 k+l~\ one has

Therefore if a^JlT (\_k-l, k-l'}} one has



1034 0. BRATTELI, G. A. ELLIOTT AND D. W. ROBINSON

Consequently in the limit s-»0 one obtains

Next note that if asEjLT([k-l, £+/]) then dm(a)^JT([k-l, &+/]) for all m
1, 2, • • • . Hence

!|^+1(G)

which implies

m-l
||3m(a)-(^)ma||^ S l & i 9

g=o

m-l
^sr 2 k

2=0

Moreover

I* i l

Combining these estimates one calculates that

Hence choosing sr sufficiently small that

max{(\k\+eT~\k\m; m=l, 2, - , p}

one obtains the Proposition.

Remark 1.2. If aejZr([fe-/!, ^+/J) and &e ̂ ([/-/^ /+/J) then
jlr([-2/!, 2/J), ft*ftejlr([-2/1, 2/J), and a*b^JLx(U-k-2ll9 l-k+2l^\ There-
fore given £>0 and p^Z+ one can choose li sufficiently small that

for m=l, 2, ••• , p.

Remark 1.3. Let & be in the spectrum of 5. Then for any n there is an

~, k+ with HflnlNl . Put cn=ana*. Thus c»e
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and ||en||=l, cn^0, and by Proposition 1.1

lim —-—jj— =0

for m = l, 2,

§ 2. Quadratic Estimates

In this section we show that the spectral properties derived above for gen-
erators together with a norm estimate on the"products of approximate eigenele-
ments can be used to deduce that the only differential operators which are dis-
sipations are quadratic.

Proposition 2.1. Let d be a symmetric derivation on a C*-algebra <J and let
H be an operator defined on a *-subalgebra D(H) of D(dp), where p is a positive
integer, by

= 2
m=o

and Zm^C. Assume that H is a dissipation, i. e.

H(a*a)^H(a*)a + a*H(d), a^D(H),

and further assume there exist positive constants fi, M, sequences of real numbers
{kn} > [In], and sequences {an} , {bn} of nonzero elements in D(H) such that

\im\kn =00;

for m = l, 2, ••• , p and n=l, 2, 3, ••• . Moreover assume that

\\a*bn\\^[i\\a*\\\\bn\\
for all n.

It follows that 2m=0 for m>2 and ^0.
// in addition there is a sequence of non-zero elements cn^D(H] such that

it follows that ^0.

Proof. Normalize the sequences an, bn, so that ||aft 11=1 = 11^11 for all n and
define
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Next if
S(a, b)=H(a*

for a, b^D(H) then

for all a^D(H) and all states co. Hence

|o>(S(a, fc))|B^a>(S(a, a))a>(S(b, b}}

by the Cauchy-Schwarz inequality.
Since ||flJ6J|^^||<2*|l||5J|=^ there exist states co^ such that

Now we exploit the Cauchy-Schwarz inequality in the form

n, an)}a)n(S(bn, &„)) ,

for all n, to prove ^m=0 for ???>2. Define

T(flB , ftB)= S ^{(-:*
m=o

T(a», fln)= SAn{(-iA
771 = 0

T(ftB. ft»)= S ^{(-«7»
7?l=0

Then the estimates in the hypotheses of the proposition immediately give

\\S(an, an}-T(an, an)\\^

\\S(bn, bn)-T(bn, bn)\\^

and hence

\<on(T(an, bn}}+0(l)\z^(<tin(T(an, an))+0(l)Xo»B(T(fr f l, 6J

But

ton(T(an, 6»))= S ^m{(->*»)
771 = 0

where 0(^S~D / 2 ) is a polynomial in /re and kn whose coefficients are uniformly
bounded in n. The estimate follows from \ln ^M\kn\

1'* and the fact that the
highest order term of this polynomial is

Similarly,
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<*>n(T(an, fln)) = 0(fcg;, a>n(T(bn, bn})=0(k%/4},

and the Cauchy-Schwarz estimate gives

Now since | / n l > A * and \(on(a^bn)\^fi/2 for all n it follows in the limit n-^oo
that one must have /^— 0 if 2p— 2>(5/4)/>, i. e. if p>8/3. Iterating this argument
one deduces that

yip — A^-I— ••• — AS— U.

Next we deduce that y^O from the estimate S(an, aJ^O which implies
T(an, aj^0(l). Thus

Evaluating this in a state ft>re with a)n(a%an)=l one concludes that

and hence /?2^0.
Finally if there is a sequence cn^D(H} of non-zero elements such that

lim||a(cB)||/||cB||=0,
7l-»oo

then it follows from

that /10^0.

The primary conclusion of Proposition 2.1 is that the dissipation property
together with spectral conditions forces the differential operator H to be quadratic.
The secondary conclusion is that the remaining coefficients satisfy y£0^0, /}2^0.
But this latter conclusion can be reached for quadratic operators under quite
general conditions.

Proposition 2.2. Let d be the generator of a non-trivial strongly continuous
one-parameter group of ^-automorphisms of a C*-algebra J,. Further let H—1Q

+^+^2^ for some Xi^C and J9(//)=JL. Then the following conditions are
equivalent :

1. H is a dissipation.
2. /^O and /t2^0.

Proof. If H has the given form, then
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and hence 2=>1. We shall now prove 1=>2.
First since d is a generator of a non-trivial group of *-automorphisms r

there exist non-zero elements cn^D(d) such that ||<5c7l||/||c7l||-»0 (for example see
Remark 1.3). Then it follows from the dissipation inequality, by the calculation
above, that

Thus ^0^0.
Second noting that the dissipation inequality is equivalent to

for all a^D(H], we immediately deduce that if X0=0 then ^0. But if
and ^2>0 we may assume X0/2XZ=1 by rescaling d. Then

for all a^D(H), This immediately implies that d is bounded and ||5||̂ 1. There-
fore passing to an irreducible representation in which d is non-zero we may
suppose that JL=B(M) and d=ad(ih) with h=h*^B(3C}. Next choose 2x2 matrix
units in B(M) with respect to which h is not diagonal. This is possible because
d is non-zero, and so h is not a scalar. Then

( a b

b* d

with a—a*, d^d*, and 6^0. But the dissipation inequality ef2Siz^(
applied with

/O 1\

\o o,
gives

/O 0\ Ibb* *

\0 I/ \ * */

and this implies b—0 which is inconsistent. Therefore ^2^0.

§ 3. Applications

If d is unbounded and a generator then it follows from Proposition 1.1 and
Remarks 1.2 and 1.3 that the initial hypotheses of Proposition 2.1 are satisfied.
It is not, however, evident that the approximate eigenelements an, bn, can always
be chosen to satisfy norm estimates

for some /*>0. In this section we demonstrate that these estimates do indeed
follow from a variety of additional hypotheses on Jl, or on (JLt d).
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First remark that if JL is abelian it is relatively easy to use the property
\\(a*)mak\\ = \\a\\m+k to construct sequences ant bn, satisfying estimates of the above
form. This was essentially the method adopted in the proof of Theorem 1.1. B
in [2]. We now consider some other cases.

Theorem 3.1. Let (Jl, R, r) denote a C*-dynamical system and let d denote
the generator of the action r. Furthermore let H be an operator from J.™ into
Jl of the form

p
T-T— Vn — 2^

m=0

and assume H is a dissipation,

It follows that 2n=Q for n>2, /U^O, and /^O, if any of the following four
assumptions is fulfilled.

I. There is a factor representation K of Jl such that the set (j^R', x(JlT(r))^
{0}} is unbounded.

n . There is a representation K of Jl and a non-zero real number j such that the
a-weak closure of the linear span of Tt^jTOOjTO')*) contains 1.

HI. There is a factor representation TT of Jl, and a strongly continuous one-para-
meter unitary group t^R^>Ut—eitK^K(Jl}" such that
a. n(Tt(a))=Utx(a)Uf, aejl, t^R.
b. K is unbounded.

IV. JL is simple with identity, and there is an automorphism a of Jl such that
a. art=rta, t&R.
b. lim||[a, an(«]||=0, a.b^Jl.

n-»oo

Proof. By Propositions 1.1 and 2.1 and Remarks 1.2 and 1.3 the proof of
the theorem reduces to the construction of approximate eigenelements an, bn

with the property

for some ju>0. We treat the four cases separately, but first we prove the fol-
lowing lemma which will be used in proving the above estimate in cases I and
II. (We will actually only need the lemma in the case that TT is a faithful repre-
sentation. )

Lemma 3,2. Let G be a locally compact abelian group, a an action of G on
a C*-algebra Jl, n a representation of Jl, y^G a character, and O^G an open
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subset. Assume

Then there exist an x^Jla(O) and y^Jla(r) such that

Proof. The only properties of the spaces n(Jla(i'}) which are used in the
proof are

7rUa(0)) is a C*-algebra.

With this in mind we delete the K but assume Jl is represented on a Hilbert
space.

Next choose #'e JL"(O), y'^Jla(r) such that x'y'^Q. Then x'y'y'*=£Q. But
by spectral theory there then exists a continuous function /: [0, oo)— >[0, oo)
such that /=0 in a neighbourhood [0, e) of the origin and x'f(y'y'*)±Q. But

x = x'f(y'y'*)*=JLT(0).

Now let g : [0, oo)— »[0, oo) be a continuous function such that g— 0 in a neigh-
bourhood [0, e') with e'<£ but g(t)=r(1/Z) for t^s and put y=g(y'y'*)y'. Then y
is an approximant to the partial isometry U in the polar decomposition y=\y\U
for y and if P is the range projection of f(y'y'*) we have Py=PU* Hence xy
=xPy=xPU. But P is contained in the range projection of U, which is equal
to the range projection of y'y'*. Hence ll^jyil — IMI '\\y\\-

Remark. Lemma 3.2 can be generalized as follows. If Oif O2 are open
neighbourhoods of Ti,Yz^G, respectively, define

d(0l9 02)^s . , . . .
\\x(x)\\\\n(y)\\

Then by a slight variation of the above proof, approximating continuous func-
tions by polynomials, one can show that if

d(n,r^= inf d(0lf O2)>0
^1.02

then

d(Ti, ra)=l-

It appears possible that d(Olt O2} can only take the values 0 or 1 and if this
were the case Theorem 3.1 would be valid with the spectral condition in I
replaced by the assumption that the spectrum of T in the representation n is
unbounded.
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We now return to the proof of Theorem 3.1.

Case I. As ^Mr(— r)) = ^Mr(r))*, the set fre/2, 7rUr(r))^ {0}} is symmetric,
and it follows from the hypothesis that there exist sequences l'n, k'n of positive
numbers in this set such that

and
lim k'n =

Now, as n(JLy is a factor, the cr-weak closures of the ideals x(JlJlT(kf
n}Jl)

and n(JLJLT(l'n)JL) in 7r(jT) must be equal to it(JL)". In particular, this implies that

We will verify the hypotheses of Proposition 2.1 with p=M=l. First note that,
by Proposition 1.1, for each k^R there exists an £=sk>Q such that

;))m) i Jir(C^,n-. . * + l'B + .3) I I<1 ,

)\JlT{Lk + l^^^^

and

for m=\, 2, ••• , p. The intervals Ok = ( k — s k , k+sk) form an open covering of
R, and so the spectral subspaces JlT(Ok) span all elements in Jl with bounded
r-spectrum. It follows that there is a k'n^R such that

We are now going to construct the sequences an, bn^Jl™, kn, ln^R satisfying
the requirements of Proposition 2.1. There are 5 cases.

Case L k'n^k'l As j!r(Ofe-M
r(/;)^0, it follows from Lemma 3.2, applied

with TT equal to any faithful representation of JL, that there exist non-zero
elements an^JLr(-ok^f ba^JlT(lf

n) such that l|aJM = l | a£I I I IM. If we put kn=
— k'n, l-n — l'n, W6 have

</ — /' <bfl/1G<b/fl/i — \b= t 71 - * 71 = « 71 ^«7l - ! « 71

The spectral-concentration conditions of Proposition 2.1 are satisfied because of
the choice of £*».

Case 2. l^k'n^k'n'*. Then pick non-zero an^JlT(—k'n), bneJ.T(Ok'^) such
that \\a*bn\\ = \\a*\\\\bn\\, and put *,=-#,, ln=k£. Then
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and the rest of the argument is as in Case 1.

Case 3. —l^k'^L Then, as

there exist non-zero ans=JLr(-k'n), bn^JLT(Ok^+lf
n) with \\a*bn\\ = \\a*\\\\bn\\. Put

kn = ~k'n, ln = k/
1i + lf

n. Then

Cos* 4. -k'n'^k'^-L Take

(Ln^JlT(-k'n),

Case 5. k'^-kfl/\ Take

'n), kn = -kZ, ln=l'n.

Note that in all cases, l & J ^ & i and hence \\m\k n =00. Thus all the hypo-
7l->oo

theses of Proposition 2.1 are fulfilled, and this ends the proof of Case I.

Case II. It follows from condition II that

and by induction

Thus

for n=l, 2, ••• . In particular this means that

for any y^Jl with ;r(3;)^0, and n— 1, 2, • • • . But then it is easy to verify the
hypotheses of Proposition 2.1 from Proposition 1.1 and Lemma 3.2, with kn=
—ny and ln uniformly bounded. (Again Lemma 3.2 is applied with x equal to
any faithful representation.)

Case III. Note that the hypothesis III implies that Tt passes to a strongly
continuous one-parameter group rr of ^-automorphisms of n(JL)f and hence d
passes to a derivation dK of n(JL) such that

Then d^ is the generator of T*. Now, by [7], Theoreme 3.3 any element of Jl^

is a linear combination of elements \ dt f(t)Tt(a) where f^C™Q(R) anda^cJ. It
JR
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follows immediately that

where ;r(JOco denotes the Coo-elements for the group rr\ Thus, if we define
on ;r(JOoo by

then
//*•*=*-#

and thus H^ is a dissipation.
The conclusion of these remarks is that we may assume that n is faithful

in case III, and we will assume this from now on. We also suppress the nota-
tion n, and assume that JL is faithfully represented on a Hilbert space M in a
representation with the relevant properties.

As T is unitarily implemented, T extends to a a-weakly continuous one-
parameter group of inner *-automorphisms of <3&— Jl". Let M*> be the C°°-elements
of this extended action. Then ^^ is a Frechet space in the topology defined
by the seminorms x^\\dnx\\, n— 0, 1, 2,

Observation 1. // x^M^, then there exists a net xm^Jl^ such that

dn(x)=limdn(xm)

for n=Q, 1, 2, ••• , where the limit is in the a-strong* operator topology on JM,
and the net m^\\dn(xm)\\ is uniformly bounded for each n.

Proof. The group r restricts to a one-parameter group of *-automorphisms
of c^foo, and as

this restricted group is continuous in the Frechet topology on <3/«>. It follows
from [7], Theoreme 3.3 that any x^M^ has the form

i oo

-o
dt

where y^M^ and fk^C^(K] and the sum is finite. By Kaplansky's density
theorem, [5], Theorem 2.4.16, there are uniformly bounded nets m^yk^^Jl^
converging a-strongly to ykj and we may use the same index set [m] for all
the nets. Put

Then xm^J.^, and
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is uniformly bounded in m for each n. Furthermore

lim «B(xm)=(-l)B

=«»(*),

where the limits are in the a-strong* topology, and we have used the following
result.

Observation 2. If T is a a -weakly continuous one-parameter group of
^-automorphisms of a von Neumann algebra M, the maps r/, where f^C^(R),
are a -strong*-a -strong* continuous on the unit sphere of M.

Proof. As (r/U))*=r/(**) it is enough to check that r/ is <7-strong-0--strong
continuous on the unit sphere, and realizing M in a standard representation on
a Hilbert space M we may assume that r is implemented by a strongly con-
tinuous unitary group U and that all the seminorms defining the (/-strong topo-
logy have the form .p->||;t{||, where f e^f. Now, if xm is a norm-bounded net
converging to x (/-strongly we have to show

dt f(t] utxmuK—> dt f(t]
J -oo 77t->oo J -oo

But since \\f(t)UtXmU^~f(t)UtXUt^\\^\f(t)\\\(xm-x)Ut*$l and
m-»oo

=0 for each t, and the family of functions t-^\\(xm—x)Uf^\\ is equicontinuous
in m, it follows that \\(xm— x)U*£ ||— >0 uniformly on the compact support of /,
and hence

Turning back to the proof of Case III of Theorem 3.1, we extend H to
by setting

)= S
m=o

for x^^Moo, where d now denotes the generator of the extension of r to M. If
zej^oo it follows from Observation 1 that there is a bounded net ;emejL such
that dn(xm)-^dn(x) a-strongly* for n=0, 1, ••• . But then it follows from the
derivation property of d and the explicit form of H given above that
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where the limits are now in the er-weak topology. Since //Ij^ is a dissipation
it follows by limiting that H is a dissipation on M^.

Now, by adding a multiple of the identity to the self-adjoint operator K if
necessary, we may assume Oe Spectrum (K}. Let kn be a sequence in Spectrum (K)
such that | & J ^ l & i l ^ l for all n=l, 2, ••• , and l im|£ n =00. Let sn be a

n->oo

sequence of positive reals such that

and

for m=l, 2, ••• , p. (These sn'$ exist by Proposition 1.1; the problem that T is a
weakly continuous group on a von Neumann algebra rather than a strongly
continuous group on a C*-algebra can for example be avoided by restricting to
the strong continuity subspace c3/0 for r,

£' - >• TJ(;C) is norm continuous}

=Norm closure of D(d)

=Norm closure of Uc5ff([— n, n]).)
n

Let £ denote the projection valued spectral measure of K. Then

by [5], Proposition 3.2.43. Since JK is a factor, the left side of this relation is
non-zero. Also, if

and x = U\x\ is the polar decomposition of x, then E([_ — sn, en~])U=U =
UE([-kn-en, -fen+en]) and thus

In particular there exist non-zero partial isometries

and for the same reason there exist non-zero partial isometries
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But then ana%^bnb% and hence

\\a*bn\\ = l=\\a*\\\\b»\\-

Now, putting ln=ki for n=l, 2, ••• it follows from

£B--eB, -A?B+en])

en, 2eB])
and

that all the estimates of Proposition 2. 1 are fulfilled, with ^—1, M=\ki\. This
ends the proof of Case III.

Case IV. It follows from [8] Lemma 2.2 that

lim\\aan(b}\\ = \\a\\\\b\\, a,b^Jl.
n->°o

But since a commutes with T one has a(JlT(K}}=JlT(K) for any subset K^R,
Therefore if K19 K2 are closed subsets of R with JLT(Kt)=£ {0} for /=!, 2, then

{0} . Moreover

Therefore, if ^ is non-zero, the spectrum of r, and of ^, is a group and hence
is unbounded. Furthermore one can construct sequences an, bn, with the pro-
perties of Proposition 2.1 for any 0<^<1. On the other hand the case <5=0 is
trivial.

§4. Multiparameter Actions

Let T be an action of Rv on a C*-algebra Jl, where v—2, 3, ••• , and let
dlt "- , dv be the generators of this action in the v coordinate directions. If a=
(alf a2, •" , av) is a multi-index consisting of non-negative integers, define \a\ =

••• +MV and

In [2] it was proved that if JL is abelian and the action T is free, then a poly-
nomial operator H of the form
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where la are continuous functions on the spectrum X of JL is a dissipation if,
and only if, /«=0 for |a|>2, the uXu matrix [/ii7-(G>)] is negative definite for
all (0<=X where

(1/2)1 a, where ai=aj=l, ak=Q for k^i, j, if i

I a, where oti=2, ak~ 0 for & = £ z , if i=j

and

for all G>. This result has some extensions to the case of non-abelian Jl, but the
analogue of Proposition 2. 1 becomes much more complicated in the general setting.
One has to assume that T has unbounded spectrum in sufficiently many directions.
However, an analogue of Theorem 3.1 in the cases II and IV is easier to for-
mulate and prove, since either of these conditions implies that the spectrum, or
part of the pointspectrum, of r is a subgroup of Rv, and in case IV one has

whenever O19 O2 are subsets of Rv such that JLT(Oi)^Q for i=l, 2. Using this,
and techniques from the proof of Proposition 2.1 and from [2], it is not hard to
establish the following result.

Theorem 4.1. Let (Jl, Rv, r) denote a C*-dynamical system and let H be an
operator from <-£<*> into Jl which is a polynomial in the products da of d1} ••• , dv

with constant coefficients. Assume that H is a dissipation, i. e.

It follows that H has the form

H(a)= ±
i, j=i i=l

where [/^-] is a real, negative-definite matrix and ^0^0, if either of the following
two assumptions is fulfilled.

I . There are a representation n of Jl and non-zero elements ft, ••• , jv in Rv such
that
a. The a-weak closure of the linear span of n(JlT(Ti)JlT(Ti)*} contains I for

2=1, ••• , P.

b. The linear span of {rl} ••• , fv} is Rv.

n. Jl is simple, with identity, and there is an automorphism a of Jl such that
a. a°TT=Tt°a, for all
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b. lim || [a, an(W]||^0, for all a, bt=Jl.

The details of the proof are left to the reader. Note that in Case I the
representation

H= £ IM+ t Wi+Jo
i,j=l i=i

is unique, and in Case II the representation is unique if, and only if, the linear
span of the spectrum of r is all of Ry.

§ 5. Derivations

It is a simple consequence of Proposition 2.1 and Theorem 3.1 that if in
addition to the other assumptions H is a derivation, then it has the form H=Ad

V

(in Theorem 4.1, H= S Ajdj). It is, however, not true in general that a poly-
pi

nomial in a derivation d is a derivation only if it is linear in d, in the same
way that a dissipation which is a polynomial in d is not necessarily of second
order (see Example 0.1). As an example let Jl= Mnj the algebra of all nxn
matrices, and let d=ad(id), H=ad(ih}, where d, h are diagonal self-adjoint
matrices with eigenvalues dif ••• , dn and hi, ••• , hn, respectively. Then, as the
spectrum of d and H are finite, H is a polynomial in d if, and only if, H is a
function of d, and it is easy to check that this is the case if, and only if,

for all pairs i,j. But this is true if , and only if, di—dj=dl'—dj' implies hl-~hj

—hi'—hj' for all i,j, i ' , j f . Thus if all the differences d^—dj are distinct when
i^j, then H is automatically a polynomial in d whatever the values of hlt ••• , hn,
so if n^3 there are examples of derivations H which are polynomials in d
without being linear functions.
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