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A Borel Parametrlzatlon of Polish Groups

By

Colin E. SUTHERLAND*

Abstract

This paper constructs a standard Borel space, PG, and a map p^PG—>G(p} such that
each G(p) is a Polish group, and such that every Polish group is isomorphic to at least one
of the groups G(p) ; PG thus serves as a parameter space for all Polish groups. We formu-
late the notion of a Borel map from a standard B Space to Polish groups, and that of a
Borel functor from a standard Borel groupoid to Polish groups; both are defined in terms
of the existence of Borel factorizations through PG. We apply these ideas to establish a
general "Cohomology Lemma," asserting that cocycles, with values in Borel family of Polish
groups, may be cobounded into a given family of dense, normal, Borel subgroups, whenever
the underlying groupoid is a hyperfinite equivalence relation.

§ 08 Introduction

The purpose of this paper is to provide a parametrization, by a
standard Borel space PG, for the space of Polish topological groups,
i. e. those second countable topological groups whose underlying
topology may be defined by a complete metric, and to present appli-
cations of this to the notion of "Borel functor" from a standard Borel
groupoid to Polish groups. The need for such concepts became
apparent during the course of joint work with M. Takesaki on the
classification of the possible actions (up to cocycle conjugacy) of a
discrete amenable group on a hyperfinite, semifinite injective von
Neumann algebra [12], and the paper can be viewed as preparatory to
this work. However, the point of view adopted also reveals a definition
of A. Connes, [4], of the notion of Borel functor from a standard
Borel groupoid to standard measure spaces, as being very natural.

A common situation in which the problems considered here arise
is the following: if G is a Polish group and X a Polish G-space under
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the continuous map (x, g) ̂ XxG^xg&X, the map x^X->Gx =

xg=x} carries X into the space S(G) of closed subgroups of G. As

in [1], one may endow S(G) with a standard Borel structure, and

the above map is then Borel. However, if for each x, F(GX) denotes

the group of continuous homomorphisms from Gx to T, the groups

r(Gx) do not appear naturally as closed subgroups of any particular

Polish group, and the question of the nature of the map x—>F(Gx)

cannot be formulated without considerations at least similar to those

given here.

The techniques of the paper may also be used to parametrize the

Polish topological spaces. However, this may more easily be accom-

plished by observing that each Polish space X is homeomorphic with

a closed subset of the Hilbert space 12(Z}. One first uses the metric

in X to embed X isometrically in the Banach space Cb(X) of

continuous bounded functions on X; since the image of X generates

a separable Banach subspace of C&(X), one may apply the theorem

of Kadec, [2], on the topological isomorphism of all separable,

infinite dimensional Banach spaces — this argument was brought to my

attention by E. Effros. It may be the case that there is a Polish group

which is universal for all Polish groups in the same sense that 12(Z)

is universal for Polish spaces; however, we have been unable to

establish the existence of such a group.

The paper is organized as follows: §1 constructs the space PG and

establishes that various naturally occurring subsets are Borel; in §2 we

define and characterize the notion of a Borel map from a standard

Borel space to Polish groups; in §3, various operations on Polish

groups, such as taking quotients or duals, are shown to be Borel

maps, and in §4 we introduce and examine the notion of Borel functor

from a standard Borel groupoid to Polish groups. In particular, we

show that the "dual" of a Borel functor to discrete abelian groups is

a Borel functor to compact groups. Finally, in §5, we adapt the

"Cohomology Lemma" of [8] to the context where the coefficient

groups for cocycles on a groupoid are permitted to vary suitably from

point to point along the unit space of the groupoid; in addition we

show that the conclusion of the Gohomology Lemma of [8] charac-

terizes hyperfinite equivalence relations. We have attempted full

generality in §1 and §2, while in §3 and §4 we have proven only
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what Is necessary for application in [12]; many open problems remain,,

This paper was written during the authors sabbattical leave from

U0 N. S. W. at U. C. L0 A. I would like to thank the members of

the Mathematics Department at U. C. L8 A0 for their hospitality, and

to acknowledge the benefit of conversations with Professors Effros,

Moschovakls and Takesaki concerning the content of this paper0

§ 1. The Parameter Space PG

We let N= {0, 1, 2 , , . 0} throughout, and consider the set PG of

pairs (^d)^NNXNXlQ,\YXN satisfying

(A) fj, Is a "group product55 on N, L e,

i) fjt(fjt(m9n)9p)=ft(m9fjt(n9p)) for all 772, n9 p;

il) //(O, 72) =fJi(n, 0) for all n;

iii) k^N->[j.(k,ri) is surjective for each n, as is k—»^(w,£)

(B) d is a metric on N9 i. e.

i) d(m, n) = d(n, rri) for all m, n;

ii) d(m^n)=Q if and only if 772 = 72;

iii) d(m,p) <d(m, 72) + d(n,p) for all 772, 72, p;

(C) (N9 fa d) is a topological group with d left invariant, i. e.

i) if ^(72) is the unique solution to ft(k9 n) =0, then rl(i is

^-continuous;

ii) (i is ^-continuous;

iii) d ( { j t ( m , n ) , / /(m,/0) =d(n9p) for all 772, 729 p.

We give NNXN and [0, \YXN the product topologies; they are

themselves Polish spaces.

Theorem 1.1. The space PG of pairs (/*, d) ^NNXNX [0, l]*x*

satisfying (A), (B), (C) above is a GSad subset, and hence a standard Borel

space in the relative Borel structure.

Proof. Since for each 772, 72, the evaluation map (/jL9d)-*((Jt(m9 72),

d(m9 72)) is continuous on NNXNX [0, l]*^, the conditions (A) i),

(A) II), (B) i), (B) iii) and (G) iii) each define "closed subsets of

the total space,,

Since (//, rf) satisfies (A) Iii) if and only if it belongs to
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r\r\\j{([ji,d) : [J,(k,ri) =1], condition (A) iii) defines a Gs set; since
n I k

(^, d) satisfies (B) ii) if and only if

):d(m9m)=Q} n r\ {(p,d): p(m,

condition (B) ii) also defines a G8 set.
Note that {(//, d) :*>(«) =m} = {(/*, rf) :/*(m, w) =0}, so that (/£,

r^(w) is continuous for each 72. Thus if n^ M and N are fixed,

is a GS set. Since (//, rf) satisfies (G) i) if and only if it lies in
r\ \jE(n^ TV, A/), (G) i) defines a Ggas set. Similarly, if 7720, n0, M and

(n0,AT) M

N are given, E(m0, «0, M, N} = r\ {(//, rf) : ^(//(TTZ, w), //(TTZO , WoJ
(w,n)

where we take the intersection over pairs (m, n) with rf(m,
and d(n,no) <^M~l, is G0. Since (f£9d) satisfies (G) ii) if and only if
it lies in r\ \jE(mQ, nQ, M, TV), (G) ii) defines a G5£T5 set also. G

M

Note that for (//, rf) ePG, the completion of the metric space (TV, </*),
where 2fi?* (m, w) =d(m, n) -\-d(t:fl(rri), ^(w)) is a Polish topological group,
since this completion is homeomorphic with the uniform space comple-
tion of (TV, (A) in the two-sided uniformity defined by d\ we shall
denote this group by G(ft,d). Since every Polish group admits a
countable dense subgroup and a left invariant, bounded, metric
compatible with the topology (see, for example, [9]), every Polish
group is isomorphic, as a Polish group, with some G(fjt,d).

We recall the following construction of the completion of a metric
space (X, d). We may assume d(x,y) <\ for all x9 y^.X, and embed
(X,d) isometrically in C6(^)5 the space of bounded continuous
functions on X with the uniform norm, via x-><p8

X9 where <p8
x(v) =S(x,y).

The completion of (X,8) is isometrically isomorphic with the uniform
closure of {(p8

x : x EE X] in C* (X} . In our context, we will regard (TV, //, d)
d*

as embedded in [0,1]* via the map n~>(p(£id) =<pn
a; we write @(/ji,d) =

{^f-d): raeTV}, and Q(fJL,d) for the uniform closure of 9([jL,d). Note
that [0, 1]* is a Polish space in the product topology, although not
in the uniform topology since this is not separable; however, both
topologies generate the same standard Borel structure.

We define
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Theorem 1. 2. a) & <& is a standard Borel space in the relative Borel

structure,

b) & & has the properties

i) the projection TT : & <3 ->PG is Borel;

ii) the relative Borel structure on G(JJL, d) = n~l(fj,y d) coincides with

that generated by its topology,

iii) the maps

and

are Borel, where &<$*&<$ is the set of all (0, W) e & 9 X

with 7r(@)=x(¥).

iv) there is a countable family , {0fe} , of Borel maps from PG to & &

with <f>k(/jt,d) eG(//, d), with

a) {0fc(j«, d) : k^N] a dense subgroup of G(fJt,d) for each

(//,</) ePG, and
b) for each k, the map <{)<= & & ->\\<f>-<t>k(x(<f>^ \\ is Borel.

In the statement of iii), // and r^ have been extended from 0(/j,d) to

Proof, a) Note (p,d,<p) ^& & if and only if (//, d, <p)
IV ra m

E(n,m,N), where E(n9m,N) = {(^,dy(p) : \d*(n,m) —<p(m) \<^N~1} ;since
each E(n,m,N) is open, ^^ is G^a.

b) Properties i) and ii) are obvious. To show iv) a) we define

#>*(//, rf) =^lrf), and the claim is clear. To show iv) b), note that the

map (^,rf,^)ePGx[0, lY-*\\<p-<Pk((*,<t)\\ is Borel in (//, d) for fixed
^>, and continuous in p (with respect to the norm topology) for fixed
(ft, d), and hence Borel as a function of two variables; iv) b) follows

immediately.

To show iii), it suffices to show that the functions (jLt9d9(p9(p)~>

M^»0)(rc) and (ft, d, <p)->ru(^) (72) are Borel on the appropriate

domains, where (//, d, 0, ^) denotes the element (/^ rf, ̂ y //, rfy 0) in
&&*&&, But if C/C[Q, 1] is open, //(p,0) (w) et/ if and only if
there is an open set F with ^(^, ̂ ) (w) eF^FC[/? and hence if and

only if (p,d,v,<p)er\yyE(k,j9l,V) v/here E(k,j, I, V) = {(/*, d,y>,<p):

-* and ^cjfi,(;i)e^. Since each
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E(kyl,j9V) is Borel (using iv)), and V may be chosen to run

through a fixed countable basis for the topology of [0,1], (f£9d,<p,<p)

—>//(^>, ^) (n) is indeed BoreL A similar argument shows that (^d9<p)

~*Tti(<p) W is also BoreL

Remark 1. 3. The argument in the proof of iii) above is easily

modified to show that if (fJt9d)->g(fi9d) is a map from PG to & &

with g((j,9d)^G(fJ,9d) for each (/*, rf) (i. e0 g is a section for TT), then
g is Borel if and only if (fjt, d)->\\g(/ji, d) — <pk(f*9 d) \\ is Borel for each
k. Also, if g, gf are two Borel sections for TT, (p, d) -*\\g(fJt, d) —g'({*9d)\\

is BoreL

Theorem 1.4* Let (*) denote any of the following properties which

a Polish group might have: discrete, abelian, compact ^ locally compact. Then

{ ( f £ , d ) ^ P G : G(fi,d) satisfies (*)} is BoreL

Proof. Since G(f£,d) is discrete if and only if d(m,n)^>N~l for

some N and all m, n with m^=n, and since G([i9d) is abelian if and

only if [*(m, n) =fji(n, m) for all m^ n^ both these sets are BoreL

For the compact and locally compact cases, let Br(<p) denote

and let Br(<p) denote its uniform closure. Note

that G(p,d) is compact if and only if G(//,<0 n52(po(M)) is totally
bounded, while G(fi,d) is locally compact if and only if G(fJi9d) n

5M_i(^ i < Z )) is totally bounded for some integer M. But G(//, < f ) n

Br((p^'d}} is totally bounded if and only if for each integer ^>0, there
is an integer N with

But this occurs if and only if

\j
I n=l

where the intersection is over those Z7s with ||^Z
(M)— ̂ '^IK^ and

Since (^9^)->|b/( / />d)— rf'^H is Borel, the desired conclusion follows. G

Remark 2. 5. Using the F01ner condition, [6], it is routine to verify
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that {(jJ^d) • G([JL,d) Is discrete and amenable} Is Borel In PG. We lack

the necessary measure theoretic considerations to handle the case of

locally compact amenable groups. In general, algebraically defined

classes of groups are easily seen to be Borel, while topologically or
analytically defined groups are much more difficult to handle.

§ 2o Bore! Maps to Polish Groups

In this section, X denotes a standard Borel space— implicitly, we

assume X Is uncountable,,

Definition 20 1. If, for each x^X, Gx Is a Polish group, we say

the map x-*Gx is Borel if there is a Borel map f:X-*PG, and maps
[6X: x^X], with Qx\ Gx->G(f(x}} an isomorphism of Polish groups

for each

Remark 20 2B If x^X->Gx is a Borel map to Polish groups, the

map / of Definition 2. 1 may be chosen injectlve, as follows,, If

f(x) = ([J-xi dx) and 0X are as in the definition, we may suppose N has

^-diameter 1, and define d'x(m, ri) =dx(m, ri) ( a ( x ) + dx(m, n)) -1, where

a Is a fixed Borel Isomorphism of X with — , 1 . If now f (x) =

(f*x,d'x), /' is injective, and/' and [6X] satisfy Definition 2. 1. When
appropriate, we shall assume f has been made injective via this device.

Theorem 20 3* A map x-^Gx from a standard Borel space X to Polish

groups is Borel if and only if Y= \JGX admits a standard Borel structure

such that
i) the projection niY—^X is Borel^

ii) the relative Borel structure on Gx = n~l(x') coincides with that

generated by the topology,

iii) the maps (y,y') ^Y*Y= {(_?,/) GEFxF: TT(J) =*(/)} -*y

and jyeY-^^eY are Borel,

iv) there are countably many Borel maps gk: X-^Y with gk(x)

for all x, and metrics dx on Gx, compatible with the topology^ such

that
a) (gkW '• k^N} is dense in Gx for x^.X]

b) the map y&Y-*3Kw(y9 ^4(^(jv))) is Borel for each k^N.
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Proof. Suppose x->Gx is Borel, and f, 0 are as in definition 2. 1,

with / injective. Since f(X) is thus Borel in PG, Tc~l(f(X)} <^&& is

Borel, where n is the projection of & & onto PG,

But GG* and n~l(f(X)} are in bijective correspondence via the

map 0, 9(y) = (/(rc (j>) ) > 0 f fooOO)j and we endow QG* with the unique
Borel structure for which 0 is a Borel isomorphism. The properties

i) -iv) follow from the correspoding properties of 3P <3 established in

Theorem 1. 2.

Conversely, suppose that \jGx admits a standard Borel structure,

sections {gk} and metrics dx satisfying i) -iv). In order to mimic the

structure in ^^, we must

a) modify the functions gk so that gk(x) ^gi(x) for all x and £=£/,

and so that {gk(x) : k^N] is a group, and

b) modify the metrics dx so as to be left invariant.

To achieve a), define hQ(x) =lx, the unit element of Gx.

By considering finite products (in any order) of the gk(x) and

their inverses, we find a sequence {g'k} of Borel sections such that

{gk(x) •' k^N] is a dense subgroup. Now define hk inductively by

hk(x) =g'i(x) if I is the smallest index for which gt(x) ffi {hQ(x),... ,
hk-i(x)}. The sections hk are Borel and have the desired properties.

To achieve b), let <&x be the left uniformity of dx. The proof of

the Metrization Lemma [9] produces metrics d'x on Gx which are left

invariant with uniformity &x. Further, since it is possible to choose

bases Un(x) for S£x in such a way that Un(x) 9 Un(x) ° Un(x) ^Un-i(x)

and {(x,y,y')^XxYxY\ (y,y'} ^Un(x)} Borel, the resulting metrics

dx still satisfy condition iv) b). (Our notation is as in [9, p. 186]).

With these modifications, define (ix and dx on NxN by gm(x)gn(x)

=&,(«,») W and dx(m,ri)=dx(gm(x), gnW). Note (^, dj &PG, and

x-*((*x9dx) is Borel. The completion GCjH*,^) of ( N 9 f t x , d * } is evidently

isomorphic as a Polish group with G*, and the result follows. Q

Under some conditions one may conclude that x-^Gx is Borel under

somewhat different hypotheses.

Proposition 2,4. Suppose x-*Gx is a map from a standard Borel space

X to Polish groups, and that there are metrics d'x on G*, and countably

many sections g'k: X-* \j Gx with
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a) d'x left invariant and compatible with the topology on Gx,
b) [gk(x) '• k^N] is a dense subgroup of Gx for all x,

c) the functions x-^d'x(gk(x) , //(*)) and *-»5i (&(*)&(*), £«(*)) are
Borel for all &, I, and m.

Then there is a unique Borel structure £8 on QG* for which the
sections gk=gk o,re Borel and such that 38 ̂  gk and dx=dx satisfy the
conditions i) -iv) of Theorem 2. 3.

Proof. Since g((x)=g\(x) if and only if d'x(g'k(x), &(*)) =0, we
may assume by "cutting and pasting" that g'k(x) =£g'i(x) for all x
wherever k^=l.

Define px and dx on NxN by

&W =&(«.») W, and

As in the proof of Theorem 2. 3, we may suppose that #—»/(#)
= (fa, dx) ePG is injective and Borel. If Ox : GX-^G (f(x) ) is determined
by 0,(ft(*)) =<Pk([**> 4) the map 9: \jGx-^^l(f(X)) given by 8(y) =
(/(^(jv))? 6i(y)(y}} is injective, and, as in the proof of Theorem 2a 23 we
give u Gx the Borel structure & for which & is an isomorphism.

To show that ^ is unique subject to conditions i) -iv) of Theorem

2. 3 we note that 0,(ftOO) ("0 =^*>'*) W =#(*,"0 =a*^W, ^W);
in view of the density of (gk(x) '• k^N] in G^ we conclude that
6x(y) (m) =d* ( y , g m ( x ) } for all y^Gx. Thus 9 is a Borel isomorphism
of \jGx with K~l(f(X)) if and only if TT is Borel and y-*Qicw(y) is
Borel, and hence if and only if TT is Borel and y~^GK(y}(y) (m) =

d%w (j^j gm(?c(y)}} is Borel for each m. Thus any other standard Borel
structure on \jGx satisfying i) -iv) coincides with 38. Q

Remark 20 5. If f':X-*PG is a Borel map, and f:X-^PG is the
injective Borel map associated to f as in Remark 20 2, the Borel
structure which n~l{x:f'(x) =f'(x^} inherits as a Borel subset of
n ~ l ( f ( X ) } is just the product structure on f'~l(f(xv)) XGXQ, In

particular, it is independent of the map a : X~>\ — , 1 used in the

construction of/.
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We now proceed to compare our notion of Borel map with the
more familiar notion of "Effros Borel" map, as in [3] and [1]. Recall
that if H is a fixed Polish group, the space S(H) of closed subgroups
of H has a standard Borel structure generated by the sets {G^S(H):
G^A}y where A runs through the closed subsets of Hi we refer to
this as the Effros Borel structure on

Theorem 2. 5. Suppose x-^Gx is a map from a standard Borel space

to S(H). Then x->Gx is Effros Borel if and only if \jGx = {(x,g) :g^Gx}
^XxH is a Borel subset of XxH satisfying condition iv)a) of Theorem
2. 3, (existence of enough Borel sections} . If x^Gx is Effros Borel^ then
it is Borel, i. e. \jGx^XxH also satisfies conditions i), ii), iii), and iv)
b) of Theorem 2. 38

Proof, Suppose x-+Gx is Effros Borel. Note that for fixed
x-*d(GX9g) is Borel in x, since d(GX9g)^>^ if and only if GX^

~B£+n-i(g) for some n, where Br(g) = [h^H:d(h, g)<r} and d is a

metric on G compatible with the topology . Since (x,g)-+d(Gx,g) is
also continuous in g for fixed x, (x,g) -*d(Gx,g) is Borel in (x,g) and
{ ( x , g ) : g^Gx} = {(x,g) : d(Gx,g)=0} is Borel. The relative Borel
structure on 0 Gx evidently satisfies conditions i) , ii) , and iii) of
Theorem 2, 33 since the maps (x, k) -> (x, h~l) and (x^hyh

r)-^(x9hh/}
are Borel on XxH and XxHxH. Condition iv) a) follows from
[3, p. 82], and condition iv) b) follows since, for a fixed Borel section
x-^-g(x) £://, the map (x9g)~^>d(g9g(x)>) is Borel, being Borel in x for
fixed g and continuous in g for fixed x.

Conversely, if {(x9g) : g^Gx} ^XxH is Borel and gk are Borel func-
tions on X with (gk(x) '• k^N] dense in Gx for all x, then, if A^H
is closed, {x: Gx^A}=r\{x: gk(x) ^A] ; this set is thus Borel, since

gk are also Borel as maps into H. []]

§ 3a Operations on Polish Groups

Throughout this section, X denotes a standard Borel space0

Theorem 30 L Let x~>Gx be a Borel map to Polish groups. Then

i) if [Gx? GX] denotes the closure of the commutator subgroup of Gx,
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*-»[G,,GJ is Borel;

ii) if x-+Nx is a Borel map to Polish groups with Nx a closed normal

subgroup of Gx for each x, and \j Nx a Borel subset of u G^, then

x-*Gx/Nx is a Borel map.

Proof. Let {gk: k^N} be the Borel sections of \jGx provided by
Theorem 2.3. If h k i l ( x ) =gk(x}gl(x)gk(x)~lgl(x)~l, then each hkj Is a

Borel section of \jGx with h k i l ( x ) e [G*, GJ for each x^X. Taking
products and inverses, we find a countable family {gk: k^N] of

Borel sections of \jGx whose values at each x form a group dense in

[GX,GX~]. If {dx: x^X] are the metrics on Gx provided by Theorem

2.3, then *-></,(&(*), &(*)) and x-*dx(gk(x)g\(x\ g'mW) are Borel
for each A, Z, m, so that x-*[Gx, GJ is Borel by Proposition 20 40

If TV* is as described in ii), let { f̂} be the countable family of

Borel sections for u Nx, and let dx be as above0 Let d'x be the quotient

metric on HX = GX/NX, so 8x(h,h') = inf{dx(g,g') : g^h, gr^h'}, and let

hk(x) be the image of gk(x) In Hx. Note that for each x, {hk(x} :k^N]

is a dense subgroup of //, and d'x(hk(x)9 h i ( x ) ) =mfnindx(gk(x)gZ(x'),

giWgnW) is a Borel function of A: since the functions x-^>g^(x) are
Borel as maps to \JGX, \jNx being a Borel subset of '\jGx, Again,

Proposition 2. 3 shows that x—>Hx = Gx/Nx is Borel. Q]

We now turn to the formation of dual groups. We believe that

the map ({£,d)->G(fjt9dy is a Borel map from LCAG= {(//, rf) : G((Ji,d)

is locally compact abelian} to Polish groups, although we have been

unable to prove this. Any proof of this conjecture would presumably

involve a suitable "Borel choice" of Haar measures for G (//, d) —note

that the proof in Theorem 1. 4 that LCPG is Borel shows that one

may choose a Borel set K in {(jJ.,d,(p) : (/*, rf) e LCPG and peG(//, of)}

such that for each (//,i), K(^,d) =Kn {(^,d,(p) : <p^G(fi,d)} Is a
precompact neighbourhood of the Identity in G(fjt,d), Presumably, if

one chooses Haar measures m (Aid) on G(fjt9d) with m ^ ^ ( K ( f j t , d ) ) =\9

then (fi,d)-*m(flid) is a suitable choice,, Even if this is the case,
however, completing the proof that (fjt,d)-*G(fJi9d)^ is Borel on LCAG

would seem to require a considerable amount of auxiliary machinery,,

For this reason we will consider here only the case of discrete abelian

groups, where more elementary techniques suffice,,
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Theorem 3. 2. Let DAG = { (//, d ) e PG : G (//, rf) w discrete and abelian] .
Then (ft,d)

Proo/. Let {&: £eJV} be Borel sections for \J [G(fJL,d) : (/Jt,d)
&DAG], as provided by Theorem 2.3. Let Z°° denote the countable
direct sum of copies of Z, and define for each (//, d)

where ek^Z°° is the element all of whose entries are 0, except the kth,
which is 1. Note a(fti^ extends to a surjective homomorphism, also
denoted by a^id)m Let H(fJt9 d) =ker a^ii)9 so that G(^, d) ~Z°°/H({jt, d)9

and G(^,rf)A~//(^, d/)-1-, where H(^d)-1- is those elements of (Z08) A =

HT which are one on H ( f t , d ) . It suffices to show that {(/*,*/,%):
o

I^H(^d)-1-} is a Borel subset of DAGxT", and that this subset
possesses a sufficiently large family of Borel sections— it is clear that
the conditions i) , ii) , iii) , and iv) b) of Theorem 2. 3 are satisfied,
where we use (the restrictions of) an invariant metric on TN which
is compatible with the product topology.

Note that if n= (nQ, HI, . . . , nm, 0, . . . ) eZ°°, then n^H(fJL9d) if and
only if we have // (TZO, // (nlt JJL (. . . , p (nm-i, n „) ) . . . ) = 0, so that { (//, rf, n) :
n^H(fJi9d)} is Borel in DAGxZ00. Thus there are countably many Borel
maps [hk: k^N] from DAG to Z°° with

We claim that (fjt,d)-^H(/jtJd)-L is Borel from ZL4G to the space of
closed subgroups of TN equipped with the Effros Borel structure. For if

FCTis open, and U3(V) = (TIT) X Vx (HT), then H(fji9d)-LnUJ(V)
i j+i

=£ 0 if and only if 1 e^<F, hk(p, d) j\ where h^fri)} is the /*

coordinate of hk (ft, d) , and <( , )> is the pairing of T with Z". But
for fixed V, the set of (p, d) 's satisfying this condition is Borel ; since
every open set in TN is a countable union of finite intersections of
sets of the form t//(F), for V chosen from a fixed countable basis for
the topology of T, we see that {(f£,d) : H(]uyd)-LnW^ 0} is Borel for
each open W in TN.

The existence of countably many Borel functions %* : DAG~> TN with
{%k({*,d) : k^N] dense in H({j,,d)A- now follows from [3, p. 82], and

)^ is Borel as required. G
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§4» Borel Functors to Polish Groups

In this section, ^ will denote a standard Borel groupoid, with
range and source maps r and s', thus & is a standard Borel space
which is also a small category with inverses, and for which the maps
r^ & ->r"le ^ and (7-1,7-2) e 0 (2)^TiT2^ & are Borel. Here ^(2) denotes
the set of composable pairs, ^ (2)= {(^ ^2) : r(p2) = 5(7-1)} ; ^ C2) is by
assumption a Borel subset of ^ X ̂ . The space of units (objects) of
& will be denoted X (for further discussion, the reader may consult
[10], [4]).

We shall consider the space of Polish groups as a category; Horn
(Gi, G2) will be the set of homeomorphic isomorphisms of GI with G2.
In considering functors F, covariant or contravariant, from & to the
category of Polish groups, we shall use the notation (Fx, Fr) to
distinguish groups (Fx) from morphisms (F7).

Definition 4.1. A covariant functor F= (FXJ Fr) from & to Polish

groups is Borel if

i) x-*Fx is a Borel map to Polish groups]

ii) the map (f,g) t= & *F->FT(g) ^ \j Fx is Borel, where

&*F=[(r,g)&& X\jFx: 7r(£)=j(7-)}, and \jFx is given the

Borel structure described in the proof of Theorem 2.3,

Thus we require that the action be compatible with the canonical
Borel structure on (jFx. A similar definition applies to contravariant
functors.

Example 4» 2. Suppose G is a fixed Polish group, and X a Polish
G-space under the action (g, x) ^GxX-^gx^X. The space GxX
becomes a standard Borel groupoid with unit space [e] X X, or just
X, under the product (g,g'x) (g',x) = (gg',x). If Fx= feeG: gx = x}9

then as is well known, x-+Fx is a Borel map to Polish groups; if
r = ( ^ f ^ ) 5 the map Fr: h^Fx->ghg~l^Fgx is an isomorphism of Polish
groups, and F= (Fx, Fr) is a covariant functor. In this case, we can
identify \jFx with {(x,g) : g^Fx}, and ^*Fis identified with { ( h , x , g ) :
g^Fx] ^.GxXxG', the above "action map" is precisely (h,x,g)-^
(hx, hgh~l). Thus F is in fact a Borel functor.
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Theorem 4. 3* Let F= (FX9 Fr) be a Borel functor from the standard
Borel groupoid & to discrete (Polish) groups. For x^X and ?^&, let Px

be the homomorphisms from Fx to T, and let Fr be the transpose of Fr

Then F=(Fx,Fr) is a Borel functor (with variance opposite that of F).

Proof. We treat the case where F is covariant. Since Fx is the
Pontrjagin dual of the abelian group FX/\_FX,F^\, x->Fx is Borel by
Theorems 3.1 and 3.2. If {hk: k^N] are Borel maps from X to
UFX/\_FX,FX~\ with { h k ( x ) i k^N] = FX/[FX, Fx~\ for each x, then the

functions fk defined on 0 Fx by

/»(*) = (*(*), <x A (*(*))»
are Borel and separate points on \jFx. Thus the functions fk generate
the Borel structure in 0 Fx. Also, for each k, the map (j-, %) e & *F-^>

ft(Fr(i)} is Borel, since

/* (Fr (I) ) = (Kr) , <fr (I) , h, (r (r) ) »

since ^"^(r"1? ^( r(r))) ^&*F is Borel, ^~>^?
( -i (hk(r(f)}} ^\jFxis also( -

Borel. Thus (7-, x) ̂ &*F-^Fr(x) e u^ is Borel. D

The need for this result in [12] is one of the principal stimuli
for the present work; the other follows.

§ So The Cohomology Lemma ; Converse and Extension

In this section, 3C will denote a standard Borel groupoid for which
r~l (x) n J"1 (#) = {x} for each unit x^X, and for which r~l(x) is
countable for each x^X', thus Jf may be viewed as an equivalence
relation on X with countable equivalence classes and Borel graph.
Also, we will denote by m a measure on X which is non-singular for JT?

i. e. such that m(^T(E))=0 whenever m(E) =0, where Jf (E) = {x<=X:
for somejyeE1, (x9y)^3f}. We will refer to (J^,m) as a measured
discrete equivalence relation, as in [5].

If G is a Polish group, a G-cocycle on (JT, m) is a Borel map

/?: Jf->G with p(fif^) = p(fi)p(?2) a. e on Jf(2) — see [5] for the precise
meaning of "a. e on <>f (2)35 above.

Also, we shall say that (Jf, TTZ) is hyperfinite if there are Borel
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equivalence relations $fn on X with finite equivalence classes, with

tfn^tfn+i for each n, and Jf n (XQ XX0) =GjfnH (X0X XQ) , where XQ

is some conull set in X.

The following "Cohomology Lemma55 is proven in [8], which

corrects an error in [11],

Theorem 5* 1. ([8; Appendix}), Let (tf,m) be a hyper finite measured

discrete equivalence relation. Let G be a Polish group with H a normal

Borel subgroup of G, and let p^ p2 be G-cocycles on (Jf, //) with p\ = p2

mod H a. e on Jf. Then there is a Borel map P : X->H such that

pi = p2 mod H aa e,

Here H is the closure of H in G, and p \ ( j ) = P ( r ( f ) } pi(j)P

Here, we shall present a generalization of Theorem 50 1 (see

Theorem 5.5) and a converse (Theorem 5. 2), The existence of

such a converse was asserted by A0 Gonnes at an informal conference

held in Oslo in July, 1978, and is doubtless known to many; we

include a proof for completeness sake. Notation will be as above,

Theorem 5e 20 Let (JT, m) be a measured discrete equivalence relation

with the property that whenever G is a Polish group, H is a normal Borel

subgroup of G, and p^ p2 are G-cocycles on (Jf, m) with pi = p2 mod H

a. 6, then there is a Borel map P : X->H with pi = p2 mod H a, e. Then

(Jf ? m) is hyper finite,

Proof, We assume each equivalence class in JT is infinite. Let

jtf = l°°(Z), and G = Aut(j/) be the group of automorphisms of j/ in

its usual standard Borel structure, [7]8 Note that any O^G is of the

form ($(/)) (n) =f(^(n)) for some permutation TCQ of Z. If Hn is

the subgroup of G corresponding to the permutations with support in

{ — n, — ?2+ 1, . . . , n — 1, n}, H=^jHn is normal, Borel and dense in G.

For each x^X, let st (x) =l°°(r-l(x)) , and for (x,y) eJf, define

L(x,j;):^O)->^W by (L(*oO./) (*)=/(*), for /e^W- Since
x— ><z/(x) is a Borel field of von Neumann algebras, and each si (x) is

isomorphic with j/, we may choose a Borel field x-^>ax of isomorphisms

-*si. Thus if p(x,y) =ax ° L(x,y) s a~l, p is a G-cocycle.
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By our assumption, there is a Borel map x->P(x)^G such that
a(x,y) = pp(x,y} ^H a.e. But then, if tfn=a~l(Hn\ tfn has finite

oo

equivalence classes and, up to a null set, Jf = WJfn as required. G
i

We now turn to a generalization of Theorem 5. 1. Our objective
is to allow the groups G, H of the theorem to vary in a suitable
manner from point to point over X. Let F be a (covariant) functor
from Jf to Polish groups, and let \jFx have the standard Borel
structure provided by Theorem 2. 3.

Definition 5.3, If for each x^X, Nx is a normal Borel subgroup
of Fx, we write N<]F in case \jNx is a Borel subset of \jFx, and
Fr(NsW)=NrW for all

Note if 7V<]F? we may consider N=(Nx,Nr) as a functor by taking
Nr = Fr restricted to NsW.

Definition 5. 4. If F is a covariant Borel functor from Jf to

Polish groups, an F-cocycle on (Jf, m) is a Borel map p:

rw with p(riri=p(riFT(p(ri) a-e on

Theorem 5. 5. Let ($f, m) be a hyper finite discrete measured equivalence
relation, let F be a covariant Borel functor from Jf to Polish groups, and

let pi, p2 be F-cocycles on (Jf, m). Suppose that for each y^.3C, p\(f) ~
p2(r) mod NrW9 a.e. tf(2} where N<\F. Then there is a Borel function
P:X-*\jNx with P(x)^Nx and

p2(r)=Pi(f) mod NrW a.e,
where pi (r) =P(r (r) ) PL (r) F7 (P (s (r) ) ) -

1.

The proof is modelled on the proof given in [8] of Theorem 5. 1,
and ultimately depends on remarks of A. Gonnes made during a
conference held in Kingston, Canada, in July 1975. Throughout, dx

are the complete metrics on Gx provided by Theorem 2. 3 ; note that
^\jGx is a Borel set.

Lemma 5. 6. Let F, N, pi, p2 be as in Theorem 5. 5, let x-+ e (#) >0
be a Borel function on X, and let £?^tf be an equivalence relation with



A BOREL PARAMETRIZATION OF POLISH GROUPS 1083

finite equivalence classes. Then there is a Borel function Q: X-> U Nx with
and a Borel function n:<2?->\jNx with

ii) £(&(*), l,)<e=00 for
in) Q,(#) =lx on some section for J5f.

Proof. We may suppose that each equivalence class under £? has
/ points, and choose a Borel partition, [LJ9j = 09 1,. . . , / — ! } of X such
that each Lj is a section for =£?, i. e. meets each ^-equivalence class
precisely once.

Define Q,00=l* for

For rej-^Lo), define

and note that

is a Borel subset of ^(Lo) X (\jNx) whose projection on s~l(L0) is all
of s~l(Lo). By the von Neumann measurable selection theorem, there

is a measurable map n:^^s~l(L^)-^n(j) with n(y) EEZ)e(70 for each
7*. We may assume w is a Borel function after deletion of a suitable
null set, and that n(x,x)=lx for xEiLQ since Pi(x,x) =p2(x,x) =lx for

Define Q^ on X—LQ by

0,00 =n(y,x) ~lp2 (y, x) pi (y, x) ~\

where x&LQ is the unique element with (y,x)^&. Note Q is Borel
on X^ and satisfies conditions ii), iii) of the Lemma. Also, if
(yiZ^fEJ? is arbitrary and x^L0 is the unique element with (y,z) =
( y , x ) (^, A;)"1, a routine calculation using the (a. e) identities Pj(y,z) =

p j ( y , x ) F ( y i X ) ( p j ( ( z 9 x ) - 1 ) ) for j =1,2 shows that p2(y,z) =n(y,x)$(y,z)
F(y,Z)(n(^9x)~l). In view of the normality of Nx in F^ and the
invariance under F i. e0 FY(Ns(r^ =Nr(r}, the Lemma follows. Q

Lemma 5o 7. L^^ Jf , F, TV, ^, ^2, & and e i* ^^ in Lemma 5. 6,
<2?zrf let 0, 72 fo ^ in the conclusion of Lemma 5.6. Let Jt be an
equivalence relation on X with finite equivalence classes with =£? c ^ c jf ?

and let d^>Q be given. Then there are Borel maps ri \J£— > \j Nx, R\X-+ \jNx

with
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, R(x))<dfor
iii) R(x) =lx on some section for
iv) ri(7)=n(*[) for

Proof. We may assume that the equivalence classes under & and
Ji are of constant size / and m respectively. Let {Lj,j = Q9 ! , . . . , /—!}
be as in Lemma 5.6, and set ^Q = ̂ Ci (L0xLQ) ; ^° has equivalence
classes of size mQ = ml~l

a

For XQ&LQ, define

B (*0) - fee F,_ : max dx (Q(x) ft (*, *0) -F^ v (g) ft (*, *0) ~\ aW ) >^}
0 (*,*0)e.S? u

and e0W =dx(B(x), 1J for x^LQ. By our hypothesis, e0 is Borel,
^oM>05 and we may apply Lemma 5.6 to ^°3 ft |̂ °5 p2\^

Q and
e0; thus there are Borel functions w03 Q^o with

i) ft(r)=»o(r)rf°(r) on ^
ii) rf*(Qj(*),l*)<e0(*) on L0;

iii) QjW =lx on a section for Ji^.
We also have nQ(-f) ^NrW and QQ(x)^Nx. for 7-^^° and

Note that for any ^eX, there is a unique xQ^L0 with
we define then

R (*) = d(^) ft (^, ^o) ^,*0) (Q,o Oo) ) ft (^, A:O) ~\

so that /2 is Borel. Also, 40(Q,o(^o), L0)<e0(^0) =dXQ(B(xo), 1^), so
; thus

, aw ) - 4 caw ft (*, ̂  FC,. v ca0 c^0) ) ft c*f *0) -
1, aw )

is less than 5, and condition ii) is satisfied. Also, if x^LQ, x = x0 and
R(x) =Qj$(x)i so that condition iii) is also satisfied.

If (#,j>) £=.Jt is arbitrary, there are unique elements ^03 jo^LQ with
(^,^0)eJ2f, (7o,jv)^^ and (x^y^GiJP, such that (^,j) = (x, x0) (xQ9jo)
(70^)- Using the cocycle identity for ft and p2, one obtains by
laborious calculation,

p2 (x9y) p? (x,y) ~1 = n/ (x,y)
= HI (x,y) n2 (x,y) n (x, *0) ,

where

\ (x,y) = p2 (x,yo) F(Xiy^ (n (
Q) F(XtXn} (nQ (xQ,y0) ) p2 (x,
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The calculation above may be done as follows:

= p2 (*,j)>o) F(x^ (p2 (y^y} F( %30 (R (7) ) ) ft (*,jO

which, on substitution for J?(jy), replacing ftC^oOO by n (y^y) Q_(yo)

Pi Oo,J)0 0,00 "1, and remembering QXjVo) = 1 = ft 0>o, jO F^y) (pi (y* Jo) )
yields

«i (*O>) ft (X>) PC*. V (Q,o 0>o) ft 0>o,J>0 ) ft (x, jO ~IR (AT) -1.

Replacing ft(*,jp0) by ft(*,*o)Pcx,*0>(ft(*oO>o)) and using

r) on ^° now yields

(PI (

and further substitution of (np?)(x,xQ) for p2(x,xQ) yields

HI (x9y) n2 (x,y) n (x, XQ) Qj» ft (x9 XQ) F(XiX^ (Q0 (XQ) ) pl (x, XQ) ~l

Pi (XIXQ) F(XiXQ) (ft (XQ^Q) ) F^y^ (ft (yQ9y) ) ft (A;, j) "Iff (AT) "\

But the last four terms which involve pi disappear on application of
the cocycle identity for ft, and substitution for R(x) then reduces
the whole expression to ni(xyy)n2(x?y)n(Xi XQ) as claimed,, Clearly HI
and n2 take values in \jNx, and if (x,y)^£? we have xQ=yQ so that

n f (x,y) = p2 (x, XQ) F(X>XQ) (n (x^y) ) p2 (x, XQ) ~ln (x, XQ) .

However, the fact that ^-^n(-f)~lp2('f) =p\(f) is an F-cocycle implies
that this last quantity is nothing but n(x,y), and n' extends n as
required. G

Proof of Theorem 5, 5. Since ( Jf, m) is hyperfinite, we may, after

deleting a null set, assume that Jf = W^n, where JfnCjfn+1 for each

72, and each Jfn has finite equivalence classes,,
Applying Lemma 5. 6, and then Lemma 50 7 inductively, we find

sequences {nk} and [Pk] of Borel maps, nk:3fk->\jNx and Pk: X-* \j Nx,
such that

i) P2(r)=nk(r)pik(r) on Jf^;

ii) </,(/>*(*), P4+1WX2-* on Z;
iii) nk+i on Jffe+i extending nk on ^*feo

Thus we may define P:X^\jNx by P(A:) =limfePfe(x), and TZ:^->
by n(-f)=nk(j) for 7-eJfft5 clearly, P and n are well defined and
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Borel, and

a. e on
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