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A Mathematical One-Dimensional Model
of Supercooling Solidification

By

Tatsuo NoGI*

§1. Introduction

As well known in physics, an equilibrium condition on a contact
surface separating two parts of a pure metal/material, solid and liquid
part, is usally given by the equation

AF) r,=(Fr)r,— (Fs) r,=0,

where the suffix 7 indicates quantities at the equilibrium temperature
Ty, and F; and Fs are the free energy of liquid(L) and solid(S)
respectively:
FLEEL*TSL, FSEES—*TSS,

They may be considered at any degree 7°K of temperature, and E,
and Es are the internal energy, and further S; and Ss are the entropy.

On the other hand, at any temperature different from 75, 4F is
not zero, and it is given by the formula

Tp—T _, Tp—T
F=AE—TAS=AE=Fp 5 =L =5 =,

where it is assumed that the difference £ and S do not depend on
T, and L=A4E is called latent heat. In general, solidification may
occur only for the case of T<Ty since Fp >Fs. Hence, it seems
natural to consider that only supercooling state allows solidification.
But, in usally setting of the Stefan problem, it is assumed that solidi-
fication occur just at the equilibrium temperature.

In this paper, such supercooling solidification is considered, and
its mathematical one-dimensional model is proposed. = An important
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assumption is that a rate of solidification on a contact surface is
linearly proportional to 4F=F;—Fs, i.e., the contact surface speed
is a constant times the supercooling degree 7;—7T on each correspond-
ing point of the surface.

Only the following case is considered; some supercooling liquid
is first held quietly in a straight tube with a length /, and then a
solidification process starts: it proceeds from one side bottom of the
tube to the other side. For simplicity, we assume that the temperature
distribution on each cross section perpendicular to the axis of the
tube is wuniform, and that solidification continues in the one-
dimensional way. The speed of the surface is then given by the

formula
(LD TORLAORS (¢S o)

where »(¢) is the distance between the start point and the contact
surface at the time £, K is a constant and 7 is the temperature on
the surface. The solidification process produces a quantity of latent
heat, Loy(t) per a unit time and per a unit cross section, where L
is the latent heat per a unit mass and p is the density of the concern-
ing material which, we assume, is a common constant for liquid and
solid. Produced heat by solidification is diffused into both liquid and
solid. The heat balance equation is then given as follows:

T (®—0,0 -k 2@ +0,0),

where ks and k; are heat conductivity coefficients of solid and

(1.2) Loy (2) =ks

liquid respectively.
Diffusion process in the solid and liquid state, we assume as usual,
is expressed by the heat equation

oT T . .
(1. 3) pcs—at—:ks-a-xT (in the solid),
and

oT T . .
(1.4) oeL—a~ :kLW (in the liquid),

where ¢s and ¢ are specific heat.
Typical initial and boundary condition are the followings;

(1. 5) T(x,0) =T,
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(1.6) T, =T@), TU¢1) =T,
where T4, T1(¢) and T,(¢) are a given constant and given functions.

The variable change

T—T,>u, Sz, 2y

{ [

reduces the above equations and conditions to the following normalized

form:

(.7 a Bt o Th (0<a<y®, 1>0),

(1.8) =0, T8 () <a<1, £>0)

(1.9) B0 =0 (55 =0,8) —ar 2L (3(1) +0,)
—a(us—u(y®,0)  @>0),

(1.10) 2(0) =0,

(1.11) ulx,0) =0 (x) O<x<1),

(1.12) w0 =A®, u(L,H=fE >0,

where c;=pcsl, c;=pcrl, ay=ks/l, az=kr/l, b=Lpl, a =LoK, uz=Tz—T,,
S =T1@) —=T4 () =T,#)—T, and ¢(x) =0. It must be here
noticed that by the physical reason

(1.13) a; >ag, c1<cs

In this paper it will be proved that the problem (1.7)-(l.13)
has a unique solution under some conditions on data, while general
initial data ¢ (x) =0 being considered. In §2, a difference scheme is
introduced. It gives a sequence of approximate solutions of the above
problem. Some energy estimates of those solutions are also given.
In §3, it is shown that a local solution of the problem is obtained as
a limit of the sequence of approximate solutions. In §4, it is seen by
continuing local solutions successively that a global solution exists
certainly as far as liquid state remains. In §5, its uniqueness is
proved under the condition that initial supercooling is not so much.
Appendix A is to give estimations of the so-called Bernstein type for
a solution of heat difference scheme. Appendix B is to comment an
Imbedding Theorem. For some numerical examples, see [1].

Our problem is formally similar to the so-called Muskat’s problem
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which relates to physical processes of filtration in porous media. It
has the internal boundary condition

(E-Lhow.oso+L Eow-0n=1 o0+

and

3@ =au(y@,0),
instead of (1.9) in our case. Such problems have been solved by
W. Fulks and R. B. Guenther [2], I. Pawlow [3], etc. ~Their proofs
of existence and uniquness theorem rely on the reformulation using

integral equations. We believe that our method will solve such
problems as well, under weaker conditions upon data.

§ 2. Difference Scheme and Its Solution

2.1. We will give a difference scheme which gives a sequence of
approximate solutions. It is considered on a net of rectangular meshes
which is the same as used in [4] for solving a two phase Stefan
problem. In fact, it has a uniform space width %2 and variable time
steps {k,} (r=1,2,3,...). The time steps are assumed to be
unknown a priori and to be determined in a process of solving by
the rule that A/k, may give the gradient of the contact boundary
x=y(t) at every time ¢=¢,, so that the contact boundary may cross
every line of the ordinate x=x; only at every corresponding mesh
point. Then, it is convenient to introduce discrete coordinates like

2.1) xy=jh  (j=0,1,2,...,M; Mh=1),
t,;pi_lk,, (n=1,2,3,...)

and net functions like », and u} which correspond clearly to y(%,)
and u(x;,t,) respectively. By the rule mentioned above, it is admitted
to put

(2.2) Iu=Jh (=0,1,2,3,...),

where {/,}] is a sequence of integers such that J,,=/,+1 (n=
0,1,2,3,...). Though it is natural to take J,=0 since »(0) =0, we take

2.3 Jo=1(p=h),

allowing the errors O(%), in order to avoid another procedure at the
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initial stage of our algorithm and simplify later argument. Express
the inverse function of x=/,h by

2.4 t=ty, U=1,2,3,...).

Let’s introduce divided differences as usual:

(2.5) W) o= Wi —ud) /by, W} z= Wi—ul-1) /h,
WD z= Wi — 205+ ui) /1, W)= Wi—ui ™) /k,, etc.

2.2. The difference scheme used to solve our problem is as follows:

(2'6) ]021) u3:¢1 (7.:1,2,,.,,M——1),

@.7) b—l%:a(uE~u7:1)

(2.8) a@Di=ad.s (U=L,2,...,/J,—D),

(2.9 a(uf )z —a(uf ) s =a(ug—uj ),

(2.10) aWDi=aW)s (U=/litl,J.+2,...,M—1),
(2.11) W= uy=r3 0=1,2,3,...).

In this scheme, {k,} and {¥?}} are unknown variables to be found,
while y(¢) and u(x,t) are unknown in the original problem of
differential system.

The procedure to solve the above difference scheme starts from
determining the first time step £; by (2.6) and (2.7) with n=1. It gose
next to find uj by solving the linear algebraic system of (2.8)-(2.11)
with n=1. Certainly, the last system is solvable. The next step is to
find %; and «% and the third to find %; and u} and so on. It is, of
course, necessary for having positive time steps £,’s and continuing
the above solution process successfully to assure the condition

(2.12) u}n<uE (n=0,1,2,3,...).

2.3. Lemma 2.1. Assume that

(2.13) 0=¢(x), 1) and f5() <ug.
Then, (2.12) and the followings hold:
(2.14) 0=ui<<up (=1,2,...,M—1; n=1,2,3,...)

(2.15) h<£%‘£k,, (n=1,2,3,...),
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(2.16)  (M=MA<ZE (tyy—tw)  (N>N; Ny, N=0,1,2,...).

Proof. The statement follows from the well-known maximum
principle of the implicit difference scheme for the heat equation
immediately. In fact, suppose that u;‘-n<uE for n=1,2,3,...,N and u}‘;v

first happens to take a value Zuz. Just by the principle, we then
have ui<lugp for all j=1,2,...,M—1 and n=1,2,...,N—1. Further,
by the assumption and (2.9), we have al(uﬂ"N),—,——az(uﬁ"N)xéO. The
principle, on the other hand, yields («},):>0 and (4},).<<0. This
is a contradiction. So, we must have (2.12), and hence also (2.14)
again by the principle. From (2.7) and (2.12), we get

24 - au
h:"b—(uﬁ‘_‘u]n_ll) kn< bE kﬂ

and hence

M
N=MNATE T k=8 (=),
n=N+1

2.4. Lemma 2.2. Supbose that
2.17) LA@®) —fA@) |<HI|t—t"| (H: a constant, t,t’>0),
and f1(0) =0, and that
(2.18) wp <U—=pug O<p<l) for 0=t,=ty-1
Then, the inequality

" _H _ap(l—p
2. 19) | <=2 (5=020-0,)

holds for sufficiently small h and ty.
Proof. From (2.6) and (2.7), we have
a < -
y,,=h+nh=h+7!§1k,(uE—u’}P_11).
Applying (2.12) and the assumption (2.18), we hence have
(2. 20) h+%qut,,< y,,<h+%uEt,,

for 0=¢,<ty-;. Now, we fix a number n,(<N) arbitrarily and
consider an auxiliary function
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2.21) Loy (550 8) =f 10— H (£, —1,) —Hlx,.+7”jl_Hx5.

As easily seen, it satisfies the equation ¢,{;=a,{,; and the inequality

(20 22) C”O(O’ tn) :f,;o_—H(tﬂo—tn) <fi‘ (bY (2° 17))
and
(2.23) Coo O ) =f = H by~ 1) —Hiput - H)

. _aH >
<f1 Hly"<1 2H1a1yn

for n=n,. Assume that

. a}_b _ a1b2
(2.24) h<h0—~——61uEa and ty<Ty= il
We then have
_aH oy
! 2H1(11yn>1 He
So, we get
(2.25) oy O 1) <S 1= (U= (b ust,)

(see (2.23), (2.20), (2.19) and (2.17).) The condition (2.22) and
(2.25) assure from the maximum principle that

Cno (xj, tn) <u;‘
in {0<%;<J,, 0<t,‘§t,,0}. Putting n=n, and x=x; especially, we

have
Cno (xla tno) <u'1‘0.
Since &, (0, 2,) =u’=f7, we hence get
(£, (0, 2,)) << ) -
that is,

(2. 26) () > —H1+%Hh> —H,.
1
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Similarly, by using another auxiliary function
Lo (s ) =f P+ H (t, —1,) +H1x,-—2%1Hx§,

we also have

(2.27) (ug”) < Hi.
Since n, is selected arbitrarily, both (2.26) and (2.27) produce the
desired inequality (2.19).

2.5. Now we will state a fundamental lemma for construction of
a local solution.

Lemma 2.3. Suppose that the data f, f, and ¢ satisfy (2.13), they
are Lipshitz continuous, and f1(0) =f,(0) =¢(0) =0. Then, for any given
constant p, 0<pu<l, there are positive constant T, and K such that a
solution of (2.6)-(2.11), {k,, u3} satisfies the following inequalities for
0<¢t,<ty<T, and 0<h<ho, hy being given in (2.24):

N M-1 M-1
(2.28) >k 5 A 3 h <K,
(2.29) w5, < (1~ s
and
(2. 30) max k< -Lmin £,
p=n U p=n

The remained part of this section is devoted to the proof of
Lemma 2.3. To get the energy inequality (2.28), we introduce a
function y such that

(2.31) 75=f1 =S4
By multiplying (2.8) by u%—7% summing these products over
I=j=/,—1 and 1=n=N and taking summation by parts, we obtain

1 N Tl

N Jn1 N Ja
(2. 32) € Zlk,, Z'lh(u;*,-)z—cl Z1k" Z; hubri+a Zxk" Zl Pl
n= 1= n= = n= j=

1

N Tn—
—a Zlknzj
n=1 i=

N
hu?xr;‘x—'al Z knu;n—lx (uf’nf—ﬁn) =0
1 n=1

by (2.31). The third term is expanded like that
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N J,—1 Jy—1

@ 2 k2 =gt ThE () @) @)
n= = n= J

Jy—-1

Jo N-1
51 { Z h (ujx) 2 j§) h (u_?x) 2*’1;1 h (uhx) 2

N Tl
PR S b
n= i=

The equation (2.32) becomes, hence and by (2.6),

Jy—1

1,1
.39 aXk T s S aepes SrE

N

—a Z ki z(uy i —717)

2

-1 J,—1

7 Z___: h(u] x) +€12 k Z hu;tr?—;_alz k Z hujx‘r]x

1 To
L
Similarly, the following equation follows from (2.10):

2.38) oYk lelh(u,t) g z R+ 2 zkz }: 5’
n=1 ]n+ n=

N

tap 2 Rty (uf i —77)

ay y M n an
=5 Z h(u]' D2 te Z k Z hu]trj +ax2; k, Z hy
2 A=l j=,

M-1

a,
+ 2 §+1h¢”

1129

Adding (2.33) and (2.34) on their both sides produces the equation

N Tt N M-l P
(2.35) o Lok ki) e Lk, X R 43 X h@)?
a=l =1 n=l  j=J +1 A

as = Ny2 . 41 2 2
+2 3 R+ Z/c Z h (W)
=Ty 2 .21 " i%o

N M-1 N
+—= Z k: Z h(u?xt')z_ Z kn(alu? f“dzu}l x) (u.'ll' i—r; ) =
n=1  j=J, n=1 " e n n
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1 N-1 DA P N M-1
7(01—42) PN h(u}',,x)2+612 ko 20 hufyite Dk, 20 Rl
n=1 n=1 j=1 n=1 j=J,+1

N Ipl

Jo
+a, Z k, Z /zujxr,ﬁaz; k., Zl huyt %1 ]§oh¢?x

a5 g,

2.1]0

By using the condition (2.9), the last sum on the left hand side of
(2.35) is expanded as follows;

—gll ky(aw] z—aguj o) (uf i—77)
= —a k(s —u)) (=77
= —Ofné(uE—u};) (uf, —u5 ") TOZZ k. (ug—uj )77,
= —a X (s —uf) (uf, i) +a Lhlus—ug) (7).
+aan,'1 k, (ug -u?n) 77
Notice here that
h, @, a7t = L @) — @)+ g, — a2
Therefore, the first term of the last expression is equal to
g (uf ) + S L) )+ X3, w271
Applying the obtained expression on (2.35), we have

M-1 Ty—1 M-1

(2. 36) Zk (&1 ZI +cp ;3 ) h(ui)? +—(a1 Z +azZ)ﬁ(u}§)z

N
LS k@ s e pALICREE CASHOR S
N n— M-1 N n_ M-1
=Xky(ey X+ 2 )huri+ 2 ko(ay 2i+ay 20 ) hufrk
n=1 i=1 ]=]n+1 n=1 = J=]n

1 N-1 N
g @—a) T h@))"—aLehws—u5) W5

N Jo M-1
+a X k(=) 7 Faugel, + (0 Y a5 ) hght
n=1 n n 2 j=0 ]=]0+1
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+5 L (83" —2uzdl,].

Let’s estimate each term on the right hand side of the last equation.
To do for the second and third terms, we introduce the notation |7!
and |y,| for the maximum absolute values of 7y and 7. in the
concerned region. By the Schwarz inequality, we have

N Tp—1 M-1
(2.37) | X ku(er Dt 20 ) ey
n=1 ji=1 J=]n+1

1 1 X Tl M-1
<5 (erte) |?’|ZtN+— 2 k(e Z‘|‘02_ % )h(u'};)z
2 P =1 Ci=T

and

-1

(2. 38) IZk @ 5 +azfz] ) ]

i=1 i=J,

<—(al+dz) ITxlth+ Z k,(ay Z +a, Z )h(u;x)z

where ¢ is a small positive constant which is given definitely later.
The fourth sum on the right hand side of (2.36) is estimated as
follows: by (2.12) and (2.15),

2.39) | ~a 5 hlus—u3) @71 <aus (% hlus el + |61 1)
<auE<% anu?x+!¢1—¢o|)

<<g::gz> a8 Zk (uf )*+aug | ¢y —

where ¢, is another positive constant which also is given definitely
later. Here, we consider the sum

N—-1
% k("
From (2.9), we have
Uj 2= L[aluh; —a(ug—uj)]
as ”

and

(2.40) (w,0°<2(2) (w97 + 2 2.

ay
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Further, we expand 4 ; as follows:

-1 I,=
A y hu]xz_}_uo::-—a‘ Z hult—f_uo:t

J 1 =1

o

(2.41) u}

n

)
-

(see (2.8).) Hence,

¢ 2 ]n—l
@,0*<2INH( ) 5, h*+ ')

= T,
<o| 20N B hug)*+ (uh)?
b ay/ =1

by (2.15). Applying this inequality on (2.40), we get

(u? ,‘)2<4[“l‘bEtN<“)2 Z h(u)? +< )(u 5’ +2(5”—"3)2

ay j=1 az

and further

.4 Erag o<t a) 5 S g

+4(2) Tk +2( )
2
Applying this estimation upon (2.39), we have

N
(2.43) |—a X hus—up) (3;2).]

2 N—-1 J,—1 2 N-1
< s () Sk, B b+ 26(2) T k)
b ay/ n=1 j=1 a; n=1

‘f‘sz(aauf)t + (au,bgz ty-1taug | d1—dol.

Using (2.42) and (2. 15), we also have an estimate for the third sum
on the right hand side of (2.36):

1 N-1 , auge ) 15! Tt ,
@4) |3 @-a) 5 A" <2ty @—a) (%) Tk 5 he
n=1 a; n=1 i=1

2o mas 8Y 5 e @)

b ay n=1

Finally, the remained two terms are easily estimated as follows:

N
(2. 45) ’“é ky (uE“u7n) 7’7,, |<a I?‘ lugty
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and
(2. 46) IauEu’}’N | < auk.

(see (2.12).)

By applying the obtained inequality (2.37)-(2.39) and (2.43)-
(2.46) upon the right hand side of (2.36), dropping the last bracket
on its left hand side and multiplying by 2, we have

Jn—1

(2.47) Z'k (dlzl te Z Dhwn*+ (@ Z 4‘022 ACH

N Jp~1 M-1 N-1
<a X k(@ ,-Zl +a Zf Yh(@s) +q 5 k,(u)?*+ K,
n= = i=J, n=
where

e o e8]

2

=4[52+ (& — Zz) aug K %Dz

J, M-
K=(@ % +ar 5 Vhghtalus|gr—gol +2ipt (9"~ 2usg]

and

4
+ix[(erte) 7P+ al+az|7’x| +2 <auE> + ~—=EL (aup)

e
+2a |7 |ug].
Now, we take
1 (abh
(2. 48) Ty=min {TO’ 16¢;(a,—ay) \ aug }
and
baz

(2. 49) &= 16T s
Then, we have
(2. 50) d, ‘1 for 0<ty<Th

Since (2.47), of course, holds for every ty, 0<ty<{T,, we obtain,
from it,

Tyl M-1
2.5 (@ 2 +a 2) A’
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N Tl M-1 N-1 .
<g Zlk,,(al Z.; +a, ZJI Yh(u})?+q Z.;k,.(ua'x) +K
n= i= i=l, n=

for n=1,2,..., N. By multiplying each inequality by £, and summing
up, we get

N Tl M—-1
Sk 5 a5 k)’

J,—1

N n_ M-1 N-1
<aTh Zl ky(a Zi ta, Z,l Yh(uh)?+qT, Zl ky (ub)?+ KTy
n= = I=Jy n=
for 0<ty<<T:.. Now, we take
& :L
ToTy

Then, the last inequality becomes

],,“‘1 M-

N 1 N-1
2.52) Lhk(a 2 +a Z]I Vh(i)*<2qT 25 Ky (uh)*+2KT.
n= i= =l n=

Applying (2.50) and (2.52) on (2.47), we obtain

N c Tp—t M-1 Jy—1 M-1
2.5%) Sh( S 1, % )h(ugf)u(al S a5 ) hub)?
=1 \2 o1 =T, =0 =Ty
N-1
P ACIIET

for 0<ty<T.
We are now at the final stage to complete the proof of Lemma
2.3. Suppose that

(2. 54) uy <(1—pug for 0=n=N-1.

Since T1=7,, T, being given in (2.24), we then have, from Lemma
2.2

Iugx{<H1
for 0<t,<T, and A<k, Hence,

N-1

(2.55) Z_Il k() "< Hity.

This and (2.53) vyield, especially,
M-1

(2. 56) Zolz(u}ﬁ)2<lf for 0<ty<Th,
i=

with another constant K. Let’s estimate uﬂ"N. Now,
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1

N~ N
uf =uf —uwe=< 3 hluf|+ 2k, lug .
N N i=0 =1

By applying Schwartz’s inequality, (2.56), (2.16) and the Lipshitz
continuity of f;(¢), (2.17), on the right hand side, we have

1/2
uf,VN<<5‘%r£) L HT.

Clearly, we can take 77, if necessary, so small that the last right
hand side is less than (1 —g)uz. Then, we have (2.54) for n=N,
too, as far as 0<iy<{Ti, T, a new constant. And, (2.54) is trivial
for n=0. These facts allow us through induction to get the desired

uy <(1—pug for 0<¢t,<T1.

and (2.56). Then, (2.53) becomes

jN_l M-

jn—l 1
@50 Zh(% Eta D @it X ta 5 Okw<K
n=1 +1 j=0 ]=]N

2 = T,

0<ey<Tv,
with another constant K. This certainly produces the desired inequality

(2.28). Finally, we also obtain (2.30) from (2.29): by (2.7),

— min y?1
max k, _ UYp—MINU; < 1
. - _ P—l °
min k, up—maxuf’ T p

Thus, we have proved Lemma 2.3 completely.

§ 3. Existence of a Local Solution

3. 1. In the present section, we will show existence of a local solution
of the problem (1.7)-(1.13) by the difference method in the last
section. We consider a sequence of A’s tending to 0. In order to
make dependency on £ clear, we will use the notation uj; for ul.
We further define an interpolated continuous function u,(x,t) by the
formula

G D ua(x,0) =uhy+ Wiy« (x—x;) + i) (6 —1,) + (i) (x —x) (E—£,)
in every square {x;Sx<xj41, [, =t<t,41},

for all j and n. Clearly, the function u,(x,¢) has the generalized
auh

derivative of the first order, o
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Put again the assumption of Lemma 2.3. Then, from the Lemma
N M-1
(3.2) 2k 2 h ) W)+ W)} <K (<),

where K is a constant not depending on h. Here and later, we
frequently use the same symbol K for some different constants
without notice. The last inequality immediately produces

69 ({3 (3)ucx

In fact, {u;} are bounded uniformly with respect to 2 (<hy), and
o () ()
n *j ax

28:n+ S i {< th)Z_l— (uhjxt) (t_—trz)z"l_ (uh]t)z_l_ (uhjxt) (x x]) 2} dxdt

IA

[(uhﬁ) + = (uhjxt)zkvzz-i-l—i-(uhﬁ) + 5 (uh]x#) h] w1l
{

§2 (uhjx) + {(u;:;;cl) + (thJt)Z} + (uhﬁ) _I_ 3 {(uh_1+1t) + (uhjt)z}] +1h

<100 Sent, ’“"+1+2[?—< D7 o (k) o (ko) :lh/fnﬂ
and
kn+1 uynil <
k, Ug

by (2.7) and Lemma 2.3. So, we have

— —1 £
NZI MZ gtn+1S J+1{<—%>2+( au;,) }dxdt
a=0 j=0 Jix J%; 0x
N-1 M-1

<55 {——(M)%m +2| 2 )+ )’

n=0 j=0

—(uh;+1l) :! n+1h}

and hence obtain (3.3) by (8.2).
Similarly, we again get from Lemma 2.3

3. 4) [ f{an+( o Y} dv <K

for every t (0<t<{Ty).
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Therefore, we can say that the set of functions {us} (A<lhy) is
contained in a ball in the function space W;(2,) (Sobolev space),
where £, is the region {0<{x<{1, 0<¢<{T}}, and that {us(s,8)} (A<ho)
is contained in another ball in the space W3(0,1) for every
t(0<t<Ty). From the former fact, we can find a subsequence
{u;,a} («=1,2,3,...) such that

a) It converges to a limit function us W;(£,) weakly in the space
Wi2n,

b) It also converges to the function u strongly in the norm of L,(£)
and

c¢) Traces of u are defined almost everywhere on the section {0<C
x<1, t=0}, {x=0, 0<t<<Ty} and {x=1, 0<¢<Ti} respectively, and
they are square summable and the following conditions are satisfied

at least:

(3. 5) S:{u(x,t)—¢<x)}2dx—>0 (-0,
(3.6) [ e ~A)a-0 -0,
3.7) S:l (e, ) —f(O) ) di—>0  (x1).

It follows from (b) that there is again a subsequence of {u,,a} which
converges to u almost everywhere in £,, We use again the symbol
{us} for the last sequence.
From the latter fact above, we find that the limit function wu(-,t)

is belongs to W3(0,1) for any ¢(0<t<T)):

1 2
(3.8) S {uz (x, ) +(M> }dx<K,

0 0x
and hence it is Hérder continuous in x uniformly with respect to

t(0<e<Ty):

3.9 lu (21, 8) —u (g, 8) | <K |x1—2x2 |V2 (21, %[0, 17).
Further from (3.9), there exist

(8.10) £1_31 u(x, ) =f1(t)

and

3.11) il_’r? u(x,t) =f,(t)

for any (0<¢<<{Ty).
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3.2. Next, we consider the piecewise linear curve x=y9;(¢) which
connects the point (x]n, t,) and (xjnﬂ, tye1) for n=0,1,2,... succes-
sively.  Clearly y,(¢) is differentiable almost everywhere in 0<t<{T
and its derivative ¥,(¢) is equal to _%:%(
(tp-1 ) (n=1,2,3,...), and again from Lemma 2. 3

ug—uj ') in each interval

Fus<on®) STus  (0St<Ty).

So, {yha ®} (@=1,2,3,...) constitute a set of uniformly bounded and

equicontinuous functions on the interval [0,77]. Hence, there is a

subsequence, for which we again give the symbol {y,}, such that
i, (D) =y (@) uniformly on [0, 7],

where »(¢) is a Lipshitz continuous function, and satisfies

(3.12) _“b_ﬁ‘_uE<—y(—t)£ﬂ§%uE 0<c<I<T.
Finally, it also follows again from (3.9) that

(8.13) lim wu(x,8) =u(y(),t)

x>y (t) 0

exist for every ¢ (0=¢=7)) and their convergence are uniform in ¢.

3.3. In order to show that the pair of the function « and y obtained
above is a desired solution of our problem (1.7) —(l.13), it remains
to prove that

(i) The function u satisfies the equation (1.7) and (1. 8), and also
the initial condition (l.11), and

(ii) The pair satisfies the internal boundary condition (1.9).

To prove (i), notice that in both regions of

2, ={0<x<y(@®), 0<t=Ty}
and

2= {y () <x<1, 0<i=T1},
the obtained solutions are all uniformly bounded:
(3. 14) 0<ut;<<(1 =) ug,

as seen from Lemma 2. 3.
It then follows from Theorem A.7 in Appendix A that {u},
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{unz and {uws;} are uniformly bounded for all #(<hy) in any compact
set 2f and 2§ being contained in £, and £, with a finite distance
from the boundary

0,={x=0, 0=t=T} U {x=y(@®), 0=¢=T1}
and
02,={x=y(), 0=t=T} U {x=1, 0=¢t=T} U {0=x=1, t=0},

respectively.

Therefore, {u;,(x, ¢} (=—0) constitute a sequence of functions being
uniformly bounded and equicontinuous in £f and 25, and then allow
selection of a subsequence which converges to a continuous function
u(x,t) uniformly in both 2§ and Q5.

Now, we take a sequence of pairs of compact sets {&2f, 2%} as
mentioned above, such that

QC2a(=1,2,3,..), DI.Q;"i:.QI
and
25C9%5..3=1,2,3,..), GQZ*,-:.QZ_
i=1

Take a sequence of subsequences {us;} with each subsequence {u;}
(j=1,2,...) being taken from its preceding sequence {w_,;} (j=
1,2,...), and convergent in both 2% and £25. Make then the sequence
of ‘diagonal’ elements {u;;} (i=1,2,...), as usual. It is easily found
that the last sequence converges to a continuous function u(x, f) in both
2, and £,, and moreover uniformly in any compact set contained in
2, or 2,

We will show that the limit function u(x,¢) is not but a solution
of the equation of (1.7) and (1.8). According to Theorem A.7,
every difference quotient of higher order in x,{ is bounded in any
compact set contained in £, or £,. Therefore, by the same discussion
as for {u;} itself, we can further select such a subsequence of the last
sequence that not only {u}, but also {w .}, {us .z and {w 7}
converge uniformly in any compact set in £; or £, to the limit
u(x,t) and some continuous function #(x,¢), u(x,f) and a(x,t),
respectively.

By tending A, to 0 along the selected sequence in the difference
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equation (2.8) and (2.10), we obtain the equation

(3.15) ot =au in 2,
and
(3.16) Coll =asu in 2,

On the other hand, the trivial relation
j-1
uha (xjs tn) :uha (xjoy tn) _f_Z hauhaz (.X',', tn) (xj():a)
i=7j
becomes, through the same limit process, the equation

u(x,t) =u(a,t) +lei($, t)dé€.

We then find that u is differentiable in x and

(3.17) %Z-:a
and similarly

ou _ -~ 07 =
(3. ].8) W——u and a—x—u.

The obtained relation (3.15)-(3.18) imply that the limit function u
satisfies just the equation (1.7) and (1.8). It also is found that the
limit function u(x,t) satisfies the initial condition (1.11). (See, for
example, §42 of the famous book [5] by I. G. Petrowsky). We have
thus proved (i).

3.4. Let us go to prove (ii). For it, we will take some steps.
3.4.1. Lemma 3.1. The limit function y(t) obtained in 3.2 is con-
tinuously differentiable and satisfies

(3.19) IO =5 (s —u(y(®), 1))
and

(3. 20) 0<y ()<=

Sor 0<e< T

Proof. By using the piecewise linear function y,(¢) appeared in
3.2, we have
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Ay, 2%— g:l ky(ug—uiy, ).
From convergence of y,(f) and u, we get, by taking A—0,
t
(3.21) y0 =4 ws—u(r@, ).

We hence find that y(¢) is differentiable everywhere in 0<¢t<(7; and
the relation (3.19) holds. From (3.19), we also get (3.20) since
0<u(y(@®,) <ug.

3.4.2, Lemma 3.2. The derivative g—z, u being obtained in 3.3, has
finite limit

hm——(x t) = (+0 i), hm o (x t) ————(1 —0,1)

x>0

and

lim % (x,1) __;‘(y(z) +0,1)

x>y () +0 3x

almost everywhere in 0<¢< T, and those limit functions are contained in

L,(0,Ty):

STI
0

ou 2 Ty 2
—ax—(+0;t)‘df<‘f’°°, So -0,t)1dt<+00

STI
0

Proof. According to the well-known existence theorem of a

and

(5w =0, t)lzdt< o0,

trace operator, we can get it immediately from the facts that

b5 i [aeae<(5) 1,

and y(#) is differentiable and monotone increasing, as shown in

— 2dxdt< 400

ax

Lemma 3. 1.

3.4.3. Lemma 3.3. The condition

(3.22) 50 =00 -0,0 —a gh (YO +0,0))

=%(uE—u(y ®,n) O<e<TY)
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is satisfied by the pair of function, {y(t),u(x,t)} obtained in 3.3.

Proof. Returning to construction of the concerned functions, we

again have the relation
(3.23) WO -n® =5 3 koudz—autyy),

where ¢=t, and t=¢,. According to uniform convergence of y,(¢),
we can find a positive constant 4, for any given constant >0 such
that

(@) =0 )<y +0  E<t<TY)
for all A<k,

Due to the estimation

N M-1
Zl er Zi h (MZxE) 2<K5
n= Jj=

we have

3.24) |3 kelus(r () £3,8) —u(n (6, 1) |
=DV 3 by 5 b))
<Ko

for 0<i<t<T,.
From (8.23) and (3.24), we obtain

[ 75 (8) =95 (®) _%Féﬂki’ {aunz (9 (25) —0, ty) —azun, (p (ty) +0,8,)} |

< Ko“?,
We take here #—0. Then

© 5 ® —p § 6@ —0,0) —a 2 (3@) +0,0)) de | <Ko

Lemma 3.2 here allows to take 6—0 and to get
2 =@ = 12 (@) =0,7) —artl- (3() +0,0)}dr.
Since ¢ is arbitrary, we also get

70 =1 @t G® =0, —ar g (@) +0,5)) .
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As shown in Lemma 3.1, (¢) is continuously differentiable and
satisfies (3.19). Therefore, we find that

(3. 25) arz— 8 “®—0,0) az (y(t)+0 £)

also is continuous and (8.22) follows.

3.5. In order to show that the obtained pair {y(¢), u(x,#)} isa
classical solution, we must have continuity of not only the expression

(3.25) but also g—i(y(t) +0,¢) themselves. For the purpose, let wus

first give an expression for u(y(t),t).

3.5.1. As well known, a function u(x,t) satisfying (1.7) and (1.8)
in the respective region can be expressed by using Green’s functions:

3.26) w0 ={ 6t 10@,900@,95@
+ﬂgt 081 410, 0)f1(c) de
‘1
40 0t @,9 35 0@ —0,9)

——g-?u,t;y<r>,r>u<y<r>,r>}dr
O<x<y(t), 0<E<TY)

and

(3.27) ue,t) = &x 118,006 (8)de
—{ & 19@,900@, 3@
S 3g2(x 11,0 f,(0) de

~2 [, 15y (2), )P (@) +0,)

— % (3,65 @), DU @), ) 1de
(_}’(t) <x<17 0<t<T1)9

where
a@x,t:60)=U1x—§,t—1) —Ui(x+§,t—1),
gz(x,fié,"') :Uz(x—fyt_“') _UZ(x—l_E‘Qst_T)

and
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bty — e _a(x—9% _
Ui(x—6,1—2) mexp( 2= =1,

3.5.2. We now make an expression for Vacu(y(t) —8,t) + Vase; (y ()
+9,¢) from (3.26) and (3.27) with J is a positive constant:

(3.28) Vaoeu(p(t) —8,t) +Vazeu(y (&) +8,8) =L+ L+ I+ I,+Is+1;

where
LO) =a | 800 +,6:6,0 ()8,
1O =Nz | 600 =3,t5@,Du(r@), D3 @de
Ve (& ®) +3,1:@), DG, DI dr,
1:0) = [0(2)" %030 0,0, 946
~af2)" 2 agz (O +0,6:1,9 /) 1dr,

I4<6>=§: [al( 11) a0 ~0,t5@), )2 (5@ —0,7)
~a(2) 800 +0,t9@, 09 G@ +0,9],
[5(5)=—a<c—1) S agl(_y(t) —5,45 (@), Du(y(), D de

and

15(5)=a2<:l2> S agz(_y(t)+5 £y, Duly(), ) de.

3.5.3. Next, we take 0—0. Since I;, [, and [; depend continuously
on d, we have

(3.29) }sixon(ll—l—lz-kh) =1,(0) +1,(0) +15(0).
Consider I, Its integrand can be expanded as follows:
a(2) a0 =0,65@,9 (3 ~0,9)

—a(2) 6 +8,@,9 G (@) +0,9)

=ﬁ,—){al[exp(— W(ﬁ lzta:ry) (0))? )
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SO B

_az[exp<_ CZU%Z:(;{—S(T)) )

—exp(~ 62(})(2;3_?;57) —2)° >_| u (y(z) +0, 'r)}
-1 _a[*=20(y@) —y()] 0
Nrli—1) {“1 CXP( 4a,(t—7) > (=02

_ P23 (1) —y(@)]
aexp( on V(@ +0,9)

_ _al®=20(y@®) —y(@)]
@ exP( 4a,(i —7) )

_ _a(Q@® —@)*\\ou _
<1 exp( 14a1(t 5 >>ax (y(@) —=0,7)

e[0*+20(y(#) —p ()]
+“ZCXP( =) )

(1 —exp(— cZ(i}a(:zt—yz_gf) )* >>-gi(y(r) +0,7)

—alexp( 61(y(£311(t5t-)))(?)) ) (@ —0,7)
+a, exp(- CZU(ZZZJ?ST) 2" >ﬁ()’(r) +0,7)}.

Notice that, since y(¢) is a Lipshitz continuous function (see (3.12)),

0<1—exp(~EOO IV N0y O<r<<T, i=1,2)

holds, and further

bt e ”ZJ% ) 500

<l ou 10

by Lemma 3.2. Also, by the same Lemma,

oL . (1) ()
So Vi—7 Xp< ' 4a,(t—7) )3 (y(x)—0,7)
)

d‘L‘J <400

dr

<[S: tlf exp( u > _lm[g “”(J’(T) —0,7) zdel/2<+oo,

exn( (@) +y(r) —2)*
~esp( 4a,(i—o) )ow (YO +0,9)

dr<Z
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1 K(1—y(Ty)? T’Z
<[, (- FAT2 e

[S: -S%U(r) +0,T)!247T’2<+00_

It is already known in 3.4 that al%—(y(r) —0,7) —azg—Z(y(f) +0,7)

is continuous in 7. Therefore, we can take d—0 inside of the integral
sign of 1,(0), and then have

1
Wr(t—1)

1 el (@) —y(@)?\]0u _
mg 2\/h7r(t—r)[ exp( L da. (1) >Jax(y(r) 0,7)dr

(3.30) lim1,0) ={ [ 0 0,9 ey (@) +0,9) i

t —~ 6 (1) —»(©))* ) ]0u

S 2\/n(t—r)[l xp< T, ﬂax(y(r) +0,7)dc
algo 2\/7r(t—1') ( : 4a,(t—7) ) (y(x) —0,7)dr

t (D +3() —D* \ou
aZSO 2\/71(1,‘—1:) ( 4a,(t—7) >ax())(‘l') +0,7)dr,

or
1/2¢t
3.3D) lim L) =a:(2)"{ a0, 56,05 (3@ 0,24

~a(2) 60,1 @, 0L e+,

3.5.4. Next, we consider I;, and start from estimation of the follow-
ing difference with a fixed parameter s (0<s<¢):

(3.32) D:St agl(y(t> 8, t9(), Duly(@), 1) de
[ Bo0,0@,9006@, 94

Put
(8.33) D=D +D;+D,,

where
— g 0g: . j
Dl—u(.y(t)’t)g I: (_j)(t) _5 l; _))(T) T) - (y(t),t,_y(f),f)_ld‘l’,

D,= —S agl(y(t) —0,1:9@, ) [ (®),8) —u(y(), ) 1dr
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and
Di={ 200, 1@, BO®, 0 ~u(@, D]
Let’s expand D, as follows:
_u(y(@),?) VR (1 1 (@) —0—y())?
4T <a1) { 585 (¢—1)3"2 [exp( 4q,(t —7) )

n exp<_ a(y@) —i+y (r))zﬂd,

4a,(t—7)
R e e =
—exp(— AR o
#) 25 ee(- 2022 )
—exp(— ) e

Since y(¢) is Lipshitz continuous and y(¢) +y(z) —0>y(¢) for sufficiently
small ¢ (<y(s)), all the integrals except the first integral

Ji= =0, ey exp(( = AT IO e

are absolutely integrable and have an upper bound independent of J,
and allow to take d—0 under the integral signs.

In order to consider J;, let’s compare it with an auxiliary integral

, t 1 10
(3.34) J1=—5SSWCXP< my

= —4(61:)1/2 g: (o exp (—ohdo

a(t s)

172
which itself tends to —2(ﬂ> as 0—0. Now,

1

Jimh= =, e~ =ey)

[1-exp( - 2Q® 4:(:{ <:))) ; =) e

Since y(¢) >y(r) for t>v>0 and y(¢) is Lipshitz continuous, we have

_ _a(@®) —0—y(0))*—cd”
0<1 exp( 1 T 1 )
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a (@) —y()) _ _
<WIJ’(¢) () —20|

<K(y@) —y(x) +20).

Hence,

5.35) i o | <K| 7 L qpoxp(— o Yo

() =)
+583Wd o|<xa+of e <Kli=s

for sufficiently small . Therefore,

i D, — 2 (@®),0) (e
or

lim L1 ' I—s
(3. 36) 1;53'Dl+—2—<7l)u(y(z),t)!<mt 5.

For D,, we use the following inequalities:

f MACIGRIABICR)

I (e\¥? 1 _a(y@) —0—y())?
<4,/,T\71> (G—o)" [5 exP( 4a,(t—7) )

+p () @ Iexp< —al (3165_:{ @) 2)
+19®) 0+ lexp( - “1<yi2(ﬁj)ﬂ<f>>2)]
and
4\1/71: é l>3/2!y(t(>t—i;/y2<r) exp(— q(y(&zta_tg(r))Z)
ol a) Goamen (- A=)
i Y ()

for sufficiently small 6. Therefore,

il <K a1+,
ssup [u(y(0),8) —u(y(2),7) |

1 dr+Swexp(—zz) dz“
—T 0 |

Since |/,} is bounded due to (3.34) and (3.35) and both integrals
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on the right hand side also are bounded, the inequality

(3.37) |D2]<K§1<1£tlu(y(t),t) —u(y(2),7) |

holds. Similarly, we can get

(3.38) [D3{<Kss<1:£t lu(p(@),8) —u(y(z),7) |

By using (3. 36)-(3.38), we obtain

(3.39) fm| D+-Lur(), 0 <KLi=s+sup |u(3(®), 1) —u(3@),) []
On the other hand, it is easily seen that

3.40) Tim |[|- 22050 ~0,69),5) = 2@, 65,7 [u(r(@), e

=0
for a fixed s (0<s<#). From (8.39) and (3.40),

: S [ agl()’(t) 0,09(),7) — ‘?(y(t),t;y(r),z-)]u(y(f),f)df
+ﬁ“(y(t)”)|<ff[47:+ss<ggt lu(y(0), ) —u(y(), o).

Here, we can take s arbitrarily near to ¢, so that the right hand side

becomes arbitrarily small because of continuity of u(y(z),7). Thus,
we find

fim M 0@ =8,6y(@,7) ~ ?(y(t),t;y(r),r)}u(y(f),f)df
‘*‘—2%114(}’0),1/‘) | =0,
and hence
i =i 2} agl
G40 hm15(5) _llm“%(c) S @ =0,t;9(),Duly(c),r)dr
1

= gaer u(r®,0 ~a(2) | LG, 6@, a0 @, D
Similarly, we get

(3.42) lim I,(5)
-0

=g aes 1@, 0 +a 22 | 20,0, D), Dde.

3. 5. 5. Consequently, we obtain, from (3. 28)-(3. 30), (8. 41)-(3.42),
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(3.43) 5 UaeHVau(®),n
= Vaz; { &0, 136,0 ()t
+a, { @@, 6@, 920@, 950 d
e, | @@, 9@, Du0@, 9@
+{a(2) Bow,50950
— 9
o 2)" L0, 51,040 Jd
+a(B) 0 a0, 1@, 9P 0E —0,9d
a2 @@, 6@, 9 GE 0,96
(2 B0, 0@, a0,
+a( 2) 250,159, D0, e
For a latter purpose, we further put (3.43) in the following form:

(3. 44) %(JZ}H Vag)u(y(8), £)

=V1(@) +Vu(®) +V(t) + Va(t) + Ve (t) + Vau(t) + V()
+Va(@) + V() +Vs(t) +Vs(t),

where

(3.45) Vi) =Vaw, | £0,4:6,0)6(6)de
Va(®) =lag § 60, 1@, D20 @, 9@,

Valt) = —ags || &(3(®), 1@, Du(r@), 3@ ds,

11 [ o
Va®) == A gl 5@ —0,9) —ag(y) +0,1) Jde,

U |
Val)=— 2\/_80 =

1 —expf — 61 =y (@)* \] 9u 3
1—exp( S ha ) 2 6@ -0,




MODEL OF SUPERCOOLING SOLIDIFICATION 1151

Ve ® =i
e o
= el SO -
+23%S; Lexp( — 20 0= DN @ +0,7)dr,

Vi —
Va(t) =—a <c

Va) =af -2 )

C2
Va(®) =a1< &

A

Vsz(t)=—az(f22) S ag2<y<t) 81,0 f,(0) dr.

—T

) g agl(y(t) t; (@), Du(y(z),v)dr,
1

S (50, t9@, 080,94,

agl( (), 630, (0) d,

and

3.6. The last expression of u(y(¢),t) is used for proof of the
following lemma.

Lemma 3.4. The function u satisfies the inequality
(3.46)  |u(y(ta),t) —u(y (), t) |<K[|log(t,—1y) |2 (ty—t) ¥
o+ log [t~ )+ (6= 1) [log (1) |+ (t,— 1)

SJor any t, and ¢, (0<t<t,<t,<T,), where K is a constant depending only
upon t and data.

Proof. We will investigate every term of the right hand side of
(8. 44) successively.

3.6.1. i) V() is continuously differentiable. In fact

1 1 . . )
Vl(t) - 4‘/ S {l:_ta/_z+ 4 (.y(ta)thE)y(t)
RAGIOESN _ @M=" _[1 | (@ +—23®
2a,t%* JCXP < 4a,t ) [zm += ast®?

_C&(y@) +£6-2)° _ (@) +E-2)2
: 24" }CXP ( : dai )}¢(E) dz.
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By using

SmC” exp(—{Hd{<+oo for every integer n,

0
we find that

; K
v 1<E >0,

and hence
(3.47) JACE AGIEC IR

for any ¢, and ¢, (0<t<lt;<t,<T?).

3.6.2. ii) Both V; and Vy can be treated in a similar way. So, we
consider Vy only. It contains the integrals with the form

(3. 48) 7() = S: —tl:—_;gb(t, ),

where

9t,) =exp(— 2GOEID Yy (5, 9)5c).

It is easily seen that both ¢ and g—f are bounded and continuous

in ¢ and . Now, we have

LORONS Wi M +

g}g (b, z’)( —-1—>dz'

\/tz—‘c \/tl—r

e

=2 sup [¢(t7) [[Ver+ (Vea—t,— 1) ]
<z'<t‘1

e

S ‘/ - (§ (1)~ (6, ) de

+2\/t2'_t1 SUP |¢(t2yt) I

<<ty

+2(t— )Vt sup ¢ (t,7)
0<e<t
t1<t<tz

and hence

(3.49) V() —V (@) [<Kt—t;  (0<t:<t:).
It follows directly from the last inequality that

(3.50)  [Valta) —Valty) |[<Kit;—t; (0<t,<t,).
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Similarly, we get

(3.51)  Va(ts) —Va(t) |<Kit,—t;  (0<t,:<t,).

3.6.3. iii) Consider V4 (#). Put
4@ =t -2 () 0,9 —ar 2 (3(2) +0,9).

Since ¢ (r) is bounded and continuous in 0<{z<{T; as shown in 3.4,
we can again apply the estimation method used for ¥V in ii), with
¢(,7) =¢(r). Therefore,

(8.52)  |Va(t) —Va@y |<Klt;—t, (0<t:<ts).

3.6.4. iv) Vy(t) and Vg(¢) can be dealt with similarly.  So, we
will consider V() only. Put

—expf — 0@ =y @)\ _ -
1 exp( ! ba. (1) )—1 e*

~ X[l —XS:exp(—ﬁX) (1—0)d0] = XZ

and
YO =@ ==Y, L (3)~0,) =w(@
where
X=X, =29 a(fgt"_{gf)) 2,
Z=Z@,7) =1—X(@,7) S; exp(—0X(t,7)) (1—0)d0
and

Y=Y(,1) :S:y(r+0(t—r))dﬁ.

Then, Vg (#) can be written as

V() = —3 ‘/”;_S: Vi—7 Y (t,7)2Z (¢, 7)w(z)dr.

Hence, we have

(3.53) Vil —Vap(ty) = — ”1_[8’2 V=7 Y (1, 1) Z (b, D) (2) de
8yx LJo
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R (PRI dr}

- ~8\/czlr— [SZ V=7 Y (4, 7)* Z (b, D w () dr
+ S:I (V2= =0) Y (£, ©)°Z (ty ) w0 (£) do
* S: Vo= (Y (8, ) =Y (1,0)) (Y (t21 7)
+Y (b1,7)) Z(ty, 7) w (7) dr + S:l i Y (0 (20
—Z(t, D) w (@) dr:l,

Note that Y and Z are bounded, and w(r) is square-integrable in
(0,T,) as shown in Lemma 3.2. Therefore,
N y
(3.54) !S‘z Vi, —7Y (5, 7)2Z (ty, D) w () dr |<KS£2 Vt,—7 |w(z) | dr
f 1

t
t

<KL G de L e <K ).
1 f
Secondly,

(3. 55) IS Vlr—e—VG—2) Y (1, 1) Z (b, T) 0 (z) d |

R w ()
<K(t—1y) S e

<K(t)—t) [S: ﬁf—_-ﬂ]m[gsl w (r) e ]V

<K=t log 2E 8 | <Kty 193
Thirdly,
VBT ) =Y (0,9) (V (0, 9) +Y (6, 9) 20t D0 @ |

<K{ 1Y) =Y (0 0)| [0 Jor
<K{'1{ 196G +0¢—7) —3G+0(—) 1401 [ (@) 1as
ao{ 19 +0(6—) =3 G+0(0=0) |lw() ldr

01" 15(+00—) —3(-+ 006 =) ]

SO @0~y o) e
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Notice the relation (3.19) and the inequality
T
(" o arn +m —ur0, 0 a2 < K1,
0

which follows the fact that u(x, ) e WZ1(£2,) (see Appendix B). Then,
the concerned expression on the right hand side can be estimated as
follows:

(3. 56) < K(ti—t) wg

PO e K(t,—1)
v V18 2—0) 7%

Finally, we consider the fourth integral on the right hand side of
(3.53). Now,

12067~ Z(t7) |
= | = (X(ty®) = X(t,0) | exp(—0X(,2)) (1—-0)a0

=X (6,9 ({, Texp(—0X (6 ) —exp(—0X(6,9)1(1-0)d0T} |.

Since %—‘f is bounded, we get, by the mean value theorem,

|Z(t29 T) _—Z(tlr T) ]<K(t2_t1)-

Hence
@.50 I\ Va=e Y (6, 072007 20, 0)w () de |

<K=t (" 1w ) lar <K=t
Consequently, we have from (3. 54)-(3.57)
(8.58)  [Vay(ts) —Va(t) |[<K(l—1)¥*  (0<6,<t,<TY).

Similarly,
(8.59)  [|Vy(ts) —Vyu(t) |<K@—t)¥* (0<86,<8,<TY).

3.6.5. v) The next step is to consider Vi (f). By the fact that
there is a constant y(>0) such that for 0<z<t<{T},

Iy +y@ >t and  2—y(@) —y () >7,
we find

(3. 60) ]de(’) {<K 0<t<Ty,
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and hence

(3.61) [Vag(8) —Va(8)) |[<<K(ta—1t) (0<6,:<8,<<T).
vi) For Vyu(t), put

(3.62) Va@ =Vu@) +V(),

where

(8.63) V411(t) =

IO —p@ . (_ a(®) —(@)?
4\/1?80 t—7)% X p( : 4a,(t—71) )

cu(y(r),7)dr,

MORRIGIR a(y@) +y(@)?
4\/ SO (t—1)%% ~ p( 4a,(t—7) )

cu(y(z),7)dr.

V412 (t) =

Vi (¢) can be expressed as follows:

Vin () *S Sf/(t 22 L2 2 dr,

where

(3.68) $(t,0) =~ flex p< “1({;fgt?;§f))z>u(y(r>,r)

: S:y(f-{—ﬁ(t*T))d‘L‘.

It has the same form of V() given in ii). But g—fmay here not

exist, so that we must be content with having the following estimate
in the first place:

(3.69)  [Van(t) ~Vau |<[[" 9t 0) (== o
1— 2

+iS —WW) ¢(t1,r)]dr‘+;g Wz’?df

The first and third term on the right hand side are bounded from
upper by

(3.66) 2 sup |¢(t,7) ]| (t;—t,— (\/E- \/E))
0<‘L‘<t1

and

(8.67) 2 sup |¢(&, 1) [Via—ty,

11<z<ty

respectively. We next examine the second term.
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el 2)

Gty ) =P (8, 7) ——4‘/

exp( — 20 —y@)], B
e~ S L) st oop

_a@) =@\ (. _
+exp< 14012151_7) >[So(y(f+0(tz 7))

5+ 0(,—)))d01}

and
_ 0@ —y (@) ~a(@) —y(@)?
’exp( : 4alzt2 7) ) cxp( ' 4alét1—r) )
<@ty sup || ~2GOID 5
a(y@) —y (@) _aQ@®) —@)?
G JCXP< 1 4a,(t —7)2 )
<K(t,—t).
Hence

N wz [, %) — (1, ) e

<K\/t1 (tz‘t]_) +K

|, A perow—o)

—5(+0(t-)1d8 |
Furthermore, the last double integral can be estimated as follows:

Sn dc S[y(r+0<tz—f))— (T+6(t1—7>)]dﬂ1
\/tz*f

Sldegt Vi —

<{ a0 (2 10 e r00—0) —se 000y

T

[y(r—{—ﬂ(tz 7)) —y(c+0(,—7))]de

1721 dﬁ (1—0)!1 . . 5 -
= (tog 2 )| 0 9B+ 0 — 3010y dp1 .

Let’s use the estimation method used at the last step to get (3.56).
Then we find that the last expression is less than

b\ 3/4
K(logt —; > (t—ty)
2 1

<KL log (62— 1) [V (2= ) ¥+ |log £ |V* (8, —1)) ¥4]
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for 0<t<t,<t,<T,. Therefore

t
e IR IROS I
0 Jtz—T
<K[ |log (t,—11) [2(t,—t)¥*+ |log # |2 (2, — 1) ¥*].
This and the estimates given before, (3.66), (3.67), for terms on the
right hand side of (3.65) admit to get

(8.68)

(3.69) |Vt =V () | <K[Vt;—t,+ |log £ |2 (8, — 1) ¥4].

3.6.6. vi) Consider Vy,(), and put

Via(t) = St 5111(15, T) dr,

0 Vi—7
where
__aO®+y@) ([ aly@®) +y(@))?
pt,0 = =20 H L exp(— 2 QR WG @,9.

Notice that both ¢ and —gitb— are continuous and bounded in ¢ and

(8<r<t) since there is a positive constant y such that y(¢) +y(z) >7t.
In fact,

K o K
¢, 7) |<'t——, I—at_(t’ 7) |<Z_3
Repeating the discussion done for V in (i) produces the inequality
G.70) Vit ~Vaa(e) |<K[ Yl B |,

By combining (3.69) and (3.70), we obtain

G 71 | Valts) —Valt) |<K[-“-"‘2—;—fl_+ llog £ [V2(t,— t) ¥*

+hah] a<a<n.
Similarly, we can get

B.72)  |Valt) — Vet i<1<[ﬂz7—£1_+ llog 7 [V2(t,— t) ¥"

+ tzz—ah } <t:<to).
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3.6.7. vii) For V; and Vs we have only to repeat the above
method for V. We obtain

(3.73) | Valty) — V51<t1>|<K[“2“"1+ ‘1] (F<,<t),

Vealts) — Vea(8) |<K"‘+—f1 G<t<ty).

Here, we have used the fact for Vg, that the corresponding ¢ has the
uniformly bounded derivative with respect to ¢ for all £>0.

3.6.8. From (3.47), (3.50), (3.51), (3.52), (3.58), (3.59), (3.61),
8.71), (8.72), (8.73) and (3.44), we have

lu(y(t2), ) —u(y(t), ) |
<K BB -t () +

+‘/_t;z—_t1+ llog # |1/2(t2—t1)3/4+‘2—;—’—lj <6<t
Hence, we have
B.74)  u(y (), ta) —u(y(t),ty) |

<K|:‘/t2_t1 + llog tll/z(tz t1) 3/4-1- tl“ (Z<t1<t2)'

However, this has a distance from the desired inequality (3.51). It
is necessary to replace ({,—¢)Y* by (,,—t)¥%. For it, we next use
the obtained estimate (8.74).

The concerned term (¢,—¢,)*?/ ¥ was produced from the estimations
of the integral of type (3.48) in ii), as well as in iii) and iv).

3.6.9. ii") For V, and V,, we again consider

(3.75) 7(t) = S: ‘/t—l__?gb (t,7)de

where

3.76) ¢t =exp(—2QOELD N (50), 5500,

Since, by (1.9),

1Y@, DI =Fu(y(@),?) tl—u(y(@),),
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we have
lu(y (72) , T2) ¥ (72) —u(y (7)), ) y(zD) |
<K[\’fz—fl + llog £z, —m) ¥+ 50| (F<mi<ay,
due to (8.74). So, we also have

G.7T) 14t ) —d(t, 1) |
<K[szt;f1+ llog 7 |V2(r,— ) Y+~ ‘ﬂ (<er<1s).

Put
Py = LG Lt oy ag 10 1E
Then
— — 1
(3.78) V(m—V(tl)—S [0 )t ] Lo

+H{ L —g 1o
Vi, —

S’z & (5, 7) ¢(tz,tz>dz.+2¢,(t £s)
tl \/tn—T

\/2 \/tl

To estimate the first integral on the right hand side, we divide the
integral interval into two parts of (0,7) and (#,4;). For the integral
on (0,7), we have

(3.79) jS [0ty ©) — (1, tz)]L ‘/2 - v_tlljr]dfl
<2 max| T)ISL/ 11_T \/tz de
=4 Htl.?xlgb(t 2 [ \/tz—t+t\1/t1~—t \/%jrf/lfj
=%_<tz—tl>

for ¢,>t,">2¢. For the other integral on (¢,¢), we use (3.77). Then

(3. 80)

Nacs Sb(tbtz)]l_\/tz - Wl_ﬂ ‘

}a’r +

K, V= L\/w wz



MODEL OF SUPERCOOLING SOLIDIFICATION 1161

_ 1l 1 1
log 7 VZSl t— 3/4[ ———]d
+ | Og l ( 2 T) \/tl—f JtZ—T T

+IS (f2= )[\Itl T ﬁ]dr}'

t3

Here, we consider the integral

e )

Put

<t2—7>1/2:a°
t]__T
Then, the above integral is reduced to

_ 1+a o 0.2a+1 . 1 ( _(tz—t>1/2>
2 (ty— 1) Sal ey ot (n=(329").

When a=0, it is less than

<[ 1 1 g
2 (tp—1 S [——~——]d —2(t,—1,) log—2
(t—11) olo—1 o 0 =2(t;—11) Ogal_l

1

the concerning integral is less than

— l+a 1 :_2_ _ l+a o 1
2(t,—ty) S C 1)1+ad‘7 a(tz ty) G —1)e

When 0<a_ 5

= ‘i—(tz‘tl) Ve — ENt,— E4+E— B 1%

By applying the obtained estimations of those integrals on the right
hand side of (3.80), we get

@80 || 000 9] e
<K|:-f”(t2_t1) llog (¢, —£1) [+—z‘3(t2“t1):|~

The second integral on the right hand side of (3.78) is estimated

just as before:

og
’—at_ (t9 T)

a8 ([ [0 — (1, ) 1de [ <2 (6= 1) Vi max
t— srs ’1

<K (t;—1t).




1162 TATSUO NOGI
For the third integral of (3.78), we again use (3.77). So, we have

S ¢' (tZ’ T) ¢ (t21 t2) d‘l.' ‘
t Vt,—T

<KS [TJF llog F¥2(t,—<) 1/4+%\/t2—z'j|dr
fy

(3.83)

=K|:% (tz—t1) +:;— Ilog f]l/z(tz—tl) 5/4+'3i23(t2— t]_) 3/2:]

for &, >t >1.

For the last term of (3.78), we have trivially

(3.84) 2| ¢<tz,t2) |< Fl—t)  for <6<t

\/2+\/

By applying (3.79) — (3. 84) on the right hand side of (3.78), we
obtain

(3.89) 1Pt —7(t) | <K J(ts—t + (=12 llog ta—t) |

for t,>t,>21.
Using (3.85) instead of (8.49) for V, and V, we obtain the

revised estimation

(3.80) 1Vt =Vt | <K Tx(ts—t) ++ (=t logts—2) |
(6>4>20)
and
1 1
(3.87)  |Vz(t) —Val(t) |<Kl:73(t2‘t1) +‘T(t2'—t1) llog (¢,—¢1) [I
>1>20)

3.6.10. iii’) For Vj, we must reconsider the integral of type

140 :S: ‘/tl_

where
@) =2 (5(0) ~0,7) —ar (5 (=) +0,7)
=a(ug—u(y(r),7)).

By using (3.74), we have the estimation of same type as in (3.77):
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(3.88)  [9() (o) |<K[ YTt flog [V2(ry—ry) V- T2 |

Hence, we again have (3.85) for the present V(f), and further

(3.89)  |Vyu(t) —Vau(sy) |<K[~1t—3(t2—t1) +%(tz—tl) |log (¢,—11) l}
3.6.11. vi") Also for V(¢), we use the following expression:

(3.90) Vit —Vm(t) = Stl [Ptz ) — (2 tz)][‘/ = W'l:;}df

e g0 ‘,

+Sol [tz 7) — & (tas T)]l: - \/tz—f

i R =

Jd‘r

where

o, 7)) = 4‘/;_exp< %)u(y(r>’r) Soy(1+0(t—r))d0.

To estimate the first integral on the right hand side of (3.90), we
again devide the interval (0,#;) into the two parts of (0,7) and
(t,t,). On the first part, we have the same eatimation as in (3.79)
with another constant K:

:(tz ty)

o0 [[es —pewi] - e <X

for ,>>¢,>>2¢. For the second part, we use (3.74). In fact,

P (bay ) —P (s 7) = —

cl_[u< (&), 1) ¥ (ts)

Hr
—exp( 249G 2O, (40, ) Sly<r+0<t2—r>)d0]
e 1000
+exp(— 28 2OV (5., 1) a5, 915
+exp< cl(iiiz()tz_);gf)) )S [v(t) —y(c+0(¢,— z-))]d(?}.

Now, we can use (3.74) since ¢, >t >f, and then have
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lu(y(t), t) —u(y (@), ) |<K[1/tzi_?+ llog ] 1/2(t2_1)3,4+t2t;31]
and also by (3.19)
|9 (t) —y(z+6(t,—7)) |=%]u(y(t2),t2)
—u(y(+0(t—7)),t+0(t,—7)) |<K[‘/(1—0;E
+ [log #|"’[(1—0) (tz—-r)]3’4+g:_0;3(t_2-fl}

Therefore, we again have

(3.92) 19t t9 = () | <K Va4 log £ 2ty 25T |

This is an estimation of the same form as of (3.77). Hence, just as
for (8.80), we obtain

f) o g w1 -

(8.93) =

1
<K|i7(fz“t1) [log (2;—1y) | +’—Z“3(t2—t1)i|-

For the second integral on the right hand side of (3.90), we can use
(3.68) without change. For the third integral, we consider the
difference ¢ (¢,,7) —¢(t,7) :
_ - _ o) —y(@)
9t ©) ~g(t,2) = = i exp( - 0L =2
_ _a(@) —y(f))z)] Sl : _
exp( ) 2D (5,00 9+ 00

exp(— 2G4 22Oy, 0 13 +0G—)

—y(r—i—ﬁ(tl—r))]dﬂ.

Hence

19ty %) = (8, 2) [<KTtr= 1+ 19(+0 (=)
—5(E+0(6—0)) 1d0],

and

(3.94)

|, [0e) g1 e
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<x{t-0 ([ L]
‘/tl T \/tz—‘[

T,S;lL/_tllT_T_EIT_J[SG|5,(f+0(t2—r))

—y(@+0(t,—7)) lda]df}.

The integral of the first term on the right hand side can be easily
evaluated. For the second term, we devide the interval (0,#) into
two parts, (0,7) and (7,{). For the former part, we have

T 1
s I, 190 0) —3( +0 =) [dode

<S: do {S;(th—l_—r — \/1521— T>2dr} v {S; [y(z+6(,—7))
—y(@+0(t,—1)) 1dr} 2

Here, we further have

S:(vtll—r Vi — )dr<(tz I)S (td 7)°

< K(tzl; tl)

for 0<{2t<t,;<t,<<T,, and
1 ;
Sodﬁ {So [y(c+0(t—7)) —9(c+0(t,—7) ) Pde} P <K (t,— 1)) ¥*
by the same method used to get (3.56). Therefore

(3. 95) SE LL—L][SII )(c+0(ty—7)) —5(c+0(t,—7)) |d0]dr
. OL\/F \/t-z—_‘z' o.y 2 y 1

<K[LBSI )| (@<t
For the latter part, {<t<t,, we again use (3.19) and (3.74):

19G+0(t—) —5(c+0(6—)) |
=—§‘—}u<y<r+6<t1~r>>, e+ 0(t—1))

—u(y @+t =), T+0(6—0))
< K[‘/tz—;tL-F |log £ |2 (t,—1,) 3/“+—5Z{3—“}

and
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al 1 1 PPN ! dc
S [\/E?r—\/tz—z-]df— (&=t Si Vti—tVt,—t(Vty—t+ V£, —17)
<\i—

S dr
‘/tl—f(\ltz—t1+ \ltl—f)

=25 =t log Ve =i TV = g7 Jog (6 — 1) |.
tz_tl

Therefore

Wl 1 1 L .
6.96) | e = 196 H0@—0) —3C+00—0) de

<KVt log (=t [| Y=t Jlog £2(t,— 1™+ 2 |

By applying (3.95) and (3.96) on (3.94), we obtain

|
I R S e et
<K{(ts=1) llog (6=t || -+ llog 11 (ts— 1
Vi, — 1, 1\
+—23——J+(t2 tl)/}

for 2E<t1<t2.
We next consider the fourth term on the right hand side of (3.
90) :
iy df t
3.98) |9t (] [k
0 Vt,—7 \/tl—f

<_fi(%;.ﬁ (for E<t,<ty).

Finally, we again use (3.92) for the last term of (3.90):

(8.99)

S;l & (b f/)tz _Gi(th t) 4 |<K[S: {% + |log £ [¥2(t,— 7)Y

ety
<K (t,— 1)|: + |log £ V2 (t,— ) YA+ -3\/t2“t1_‘ (for t<t;<t5).

In conclusion, by applying (3.91), (3.68), (3.93), (3.97), (3.98)
and (3.99) upon (3.90), we obtain
(3.100) |Viu(ts) =V (2D |<K[ IIOg (ta—t) [Vt — 1) ¥
+ |log £ [V2(t,— >3’4+~(tz—tl> llog (b— ) |+, Hb—0)]
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for t,>t, >2f.
For Vu,(¢), we can transfer the estimation for V(¢) in ii’), as
before. So, we have

(3.101) |Vaat) ~ Vit | <K| Lsta—19 + - =0 llog =1 |

(6, >4, >21).
By combining (3.100) and (3.101) we obtain
(8.102) |Vyu(ty) —Val(t) |<K[ Ilog (82—t ll/z(tz‘h) n
+ [log 21" (t,— 1) ¥+ (6= ) [log (b= 1) [+ (1)1,

for t,>t,>2i.
Similarly, we also have

(3.103) |Vi(t) —Vi(t) | <K[|log(tz—1t) [Vt —t) ¥
+ |log & [V*(¢,—1) 3/4+—i:(t2_t1) |log (¢,—11) I+—Iz§(t2-t1)]9

for t,>t,>2t.

3.6.12. vii’) For V5 and Vs, we again repeat the discussion for
Vs as before. So, we have

(3.108) [Vt ~Var(t) |<K| Saltr=t +4 (o1 llog (12—t ||
(£, 2>4,>21),
| Valt) = Vst | <K| (=0 llog (=) || (t:>4>2D.

Consequently, we obtain the revised estimation, from (3.47),

(3.86), (3.87), (3.89), (8.58), (38.59), (3.61), (3.102), (3.103),
(3.104) and (3.44),

lu(y(t), t) —u(y(t), t) |
< K[ log (¢, —1t) "2 (82—28) ¥*+ |log £ V2 (¢,—2) %

+”lz—(t2—t1) |log (t,—t1) H‘%(tz‘h)] (t,>1,>21).

Only by replacing 27 by a new &, we have proved Lemma 3. 4.

3.7. We are now in a position to prove that there exist both

(3. 105) lim -2 (x, 1) =S—Z—(y(t) —0,)

z>3(D-0 OX
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and

(8.106) lim 2% (x,¢) = (y ® +0,8)

2y ()+0 3x

for every ¢t>0, and they are continuous in ¢ (¢2>0).

3.7.1. For the purpose, we will give an expression of the solution
u(x,t) using the so-called double layer potential. Put

o, (x,t—7)v(z)dr

10
(3.107) u(x,2) =S0 Un(x—&, t—Du(E, ) ds+§f

—f—St_ U, (x—y@),t—t)w(r)dr

in the region {0<x<y(¢), t>f} with any fixed #, where »(¢) and
w(?) are unknown functions. We can introduce a system of integral

equations to find v(¢f) and w(¢) as follows: we first note relations
similar to (8.41) and (3.42), i. e.

oU,

lim St aa(? (x,t—f)v(r)a’r—_—g—;v(t) +S;
1

x>0 JI

0,t—7)o(zr)dc= ———v(t)

(since the last integral term vanishes) and

oU,

(3.108) lim S

z—>y(t)—0

(x—y(@,t—t)w(t)dr= ——ﬁ—lw(t)

+f 2 v W =@, t—Dw (@)
From (3.107), we then have by taking x—0 and x——0(y¢) —0

(3.109) £ (t)+S aUl( — (), t—)w(2)de

=f1(t>—S: Uy(—6, 1~ Du&, D5,

—pwe +| D
2 i

SaU1
"Ji o

(@), t—7)v(r)dr

@) —y(@), t—n)w(r)dr

=u<y<t>,t>—gj Un(5(t) — &, t—Bu(E, B de.

This is a system of integral equations of the Volterra type with
kernels of the type

_%Et’:r) (Q(¢,7) is bounded and continuous),
—T
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and with continuous right hand side. As well known, it then have
a unique continuous solution (»,w). Further, we can derive estima-
tions for the difference v(¢,) —v(f;) and w(t,) —w () for &, >¢,>3%
from (3.109). In fact, the integral

oU,

S U,

(—y(@), - w () dr, S; (5@, i—D)o()dx,

g:‘ )U1<—e,t—i>u<s, f)d¢ and g U () — &, t—Du(E, Bde

have uniformly bounded derivatives with respect to time ¢ for ¢>2f,
J1(@) is Lipshitz continuous, and u(y(¢),¢) satisfies (3.46) (of Lemma
3.4). In addition, the integral

S U,
3

0@ —y@,t—Dw()dc

goes along the same line of discussion as for Vy;(¢) in 3.6. Therefore,
we first get

(3.110) |w () —w (1) |<K[W2—'f‘1+ |log 7|2 (8,— 1) ¥4+ ‘“]
(t.>1,>21)
(see (3.46) and (3.69)) and
(3.111) lo(t) —o(t) |<<K@y—t) (E.>8,>20).
Again by using the obtained (8.110), we get a revised estimation:
(3. 112) |w () —w (@) | <KL |log(t;—t) |V*(t;—t) ¥*+ |log £ |2 (6, — 1)
+i7(t2—t1) |log (t,—¢1) H‘%‘E(tz_tl)] (t,>1,>31).

3.7.2. Now, we consider —gz— from (3.107):

(3.113) g—l;(x,t) =SZ® aagl (x—&, t—Du(,i)de

+S: g;lglé(x,t—r)v(r)df‘l-g aagj{-'l(x_}’(f) t—n)w(r)dr.

Clearly, the first and second term on the right hand side of (3.113)
are continuous at (y(¢),¢). To be discussed is the third term. Put
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(3.114) S aag;;(x—y(f) t—)w(e)de
— = T @, =) [w () ~w (@) de
—f—w(t)g aa[ajgl (x—y(r),t—1)d.
Here,
(3.115) U g t-) =2 aUl( —&,t—7)

1 @ B R

fWr (—1)% 2a,(t—7) 4a,(t—7) /)

So, it is necessary for the first integral on the right hand side of
(8.114) to consider

_(fw®) —w() _akx—y@)?
HI—S[ (t—7)% exp< P14a1(t—r) )dT

and

W) —w@) x—y@)* _(_ alx—y())?
Hy= S: (t—7)5"2 xp< 4a,(t —71) >dT'

Divide the integral interval into two parts: (f,3f) and (3f,¢). Then,

1A § 00 ]

Applying (3.112) on the second integral, we find that H; converges
uniformly in x. For H, we first notice that

(x—y (@) <2x—y®))*+2(y @) —y(2))*

and

_alx—y(@)% _ _alx—y@®)?
CXP( dali—0) >_CXP< 14a1(t—2') )

_ _al—y@)*\ [, _ _
exP( 1441(1:—1) >{1 eXp< 4a (t Ta L)’

~ Gy @)D | <exp( - —“E;CT(,M)[HKW—MI

+lx—y(@ DI<K exp(-%l_)_

Therefore,
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) <K(( et [ OO 100 =)

P (E—1)% s (¢ —1)5*
Plw@® —w@) [k—y@®)* [ alx—y(#)°
+sz (t—0)" ”Xp( 4a,(l—1) )df}'

The first integral on the right hand side takes a finite value depending
only upon ¢ Clearly, the second integral converges uniformly in x,
since |y(t) —y(r) |[<K(t—7). In order to see that the last integral
also converges uniformly in x, we put

exp( — GO,

4a,(t—71)
It is then bounded from above by
MS
61 t>z‘>3t Vi — exp( 0‘)d0‘

which turns out to be uniformly bounded from (3.112) and the fact
that the last integral is equal to 1. Thus, we have proved that H,
also converges uniformly in x. Consequently, we have
. YUy, _
(3.116)  lim OS N ONE Y CICR G
= 5

(y(t) =@, t—=7) (w@) —w(r))dr

and the limit function is continuous in ¢.
Next, we consider the second integral on the right hand side of
(3.114). Applying (8.115), we have

St gjc[a]é (x—}l(T),t—T)dr~_a_ISt oU, (x—y(r),t—7)dr

-

=—U1<x~y<f>,t~f)—g U (x—y(), t—2) 9(z) d.

i

U, (x—y(), t—z’)dr—SE oF Lix—y(@@),t—1)y(x)dr

The double layer potential here appears. Taking x—y(¢) —0, we get

(3.117) lim S

x->y()—0

ot L(x—y(z),t—7)dr

=—U(p® —»®, t—t)+ £40)
S oU,

0@ =@, t—0)3(D)dr
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(see (3.108)), and the last expression is continuous in ¢  Further,
we have found that (3.114) also has a limit function as x—y () —0,
and hence that (3.113) and (3.105) has a continuous limit.

The existence of the limit (3.106) and its continuity also are
found by the same way.

Thus, we have completed the proof that the constructed solution
(y(@), u(x,t)) is certainly a local solution of the problem (1.7)—
(1.13) in the classical sense.

§4. Existence of a Global Solution

4.1, The time interval (0,73), in which we found a solution, was
given so that the constructed solution of difference scheme satisfies
the condition (2.29) and the energy inequality (2.28). In the present
section, we will show that a solution of difference scheme is always
found and hence that a solution of the original problem exists in
global in the sense that it does as far as y(f) does not touch the
right boundary, y(#) <l.

We will start from the fact that, for ¢,<T),

4.1 W< (1 - pug O==M)
and

M-1
(4.2) ,-ZJO h(u}) <K

hold. Suppose that fy denotes the maximum discrete time among
such ¢,’s for any fixed h:ty =T <ty+kyi1.

Repeat now the estimation of the initial part in §2 for t<ty, taking
ty as a starting point. Just in the same way, we can arrive at the
equality of the type (2.36). Adding the estimations of the type
(2.37)-(2.39), (2.45)-(2.46) and (2.15), we have
Iy -1

1 1 M-1 ¥
2 a2 )k
=

N1 ]ﬂ—l M-1 1
4.3) 5 X k(o X e X )RRt (a
2 =N+l i=1 j=Tm1 9 )

J= Nl

N

c 1 It M-1
<?1 2 k(4 Z +a; 2] ) h(u})?
n=N+1 ji=1 J=Jn

11

tL ot qusta—a) ) St
l 2 2 b n=N+1 " ]”x
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Iy _
e Y e Y YR + Lt 712w —ty)
2 i=o Tartl 2 1

=y

4 5
g @t a I1 = )+ =) + e

The present problem is to estimate

N1
> kaluy,)*

n=

By (2.20), we have yN>%puET1. For some positive constant <

%puETl and sufficiently small 4, we can then take a value ¥ such that

(4. 4) In—0<xZ=Jh< gy~

Suppose again that, for N<n=N;—1,
(4.5) uj <(A—pwug

with some positive constant #<_l. Due to (4.5), (2.30) and Lemma
A.6, we have a positive constant A4(d), depending on d, such that
(4. 6) luf| and |u7|<<A(@) for N<n=N,—1.
Expand uj ; into

-1
wp =0 % hutud,

ayj=7+1

instead of (2.41). Hence
2 Jp—1
w,2<2|(2) U=k 53 b+ @) | a<m
and, by (2.9) and (2.16),

(3,0 <#] (L) (o + 5w, ~t) ; lhw) (2 as? | +2( ).

Therefore, we get

Ni-1

@D % k<L) o+ <tN1—tN>} Sk 5 by
T
!

s

N+
au

=t | (2) 40+

Applying (4.7) on (4.3), we have
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Tl M-1 T
(4.8) Z k. (d _ZH—cz 2 D hWp+ (4 Z +a, Z LIPS
n=N+1 j=T =Ty,
y Tp~1 M-1
<51 Z k . (a1 21 +a, Zj )h(u?x)z‘f‘K,
=l
where
d1=01{1 “‘4721[5 =+ aZE (tNI—‘tN)Jl}z‘f‘ ZE (ay—ay) }}
and

K= (mZ +ay Z )h(u_,x) + Sauk

=Jyt1

o (a0 (5 o0

1 4
+ e Ir P+ Garta) [P+,

We will fix &, 0 and ¢ as follows: put

max{l, —aZ—E(al—az)} =k,

and take &, so small that e,<x. Further, take J so small that

in [ 4E @ }
6<m1n{16€1, % AT

where
__ah
ar 16¢,0uy
We then have d{> , if
(4.9) by, — ty<AT.
Then, it follows from (4.8) that
T,~1 M-1 It
eSS 0 S et @ 3 e 5 hwy
n=N+1 i=1 J=T,+1 i=Tw,

Jp~1 M-1

Ny
<& 2 ku(a +a; X ) h(ui)*+K
n=N+1 i=J

i=1 i=T,
Take the procedure used to get (2.53) from (2.51). Then, by

putting el=#T, we obtain

24
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_ Ty~

]
(4.10) Z k(g T i+ G Z +a2,2 VA< K

j=1 i=J,+1 J—]Nl

for T1<tN1<T§=T1+AT, under the assumption (4.5). If this assump-
tion were to be satisfied for T1§tN1_1<T; for all A<h,, we could

again construct a solution of the original problem for T,=<¢< T3, too.
Further, if the assumption were to hold for some interval (7%, T+ pdT)
(p:integer) for all h<h,, we could repeat the procedure to get a
solution for (7T1+ (¢—1)4T, T1+qdT), ¢=2,3,...,p, successively.
Suppose, in addition to such situation, that we see a time f; in
(Ty+p4T, T+ (p+1)4T), at which (4.5) is first violated with some
h(<hy), Consider the lower limit of such ¢, as A—0:

(4.1D) lim ¢, =T;=To+ (p+7 4T (0=<D).

h—0
It then follows that we can take an A;(<Ah;) such that (4.5) is
satisfied for all t,,<T1+<[1+%>AT and all 2<h,.  So we have a

solution for the time interval (T,+ pdT, T1+<p+ )AT) Thus, we

could find the solution for
0<t<T2—T1+<p+ )AT
4.2. The next problem is to continue the solution beyond 7, For
it, we replace the constant g by /2, so as to have a next time

interval (7%, 75), on which the condition u} <<1— 9

for all A< h,, h, being another constant (<(%;), and hence to find a
solution on the interval. Further, taking a sequence p/2°, i=2,3,4,

>uE is assured

.., we have a sequence of constant, 4;, 1=2,3,4,..., and that of
time interval (T, Tiy), 1=2,3,4,..., in each of which the condition

u7n<<l — —%)uE

is satisfied for all A<h;, and hence a solution can be constructed by
the method already mentioned. It is clear that the obtained sequence
of solutions constitutes a solution for any time interval (0,7,), as a
whole. It must be here noticed that the internal boundary value
u(y(),t) never attain uy at a finite time. In fact, suppose that it
attains at 7. It then follows from Friedman’s Lemma (see, for
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example [6]) that
W T =0,TY>0 and 2 (5(T)+0,T) <0

(under the assumption of Lemma 2.1.) But, this is a contradiction
to the internal boundary condition (1.9).
Thus, we have found a solution of the original problem for all £>>0.

Existence Theorem. Assume that ¢(x), fi(t) and f5(t) are Lipshitz
continuous and satisfy the inequality
0o (%), f1(2) and f5(2) <ug
Sor all t>0. Then, there exists a classical solution of the problem (1.7)-
(1. 13) while y(t) is far from the right boundary (x=1).

§5. Uniquness of Solution

In the present section, we will show a uniqueness theorem for the
problem (1.7)-(1.13) by adding one more condition

5.1) (ez—c)ug<lb,

which means that the given initial degree of supercooling is not so

much.
Note first that we have some equalities from (1.7)-(l.11): imme-
diately from (1.9)-(1.10),

% (5@ +0,)1dr

(5.2) ymz%gu%%@@—mﬁ—@
—2{ [us—u(y@, 014,

and by integrating both (1.7) and (l.8) over the region {0<x<y(7),
0<z<t} and {yp(r)<<x<l, 0<z<t}, respectively,

01[8:“) u(x, £)dx— S: u(y(@),t)y(r) dz'jl

LS: —%—(y(r) —0,7)dr— S: g—Z(O, T) a’z‘},

=a

=

1
u(y(),7)9(c)de— S () dx]

(¢ ou ' ou
{2 1,0d-{ 26 +0,96m],

t
0

cZB:m u(x, t)dx+ S

=a

[
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and further by adding the last two relations and using (1.9),
(5. 3) clgz(t) u(z, t)dx+czgly(t) u(x, ) dx—CZS:gb(x)dx
=azgz%(l, r)df-alg:—g%(o,r)dr-i— [b— (ca—c)ugly (@)
+%(6‘2—6‘1) S:y(r) .

Suppose now that we have two solutions, (y;(¢), u;(x,t)) (i=1,2)
with same data, which are different each other in a time interval
(0,¢] and satisfy

(5. 4) (@) <3 (1) (0<z=e).

This also means that

(5.5) 1@<t (0<t=¢)
(due to y,(0) =9,(0) =0) and

(35.6) Uy (01 (8), ) >u(92(8),8)  (0<t=¢)

(due to (1.9)).

Let us show that the above assumption leads to contradiction. We
first find that the condition (5.4)-(5.6) do not allow such a time
interval (0,¢’] (¢’<e), in which

4.7 u(x, 1) >uz(x, 1) for 0<x<p:(#) and y,(t) <x<l,
u(x,t) Zuy(x,t)  for ,Vl(t) =x §_)’2(t)

always hold. In fact, by subtracting the relation (5.3) applied for
(92(t), uz(x,t)) from that for (y,(¢), uy(x,8)), we get

) (¢19]
(5. 8) cg [u1<x,e’>—uz<x,e’>]dx+g’2( Lean (x,¢) —cus(x,¢) 1dx
y 7’

0 15

1
+628 [ui(x,€") —uy(x,¢") Jdx
Yo(e’)
N I _ Ouy 1, SE"aul
| S (1,0 - 51,0 jd—af |-20,1)
0

_ Ouy _l
e 0,8 Jdt

+[b— (c,—cp) ug] [)’1 ") — D2 1]

+L ey - | 10 - 5014
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If (5.7) were to hold, the left hand side of (5.8) should be positive
due to (l.13), while its right hand side be negative by (5.1), (5.4),
(5.6) and the inequalities,

6.9 Taa,n-2ea,n=0 0<iss,

aul _ auZ ’
a—x(O,t) o 0,H=0 (0<t=e),

which themselves follow from the assumption (5.7).
The next matters which may happen under our assumption (5.4)-
(5.6) are that, for a sufficiently small time interval (0,¢],

(5.10) up (9:(8), 1) >u(9:(8) , 1)
always holds. We may have, in fact, more stringent matters that

there are not any time interval (0,¢’] in which, for some function
Z(), @) SZ(@) =p,(1) (0=t=¢"),

u(Z@®), 1) Sux(9:(8), )

always holds. In fact, suppose that we have such an interval [0,¢],
and we then find from (5.2) that, for 0<t=¢’,

G, 1) 0<pp(8) =31 (®) = — S[uz(yz(r) 7) —u1(p1(z), 7) lde

T
< %S [ (Z(D),7) —u (@), 7) Tde.
Here

) aul §
o (%,7) dedr

S: [u1(Z(z),7) —uy (31 (7), T)]de = S: [SZ(:

y1(@

— So {[Z(z)—»n (@] %1;1 (Z(z),t)— Sj:) [x— 9.(2) J%(’C’ 7)dx) dr

and hence
(5.12) ES;MZ(T),T) (), ) de
<max(Z@ —n@) | 2 2(),7) |d
{50 <x“%<f>>zdxdf}w{3 Sfff; G )| dnae]
<max (7,0 —y1<r>>w(8] W (26,0 |de)”
o0 1|2 oot
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since both quadratic integrals on the right hand side have finite values
for our solution concerned. Now, we put

max (,(t) =) =0().
Then, we get, from (5.11) and (5.12),
0(e") <KVe" (8(e") +6()¥), or 1<KVe’ (1+V5()).

But the last inequality never holds for sufficiently small ¢’. This is a
contradiction. Therefore, we have

(5.13) ur(Z (), 8) >us(92(2) , )

and especially (5.10) for a sufficiently small interval, 0<t<(e".

On the other hand, it is easily found from the maximum principle
that the profiles of u;(x,t) (i=1,2) never meet each other both in
0<x<p:(t) and py,(1)<<x<l at every time ¢, 0<¢<le. Therefore,
remained is only the case that such profiles may cross in () <x<9.(¢)
for some interval 0<t<(¢". Then, we can find such smooth function
Y (@) that @)<Y (@) <p.(#) (0<t<¢") and the followings hold:

(5.14) u (Y (@),) =u(Y(©), 1)
ou auz
(5.15) (YD), 252 0,1
and
(5.16) uy (%, 8) Sup(x,t) for Y (@) << ye(t).
In fact, it follows from the implicit function theorem, since
Puw®,n="2%wW,n  (p=0,1,2,,i)

and
a u1 o't u2
7 Y@, 1) >t (Y (@, 1)

should hold for some ¢ Since I.’(O) =3,.(0) =3,(0) = aZE >0, we may

consider from continuity of Y(t) that

(5.17) V() >0 (0<t<e).

By integrating (1.7) and (1.8) in the region {Y (¢)<<x<{l, 0<¢<¢"}
as done to get (5. 3), applying the condition (1.9)-(1.10) and practic-
ing integration of ¥,(f), we obtain



1180 TATSUO NOGI
yz(E”) ” p T 1 ”
(5.18) Sy( ) [czul(x, ") — cquy (%, € )de+€28 [ul(x,e”) —uy(x,€ )}dx
e &)

Yo (&

e 0,0~ @,01 0+ L@ nw

e”

T gy O g ] _g
—af [ 2,0 - 2.1, lar—a,

“ Ouy

A (Y (), 0dt—[b— (e— e uz] 32(&").

U
o Y (@),t)dt

0

+d1g
0
It follows immediately from (1.13), (5.14), (5.16) and (5.17) that
the left hand side of (5.18) is positive. Now, if

%o (Y@, S0 O<1<)
X

were to hold, the right hand side would be negative due to (5.9),
(1.13), (56.15) and (5.1). This is a contradiction. Therefore, we
should have

Ou,
0x
On the other hand, by applying (5.13) with Z(¢) =Y (¢) and (5. 14),
we have

(5. 20) (Y (@), 1) Sua(3:(), 1) (0<t<e").

But, (5.19) and (5.20) are not compatible with the maximum
principle to be satisfied by u,(x,¢) in the region {Y () <<x<»,(?),
0<t<e"}.

Thus, we have proved that the assumption (5.4) is not valid, and
hence that

Y (@®,H>0 (0<e<le).

(3.19)

(5.21) 1 (8) = p.(t) for some interval, 0=¢=e.
It is then clear that
(5.22) u;(x,t) =uy(x,t) for 0<x<ll, 0<i=e
These mean that the solution of our problem is uniquely determined
for 0<t<e, at least.
Clearly, we can repeat the same discussion for a series of time

intervals (g,,6,01) (=1,2....; &=¢). In conclusion, we arrive at
the following theorem:

Uniqueness Theorem. A classical solution of the problem (1.7)-(1.13)
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is uniquely determined under the condition (5.1).

Appendix A

In this Appendix, it will be shown that the problem of difference
scheme

WD) = (UD) x2 (1=j=]-1, Jh=X=constant)
(A. 1) u=¢; g=L2,...,J-1D

up=f", ut=g" (m=1,2,3,...)
with uniformly bounded data {¢;}, {f"} and {g"} has a family of
solutions for a sequence of space mesh size 4’s, whose difference
quotients of any times both in x and ¢ are uniformly bounded in any
compact set contained in

2={0<x<X, 0<s<T}.
Here, we have taken the coefficients of heat difference equation to be
all one for simplicity. But the following discussion does not give any
essential change even for the general case.

To see the above fact, it is essential to have an estimate for u,.
Such an estimate is well known not only for a heat equation but also
for general partial differential equations of parabolic and elliptic type,
and it is usally called an estimation of Bernstein type.  Similar
estimation may be, of course, expected for corresponding difference
schemes. In fact, for a pure implicit difference analogue for heat
equation with uniform mesh width 4 and time step £, such estimation
is known (see [5]). Here, we want to get such estimation for a
solution of (A. 1) with variable time steps {£,}.

A.1. Green’s Function
For the case of homogeneous boundary condition

(A. 2) fr=g=0 (=1,2,3,...),

a solution of (A. 1) is expressed in the form of eigenfunction expansion
by using eigenfunctions of a corresponding eigenvalue problem

Al ) (1Z5=J—1), and uw=u,=O0.

(A. 3) 7

In fact, it is easily seen that its eigenvalues are
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-1
(A. 4) z:zsz(l 4, sin , where x,,=%(s=1,2,...,‘/—1)

2])

and corresponding eigenfunctions are

(A. 5) u;=uf® =sin-JT ‘} (s=1,2,...,J—1).
As easily shown, these eigenfunctions are orthogonal one another:
- 0 (r#s)
J-1
A. . 7jm sjw _ )
(A. 6) jglsm 7 sin—~/= 7 %(r:s)
It is then sure that any given function ¢= {#;} can be expanded as
-1 ;
(A. 7) 6;=2 b. sin Sj.” (G=1,2,...,J-1),

where its Fourie coeflicients are given by the formula

(s=1,2,...,J—1).

2 . sjm
A. 8 by==- :
( ) J_Z;jlqij sin 7

Such expansion of initial data allows us to get an expression of a solu-
tion of homogeneous boundary value problem (A.1), (A.2):

n -1
uﬁ*szlb ql:I<l +4k, sin —27> sin r}n
_ 277 1["1 ” ( ) rsm sjrc] '
JJ—1 Zun1 1+4ksin%> 5] sin—— 7 ——sin % ?;
We write it in the form
J-1
(A- 9) u::JZth G(xn Sj;tm 0) ¢j>
where
G(x,,&43t,,0) =L]Z_IIIZI <1—l—4/c sin —-—> sin Z°F sin T sz
rs Sjrlns Jh B e q 2] ] .]
In general, we call the function
. 2 G .o ST L sjm
(A.10) G(x,, &ty Tp- 1)—Jh sZ;qu( +4«, mnW) sin—— 7 —— sin>— 7

Green’s function of the present homogeneous problem. It is verified
by direct substitution that the Green’s function satisfies the following
equations and homogeneous boundary conditions:

G (xn Sj;tm Tti—-l) ?:G (xrv {:j;tm Tﬁ—l) x% 9

A. 11
(A-1D) G0, &;:t0 cpr) =G (xy, &5t Tp) =0
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and
(A- 12) G(xn Ej;tm T?—1)1+G(xr9 Ej;tm Tﬁ—l) 55:03
G(xn O;tm 717—1) :G(xn E];tm Tp—l) =0
for n>p—1. To put, for n=p—1,
1

. _ls )= (=) (@6, is
(Ao 13) G(x" Ej! tﬁ—l’ Tp—l) ——5,.'1- =<} nJ ,
h 0 (%)) Kronecker’s delta)

(p=1,2,3,...)

allows us to say that (A.9) is valid also for =0, i. e,

W=¢,(r=1,2,...,J—1).

A. 2. Expression for u,
Suppose now that two functions, v and w, satisfy the equation

(A. 14), @) g — (08 :=0 »=12,3,...,n)
and
(A.14), @i g+ (@h™) =0 (r=1,2,3,...,n),

respectively. Multiplying (A.14), by khiw?™ and (A.14), by kA0t
and summing up all the products, we obtain

Z ky Z hLw} e — viwle]
—gmguwwrﬂmm=a

Summation by part here yields
(A.15) Z h wii= Z h w%+ ka[w 1@h-1) e— vh-1(whD) €]

- ka[wo vhe—vhwts ']

=f_ijhw,-v,-+gl kLot —w0igf]

~ 2. kol ok —obuotg™].

Especially, we can take

wi =G (x,, &3, 7p-1) and vi=ul.

Then, (A.15) becomes
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J-1 n
(A.16) wup= -21 hG (%,, &;5t,,0) ¢j+ijlkpG(x,, 03¢, Tp1)ef?
i= =

n

- Z kPG (xn Ej;tm Tp—l) E‘gp'

This is an expression of a solution of the problem (A. 1) using Green’s
function. It also allows us to write down an expression of u,:

(A 17) (ur) x Z hG (xn S !tm 0)x¢]+ Z: kPG (xn O tm TP 1) Exf

- ElkpG (xn Sj;tm Tp—l) E_xgp-

A. 3. Difference Quotients of Green’s Function

We here prepare some integral expressions for difference quotients
of Green’s function, in order to estimate the right hand side of (A.
17). Just from definition of Green’s function (A.10), we have

. _ : 1 \sm
(A 18) Glx &3ty 0=y Sz,lqnl< + 4 sin? J> sin3% Jcos<+ )J

4 g @ ( L)
ﬂhzg 1;1/1 sin—g-sin jo cos(r+ 5 wdw,

where ~ means that its left hand side may be replaced by its right
hand side for estimation for sufficiently small 4, and

(A. 19) A,=1 +4xqsin2%

Further, we expand the right hand side of (A.18) as follows:

(A.20) G(x,,§&;5t,,0) .~ T S H A7 1sm?sm ]w<cos r@w cos7

—sin rw sin >a’w

2 Su I A7sin w[sin (7 +j) o —sin (r — j) o]do

Tfhz 0g=1

2 Snﬁ A7 sin? —~[cos (r+j)o—cos(r—j) w]do.
1

+7'L'/zz 0

Similarly, we get

4

(A 21) G(xno tmrﬁ 1)::5 }l

S H/I Isin? —[cos(r—f—l)w—i—cos ro]do

and
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(A.22)  G(xy Erita Tpos) i~ h38 H/lqlsln-—[cos(]-i—r)w
+cos(J—r—1)wldo.

Put

(A.23) I(K:ty7p) __S Ifm Sin o sin Ko do
and

(A. 24) J(K:t,,7ps) _—S T 4;'sin" g cos Ko do,

By using the symbol 7/ and J, we can rewrite (A.20)-(A.22) as
follows:

(A. 25) G (%, &5380y 0) ,~I (r+758,,0) =L (r — j5t,, 0)

‘f‘h[](f“‘]; tnv 0) _](rhj; Loy 0]5
(A' 26) G(xr’ 0; tm TP—-l) xENZ[J(T_I— 1 ; tm Tp—l) +J(7; tm Tﬁ—l)]
and

(A° 27) G(xfl 5]3 tm Tp—l) x?NQ[J(J_f_ra tm T?—l) +J(]*7— 1 5 lrn 7'-p—l)]'

Our next problem is to estimate the function / and J. For it, we
will prepare some lemma in the following sections.

A. 4. Product of 4,

A simple estimation from under for a product of 4, is given as
follows:

(A. 28) }inquHsz 4, sin _:1+ o (ty =, )sin®

It is, however, not sufficient for later purpose. We must prepare more
sharp estimations.

Lemma A.1. Let k, (¢=1,2,...,n) be a sequence of positive numbers
satisfying the condition
max k,=k,, max k,=k; and Z": k,=t.
q q+1 q=1

Then, there are two kinds of partition of the number set N=1{1,2,...,n},
(N, N3} and {N,, Ng, N,}, such that
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1 1
= > (4 - >1
t, qEZN{akq_ 5 (t—ky), & qEZN}bkq_ 5 (t—ky)
and

= B kZg bk, ti= = k2 (—h—k)

4EN, qu/9

and

=% kq<—é~(t~k1—k2).

Proof. We will first construct a partition {N,, N;}. Clearly, we can
take a partition {1, N,, N;} of N such that
X, k< z,kqg%

4€N, 94EN,

Then,

> k=t t—k) and 3 k+k=L
gEN 2 qua 2

Put N,=N,+ {1}, Ny=N;. Such {N,, N;} is a partition desired. We
will next find a second partition {N,, Ng N,}.
a) We can find a partition {N,, Ny, N;} of N'=N—{1,2} such that

(A.29) t,=ty=t, and t,—t,=k,,

where t,= ) k,, etc.
qgeN’

In fact, let {N), N3, N} be a partition of N’ such that

L=ty =t’.

Here and later, we put *= 2 £, etc. (s=0,1,2,...). If 5—t3=<k,,
genN’®

it is sufficient only to put {N,, Nj, N;} = {N}, N3, N%. Otherwise, we
take off an element from NJ, and call the remained N. Adding the
element to N}, we call thé result N.. Next, exchange the name of
suffix, @, 8,7 in order that t}<#;=<i]. We repeat such procedure to
get a sequence of partition, {N}, N3 N3} (s=1,2,...) such that
4 —13<t;7'—17Y, and finally to get {N,, Nj, N;} desired after a finite
number of steps.

b) Put

N,=1+N., N;=2+Nj and N,=N,.

This is a partition desired. In fact, since ¢,+¢p+¢,=¢—k—k;, and
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¢,=t,, we have
t,g%(t—kl—kz), to=t,+ki=t, and t,=tp+k,=¢,,

due to (A.29). Thus, we have proved Lemma A. 1.

Lemma A.2. Assume that there is a constant p (0<p<l1) such that
(A. 30) min k, >p max k,

p=q=n P=asn
Then, the iequality
2
(A.31) IIA >[1+ (ta—zpdsin? | (for p=n—1)
and

(A.32) ﬂg@>{1+§g<h—rrggm%{r (for p=n—2)
a=p

hold, where =y and ,LJZZ% .

Proof. In order to show (A.31), we use a partition {N,, N;} of
N={p,p+1,...,n}, as shown in Lemma A.1. Then, we have

A= T 4,11 4,

q=p gEN, rEN,
2 o |
> = (t,— —
= !:1 + }ZZ (tn k) SIH _l ?
where k=max k,. From the assumption (A.30), it follows that

4N,
ta—Tpr— k= (n—p) prgqm /@Z(l p+l >(n—p—}-1)pk-
Z Lt =70
Therefore, we get (A.31) by combining the last two relations.

In order to show (A.32), we apply a partition {N,, Ns, N,} of
N={p,p+1,...,n}, as shown in Lemma A.l. Then,

I 4,= I 4, I1 4, T1 4,

q=p 4€N, reNi9 seN

[ 4 _
2L1+—3—hz—(t”—~ k)SIIl -———_J

where & is the sum of the most (k) and the second taken from
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{ky g=p,p+1,...,n}. The condition (A, 30) assures that

-~ . 2 -
— — > —Hh— > — —

_2_ (t, —Tp- V.

Therefore

S

4 . @]
A,= [1 —l——gflj—z(tn—rp_l) sm2~2~J3.

7=p

This is not but (A. 32).

A.5. Some Integration Formulae

Lemma A.3. Let a, B,y and 0 be positive constants. Then

Sn sinZ% -
(A.33) do= ,
0 <1+asin2_‘2"—><1+ﬁsin2—‘é’-> VI+all+8(1+a+V1+p)
sin‘—-
.30 2 do
So (1 —l-asinz%)(l —f—‘8sin2%><l + rsin2%>
a(yl+a+{l+B8+V14+7)
\/1+a\/1+ﬂ\/l+r(v'l+a+\/l+,3) (VI+B+V1+7p) (I +7+V1+a)
and
(A. 35)
S" 7 do—T4
<l+asm —><I+,@sm ~>< +7sin —)( +dsin ?> B
where

A=4a) T+B-+VT+7+V1+8) + (1 +p) (T+7+V1+6+VI+a)
+ 1+ T+ +a-+V1+p) + (1 4+0) (1+a+ V1+B+VI+7)
+2(T+aVl+pV1+d+ 1+l +oVl +a+ VI +oVl +aVl+p

VT +aVI+BV1+7)

and
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B=Vl+aVT+ 1+ 1+(T+a+VI+p) (T+a+Vl+y) (l+a
+V1+8) (T +B+V1+7) (N1 +B+V1+8) (VI +7+V1+0).

Its proof can be done by introducing a new argument 7,

_— 12
sin®—
N 2
W— P 9
1 —sin? —
2

and practising residue calculations in 7. Its details are omitted.

A. 6. Estimation of I(K; £,,7, 1)

Lemma A.4. When p=n,

c
|
Tp—l) I< \/tn-‘rp—l (\/tn_“rp~1+ !KVl) 9

where C is a constant independent of t, t,-, K, h and {k,}.

(A. 36) (K5 2,

Proof. When K=0, it is trivial, since 7(0;¢,,7,-1) =0. In general,
I(—K;tyytp1) =—1(K58,,7T51)
and hence
ll(_K; tm Tp—-l) l = |[(K: tm Tp—l) l
So, it is sufficient only to consider the case that K is a positive
constant. Put
(A.37) I(K;t,,t,1) =L(K;t,,7y 1) +1(K;5t,7s-0),
where
2 (K2 . . .
(A.38),  I(K;tyy) :ﬁz_g I 4 sin o sin Ko do
TL'}Z 0 g=p
and

2 T n
A38),  Lit,o) = T

A7 sin o sin Ko do.
. .

»

IR

We first consider I;(K;¢,,7,;). Notice that

. Ko
sin

Isin Ko | =2 ;
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and
. Ko|_Ko _ Kr . o
= = sin— <w<
sin 9 ‘_ 5 =" m2 for 0Zw<Znr
| |
|cosi(2g 52‘1 —2 sin? i< 1 z
| 1+2sin2 22
4
1 1 T
<<
< 1+K2w2< 1+2Kzsmzﬂ for 0=w=K
2n? i 2
So, we have
= K sin?2 cos 2
X n
LK 1700 1<, a2 2 4

2
Applying (A.28) on the last integrand yields

4 Sinzﬂ
(s e | <H 2 o,
<1 +—51n ?> [1 +?(t”—fﬁ_1) sinz—Q—]

Further, by using (A.33), we obtain
(A.39)  |L(K; t,,Tp-) |

4K
< \/th(t £y /142K [\/th(t —r,+y/ 142K

‘/tn—fp—l (\/tn_'Tp_]_ +Kh)

with an appropriate constant C.
We next consider I,(K; t,7,-1). Through integration by part,
we get

<

Kwd

4 B e Ko .
L(K; t,yTpm1) =T§_ﬂ_ ql;IP/Iq lsin @ cosTw sin——dw
K
8 o Ko
—_— ]:[ 1 2
K Bl q=P/Iq COS @ COS —d2 ®
K
n . 4k, sin 2 cos 2
—S . I_I At smcocoszKQ—w _“__2__2_dw:]_12(K; by Tpo1) -
et =t 1+4x, sin22.

2
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Hence
(A. 40) I,(K; tyytp1) =In(K; b, 7p-1) +1n(K; Ly Tp-1),s
where
4 z Ko
(A. 41) Ln(K; £y 7pos) :Eﬁgl 11 477 cos o cos’E do
K
and
(A.42) Ix(K; ¢, Tp-1)
8 (* = Ko 2 4quSin2%
_n——KhZS A7 cos -2—cos2 5 do.
A Pl dksin? S

2

Let us consider two cases, i) p=n and ii) p<n, separately.
When p=n,

I, (K5 &4 Ty-1)
4 |(=|cose cosz%c—”— 8k, cos? 7005 KTsng
=k} - %
2|14 4x, sin?2 ( 1 +4x,,sin2—“i>
2 2
cos? K—cos o —4k,5in? —cossz
= 4 SI 2 2 2 do
z), 2 ’
mKh X <1 +4k, sin2%>
and hence
s 7o) | <ol — 22—
i 1 + 4"5” Sin27
Since K2 sinzg Kn, we have
T d Sinzﬂ
S AL KZS 2 dw
< 1+4k, sin? 2 ° (1 +Kzsin2£> <1 +4r, sinzﬂ>
2 2 2
2K%r

Y I TR EY AR TS TN
Here, the last equality follows from (A.33). Therefore

, . CK
(A.43) (K b 70d) | <7 (Kh+VEDVE,’
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or
C

(Kh + \/tn - z'n—l) ‘/tn ~Ta-1

Also here and later, C is a constant selected appropriately. By

applying (A.43) and (A.39) upon (A.37), we have the desired

estimation (A.36) for p=n. When p<n, we consider I and I

separately. Notice again that

K2w? T
(A. 44) K% sin? -2—- p >1 for j(<a)<n:.

We then have, by (A.28) and (A.33),

(A. 4‘3) 1IZ(K tn! n—l) l<

sinzg p
LK by (<P
" nh? ] 4 .
<l + Kzsmz%> [1 + v (t,—Tp-1) smz-%]

8K
h*1 +KZ\/1 ‘f“*;t—z(tn_qu) Ul +K*+ \/1 ‘f‘%(tn_“fp—ﬂ}

and further

CK
VI+ KNt~y (Vt,—7, 1 +KR)’

C
Vi, — Tﬁ—l(‘/tn*Tp—l +Kh) '

We next consider I, and apply (A.31), (A.44) and (A.34)
successively. Then

(A 45)"  Ia(Ks ty,7p) |<

(A. 45) Mo (K 1y 7p-1) 1<

[122(1{ tm Tp— 1) [< K}lzz E’IS EPAZI Sinz%dw

N|a

)
T sin ? -
Zrlm

’ <+K2s1n )[ hz(t Tp_l)sinzg]

82K (1, —7,0) fz\/1 Aty T +K"z]

<%~2—Zn1 mqg
=)

3/2 2 .
h“[l +%(tn-rp_1)] V1 +K2[\/1 +%(tn—rp_1) +1 +K2J

Hence



MODEL OF SUPERCOOLING SOLIDIFICATION 1193

CK
\/tn_ Tp—l(\lt"_ TP—]- +K}l) ‘/1 +K2

(A 46)" | In(K; L,y 7m0 |<

or

(A46)  |In(K; trrr) |< ¢

‘/tn_ Tp—l[\/tn —Tp-1 +K}l]n

By applying (A.45)’ and (A.46)’, or (A.45) and (A.46) upon
(A. 40), we get

CK
Vt,— 5 (Vt,—7, 1 +KB)VI+K?
C
Vt,—7y1 (Vt,—7,1 +Kh)

Finally, by applying (A.39) and (A.47) on (A.37), we also have
the desired estimation (A.36) for p<n. Thus, we have proved
Lemma A. 4.

(A A7) LK by 7)) [ <

(A.47) 2(K; 2,750 |<

A.7. Estimation of J(K; £,,7,.1)

Lemma A.5. When p=n,

C
M1+ KAt — 7, (Vt,—Tp1+ |K|h)

(A. 48) |J (K 4750 |<

Progf. When K=0, we apply (A.28) and (A.33) successively.

: —2 (" 11 4 sin2®.
JO5 thy7,my) = 7r/z3So qI}ﬁAq sin’g do
. z(()
2 T sin *2—
<—7rFSo dw

1+ %2 (tn—7p-1) sinzg

_ 2
w1 =) [1 /1 +%(t,,—q,_1)}

Hence
I
h(tn“‘rp—l) ’
This shows that (A.48) is valid when K=0.
Let us next consider the general case (K#0). Since J(— K;

JO; 2 7)<
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bus Tp-1) =J (K; t,,T5-1), it is sufficient for the proof only to consider
every case of a positive number K. Put

(A. 49) J K by Tp-1) =J1(K5 by Tp1) TJ2(KS 85y Tp-0),

where

T
K .n

(A.50)  Ju(K; t,7p0) _ﬁg 11 4;sin* 2 cos Ko do
0 g4=p

and

(A.51)  Jo(K; 1y, 1)__S I1 4;%5in* Y cos Ko do.
T g=p

We first consider /.. By applying the inequality

2 2

<
2,,.2 2
1+ Kn‘;’ 1+4—K sin

(A.52) 1< for 0<w<1%,

2
(A.28) and (A.33) successively, we get

ke <igﬂ sinz—czg dw
5 by Th ) <l+é1i Zw)[l‘\l‘%z(t"_”_l)ﬁnz%:]
4
}l?’\/l +—,—T5-) \/1 t— [\/ hz (ta—=7p-1) _’_\/1 +4K2:I

Hence

(A.58)  |Ja(K; tytpe) |< ¢

W1+ KNt —7,  (Vt,— 7,1 +Kh)
We next consider J, It is easily found by integration by part that
(A.5%) Jo (K 1, 7Tpm1) =S (K5 b Tp-1) T Ju(K; 10 Th-1),

where

- — l ’
(A.55)  Ju(K; tyyTyr) =— Kh3gi
K

n
II 4;*sin  sin Ko do
a=p

and
(A. 56) ]zz(K; Lny Tp—l)

. @ 1)
, 4, SIn5- COS5-

S I /Iq sin? Zsin Ko Y ————w—da).

== 2 =2 1+4k, sinzf

_ 2
rKh3
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We first deal with tha case of p=n exclusively.

JZ(K; tm Tn—l) = d(()

1 S,; sin o sin Ko

3
Kk 1 +4k, sinZ%
in? @ in-? cos
L2 9 z SIn 5 sin Ko 4k, sin 9 cos 3 .
ﬂKh3 ° )
€ 1+44k,sin? 7 1+4k, sin2—2—

1 S”
- 120G
Kh K£<I +4k, sin2%>

sin Ko sin @ d

The last integral can be estimated as done for I,(K; ¢,,7,-1) (see
(A.43)"). So, we have

. C
e s ) | e, (VR K

Hence and from (A.52), it follows that the inequality (A.47) is
valid for p=n and K+#0.

We notice for the general case, p<ln, that Ju(X; f,,7,-1) can be
estimated in such a way as for I,(K; t,,7,-1) (see (A.47)"). Then

- 9
(A5D) Tl by 7p) [ + KAt —7, [Vt~ +KR]

We are to go to estimate /.
(A.58) | J=(K; t,, Tp-1) |

[IGE Yl WRRRT AN .
<—Txw | ‘1=PA 1n251nms1n2 cos®! dco].

'

Consider the last integral. Put

(A.39) L(K; t,,7p-1) —S InI sin 7sm ) sszw cosl%dw
Eg=p

K
Through integration by part, we get

L(Ka tm Tp 1)
2

=2\ II4;Y(sin2 cossi Ko . 20 2@)
Kgl - sin—- cos5-sin @ cos*—+sin’z-cos w cos™ dw
i
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. @ (0]
4k,8in— cos—

—ES [ 47t 1n——s1nwcosz&z 2 2 e
K Tq=p 2 2 s @
K 1+ 4£, sin o
_L(Ka tm Tp—l) .
Hence
(A.60) L(K; t,tp1)
10 Ko 12 Ko |
=7 Squ;IPAq | sin - cos?cos T+ sin? 5 ? cos o cos? 5 de
K
1 " L@ Ko & 4I€qSin% cos%
—ES II A;'sin? 7sm 1) cosz~2— 4 % do.
et P ] 4 4k,sin2 2

2

We first consider the case of p=n—1, exclusively.
L(Ks tm Tn—-Z)
1 . Ko
==\ 4447 — cosi’—
KS [2 sin? 2cos 2cos 5

+ sin? 5 <2 cos? -2—~ 1>cos ——de

,, » 4k, sin®—
—ES AL 47151022 cos? wcoszgﬂ T2 e
K T 2 2 2 g=n—1 « 2@
X 144k, sin 9
— _L Tl g1 2@ 2@
=—F SiAn_l/In sin’5-cos’5 dw
X
RQ—S A A7 l5in22 5co 2 cosz‘l—{g(ﬂ HL do.
T =1 | 44, sin22

2
We hence have, by using (A.31), (A.44) and (A.34),

IL(K; £, 700 | <2 S A A 5in 2 do

XNa

o sinzg
ES da)

<t .
T [l +—%t§(l‘" T,_z) SIN ——_‘
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. @
,, sin‘—

<10KS

0 ) . 0 |?
<1 +Kzsm27>[l —i—ih‘%(t,,—r,‘_z) s1n2?}

101@{2\/1 +%(tn—a_z) +11 +KZ}

2 dw

1197

13/2

ol L Bt | VIR 14 Lty e T

So,

4
LK £ 70 | < CKh

VI+ K (t,~70) P(Vt,—Tps + KB)

By applying the last inequality on the right hand side of (A.58),

we obtain

A6 | Ju(K; L) |< ¢

W1 +EKNt,—7,_,(Vt,—7,p + Kh)

Let us go to the general case (p<n—1).

|L(K; 25 7p-1) |

3
<IT Kr?

x LE
K K

We first apply (A.44). Then

S T A;'sin? 2 do + MS i A;%sin* 2 do.
q=p 2 a=p 2

":p—l) N<K1 tm TIJ-I) 9

(A.62) | L(K; t,,7, ) |<6KMK; t,,7,_1) +%¢}:2;_

where
_— sint?
ME; £7,-0) =S a2 4o
PP 14 Ksin??
2
and
_— sinﬁ-;i
NK; 1, 7p0) :S L2 e,
0 g=p

1 +Kzsin2%

Apply (A.31) and (A.34) for estimation of M (K; t,,7,-1). Then
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M(K; tm Tﬂ—l)

x sint?
< 2

dw
0 . . a0 |?
(1 -I-Kzsng ,:l +%(t,,—r1,_1) sm27_’

[2\/ R \/WJ
2[1 + 45t —7ym0) T’Z\/W[\/ L+ (6= + \/WT

Therefore

Ch*
A.63) O0<M(K; t, . .
( ) < ( T‘p 1) < (tn Tp_l) 3/2\,1 KZ(‘/tn 71:—1 | Kh)

Apply next (A.32) and (A.35) for estimation of N(X; ¢, 75-1). Then
N(K; tyy75-1)

7: sin®2
<S 2 3rl'm
"(1+K? [1 +2. (75 sinz—“i]
I3 2
J— T l
= 7 3 2 32
[\/1+?(t,,—u-1)+wll+1(2} [1+—ha(t,,—r,,_1)} VI+K
T 72
+ P J z+ 32{1-}_]{ 572) °
8[1-1-?(15”‘71;—1)} 8[14‘?(%“71)—1)}
Hence
(A.64) O<N(K; t, 1)< CK

VI+ K2 (t,—7p1) (Nt,—Tpy +KB)

Apply (A.63) and (A.64) on the right hand side of (A.62). We
get

(A.65) |L(K; tyopy) |< CER :
VI+K2(t,—75 )2 (Vt,—7,_1 + Kh)

Further, apply (A.65) on the right hand side of (A.58). Then

Cc
. 2(K; 1,7y '
(A.66) | Jn(K; t,7po1) l<h\/1 +KNt,—7, 1 (Nt,—7,_ + KR)

Combining (A.57), (A.61) and (A.66), we obtain, for p<n,
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. C
(A. 67) ‘JZ(K7 tm Tp—l) | <h\ll -{—Kz\/tn——fp_l (‘/tn—‘rp_l —|—Kh) -

Finally, apply (A.53) and (A.67) upon (A.49). Then, we also have

. C
(A. 68) I.](K, Luy Tp—l) l <h\/1 +Kz\/tn_7p-—1 (\ltn_rp—l —i“Kh)

for p<<n and K#0. Thus, we have proved Lemma A.5 completely.

A.8. Estimation of u,

We now use Lemma A.4 and A.5 to estimate the right hand
sides of (A.25)-(A.27). We then get the following estimations.

'G(xn Ej; tm O)xl

<M (r+js 80y 0) |+ [L(r—J; £,y 0) | +ALIT (r+J5 80, O) |+ 1J (r—J5 24, 0) |1

1 1
<C{\/E, (\/t—n +x,+ 5,) +‘/E (\/5+lxr—5] |)

+ _h_ + h___ }
CertEVE, (Wt +2,+6)  VEP+ (x,— &8, (i, H1x,—§5])
Hence
(A.69) G, &5 1,0, |<Cl PN |
menm s Vi, Wty +x,+&) Vi, N, + 1x,—&;]) )
Next

(A' 70) IG(xr, 0, tm Tp—l)xé '<2[’J(7+ ]- ;tn’ Tp——l) l + i.](r;tm Tp-—l) |]

C
for x,>>0
<xn/tn—fp_1 (it~ +2,) dor %20

and
(A.71) (G Xty Tp1) e [<2LJ (J 7580 750 |
+IJ(J—r—=15t,75-0) |]

9
Nears Vot (Wt —tpn + X 1) (for x,<X).

We are ready to estimate u,. Assume that data are bounded:
(A.72) |, If?] and |g?|<B 0=x;=X, 0<¢,<T),

where B is a positive constant. From (A.17), we have
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J-1 n
| (u,rl)x [<B[1§1 h[G(JCn 51; tm O)x( +I’Z=:1kpl G(xr’ 0; tm TP—I) 5’:I
+ I,Zi:lkﬁ |G %y €53 bny Tp-1) x| 1

Apply (A.69)-(A.71) on the last right hand side. Then

dé 1 (x _ de
| (). 1<C[w ) ViitatE Vi , Vit 5 —€ 1

—I—igt” dr i 1 S‘n dr J
xdo Vt,—t (Vt,—7+x,) X—x, Qo Vt,—t(t,— 7 +X—x,)

<C{%log(l+‘/?> —log(l—i—‘/t )—f— X x, log< ‘/jxr)}

n

Thus, we have arrived at the following theorem:

Theorem A.6. Let u be a solution of the problem (A.1) with the
assumption (A.72) in such a case that

(A.73) min k,>p max k,  for ixz<T

12N 1sasN

always holds, where p is a constant, 0<pu<1. Then

A79) 1691 <C| -log(1+ X ) —log< o )

Vi, )
X—xj log<l+X—x. ]

J

+

holds uniformly in h for t,<T.

As easily seen, the last estimation for u, is weaker than the estimation
of Bernstein type usally accepted, just by some logarithmic factors.
It may be due to the method used by us.

A.9. Uniform Boundedness of Difference Quotients
We define a ‘parabolic’ region £ by

= {0<x<X, 0<t=T}
and its boundary 02 by
={x=0, 0=/=T}U [x=X, 0=t=T} U {0=x=X, t=0}.

Take that £2(¢) denotes a section of 2 at a time . We further define
a sequence of sectional regions and their boundaries as follows: 27
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is a set of all the mesh points with space mesh width A which are
contained in £(¢,), together with respective two neighbouring mesh
points. The remained mesh points in £(¢,) constitute its boundary
w5,

Now, we can rewrite problem (A.1) as follows:

(A. 75) (u}’);Z(u';)xf for x]EQZ (n:ly29’°-)a
ur=f" for x;€w} (n=1,2,...),
W=¢; for x;,€2.

Theorem A.7. Suppose that {7} and {¢;} are bounded uniformly in
h and {k,}, for t,<T. Then, a sequence of solutions of (A.75) with
h—0 is uniformly bounded in 2, and all kinds of sequences of difference
quotients of u are uniformly bounded on any compact set 2% contained in
2, respectively.

Proof. The uniform boundedness of {u7} itself follows immediately
from the maximum principle. In order to prove the latter part of
the theorem, we take a sequence of polygonal regions 2F (k=1,2,3,
...) such that

where every £, is strictly inside of 2f and they are all composed
of a number of rectangular subregions with sides parallel to the
corresponding coordinate axes. Clearly, {«7} are uniformly bounded
on boundaries of all rectangulars of 2f. Apply Theorem A.6 on all
restricted problems in respective rectangulars. We then find that
{(w,} are uniformly bounded all over £F. Similarly, we again find
from the last fact proven that {(u4}).:} also are uniformly bounded
on £2%, and hence so are {(u});}. By repeating this discussion for
{2#, k=4,5,...}, we are led to the concerned statement of the
theorem.

Appendix B

Here, we will give some facts about several kinds of function class
for completeness of the present paper. They are already known and
are given, for example, in Nikolskii’s book [7] in the more general
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frame. We will state them without proof, and moreover only in such
a restricted frame that was necessary for our problem in §3.
In R? we consider the region

2= {0<x1<y(x2), 0<x,<T},
where y(x;) is given and continuously differentiable, and its derivative
has a non-zero limit y’(0). Let us introduce Sobolev class W3(£2)
(r=(ry, 7)) with the norm defined by
lz a”zu P

axzrz Ly@

el g, = el o0+

ax ox 1 |2,

I) Any element ucsW?>'(2) has an extension uc W' (R?) all over the
space R%
Let us introduce new variables by
E1=y(xy) —xy, §,= x5,

where it is assumed that y(x,) is already extended beyond the original
interval (0,7) so that y’(x,) is bounded and continuously differentiable
in —oo<x,< oo, Put
v(€1, &) Zu(fﬁ‘}’(fz), §2).
I veWF(R (&, 6).
Let us introduce one more class: Hardy class H(R}). It is a
Banach space of functions of one variable §, with the following norm:

A 0°w

[feo]| =|lewll 2 o 587

7l ) +sup [/z (=2

2,p1l |5
L°(R ):|

where p=pg+a, g is an integer and 0<{a<l, ahd Aézh is a forward

g (R} L%

difference operator of the first order:

/lézhw(Ez) :w(Ez-l—h) “w(Ez).
Imbedding Theorem. For any pair of non-negative integers r= (r1,75),
r 2 — _ 1
Wi(R?) —Hg (R, ,o—(l 2—72>r1.

It means that v(&, &) EW5E(RY has a unique trace
w (62) =v( + 0; EZ) =§1i11100(&.1’ 52)

defined for almost every &, on R}, lying in HE(R}), and that the inequality
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1 1
2114 g3y <Cllol by
s2 2

is satisfied, where C does not depend on v.
Especially, we hence have

1IT) w}(R?) —HYA(RY).

2

From I-III, we can conclude from v W%'(2) that

sup[A™¥4 ]AgzthLz(Ré J<K
2
with a constant K, and hence

lu(yCxat-h), xoth) —uCy(en), x2) [ 20 <KRY

2

for all 2>>0. The last inequality itself was used in §3.

1
R}
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