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A Mathematical One-Dimensional Model
of Supercooling Solidification

By

Tatsuo NOGI*

§ 1. Introduction

As well known in physics, an equilibrium condition on a contact
surface separating two parts of a pure metal/material, solid and liquid
part, is usally given by the equation

where the suffix TE indicates quantities at the equilibrium temperature
TE, and FL and Fs are the free energy of liquid (I/) and solid (S)
respectively :

FL = EL — TSii FS = FS ~ TS$*

They may be considered at any degree T°K of temperature, and EL

and Es are the internal energy, and further SL and Ss are the entropy,,
On the other hand, at any temperature different from TE, AF is

not zero, and it is given by the formula

TE TE '

where it is assumed that the difference E and S do not depend on
T, and L~AE is called latent heat. In general, solidification may
occur only for the case of T<^TE, since FL>F5. Hence, it seems
natural to consider that only supercooling state allows solidification,,
But, in usally setting of the Stefan problem, it is assumed that solidi-
fication occur just at the equilibrium temperaturea

In this paper, such supercooling solidification is considered, and
its mathematical one-dimensional model is proposed. An important
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assumption is that a rate of solidification on a contact surface is
linearly proportional to AF=FL—FS, i.e., the contact surface speed
is a constant times the supercooling degree TE — T on each correspond-
ing point of the surface.

Only the following case is considered; some supercooling liquid
is first held quietly in a straight tube with a length /, and then a
solidification process starts: it proceeds from one side bottom of the
tube to the other side. For simplicity, we assume that the temperature
distribution on each cross section perpendicular to the axis of the
tube is uniform, and that solidification continues in the one-
dimensional way. The speed of the surface is then given by the
formula

(1.1)

where y(f) is the distance between the start point and the contact
surface at the time t, K is a constant and 7" is the temperature on
the surface. The solidification process produces a quantity of latent
heat, Lpy(t) per a unit time and per a unit cross section, where L
is the latent heat per a unit mass and p is the density of the concern-
ing material which, we assume, is a common constant for liquid and
solid. Produced heat by solidification is diffused into both liquid and
solid. The heat balance equation is then given as follows:

(1.2)

where ks and kL are heat conductivity coefficients of solid and
liquid respectively.

Diffusion process in the solid and liquid state, we assume as usual,
is expressed by the heat equation

(1.3) p c ^ k s - ( i n t h e solid),

and

(1.4) pCL~dT=lkL"~lhcr ^in the li(luid)>

where cs and CL are specific heat.
Typical initial and boundary condition are the followings;

(1.5) T(x,Q)=TA9
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(1.6)

where TA, 7V (0 and T2(t) are a given constant and given functions.
The variable change

T-TA-^u, ~^x, £-->y

reduces the above equations and conditions to the following normalized
form:

(1.7) c = a (00<XO, 0>0),

(1.8) C2 = a

(1.9) WO ̂ i^CXO- 0,0 -fl2-|f-0, (0+0,0

(1.10)

(1.11) n(*,0)=000

(1.12) n(0,0=/i(0,

where Ci = pcsl^ c2 = pcLl, ai = ks/l, a2 = kL/l9 b=Lpl, a=LpK, uE — TE — TA^
f i ( t ) =Ti(t) -TA9 /2(0 =T2(t)~TA and ^W =0. It must be here
noticed that by the physical reason

(1. 13) 0i>fl2, ^i<^2.

In this paper it will be proved that the problem (1.7) -(1.1 3)
has a unique solution under some conditions on data, while general
initial data 0(#)^0 being considered. In §25 a difference scheme is
introduced. It gives a sequence of approximate solutions of the above
problem. Some energy estimates of those solutions are also given.
In §33 it is shown that a local solution of the problem is obtained as
a limit of the sequence of approximate solutions. In §49 it is seen by
continuing local solutions successively that a global solution exists
certainly as far as liquid state remains. In §5, its uniqueness is
proved under the condition that initial supercooling is not so much.
Appendix A is to give estimations of the so-called Bernstein type for
a solution of heat difference scheme. Appendix B is to comment an
Imbedding Theorem. For some numerical examples, see [1].

Our problem is formally similar to the so-called Muskat's problem
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which relates to physical processes of filtration in porous media. It
has the internal boundary condition

, dl &2' C\

and

instead of (1.9) in our case. Such problems have been solved by
W. Fulks and R. B. Guenther [2], I. Pawlow [3], etc. Their proofs
of existence and uniquness theorem rely on the reformulation using
integral equations. We believe that our method will solve such
problems as well, under weaker conditions upon data.

§2. Difference Scheme and Its Solution

2. 1. We will give a difference scheme which gives a sequence of
approximate solutions. It is considered on a net of rectangular meshes
which is the same as used in [4] for solving a two phase Stefan
problem. In fact, it has a uniform space width h and variable time
steps {kn} (n — 1 , 2, 3, . . . ) . The time steps are assumed to be
unknown a priori and to be determined in a process of solving by
the rule that h/kn may give the gradient of the contact boundary
x=y(f) at every time t = tn, so that the contact boundary may cross
every line of the ordinate x = Xj only at every corresponding mesh
point. Then, it is convenient to introduce discrete coordinates like

(2.1) Xj=jh 0' = 0 , l , 2 , . . . , A f ; AfA = l),

tn=Zkp (* = l f 2 , 3 f . . . )
P=I

and net functions like yn and u] which correspond clearly to y(tn)
and u ( x j , t n ) respectively. By the rule mentioned above, it is admitted
to put

(2.2) yn=JHh (ii = 0 , l , 2 ,3 , . . . ) ,

where {/„} is a sequence of integers such that /„+! =./„ + 1 (n =
0,1 ,2 ,3 , . . . ) . Though it is natural to take/0 — 0 since jy(0) =0, we take

(2.3) 70 = 1 (70 = A),

allowing the errors 0(/z), in order to avoid another procedure at the
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initial stage of our algorithm and simplify later argument. Express

the inverse function of x=Jnh by

(2.4) t = tN. O' = l ,2 ,3 , . . . ) .

Let's introduce divided differences as usual:

(2.5) (a3),= («5+i-«3)/A, («3)*=(«3-«3-i>/*>
(«3)rf=(u3+i-2H3 +«;_!) /A2, («3)f=(u3-ii3-1)/A,> etc.

2. 2. The difference scheme used to solve our problem is as follows:

(2.6) /0 = 1, «? = & (; = 1,2,...,M-1),

(2.7) i* =a(aB_B--_ii)
^n

(2.8) ^i(M3), = fli(ii3)rf CHl^,...,/.-!),

(2. 9) a, (un
Jn) * ~ a2 (ujj x = a(uE- ujj ,

(2.11) MJ}=/*, t&=/S (n = l f 2 , 3 , . . . ) .

In this scheme, {£„} and {w"} are unknown variables to be found3

while y(t) and u(x,t) are unknown in the original problem of
differential system.

The procedure to solve the above difference scheme starts from
determining the first time step ki by (2. 6) and (2. 7) with n = l. It gose
next to find u] by solving the linear algebraic system of (2. 8) -(2. 11)
with 72 = 1. Certainly, the last system is solvable. The next step is to
find k2 and u*, and the third to find 7c3 and uj and so on. It is, of
course, necessary for having positive time steps £B's and continuing
the above solution process successfully to assure the condition

(2.12) U

28 3o Lemma 2. 1. Assume that

(2.13) 0^(*),./i(0 andfz(t)<us.

Then, (2. 12) an<f i/ze fallowings hold:

(2.14)

(2.15)
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(2.16) (Nl-N)h<JL(tNl-tN) (N,>N; Nlt N=0, 1,2,.. . ).

Proof. The statement follows from the well-known maximum
principle of the implicit difference scheme for the heat equation
immediately. In fact, suppose that uJn<^uE for n = l,2,39. . . ,N and uJN

first happens to take a value ^UE. Just by the principle, we then
have U]<UE for all j= 1,2,. , . ,M-1 and n = l, 2, . . . , N-l. Further,
by the assumption and (2.9), we have ai(uJN)^ — a2(uJN)x^O. The

principle, on the other hand, yields (w/p^O and (uJ^x^O. This

is a contradiction. So, we must have (2. 12), and hence also (2. 14)
again by the principle. From (2.7) and (2.12), we get

and hence

2 *„=

2. 4. Lemma 2. 28 Supbose that

(2.17) l/i(0~/i(O \<H\t-t'\ (H: a constant,

(2. 18) ^n<(l

Then, the inequality

(2.19) |

holds for sufficiently small h and tN.

Proof. From (2.6) and (2.7), we have

Applying (2. 12) and the assumption (2. 18), we hence have

(2. 20) h + uEtn<yn< h + uEtn

for 0^ra^4#_lB Now, we fix a number nQ(^N) arbitrarily and
consider an auxiliary function
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As easily seen, it satisfies the equation c1Ci = «iC« and the inequality

(2.22) C^(0,O =/?-// (^-O</I (by (2.17))

and

(2. 23) CnU, O =/i0

for n^nQa Assume that

(2.24) h<hQ = ~- and

We then have

So3 we get

(2. 25) Cn (7n ,

(see (2.23), (2.20), (2.19) and (2.17).) The condition (2.22) and

(2. 25) assure from the maximum principle that

in {0<^;-<j;n, O<X^£BO}« Putting 72 = 720 and A; = ^I especially, we

have

Since C0(0, ^0) =un
0°=fn

l\ we hence get

that is,

(2. 26)
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Similarly, by using another auxiliary function

we also have

(2.27) («?

Since n0 is selected arbitrarily, both (2. 26) and (28 27) produce the
desired inequality (2.19).

2. 5- Now we will state a fundamental lemma for construction of
a local solution.

Lemma 2. 3. Suppose that the data /i, /2 and <f> satisfy (2. 13), they
are Lipshitz continuous^ and yi(0) =>/2(0) =0(0) =0. T hen , for any given
constant //, 0<^<^1, £/z£r# <sr£ positive constant TI and K such that a
solution of (2. 6) -(2. 11), {kn,u"} satisfies the following inequalities for

and 0</z</z0, A0 to'ftg giz;0?z i/z (2. 24) :
JV M-l M-l

(2. 28) S A, S h («5, ) 2 + 2 A («£)
n = l j = l j=0

(2.29) uJn<(l-tfuE

and

(2.30) max kp<— min ^.
^n fJ. p^n

The remained part of this section is devoted to the proof of
Lemma 2. 3. To get the energy inequality (2. 28) , we introduce a
function 7- such that

(2.31) To=fih rnM=fn2i*

By multiplying (2.8) by M"f — r", summing these products over
l^j^Jn — l and l^n^N and taking summation by parts, we obtain

(2. 32) ClZkn E h^Y-c, E kn Z hu^ + a, f kn E hu«jxu*jx-t
n = l j = l n = l j = l n = l j = l

N J,-1 N

~a,Ekn Z A«5,77»-«i 2 *.«}„_], («}.i-r/,,) =0
W = l J = 1 W = l

by (2.31). The third term is expanded like that
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S*,EA«J,«3,f=f Zh 2 {(a?,)2-^,-1)2 +(«?,- a?;1)
71=1 y=i 2 y=o n=-tfy+i

= -£{ 2 /KH^-E
Z j=0 j=0

+ 2*?, Zi
71 = 1 J=0

The equation (2. 32) becomes, hence and by (2. 6) ,

(2. 33) Cl 2 ^/W + f HO2+f 2 AS
n=l j = l 2 j=0 2 n = l j=0

N

Zi 2 l
n=l

n=l

„ J0

. 2 A«3.r"«

Similarly, the following equation follows from (2. 10) :

(2. 34) c2 S kn
 ME h (115,) 2 + -f "E A (ujD 2 + % E k?E

n = l J=/n+l ^ J=JN 2 n=l j=Jn

]V M-l JV M-l

kn S
n=l j=Jn

Adding (2. 33) and (2. 34) on their both sides produces the equation

N n~ N M-l

(2. 35) Cl 2 *. 2 A(aJ f )
2 + C2 2 *„ 2

n = l j = l n = l J = / +

„

+-% 2 A(«jS)2 + -fi 2« 2 A(«J,
^ J^/jy- Z » = 1 J=0

+ f 2 « I?* (ajrf ) 2 - 2 *.
Z n— 1 J—Jn n=l
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JV-l N n~ N M-l

fla) 2
11=1

By using the condition (2. 9) , the last sum on the left hand side of
(2. 35) is expanded as follows ;

- S kn(alu
nj^~a2u

njnX) (ujj-rjj

n=l

N

n=1

w — 1

N

Notice here that

Therefore, the first term of the last expression is equal to

Applying the obtained expression on (2. 35) 5 we have

JV -^n"1 M-l 1 JN~1 M-l

(2.36) SA.Cd L +c2

1 N JH~I M~l a N

N Jn~l M-l N Jn~l M-l

n=l
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Let's estimate each term on the right hand side of the last equation,,
To do for the second and third terms, we introduce the notation |^|
and \?x\ for the maximum absolute values of 7 and ?x in the
concerned region, By the Schwarz inequality, we have

N Jn~~l M-l

(2.37)
»=1 3=1 J=Jn

+l

J ]_ N Jn~l M-l

2 2 n = l j = l J=Jn+'

and

N Jn'1 M-l

(2. 38) 2^n(^i 2 +^2 2] }hun
jxf

njx\

where Sj is a small positive constant which is given definitely later.
The fourth sum on the right hand side of (2. 36) is estimated as
follows: by (2.12) and (2.15),

(2. 39) | - a J; h (UE - un,n) (B)-^) , | <auE &h \ ̂  \ + \ fa - fa I )

where £2 is another positive constant which also is given definitely
later. Here, we consider the sum

From (2. 9) , we have

and

(2. 40)
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Further, we expand uj * as follows :

(2.41) «}== 2 AiiJ^+i&=-^n 2

(see (2.8).) Hence,

2

by (2.15). Applying this inequality on (2.40), we get

and further

N-l AM. f / r \2N-l Jn~l

(2. 42) 2 *. («?.,) 2
n

<22/ n=l

Applying this estimation upon (2.39), we have

(2. 43) | - a A (MB - w}) () , |

^-iS
n=l

Using (2.42) and (2. 15), we also have an estimate for the third sum
on the right hand side of (2. 36) :

(2. 44) |-k<ii-a2) 2A(«5 ,)2|<2^te-«2)(^f-1)2 2*. Z
2 n=l ra \ fl20 / »=1 j = l

Finally, the remained two terms are easily estimated as follows:
N

n=l U n n
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and

(2046) \auEuNjN\<aula

(see (2.12)a)
By applying the obtained inequality (2. 37)-(2. 39) and (2.43)-

(2. 46) upon the right hand side of (2. 36), dropping the last bracket
on its left hand side and multiplying by 2, we have

(2. 47) £ k. (d, Z + c2 i '
»=i y=i J=/M+i

where

^tNauE— —
4r

L
+

<22

and
•^0 M-l

jr=( f l l_i; +«2 £
.7=0 j = /Q +

Now, we take

(9. 48")\^0 A»_»y —. J^ —._-.-. . -~ yj ._ _ . .. . I

i i£- f"l~-a^\auE/ J

and

(2. 49)

Then, we have

(2.50) rfx>-|- for

Since (2.47), of course, holds for every tN, 0<^<TT
1, we obtain,

from it,

Jn~l M-l

(2.51)
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N-l

for n = 1, 2, . . . , N. By multiplying each inequality by kn and summing
up, we get

N Jn~l M-l

<^iS*,(fli Z
n=l j=l

for 0<^<T'i. Now, we take

Then, the last inequality becomes

N Jn~l M-l N-l

(2.52) SA.Cfl! 2 +a2 E }h(u]xy<(lqTlT>
n=l j=0 j=Jn n=l

Applying (2.50) and (2.52) on (2.47), we obtain
Jn~l M-l \ JN~l M-l

2(2.53) X .

n=l

for

We are now at the final stage to complete the proof of Lemma
2. 3. Suppose that

(2.54) u"Jn<(l-ft)uE for 0£n£N-l.

Since T^T0, T0 being given in (2.24), we then have, from Lemma
2.2

for 0<i!n<^i and h<h0. Hence,

(2.55)
n = l

This and (2. 53) yield, especially,

(2.56) Mf*lh(ufxY<K for 0<tN<Tl9
j=o

with another constant K . Let's estimate M. Now,
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uNjN=uN
lN~ul^ V h !«£ \ + JUn |«8, |.

By applying Schwartz's inequality, (2.56), (2.16) and the Lipshitz
continuity of fi(f), (2. 17), on the right hand side, we have

Clearly, we can take 7\, if necessary, so small that the last right
hand side is less than (\—(JL)UE. Then, we have (2. 54) for n=N.>
too, as far as 0<^<T"i, 7\ a new constant. And, (2. 54) is trivial
for n = Q, These facts allow us through induction to get the desired

for

and (2.56). Then, (2.53) becomes

N / r
 Jn~l M-l \ JN~l M-l

(2.57) S *.(-£- E +c2 £ )A («3f)'+(ai Z
n=i \2 j=i /=/„+!/ y=o

with another constant ^. This certainly produces the desired inequality
(2.28). Finally, we also obtain (2.30) from (2.29): by (2 07) ,

max*, _ uE

min kp UE — max

Thus, we have proved Lemma 2. 3 completely,,

§ 3o Existence of a Local Solution

38 1. In the present section, we will show existence of a local solution
of the problem (1.7) -(1.1 3) by the difference method in the last
section. We consider a sequence of /z's tending to 0. In order to
make dependency on h clear, we will use the notation ulj for M".
We further define an interpolated continuous function u h ( x 9 t ) by the
formula

(3.1) II* (X, 0 = Un
hj + (ll!y) , (* ~ *y) + (Mjy) t (^ - *,) + (lljy) „ (x - Xj) (t ~ tn)

in every square [xj^x<xj+l9 tn^t<tn+1] ,

for all j and w. Clearly, the function uh(x,t) has the generalized

derivative of the first order. —^-.
dx
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Put again the assumption of Lemma 2. 3. Then, from the Lemma

(3. 2) E kn E
lh {(un

hj)
2 + («Zy,)

2 + (njyf)
2} <K (tN<TJ,

n=l j=0

where K is a constant not depending on h. Here and later, we
frequently use the same symbol K for some different constants
without notice. The last inequality immediately produces

<»>
In fact, {w&} are bounded uniformly with respect to h «A0)5

and

by (2. 7) and Lemma 2. 3. So, we have
N-l M-l ft , .f*. ,r.+ir
ra=0 j=0 J'n J*j

N-l M-l ] A

and hence obtain (3. 3) by (3. 2) .
Similarly, we again get from Lemma 2. 3

for every t (0<*<Ti).
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Therefore, we can say that the set of functions [uh] (h<^ho) is
contained in a ball in the function space W\(PQ) (Sobolev space),
where OQ is the region {0<#<1, 0<£<T\}, and that [ u h ( 9

9 t ) } (A<C^o)
is contained in another ball in the space W\(Q, 1) for every
t(Q<^t<^Ti). From the former fact, we can find a subsequence

[Uka] (a = 1 9 2, 3, . . . ) such that

a) It converges to a limit function u^W\(Q^ weakly in the space

b) It also converges to the function u strongly in the norm of L
and

c) Traces of u are defined almost everywhere on the section
*<1, * = 0}, {* = 0, O<*<:TI} and [x = l, Q<t<Tl] respectively, and
they are square summable and the following conditions are satisfied
at least:

(3.5)
o

(3. 6) (Tl {u (x, 0 -/! (0 } 2«ft-»0 (*->0) ,

(3.7)

It follows from (b) that there is again a subsequence of {uh } which

converges to u almost everywhere in £?0o We use again the symbol
{uh} for the last sequence.

From the latter fact above, we find that the limit function u(°,t)
is belongs to M^(0, 1) for any t(0<t<TJ :

and hence it is Horder continuous in x uniformly with respect to

(3.9) |a(* l tO-a(*a fOK^I*i-*»lw (*i, ̂ ^[0, 1]).

Further from (3.9), there exist

(3.10)

and

(3.11)
x-*l

for any *(0<KTi)-
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3. 2. Next, we consider the piecewise linear curve x =yh (f) which
connects the point (%jn, tn) and (xj , tn+\) f°r n~ 0 ,1,2, . . . succes-

sively. Clearly yu(f) is differentiable almost everywhere in

and its derivative yh(t} is equal to ~jr=-j-(uE~~Uj~*^) in each interval
hn b

(tn-i, O (n = l, 2,3, . . . ), and again from Lemma 2, 3

So, {yh (t)} (a = l, 2, 3, . . . ) constitute a set of uniformly bounded and

equicontinuous functions on the interval [0, rj. Hence, there is a
subsequence, for which we again give the symbol { yh } , such that

y*a(f)-*y(?) uniformly on [0, 7i],

where y (f) is a Lipshitz continuous function, and satisfies

(3.12) ^ - ^ 2

Finally, it also follows again from (3. 9) that

(3.13) lim M ( * f O = M ( y ( 0 > 0
*-»j>(0±0

exist for every t (O^t^Ti) and their convergence are uniform in t,

3. 3. In order to show that the pair of the function u and y obtained
above is a desired solution of our problem (1. 7) — (1. 13), it remains
to prove that

(i) The function u satisfies the equation (1.7) and (1.8), and also
the initial condition (1.11), and

(ii) The pair satisfies the internal boundary condition (1.9).
To prove (i), notice that in both regions of

and

the obtained solutions are all uniformly bounded:

(3.14) 0<Mfc<a-AOKft

as seen from Lemma 2. 3.
It then follows from Theorem A. 7 in Appendix A that [uhx] ,
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{uhxx} and {uht} are uniformly bounded for all A«A0) in any compact
set Q* and Q* being contained in QI and Q2^ with a finite distance
from the boundary

dO1=[x = 09 O^J^T*!} U {*=jKO, O^^rj

and

U {* = !, O^f^r j U {0;g*:gl3 f = 0},

respectively.
Therefore, [uh(x, t] (A-»0) constitute a sequence of functions being

uniformly bounded and equicontinuous in Q* and <G2*, and then allow
selection of a subsequence which converges to a continuous function
u(x,t) uniformly in both Q* and Q*.

Now, we take a sequence of pairs of compact sets {(3*i9 (3*i\ as
mentioned above, such that

i (t = 1 , 2, 3, . . ) , U 05 =0!
t = l

and

fiic^s+1 (i = i , 2, 3, . . ) , u a;t =Q2.»=l

Take a sequence of subsequences {H* ,-} with each subsequence {uh.j}

(j = l , 2 , . . . ) being taken from its preceding sequence {UH^J} (j =

1, 2, . o . )? and convergent in both £?*• and £?2*. Make then the sequence
of 'diagonal3 elements {uh.{} (z = l, 2, . . . ), as usual. It is easily found

that the last sequence converges to a continuous function u(x9f) in both
QI and $2? and moreover uniformly in any compact set contained in
Ql or Q2.

We will show that the limit function u(x,t) is not but a solution
of the equation of (1. 7) and (1.8)8 According to Theorem A0 7,
every difference quotient of higher order in x, t is bounded in any
compact set contained in Ql or Q2. Therefore, by the same discussion
as for [uh] itself, we can further select such a subsequence of the last

sequence that not only {WA }, but also {^aJ, {uhaxx} and {uh ?}

converge uniformly in any compact set in Q1 or Q2 to the limit
u(x9f) and some continuous function u(x,t), u(x,t) and ft(x,t),

respectively.
By tending ha to 0 along the selected sequence in the difference
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equation (2.8) and (2.10), we obtain the equation

(3. 15) CiU=aiU in QI

and

(3. 16) c2u = a2u in Q2-

On the other hand, the trivial relation

j'-i
u* (xj9 tn) = uha(xJQ, 4) + E hauhaX(xi9 O (xJQ=d

* = J0

becomes, through the same limit process, the equation

We then find that u is differentiable in x and

(3.17) ^ = u

and similarly

/o io\ du ~ j du =(3.18) -gr = « and -g-=«.

The obtained relation (3. 15) -(3. 18) imply that the limit function u
satisfies just the equation (1.7) and (1.8). It also is found that the
limit function u(x,t) satisfies the initial condition (1.11). (See, for
example, §42 of the famous book [5] by I. G. Petrowsky)0 We have
thus proved (i).

3. 4. Let us go to prove (ii) . For it, we will take some steps.
3. 4. 1. Lemma 3. 1. The limit function y (t) obtained in 3. 2 is con-

tinuously differentiable and satisfies

(3.19)

and

(3.20)
U

for 0<KTi.

Proof. By using the piecewise linear function y^(f) appeared in
3. 2, we have
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-y

From convergence of yh(t} and uh, we get, by taking /z-»0,

(3.21)

We hence find that jy(0 Is dlfferentlable everywhere In 0<^t<^Ti and
the relation (3.19) holds,, From (3.19), we also get (3. 20) since

30 4o 2, Lemma 3. 2* The derivative -=—9 u being obtained in 3, 33 has
ox

finite limit

X-*Q dx dx x-»i dx dx

and

v du , ^ 9r
Iim ____ f V /)11J.1I —^ \,A, a b) ,-

almost everywhere in Q<^t<^T^ and those limit functions are contained in

z,(o,:ro:
du
dx

and

±0,o'2

(1-0,0

Prooj. According to the well-known existence theorem of a
trace operator, we can get it immediately from the facts that

dx2 \ ^\aj Jo Jo 3t

and jy(0 is differentiable and monotone increasing, as shown in
Lemma 3. 1.

3e 4o 3» Lemma 30 30 TA^ condition

(3.22)
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is satisfied by the pair of function, { y ( t ) ,u(x,t)} obtained in 3.3.

Proof, Returning to construction of the concerned functions, we

again have the relation

(3.23) J>*(0-J>*(*)=4- S kp(alu
p
hj,~a2u

p
hrx},

U p=m+l v v

where t = tn and i = tm. According to uniform convergence of j^(0?

we can find a positive constant h0 for any given constant <5>0 such

that

for all

Due to the estimation

N M-l

E l- *Kn L
n=l j--

we have

(3.24) | Z kp{uh-x(y(tp)±d,tp)~uh~x(yh(tp^tp)}
p=m+l

n M-l

for 0<K*<Ti.
From (3.23) and (3.24), we obtain

\yi(f)-yi(fi~ Z k
0 p=m+l

We take here h->Q. Then

Lemma 3. 2 here allows to take <5-»0 and to get

Since i is arbitrary, we also get
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As shown in Lemma 3. 1 , y (f) Is continuously differentiable and
satisfies (30 19), Therefore, we find that

(3.25) flr

also is continuous and (38 22) follows.

3,5. In order to show that the obtained pair {jK05 u ( x , t ) } is a
classical solution, we must have continuity of not only the expression

~\
(3. 25) but also -^-(j>(0±0»0 themselves. For the purpose, let us

first give an expression for u(y(f),f).

3. 5e 1. As well known, a function u(x, t) satisfying (1.7) and (1.8)
in the respective region can be expressed by using Green's functions'.

(3.26)

and

(3. 27) « (*, 0 = V & (*, * : f , 0)
JO

~\ &(^^^
Jo

where

and
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3. 5. 2. We now make an expression for V«iCi«(j'(0 —3, 0 +

+ S,t) from (3. 26) and (3.27) with <5 is a positive constant:

(3. 28) {a^u(y(f) -d, t)+{^u(y(t) +d, t) =/1

where

/2 (5) = V^ ft ( J> (0 - d, t \y (T) ,r)u(y (T) , r) $ (r) rfr
Jo

fiCXO+^X^^MOW,o

/2 -%- ( J» (0 - «, « ! 0, r)/x (r)

-0,r)

and

g^CjvW +M;Xr) fr)M(j;(r),r)rfr.

3» 5o 3e Next, we take 5->0. Since 7l5 /2 and /3 depend continuously
on <53 we have

(3. 29)
a-»o

Consider 74. Its integrand can be expanded as follows:

-0, r)

,r) (_y(T) +Q,r)
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,
2Vir«-r)

Notice that, since jv(0 is a Lipshitz continuous function (see (3. 12))3

holds, and further

-fkj(r)±0,r) dr\ <+oo

by Lemma 3. 2, Also, by the same Lemma,

-0,'
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<rr i
LJO t— T

It is already known in 3,4 that <Zr-~-(jK r) — 0,r) — a2-(y(r) + 0 f r )

is continuous in r. Therefore, we can take d-»0 inside of the integral
sign of /405)3 and then have

(3. 30) lim/4(a)= . fll(_y(r) -0,r) -

or

(3.31)

- & (j; (0 , t ;y (r), r) (j; (T) + 0, r) dr.
C2/ JO OX

39 504. Next, we consider /5, and start from estimation of the follow-
ing difference with a fixed parameter s (0<O<O) :

(3.32) D

Put

(3033)

where

^
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and

Let's expand DI as follows:

f< XO+Kr) f
JS (f-r)3/2 L P

Since j(0 is Lipshitz continuous andjv(0 +j^(r) — £>j>(0 for sufficiently
small ^ (<OCO)» all the integrals except the first integral

are absolutely integrable and have an upper bound independent of <5,
and allow to take d— >0 under the integral signs.

In order to consider /b let's compare it with an auxiliary integral

(3'34) ^-
/ n \1/2 f °°

= -4(— } \
\Cl/ J d (ci_\~~ (ci_\l/2

~~2 ^(i-s) J

which itself tends to ~2- as 5->0. Now.
cl /

Since jp(0 >JVW for £>r>0 andj;(0 is Lipshitz continuous, we have
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Hence,

(3.35, |yl-/1

for sufficiently small d. Therefore,

lim

or

(3.36) ImT

For Z)2, we use the following inequalities:

-

and

VTOI * 2Vfl,a-r

for sufficiently small <5. Therefore,

•sup
S<T<t

Since \Ji\ is bounded due to (3.34) and (3.35) and both integrals
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on the right hand side also are bounded, the inequality

(3.37) \D2\<K*up |M( j> (0 ,0 -KO>M,r ) 1
s<r<£

holds. Similarly, we can get

(3.38) \D,\<K sup \u(y(t),t)-u(y(T),r)\
s<r<f

By using (3. 36)-(3. 38), we obtain

(3.39) lim
<5->0

On the other hand, it is easily seen that

(3.40) lim
<5-»0 JOL V£

= 0

for a fixed s (0<j<0- From (3. 39) and (3.40),

lim
5-»0

Here, we can take s arbitrarily near to t, so that the right hand side

becomes arbitrarily small because of continuity of M(j;(r) , r) . Thus,
we find

and hence

(3.41) \i

= ^cTu (y (t) , t) ~ a i - l ( y ( f ) , f , y (r) , r) u (j (r) , r) rfr.

Similarly, we get

(3. 42) lim /6(3)
<5-»0

, 0 +«2 Cj' (0 ,^7 (0 ,
- \ €2 / Jo t/C

3e 50 5. Consequently, we obtain, from (3. 28) -(3. 30), (3. 41) -(3. 42),



1150 TATSUO NOGI

(3.43) 4-

, r(j(T) +0,

, 1-i2(j(0,*;jW,T)M(j(r),r)rfT.
C2/ Jo uq

For a latter purpose, we further put (3. 43) in the following form:

(3.44) -o-(V0i£i +1/02^2) w(j j (0» 0

where

(3 4^ V (t^ —\\J* t\JJ V \\vJ —
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= ™'

0> (0 , *y to ,

and

l,*;l,r)/2(r)rfr.

3. 6. The last expression of u (y (t) , t) Is used for proof of the
following lemma.

Lemma 3. 4. The function u satisfies the inequality

(3.46)

/or any tl and t2 (0<^t<^ti<^t2<^T^)9 where K is a constant depending only
upon t and data,

Proof. We will investigate every term of the right hand side of
(3. 44) successively.

3.6.1. i) Vi(t) is continuously diflferentiable. In fact
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By using

\ C"exp( — C2)rfC<C + °° for every integer w,
Jo

we find that

/#

and hence

(3.47) |F" N T r / . N . / t f

for any tl and £2

3. 6. 2. ii) Both F2i and F22 can be treated in a similar way. So, we

consider F21 only. It contains the integrals with the form

(3. 48)
o f— r

where

=exp

It is easily seen that both ^ and -^- are bounded and continuous

in t and r. Now, we have

^2 sup

sup
0<r<f,

~^i sup

and hence

(3. 49)

It follows directly from the last inequality that

(3. 50)
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Similarly, we get

(3. 51) \VM -VM KtfVfe-fi «)<*!<*,).

3.60 3. iii) Consider 731(f). Put

<p(r) —0,1 -~—(y(T) — 0, r) —a2-^-(y(r} +0yr ) 0

Since ^(r) is bounded and continuous in 0<V<CT\ as shown in 30 4,

we can again apply the estimation method used for V in ii), with

0 (f, r) = ̂  (r). Therefore.,

(3. 52)

3.6.4. iv) ^(0 and F33(0 can be dealt with similarly. So, we

will consider F32(0 only. Put

/~exp( —r\

and

where

and

Then, F32(0 can be written as

Hence, we have

(3. 53) F32fe) -
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(i/V^- VFT^) y (<2, T) 2Z(*2, r) w (r) rfr
o

| r)

+ Y(tlt r) ) Z(*2f r) a; (r) rfr + it^ Y (t lt r) \Z(t2, r)

Note that F and Z are bounded, and w(r) is square-integrable in
(0, 7*1) as shown in Lemma 3. 2. Therefore,

(3. 54) | V^F (*„ r) 2Z(^2, r) w (r) rfr | < jc V^ |a» (r)

Secondly,

(3.55)

Thirdly,

|rfr
o Jo

o o

o o
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Notice the relation (3, 19) and the inequality

which follows the fact that u(x,f) ^Wl'l(Q0) (see Appendix B). Then,
the concerned expression on the right hand side can be estimated as
follows :

(3.56) <

Finally, we consider the fourth integral on the right hand side of
(3.53). Now,

\Z(t2,T)-Z(tl,r}\

dXSince . is bounded, we get, by the mean value theorem,.

Hence

(3.57)

Consequently, we have from (3. 54) - (3. 57)

(3. 58) 1^32(0-
Similarly,

(3. 59) |F33(O -

3B 6. 5o v) The next step is to consider F34(0- By the fact that
there is a constant 7*(>0) such that for

y (0 +y W >r* and 2 -j» (0 -^ (r) >r,

we find

(3. 60)
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and hence

(3.61) \VM(tJ

vi) For 7fl(0, put

(3.62) F41(0

where

(3.63) ^(()^

F412(0 = - * \' ^^^
4V?r Jo (£-r)3/2

F411(0 can be expressed as follows:

where

(3.64)

It has the same form of V(t) given in ii). But -^-may here not
ot

exist, so that we must be content with having the following estimate
in the first place:

(3.65) \Vm(tj-Vm(tJ \<

o V^ 2 —r

The first and third term on the right hand side are bounded from
upper by

(3.66) 2 sup

and

(3.67) 2 sup

respectively. We next examine the second term.
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and

- sup -

Hence

(t2~tl} +K

Furthermore, the last double integral can be estimated as follows:

ri r r f , ./_ -11/2 rt,
^\ rfff \ -^— [\ (^

Jo ,_Jo 12 — ̂ " J Jo
l/2f

o

Let's use the estimation method used at the last step to get (3. 56) .
Then we find that the last expression is less than
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for 0<?<*i<*2<Ti. Therefore

(3. 68)

This and the estimates given before, (3.66), (3.67), for terms on the
right hand side of (3. 65) admit to get

(3. 69) \Vm(t2)-Vm(tJ |<jf[V/2-f1+ |log

3.6.6. vi) Consider F412(05 and put

where

Notice that both c£ and -4- are continuous and bounded in t and r
ctf

since there is a positive constant 7- such that y(t)
In fact,

Repeating the discussion done for V in (ii) produces the inequality

(3. 70) | F412(;2) - F412(
t

By combining (3. 69) and (3. 70) , we obtain

(3. 71) |F41(O -F41(O | < ^ 5 = i i _ + | log f

Similarly, we can get

(3. 72) |F«&) - F^CO \<K\ lh=±L+ |log I |w(/2-*,)V4
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3, 6e 7. vii) For F51 and F52, we have only to repeat the above
method for Vm. We obtain

. 73) | F51(*2) - F51

I F52 (O - F52

Here, we have used the fact for F52 that the corresponding 0 has the
uniformly bounded derivative with respect to £ for all

3.6.8. From (3. 47), (3. 50), (3. 51), (3. 52), (3. 58), (3. 59), (3. 61),
(3.71), (3.72), (3.73) and (3.44), we have

Hence, we have

(3.74) |

t J

However, this has a distance from the desired inequality (3.51). It
is necessary to replace (t2~ £i)1/2 by (t2 — £i)3/4* For it, we next use
the obtained estimate (3. 74) .

The concerned term (t2~ti)l/2/f was produced from the estimations
of the integral of type (3B 48) in ii) , as well as in iii) and iv) .

3. 6. 9. ii') For F21 and F22, we again consider

(3.75) F(0 - f -=L^ (t, T) dr
JO it— T

where

(3.76) 4>(t,r) ^exp(- Cl(y(t]^y^
\ ^di\t T)

Since, by (L 9)9
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we have

I u (y fa), TZ) y fa) -u(y fa), rx) y fa) |

^+|log*|"(r,-

due to (3.74). So, we also have

(3. 77)

=^+ llogf

Put

o

Then

(3. 78) 7(f2) -Pfo) =\ (1

Jo

To estimate the first integral on the right hand side, we divide the
integral interval into two parts of (0,7) and (Mi). For the integral
on (0,?), we have

(3. 79)

^4 max

for t2^>t1^>2t. For the other integral on (Mi)5 we use (3.77). Then

(3.80) \ [r/> (f.2) r) — ̂  (£2y #2) ] ~ —
JF Lv^™'2"

VJ^? 7^
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+ '{''(,,-4 i-l >}.
t3Jf U*i-r Vf 2— rJ J

Here, we consider the integral

Put

Then, the above integral is reduced to

7\l/

When a = 0, it is less than

When 0<^ct^— , the concerning integral is less than

By applying the obtained estimations of those integrals on the right

hand side of (3.80), we get

(3.81)

The second integral on the right hand side of (3e 78) is estimated
just as before:

(3.82) |\ —==\_([}(t29 T) ~(p(tly r)]rfr \<^2(t2~O V^i max
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For the third integral of (3. 78), we again use (3. 77). So, we have

(3. 83)

for £2>*i>*.
For the last term of (3.78), we have trivially

(3.84) 2 0(*2> for ?<*i<*2-

By applying (3. 79) - (3. 84) on the right hand side of (3.78), we
obtain

(3. 85)

for
Using (3. 85) instead of (3. 49) for V2\ and F22, we obtain the

revised estimation

(3. 86) |F21(*2) -F21(O

and

(3. 87) \V22(t2) -V22(tJ KJ^-pCfe--*!) +y (fe-O |logfe-O l].

3. 6. 10. iii7) For F31, we must reconsider the integral of type

where

By using (3.74), we have the estimation of same type as in (3.77):
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(3. 88) IfKrJ -<&(*-,) \<X=lL+ [log t

Hence, we again have (3.85) for the present V(f), and further

(3. 89) |F31(*2) -F31(^

3.6.11. vi7) Also for Vm(t), we use the following expression:

(3. 90) Vm(tj -Vm(tJ =Vl [^fer) _0(f2,^][ 1=- 1
Jo \-it2— T iti—

where

To estimate the first integral on the right hand side of (3.90), we
again devide the interval (0,O into the two parts of (0,0 and
(t9 t i ) . On the first part, we have the same eatimation as in (3e 79)
with another constant K:

(3.91)

for £2>£i>2t, For the second part, we use (3.74). In fact,

-exp-

+ exp -

Now, we can use (3. 74) since £2>r>^ and then have
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and also by (3. 19)

+

Therefore, we again have

(3.92) |^2,*2)-^2)r) ]<#^I + |logf r(fa-r)V«+-

This is an estimation of the same form as of (3.77). Hence, just as
for (3. 80) , we obtain

(3. 93) , r) - </> (ts. tj ]
? LV^2 — T

For the second integral on the right hand side of (3. 90) , we can use
(3. 68) without change. For the third integral, we consider the
difference 0(t2,T) — <p(ti, r) :

Hence

and

(3. 94)
j — T
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I — T

o V^ — r

The integral of the first term on the right hand side can be easily
evaluated. For the second term,, we devide the interval (0, t^) into

two parts, (0, £) and (Mi)° For the former part, we have

f 1 ff? / 1 1 \2 ) 1/2 ff

<\ ^ nf-^--^)^ {\ [JJo (jQ\iti~ T it2—T:/ > Jo

-y

Here, we further have

for 0<2/<*i<*2<r1, and

'
o o

by the same method used to get (3. 56) . Therefore

(3.95)

A

For the latter part, f <Cr<Ols
 w^ again use (3. 19) and (3. 74)

and
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1 1

< '"'

,/ =(t _f N

Therefore

(3.96)
i— T

By applying (3.95) and (3.96) on (3.94), we obtain

(3. 97) j \ f l [f&(*2,r) -#(«i,0] ri=L=-T=L= Idrl
I JO LVii— T V<2 — rJ I

for
We next consider the fourth term on the right hand side of (3.

90):

(3. 98) «[f' -r^-- r -ALJo it2—T J° ni—T

--vr* (for

Finally, we again use (3. 92) for the last term of (3.90):

(3. 99)

In conclusion, by applying (3.91), (3.68), (3.93), (3.97), (3.98)
and (3.99) upon (3.90), we obtain

(3. 100) |F411(*2) -KU1(O KKdlogfo-O |w(*,-*!)v<
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for
For F412(0? we can transfer the estimation for V(t) in ii')9 as

before. So, we have

(3.101) | F412 (f 2) - F412 (O I <#H=3 (*2 ~ *l) + y (*2 - O I lOg (*2 - h]

(t2>t1>2t).

By combining (3. 100) and (3. 101) we obtain

(3.102) | F41 (t 2) - F41 (^ | <£[ | log (t2 - tj | ̂  (i2 - to3/4

for
Similarly, we also have

(3. 103)

for

38 60 12. viiO For F51 and F529 we again repeat the discussion for
F412? as before. So, we have

(3. 104)

Consequently, we obtain the revised estimation, from (3. 47) ,
(3.86), (3.87), (3.89), (3.58), (3.59), (3.61), (3.102), (3.103),
(3.104) and (3.44),

<Kl\log(t2-t1) |1/2fe-O3/4+

+ -=-(«»- O |log(*j-*i) | + -=

Only by replacing 2f by a new f, we have proved Lemma 3. 4.

3. 7. We are now in a position to prove that there exist both

(3.105) lim *L(* fO=-
*-»?(o-o cw a
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and

(3.106) lim
x->y(V+0

for every £>0, and they are continuous in t

3. 7- 1. For the purpose, we will give an expression of the solution
u (x, 0 using the so-called double layer potential. Put

rjtf) rt
(3.107)

in the region {0<#<j;(05 t^>i] with any fixed £, where v(f) and
^(0 are unknown functions. We can introduce a system of integral
equations to find v(f) and w(f) as follows: we first note relations
similar to (3.41) and (3.42), i. e.

(since the last integral term vanishes) and

(3.108) lim

+ SI ̂ W(y (0 ~7 (r) ' f~T) w (0 fl?r-

From (3. 107), we then have by taking #-»0 and x-* — Q(yt) —0

(3. 109) - - K O

fj-tf)
=/i(0-\ £/!(-?,*-?)«(?,?)*,

JO

Jo

This is a system of integral equations of the Volterra type with
kernels of the type

^p ?T' (Q,(J,r) is bounded and continuous),
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and with continuous right hand side,, As well known, it then have
a unique continuous solution (v, w) „ Further, we can derive estima-
tions for the difference v(t2) — v(ti) and w(t2)—w(t1) for t2^>
from (38 109)e In fact, the integral

fjKf) fJ>U~)

\ £/!(-£,*-*)«(£,*)# and \ U
Jo Jo

have uniformly bounded derivatives with respect to time t for
/i(0 is Lipshitz continuous, and u(y(t~),t) satisfies (3.46) (of Lemma
3. 4) . In addition, the integral

goes along the same line of discussion as for F411(0 in 3.6. Therefore,
we first get

(3. 110) | a; CO ~

(see (3.46) and (3.69)) and

(3.111) |»&) -»(*i) K*(f2-*i) (t2>t1>2t).

Again by using the obtained (3. 110), we get a revised estimation:

(3. 1 1 2) | w (Q - w (O 1 <*[ 1 log (f, - O | 1/2 «2 - O
 3/4 + | log

-=3(*2

3.7.2. Now, we consider -^- from (3.107)

(3.113) - - ( * , 0

Clearly, the first and second term on the right hand side of (3. 113)
are continuous at (y (t) 9t}0 To be discussed is the third term. Put
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(3 .114)
i 0X0%

S t

{

Here,

So, it is necessary for the first integral on the right hand side of
(3. 114) to consider

and

Divide the integral interval into two parts : (t, 3t) and (3?, f) * Then5

* dr ' N W - ^ ^ I

Applying (3.112) on the second integral, we find that //! converges
uniformly in x. For //25 we first notice that

and

-(^-^(0)2]))<exp^- T^lr )[l+g(l*-.y(0

/

Therefore,



MODEL OF SUPERCOOLING SOLIDIFICATION 1171

dT

f '
J3f

The first integral on the right hand side takes a finite value depending

only upon i. Clearly, the second integral converges uniformly in x,

since \y(t) — y(r) \<^K(t — r). In order to see that the last integral

also converges uniformly in #, we put

exp — — — - v =ff.F\ la^t-T)

It is then bounded from above by

4flx |z£;(0 — w(r) I f 0 0 x x 7
- - SUp -^ - V J ^ ' -L\ CXp(— (T)rf(T.

Cx t>r>3F V^~ 7 JO

which turns out to be uniformly bounded from (3. 112) and the fact
that the last integral is equal to 1. Thus, we have proved that H2

also converges uniformly in x. Consequently, we have

(3.116) lim r
*->XO-0 Ji

and the limit function is continuous in t.
Next, we consider the second integral on the right hand side of

(3.114). Applying (3.115), we have

The double layer potential here appears. Taking x-^j>(t~)— 0, we get

(3.117) lim

(y (i) ~y ̂ 't-^y
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(see (3. 108)), and the last expression is continuous in t. Further,
we have found that (3.114) also has a limit function as x-*y(f) — 0,
and hence that (3.113) and (3.105) has a continuous limit.

The existence of the limit (3. 106) and its continuity also are
found by the same way.

Thus, we have completed the proof that the constructed solution
(jKOj M (*»0) is certainly a local solution of the problem (1.7) —
(1. 13) in the classical sense.

§4. Existence of a Global Solution

4,1. The time interval (0, 7\), in which we found a solution, was
given so that the constructed solution of difference scheme satisfies
the condition (2. 29) and the energy inequality (2. 28). In the present
section, we will show that a solution of difference scheme is always
found and hence that a solution of the original problem exists in
global in the sense that it does as far as y(f) does not touch the
right boundary, y(fX\.

We will start from the fact that, for

(4.1) un
j<(l~tJi)uE (O

and

(4.2) £? A («?,)*<*

hold. Suppose that tN denotes the maximum discrete time among
such £B's for any fixed h:tN^Ti<^tN+kN+i.

Repeat now the estimation of the initial part in §2 for t<^tN, taking
tN as a starting point. Just in the same way, we can arrive at the
equality of the type (2.36). Adding the estimations of the type
(2. 37)-(2. 39), (2. 45)-(2. 46) and (2.15), we have

1 Nl Jn~l M-l 1 JNl~l M-l

(4.3) 4- 2 *»<*i 2 +c* 2 )W-)2H-4-(*i 2 +^2 ZI n=N+l j=l -/=/„+! ^ 3=0 j=JN

M-l

S
j=J

i r +
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JN M-l -I

The present problem is to estimate

By (2, 20) 5 we have jVjv>-p^ETle For some positive constant

l and sufficiently small /z3 we can then take a value £ such that

(4.4) J>*

Suppose again that, for

(4.5) tt5B

with some positive constant /^<L Due to (4.5), (2. 30) and Lemma
A0 6, we have a positive constant A (8) , depending on 5, such that

(4.6) 1 117,1 and I4-|<C4(<5) for

Expand w} ̂  into

instead of (2.41). Hence

(^,)2<2r(^)2(/J,l~A)/z L
" L\ai/ /=/+!

and, by (2.9) and (2.16),

Therefore, we get

^ - ̂ ) 1 2 *,
X J n = ̂ +l j=J+

(4. 7) E ' k. (u'j ) 2 < 4 ^ 2 5 + -™*- - 2
w

Applying (4. 7) on (4. 3) , we have
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^1 /
 Jn~L M-l ^1 M-l

(4.8) Z] kn(.d'i Zj+^2 Z] )h ( M yf ) 2 + (ai ZI +fl2 Zj
n_jv+i y-i J-/n

+1 J-° J- ^

where

and

K=(a1E +a2
 ME

3=0 J=JN+1

We will fix ez, 5 and ex as follows: put

and take £2 so small that £2<C£- Further, take 5 so small that

where

Arp__ alb

We then have d[>-9 if

(4. 9)

Then, it follows from (4. 8) that

Nl / ^ Jn'1 M-l \ _ JNl~l

ZI kn(-^~ 2
n=N+l \ Z j =

Nl

Take the procedure used to get (2.53) from (2.51). Then, by

putting £1= ,, we obtain
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M-l

(4. 10)

for Ti<itNi<iT2 = Tl
JrAT^ under the assumption (4.5). If this assump-

tion were to be satisfied for Ti^t Ni-i<^T'2 for all h<^h0, we could

again construct a solution of the original problem for T^t^T^ too,

Further, if the assumption were to hold for some interval (T29 Ti+pAT)

(p: integer) for all /z</z0, we could repeat the procedure to get a

solution for (7\+ (?-l) JT, T^qAT), q = 293,.a*,p9 successively.

Suppose, in addition to such situation, that we see a time tn in

, ri+(/?+l)JT), at which (4.5) is first violated with some

Consider the lower limit of such tn as A->0:

It then follows that we can take an /Zi«/z0) such that (4.5) is

satisfied for all t^T^ + fp + AT and all A<A lB So we have a

solution for the time interval (T^+pAT, T^U + ̂ -JAT). Thus, we

could find the solution for

4. 2. The next problem is to continue the solution beyond T2. For

it, we replace the constant ^ by ///2, so as to have a next time

interval (T2,T3), on which the condition uJn<i(l—-^-}uE is assured

for all h<^h2, hz being another constant (<C^i)3 and hence to find a

solution on the interval. Further, taking a sequence ^/2f, z = 2, 3,4,

. .., we have a sequence of constant, h^ i = 2,3,4, . . . , and that of

time interval (T/, T,-+1), z = 2, 3, 4, . . . , in each of which the condition

is satisfied for all h<^h^ and hence a solution can be constructed by

the method already mentioned. It is clear that the obtained sequence

of solutions constitutes a solution for any time interval (0, TB), as a

whole. It must be here noticed that the internal boundary value

M ( j K O i O never attain UE at a finite time. In fact, suppose that it
attains at T. It then follows from Friedman's Lemma (see, for
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example [6]) that

du_
dx

and

(under the assumption of Lemma 2.1.) But, this is a contradiction
to the internal boundary condition (1.9).

Thus, we have found a solution of the original problem for all £>0.

Existence Theorem. Assume that <j>(x), fi(f) and f2(t) are Lipshitz
continuous and satisfy the inequality

for all J>0. Then, there exists a classical solution of the problem (1.7)-
(1.13) while y(f) is far from the right boundary (# = 1).

§5« Uniquness of Solution

In the present section, we will show a uniqueness theorem for the
problem (1.7) -(1.1 3) by adding one more condition

(5. 1) (*2-*l)KjB<*,

which means that the given initial degree of supercooling is not so
much.

Note first that we have some equalities from (1.7)-(1. 11) : imme-
diately from (1.9) -(1.10),

(5. 2) y(t} =- la(y(r) -0,r) ~

and by integrating both (1.7) and (1.8) over the region
and {jv(r)<^<l, 0<r<£}, respectively,

rfjKO rt
r \ \ 11 (Y /Wr \ nv\\ \ M v-^? ") U"X" \ t*

LJo Jo

i r* ri
u(x,t)dx+\ u ( y ( r ' } 9 T } y ( T ) d T ~ \ <l>(x)dx

y(o Jo Jo
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and further by adding the last two relations and using (1.9),

r>(o ri ri
(5.3) ci\ u(x,t)dx + c2\ u(x, t)dx~c2\ <j)(x)dx

JO Jy(f) Jo

+ — (c2-Ca

Suppose now that we have two solutions, O,-(Oj M;(#, 0) 0°— 1*2)
with same data, which are different each other in a time interval
(0,e] and satisfy

(5.4)

This also means that

(5.5)

(due to jvi(0) = j;2(0) =0) and

(5. 6) MI 0>i (0 , 0 >n20>2(0 , 0

(due to (1.9)).

Let us show that the above assumption leads to contradiction We
first find that the condition (5. 4) - (5. 6) do not allow such a time
interval (OX] (s'<Y), in which

(5.7) «i(*,0>«2(*,0 for 0<*<j>!(0 and J>2(0<*<1,
MI (^, 0 ^ ^2 (x, 0 for j^ (0 ^x^y2 (0

always hold. In fact, by subtracting the relation (5. 3) applied for

CMO » M2(*,0) from that for 0^(0, Mi(^ ,0) , we get

(5.8)
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If (5. 7) were to hold, the left hand side of (5. 8) should be positive
due to (1. 13), while its right hand side be negative by (5. 1), (5.4),
(5. 6) and the inequalities,

(5.9) _*L(if *)-._*"

-4^(0,0 —
OX UX

which themselves follow from the assumption (5. 7).
The next matters which may happen under our assumption (5. 4) -

(5.6) are that, for a sufficiently small time interval (0,e'],

(5. 10) HI (j>2 (0,0 ^>u2 (j>2 (0 9 0

always holds. We may have, in fact, more stringent matters that
there are not any time interval (0,e'] in which, for some function

Z(0,

always holds. In fact, suppose that we have such an interval [0,e'],
and we then find from (5. 2) that, for 0<* ^s',

(5. 11)

Here

rf r* rrz(r) ^ n
\ [«1(Z(T),T)-«1(>1(r),r)]rfr=\ \ -p-(*,r)rf*
Jo Jo L Jj^cr) WA; J

r f

= \
JO

and hence

(5. 12)
I Jo

<max(Z(r)-j»1(r))\'
Q^r^t Jo

« * f2(r) ^ 1/2 / /•/ fZ(r)

\ (*-j»i(0)2^dr \ \
OJj i jW J IJoJ^tr)

^(Z(r),r)

dx2

2 \l/2

J-2(rt 1/2
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since both quadratic integrals on the right hand side have finite values
for our solution concerned,, Now, we put

Then, we get, from (5.11) and (5.12),

or

But the last inequality never holds for sufficiently small e'. This is a
contradiction,, Therefore, we have

(5.13) HI (Z(0,0>K2 0*2(0,0

and especially (5. 10) for a sufficiently small interval, 0<O<e',
On the other hand, it is easily found from the maximum principle

that the profiles of u{(x, t) (z = l,2) never meet each other both in
0<#<Oi(0 and JJ2(OO<1 at every time t, 0<f<e. Therefore,
remained is only the case that such profiles may cross in y\(t) <^x<^y2(f}
for some interval 0<£<X'0 Then, we can find such smooth function

Y(0 that jVi(0<YGO<O2(0 (0<KO and the followings hold:

(5.14) «i(Y(0,0=K2(Y(0,0

(5.15)

and

(5.16) Mi(*,0>«2(*,0 for Y(0<*<J>2(0-

In fact, it follows from the implicit function theorem, since

and

should hold for some i. Since Y(0) =^i(0) =^2(0) = - - > 0 , we may

consider from continuity of Y(J) that

(5.17) Y(0>0 (0<KO-

By integrating (1.7) and (1.8) in the region {Y(0<#<1, 0<^<£/7}
as done to get (5. 3), applying the condition (1. 9)-(l. 10) and practic-
ing integration of y2(0? we obtain
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(5. 18) c2Ul(x,e") - cMfae'dx + c oe.e') - u2(x , s")dx
J*2(B»)L

— (ca-ca

(1''̂

It follows immediately from (1.13), (5.14), (5.16) and (5.17) that

the left hand side of (5. 18) is positive,, Now, if

-4(^(7(0,0^0 (0<KO

were to hold, the right hand side would be negative due to (5. 9) ,

(1. 13), (5. 15) and (5. 1). This is a contradiction. Therefore, we

should have

(5.19)

On the other hand, by applying (5. 13) with Z(0 =7(0 and (5. 14),

we have

(5. 20) n2(7(0 , 0 >«2 0>2(0 , 0 (0<KO .

But, (5.19) and (5.20) are not compatible with the maximum

principle to be satisfied by u 2 ( x , f ) in the region {7(0 <^x

Thus, we have proved that the assumption (5. 4) is not valid, and

hence that

(5.21) Jh(0 =JV2(0 f°r some interval, O^J^e.

It is then clear that

(5.22) Mi(*,0=M2(*,0 for 0<^<1, 0<^e.

These mean that the solution of our problem is uniquely determined

for 0<£<e, at least.

Clearly, we can repeat the same discussion for a series of time

intervals (en,en+i) (72 = 1,2. . . . ; £i=e). In conclusion, we arrive at

the following theorem:

Uniqueness Theorem. A classical solution of the problem (1. 7)-(l. 13)
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is uniquely determined under the condition (5. 1).

In this Appendix, it will be shown that the problem of difference

scheme

l, /A-Z-constant)

(A. 1) iiS = 0, O'=l, 2,. ..,/-!)

ul=f\ uj=gn (n = l , 2 ,3 , . . . )

with uniformly bounded data {0;-}, {/"} and [gn] has a family of

solutions for a sequence of space mesh size A's, whose difference

quotients of any times both in x and t are uniformly bounded in any

compact set contained in

0={OO<CY, 0<t<T\.

Here, we have taken the coefficients of heat difference equation to be

all one for simplicity. But the following discussion does not give any

essential change even for the general case.

To see the above fact, it is essential to have an estimate for ux.

Such an estimate is well known not only for a heat equation but also

for general partial differential equations of parabolic and elliptic type,

and it is usally called an estimation of Bernstein type. Similar

estimation may be, of course, expected for corresponding difference

schemes. In fact, for a pure implicit difference analogue for heat

equation with uniform mesh width h and time step A:, such estimation

is known (see [5]). Here, we want to get such estimation for a

solution of (A. 1) with variable time steps {kn} .

Ao 1. Green's Function
For the case of homogeneous boundary condition

(A. 2) /§=r = 0 (H = l , 2 , 3 , . . . ) ,

a solution of (A. 1) is expressed in the form of eigenfunction expansion

by using eigenfunctions of a corresponding eigenvalue problem

(A. 3) =Uj = X(m)» (1^,7-1), and a0 = ay = 0.
Kn

In fact, it is easily seen that its eigenvalues are
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(A. 4) ^. = (1+4*, sin2-^)'1, where KH = Jj±-(s=l, 2, ...,/-!)

and corresponding eigenfunctions are

(A. 5) iiy = iijf) = sin^(j = lf 2,. ..,/-!).

As easily shown, these eigenfunctions are orthogonal one another:

7-1
( A . 6 ) - - — ( y

J'-i J J [~2(r~S)

It is then sure that any given function <f>={03} can be expanded as

(A. 7) h=JEb. sm-Vf-(j=l,2,...,J-l),
s=l J

where its Fourie coefficients are given by the formula

(A. 8) *.=4JS^ sin^-(s = l, 2,. ..,/-!).
J j-i J

Such expansion of initial data allows us to get an expression of a solu-
tion of homogeneous boundary value problem (A.I) , (A. 2) :

B
 J*L */,

un
r= 2 6SII( 1

s=l q=l\

. rsnsin

We write it in the form

(A. 9) u« = ̂ h G (*„?,.;*„,())&,

where

• •sin — =- sin
y

In general, we call the function

/ - / / -* \ 2 WVT / IG(xr, £j',tH,Tp-d =-f7- H ITU/? s=ig=A
/ A T A N / - / / - * \ T I i > ! • 2 - 1 '(A. 10) G(xr, £j',tH,Tp-d =-f7- H ITU +4*ff sm2-^^) sin

Green's function of the present homogeneous problem. It is verified
by direct substitution that the Green's function satisfies the following
equations and homogeneous boundary conditions:

G Or, ? j ; tn, TV_O , = G (xr, £ j ; ̂ , TP_O „ ,
C ' ^
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and

(A. 12) G (xr, £,; tH, TP_J , + G (xr, £ j; tn, r^) w - 03

G (*r, 0; tn, T>_!) = G Or, f 7; * B, rp_x) = 0

for n^>p—l. To put, for n=p—l9

(A. 13) 1 1 ( '\ ,X '-T- (r=j) (drj is
A ( -L. -\ Kronecker's delta)n ( =£ "^

( ^ = 1 ? 2 , 3 , 8 0 B )

allows us to say that (A. 9) is valid also for n = Q, i. e.3

A. 2. Expression for nx

Suppose now that two functions, v and w9 satisfy the equation

(A.14)x

and

(A. 14) 2

respectively. Multiplying (A. 14)i by kphwpj~l and (A. 14)2 by kphv]
and summing up all the products, we obtain

-^r+^y =o
Summation by part here yields

(A. 15) Eh wW=Eh wffl
j=i j=i P=I

-S^E
/>=!

p=l

Especially, we can take

w*-l=G(xr,Gj;tH,Tp-d and z^=«J.

Then, (A. 15) becomes
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(A. 16) uZ=EhG(xn£J;t,,0)tJ+XklG(xr,0;tmTt-Jtf*
j=l P=l

n
- 2 kpG (xr, Sj; tn, r,_0 |gp.

P=I

This is an expression of a solution of the problem (A. 1) using Green's
function. It also allows us to write down an expression of ux:

(A. 17) (ii?), = X? hG (xr, Sj; tn, 0) Jj + £ £/? (*„ 0; tn, r,_0 €,

A. 3. Difference Quotients of Green's Function
We here prepare some integral expressions for difference quotients

of Green's function, in order to estimate the right hand side of (A.
17). Just from definition of Green's function (A. 10), we have

/A io\ r<f & * f\\(A. 1 8) G (xr, £j ; tn9 0) x = TrA2
 stl,=iV ' q 2JJ "*"2J

4 f* n _ o>
7T/Z2 Jo g=l ? 2

V1 • SK ( , 1 \S7Ts m - - c o s r — -~-

where ~- means that its left hand side may be replaced by its right
hand side for estimation for sufficiently small A, and

(A. 19) 4=

Further, we expand the right hand side of (A. 18) as follows:

(A. 20) G(xr, £ j ; t n , 0)x-^*(* fl ^sin-f-sin >fcos roi cos^-
nh Jo q=i Z \ z

— sin rto sin— }dco

2 f71 n _!
7T/Z2 JO 5=1

+ -r^l EC A~l sin2-^-[cos (r + j) ty - cos (r — j) CD]dw,
TCh, JO q = l Z

Similarly, we get

(A. 21) G(xr, 0 ; t n y Tp-i)x^—rg-\ II ^!
3"

1sin2-?r-[cos(r+ l)^ + cos rco\dcD
7T/Z Jo 9=^ L

and
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(A. 22) G(xr,Sf,tn,Tp_1)xl

+ cos (J—T— 1 ) co] do),

Put

(A823) I(K\tn,Tp-d=^^TlA-lsm o> sin Ka> da
7th JO g=/>

and

(A. 24)
Jo 9=f /

By using the symbol / and J, we can rewrite (A. 20) - (A. 22) as

follows :

(A. 25) G(xr, £,;*„ 0),~/(r+j;f,, 0) -I(r-j;tn, 0)

+ AL/(r+j; f.f 0) -J(r~j; tn, 0],

(A. 26) G(*r, 0; f,, r,_0,f~2|7(r+ 1 ; *„ r#_0 +J(r; („, r,_0

and

(A. 27) G(* r>e /;i l l,T,_1)rf

Our next problem is to estimate the function / and J. For it, we

will prepare some lemma in the following sectionSo

A0 48 Product of Ar

A simple estimation from under for a product of Aq is given as

follows:

It is, however, not sufficient for later purpose. We must prepare more

sharp estimations.

Lemma A0 1. Let kq (q = l, 2, „.. , 72) be a sequence of positive numbers

satisfying the condition

n

max kq = k^ max kq = k2 and 2 kq = t.
q qi-l q = l

77z<??z, £fen? an? too Ajiwrfj o/ partition of the number set N= [I, 2 , . . . , n},

{Na,Nd} and [ N a 9 N f l 9 N 7 } 9 such that
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and
1 1

1

Proof. We will first construct a partition [Na, Nb}, Clearly, we can
take a partition {I,N'a,Ni} of N such that

L i- <r v1 ic <i i. r^q = Z_J. /«'g==-—•
q<=Na gejVj 2

Then,

ffS-ATt ^ ffEjV <!•o a

Put Ar
fl = A rc+{l}? Ni = N/i). Such {JVfl, 7\^B} is a partition desired. We

will next find a second partition {A^a, N0, Nr}.
a) We can find a partition (Af«, A^, N'r} of N' = N— {1,2} such that

( A OQN f' "C"/' <T^' crnrl /' /' <Llc\£\.Z,j} ta=''^=^f anQ lj — la .-ssn/2 ;

where t'a = TJ kq, etc .

In fact, let {NQ
a, N°p, N7} be a partition of N' such that

Here and later, we put £s= 2 ^, etc. (j = 0, 1,2,.. . )• If ^-^^A2,
?ejV5

it is sufficient only to put {N'a, Np, N'7] = {A^°, JVJ, ̂ }. Otherwise, we
take off an element from JV°, and call the remained N\. Adding the
element to N°a, we call thd result N^. Next, exchange the name of
suffix, a,/3, f in order that t\^*t\^*t\. We repeat such procedure to
get a sequence of partition, [N5

a, Np, N*r] (5 = 1,2,. . .) such that
t8

r-t'a<t'-l-t'-\ and finally to get {N'a,N'^ N'7] desired after a finite
number of steps,
b) Put

Na = l+N'a, Nft = 2 + N'p and Nr = N'r.

This is a partition desired. In fact, since ^ + ^ + 4=^ — ̂ 1 — ̂ 2 and
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t'r = tr, we have

1

due to (A. 29). Thus, we have proved Lemma A. 1.

Lemma A* 28 Assume that there is a constant JJL (0<C/^<^1) such that

(A. 30) min kq^>fi max kq

Then, the iequality

and

(A.32) ri4>ri+^a,-r^_0sin2^| (for p^n~{<
q=p L h

4hold, where //i = // a?2rf [A2=

Proof. In order to show (A.31), we use a partition {ATa, JV&} of

N= [p,p+l, . o • , f t} 5 as shown in Lemma A. L Then, we have

114= n 4 n 4
" "

where A^max kq. From the assumption (A. 30) 9 it follows that

n - T ^ - - m n ^ ~

Therefore, we get (A.31) by combining the last two relations.
In order to show (A.32), we apply a partition [Na9Np,N7] of

N= {p,p+l,. . . ,n}, as shown in Lemma A.I . Then,

fiAq= n 4 n 4 n 4

where ^ is the sum of the most (£) and the second taken from
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[kq, q =p,p+1,... ,n}. The condition (A, 30) assures that

1 — 0 — 1 ) mm *• ^' ' 2

n-p+l

Therefore

This is not but (A. 32).

A. 5. Some Integration Formulae

Lemma A, 3. Let a, /3, y and d be positive constants. Then

CK sin°
(A. 33)

PTT
(A. 34) V

Jo

sm

(A. 35)

j
where

Sln -9-

^
o

I | -4-/YCin"_

2
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Its proof can be done by introducing a new argument 57,
1 /r>

(
. 2CD

smV
1 ' 9 tU
i-smy/

and practising residue calculations in y. Its details are omitted,

Ao 6* Estimation of /(JK; tn9 rp_^)

Lemma A» 4e When p^n,

(A. 36)

where C is a constant independent of tm TP-I, K^ h and {kn} .

Proof. When A' = 0, it is trivial, since I ( Q ; t n , T p - d — 00 In general,

I(-K;tn9Tt.J =

and hence

So, it is sufficient only to consider the case that K is a positive
constant. Put

(A. 37) I(K\ tn, r,_0 =h(Ki tH, r,_i) -4-/2(Jf; tn, r,_0 ,

where
7T

(A. 38)! /!(Jf; ^^_0 = 2f *;Q ^-i sin ^ sin K(0 do)
TT/l Jo g=^

and

2 f ^ *
(A. 38) 2 I2(K\tnJr.^ =— 72-\ n^lr1 sin w sin Kco do).

K

We first consider Ii(K;tn,Tt-l'). Notice that

! sin to, I =2 sin-^
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and

sin
2 - 2 = 2 2

Kco \

in" for

4 ' 1+2 sin2

' 27T2 ' 7T2 * " 2

So, we have

g
r#~.
Jo

sin2Q>sin

Applying (A. 28) on the last integrand yields

c,;~2<y

2 < u \ r, . 4 ,.sm 1 + - ( ^ - - 1 sm. 2o)~\m yj
Further, by using (A. 33), we obtain

(A. 39) l/xCJST; ^r^)!

with an appropriate constant C.

We next consider I2(K; tn,rp_^). Through integration by part,

we get

s j. N 4 f * TT /f-1 • ^G> •T; ^n, r^«x) =— TO\ Al ^s
 x sm <w cos-^r- s

7T/Z J g q=p 2.g q=p
K

cos CM cos— -=- ? -pr
nKh2 LJ TT s=j, € 2

-[
cy ty

, sm -7T- COS-TT-
~ sn to
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Hence

(A. 40) I2(K\ tn, r,_0 =/a(JT; tn, rp-d + /22(#; tn, r,_0,

where

(A. 41) /2i(#; tn, r^_0 = -£T2\ n jl-1 cos ft> cos2-^-rfft>
X"

and

(A. 42) IK(K; tn,Tp^

8
ff^A:

Let us consider two cases, i) p = n and ii) p<^.n, separately.

When p = n,

I2(K; t,,r._j)

r. QJTft) n ? ^ ?^Tft) • Q ft>
COS ft) COS -^- OKn COS -yCOS -y-Sin^

TT^TA2

X

4 p cos2-2-cos ft) - 4/cnsin2y.

dco

and hence

\I2(K; t,,T.

c" rs2 • Z®^ C0^ , r \ 7T ,Since A^snr— > — 2~>1 for ^>^^, we have
2 7T A

. 2co

_ da>

Vl +^r2Vi + 4/c r a(Vi +K2 + Vi+4O °
Here, the last equality follows from (A. 33). Therefore

(A. 43)' \I2(K; tn,Tn_J\<-
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or

(A. 43) \I2(K; tH,T,-d |<

Also here and later, C is a constant selected appropriately. By
applying (A. 43) and (A. 39) upon (A. 37), we have the desired
estimation (A. 36) for p = n. When p<^n, we consider I2\ and /22

separately. Notice again that

(A. 44) K* sin2f >™M for |~O<>.

We then have, by (A. 28) and (A. 33),

•*t fJoA „,. 2 f f l \ f . 41 +A sin -77- 1 1 +-r«
2Ji ^ h2

and further

(\ 4-^V \T (K* t T ^ \^ ^^\r\, TrJy |l21\-"-5 ^w> ~/>—I/ r\~

(A. 45) |/a(JT; tn,Tp-J |< ; , .
ltn-Tp-i(-4tn-T:p-i +Kh)

We next consider /22, and apply (A. 31), (A. 44) and (A. 34)
successively. Then

n ("it n

n rn
v~i l
/ i "-^ \
2=^ JOq=p JO / 2 . 2 ft) \2 2 — J

Hence
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(A. 46)'

or

C
(A. 46) 1/22 Off; *„,*>-!) <-,

By applying (A. 45)' and (A. 46)', or (A. 45) and (A. 46) upon

(A 0 40) 3 we get

(A. 47)' |/2(JT; tmTp-J < CK

(A. 47) |/2C8T; tH,Tp-J\<^= C

itn-Tp_i(ltn-Tp_i +KK)

Finally, by applying (A. 39) and (A. 47) on (A. 37) , we also have

the desired estimation (A. 36) for p<^n. Thus, we have proved
Lemma A. 4.

A. 7o Estimation of J(K; tn,

Lemma A0 5. When p^n,

(Ae48) \J(K; tn,Tp_
tn-Tp^tn-Tp^+lKlK)

Proof. When K = Q, we apply (A. 28) and (A. 33) successively.

Tf(\ 4. \ 2 ^ A ,_! - 2(0 r/(O; tn,Tp-i) =—^1 11 Aq
l sin -Wo

o PTC

4 /. x • 2 <Wf * 7- A om
~Tv\l'n L ti — lJ &JLii ~7T"

Hence

C

This shows that (A. 48) is valid when K=0.

Let us next consider the general case (K^Q), Since J(—K;
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tn>
 TP-I) —J(K'<> tn,Tp-i), it is sufficient for the proof only to consider

every case of a positive number K. Put

(A. 49) J(K; tH, Tp.J ^(JT; tH, r,_0 +J2(K; tn, TP^),

where
JL

(A. 50) J^K; tn, r,_0 =4s^ ^ ^'sin'^cos ^ <fo
7T/Z J0 q=p 2

and

(A. 51) /2(^; tn,Tp_j=*

We first consider Jlm By applying the inequality

2 2
1 • K2(s)2 i i l^2 • 2°>
^ 7T2 ^ 7T2SmY

(A. 28) and (A. 33) successively, we get
. 2a)

T

TJ

. 4 / - * N J_ /I -L4^2t-p-(*--T,_i) + v i +-p-
Hence

(A. 53) I/^JC; tH,Tt-j K,

We next consider J2. It is easily found by integration by part that

(A. 54) Jt(K; tM r,_i) =J*(K\ tn, TP^ +J22(K; tnj r^) ,

where

i fff n

(A. 55) /2i(^; ^, Tp-J = --po\ n ^~X sin ^ sin ^^ rf<y

and

(A. 56) J22(K; tn,Tp

. a) a)
Y

A . a)4 / c « s m c o s "

sm --
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We first deal with tha case of p — n exclusively.

sin o) sin KCD

> • »- A . (S) CDsin A<H 4/cw sin-- cos-

"• i . A * 2 1 i A ° 2K L \~ i/TMsin ~~3r~ i i" stKft sin _
2 n 2

sinJEoisinoi^

The last integral can be estimated as done for I2(K; tnjrp^ (see

(A. 43)0- So9 we have

|/2(*; ^r^Oh

Hence and from (A. 52), it follows that the inequality (A. 4:7) is
valid for p = n and K=£Q.

We notice for the general case, p<^n^ that J2i(Kl tn9Tp-i) can be
estimated in such a way as for I2(K\ tn^p-\) (see (A.47)')- Then

(A. 57) M , / l a _ „, . r / / ^-.HI +K2itn-rp_l\_itn~rp_l +KK]

We are to go to estimate J22.

(A. 58) \J22(K; tn,Tt.J\

I • 2<*> • ' Kd) K(S) j ,sm * sm" c o s " ' •
K

Consider the last integral. Put

(A. 59) L (K; tn, r,_0 = J * ̂ ^^sir, 2

X"

Through integration by part, we get

L(K; tn,Tt^

2 f * fj A -= — -\ II /if-\
J

<*> - 2oy . - 2 <*>^UJ • yJ.\.UJ . . o UJ yJL\UJ \ j
% — ^Q l ^.x rt cos^rSin o> cos^-^— + sm^cos cy cos^-^- )d(o

A
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9 f * » /.i /r*> »^ I TT /I — 1 • v O) • <yl\.(O x-i— — \ II yig siller- sin co cos2-^-^
A J^_q = p 2 2 q=p

co

. 9(O
snr—

Hence

(A. 60) L(Ki tn,rp_J

K __
K

nY cosycos ~2~+Sm 2 C°S m C ~2J

A. if Q1TI f*OSlTV»- „ TTA/oDlil^r— ^vyia
9 ft> • 2&(0 A 2 2 _7, — .^ ^Aii -p-sin co cos -p— 2j "0>-

A Jjc_q=p 2 2 q=p -2®

We first consider the case of p = n — 1, exclusively.

~ n — — -p-
A Jjr^ L 2 2 2

K

\ • 2 n 2 (*> i 2 j+ sin2— ( 2 cos2— — 1 )cosz-p— Ida)

• 2^r sin2-7r-

2 q = n-l
r

1 f * yf-l J-l • 2 °^ 2 ̂  _7

^3 « ra ' n Tcos V~

We hence have, by using (A. 31), (A. 44) and (A. 34),

\L(K; tn, rn_2) | <A

J ft) ~!2

^1 l+-&(^-r«-2)sinVl
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• A (0sin4—
<IQK _ * _ do)"

<-
r
£

So9

M n Vi

By applying the last inequality on the right hand side of (A. 58),
we obtain

(A. 61) \Ja(K; tn,rn^

Let us go to the general case

\L(K; tn,Tp^\
n - - O / j.

II A~lsh

We first apply (A. 44). Then

(A. 62) \L(K; tH,r,_x) \<6KM(K; tn,r,_0

where

Sm 2

and

sin"

Apply (A. 31) and (A. 34) for estimation of M(K; tn,rp_^)a Then
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M(K- tn, r,_!)

Sm-? ^da>

Therefore

CA4
(A. 63) 0<M(K; tn, r^X

Apply next (A. 32) and (A. 35) for estimation of N(K; tn, r?_i). Then

N(K; t.,T^

c*
<\

Jo

+ VI

, 9 3V1+.S:2
' r ~I9 i "

Hence

(.A. UTy v \-n \"5 "nj •• p—iy ^^^77^vi
Apply (A. 63) and (A. 64) on the right hand side of (A. 62). We
get

(A. 65) \L(K; tn9rp.^ |< . CKh" , .
Vl+^2(^ra-r,_1)3/2(V^-r,_1+^)

Further, apply (A. 65) on the right hand side of (A. 58). Then

(A. 66) \J22(K; tn, r,_0 |< _C —.
AVI -rK2^ltn-Tp_l (Vf„ — *>_! + ^TA)

Combining (A. 57), (A. 61) and (A. 66), we obtain, for /><X
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(A. 67) !/,(

Finally, apply (A. 53) and (A. 67) upon (A. 49) . Then, we also have

(A. 68) l/CJf; tn9 r,_0 | < , h _^2 , - , ,- - _^_^
nil + K2itn~Tp-i (1tn—Tp-i + Kh)

for p<^n and K^=0. Thus, we have proved Lemma A0 5 completely.

A, 80 Estimation of ux

We now use Lemma A. 4 and A. 5 to estimate the right hand
sides of (A. 25) -(A. 27). We then get the following estimations,,

I G (*„?,; *.,0),|

<|/(r+j; tn,Q) |+ |/(r-j; ^,0) | +A[|i/(r+j; ^ 0) | + |/(r-j;^0) |]

"^ 1 /T~ / /T~ i

Hence

(A. 69)

Next

(A. 70)

< C (for

and

(A. 71)

We are ready to estimate Mxe Assume that data are bounded:

(A872) |^.|, |/* | and |^|<£ (O^^Z, 0<^<T),

where B is a positive constant. From (A. 17), we have
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(a» , I <B [ if h | G (xr, f ,; f „ 0) , | + & kp \ G (*„ 0; /„
j=l p=l

Apply (A. 69) -(A. 71) on the last right hand side. Then

1 f*. <fr + 1 f«. Jr
x,]o V^r(V^=r+*r) ^-xjo Vf,,-z-(VfB-r+jr-* r)

X r <

Thus, we have arrived at the following theorem:

Theorem A* 6. Let u be a solution of the problem (A.I) with the

assumption (A. 72) in such a case that

(A. 73) min k^>(i max kn for tN<^T

always holds, where fj. is a constant, 0<C//<C1. Then

\ _Li (] ^n

1

(A-74)
x

+

uniformly in h for tn

As easily seen, the last estimation for ux is weaker than the estimation
of Bernstein type usally accepted, just by some logarithmic factors.

It may be due to the method used by us.

A. 9. Uniform Boundedness of Difference Quotients
We define a 'parabolic' region Q by

and its boundary dQ by

dQ= {* = 0, O^t^T} U [x = X, O^t^T] U (Q^x^X, t = 0}.

Take that Q(f) denotes a section of Q at a time t. We further define

a sequence of sectional regions and their boundaries as follows: *0j
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is a set of all the mesh points with space mesh width h which are

contained in 42(O? together with respective two neighbouring mesh

points. The remained mesh points in O(tn) constitute its boundary

<
Now, we can rewrite problem (A. 1) as follows:

(A.75) (n3)f=(M3)« for Xj

u*j=f} for *,.
115 = 0,. for *,.

Theorem AO ?„ Suppose that {/"} flftrf { -̂} ar^ bounded uniformly in

h and {kn} , for tn<^T. Then, a sequence of solutions of (A. 75) with

A->0 is uniformly bounded in Q, and all kinds of sequences of difference

quotients of u"- are uniformly bounded on any compact set O* contained in

O, respectively.

Proof. The uniform boundedness of {u7-} itself follows immediately
from the maximum principle. In order to prove the latter part of
the theorem, we take a sequence of polygonal regions Q* (k = l , 2 9 3 y

. . . ) such that

where every Q*+i is strictly inside of Q* and they are all composed
of a number of rectangular subregions with sides parallel to the
corresponding coordinate axes. Clearly, {u]} are uniformly bounded
on boundaries of all rectangulars of Of. Apply Theorem A0 6 on all
restricted problems in respective rectangulars. We then find that
{(M})*} are uniformly bounded all over -0*. Similarly, we again find
from the last fact proven that {(M")**} also are uniformly bounded
on O*y and hence so are {(«")?}. By repeating this discussion for
{£?;f, A = 4, 5, . ..}, we are led to the concerned statement of the
theorem.

Appendix B

Here, we will give some facts about several kinds of function class

for completeness of the present paper. They are already known and

are given, for example, in Nikolskii's book [7] in the more general
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frame. We will state them without proof, and moreover only in such
a restricted frame that was necessary for our problem in §3.

In R2, we consider the region

0={0<*i<X*a), 0<*2<T}9

where y (x2) is given and continuously differentiate, and its derivative
has a non-zero limit j/(0). Let us introduce Sobolev class W2(£)
(r = (ji9 r2)) with the norm defined by

I) Any element u^W2ll(Q} has an extension u^W2'l(R2) all over the
space R2.

Let us introduce new variables by

£l=y(x£-Xi, ?2 = *2,

where it is assumed thatj(%2) is already extended beyond the original
interval (0, T) so thatjp'(A:2) is bounded and continuously differentiable
in — oo<#2<oo. Put

II)
Let us introduce one more class: Hardy class Hl2(R\^). It is a

Banach space of functions of one variable ? 2 with the following norm:

where p = p + a, p is an integer and 0<a<l, ahd ^/^ is a forward

difference operator of the first order:

= z0 (f 2 + K) - w (f 2) .

Imbedding Theorem. For any pair of non-negative integers r=(ri,r2),

It means that v($i, <f2) ^ W2(R
2) has a unique trace

w (f 2) =o( + 0, f 2) - lim »(£ lf f 2)

defined for almost every £2j o^ J?|2, /yi^ iw HP^(R\^ and that the inequality
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is satisfied, where C does not depend on v.
Especially 3 we hence have

III) wl-\R*)-*H^(R\J.

From I-III, we can conclude from u^Wl'l(@} that

with a constant K, and hence

X2

for all /z>0. The last inequality itself was used in §30
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