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Linear Radon-NIkodym Theorems for
on JEW and W* Algebras"
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Bruno loCHUM* and Hidekl KoSAKI**

Abstract
Linear Radon-Nikodym theorems for states on a von Neumann algebra are obtained in

the context of a one parameter family of positive cones. Especially, necessary and sufficient
conditions for existence of linear Radon-Nikodym derivatives are investigated. In the
natural cone case we consider Jordan Banach algebras.

Let Jt be a von Neumann algebra on a Hilbert space H with a
distinguished cyclic and separating vector <fQo Making use of the
associated modular operator., [15], Araki [1], introduced a one
parameter family of positive cones in the Hilbert space,, Some linear
Radon-Nikodym theorems for states are known in this context. More
precisely, for a certain state <p in Ji%^ the existence of a vector f
(linear Radon-Nikodym derivative) satisfying (p(x) =<#fo? O + C^f? ?oX
x^Jt in the cones was proved in [1], [11].

In the present work, we study necessary and sufficient conditions
for a state to admit a linear Radon-Nikodym derivative in the cones.
We begin with the natural cones [1], [3], [5], [9], Here the Jordan
algebra context is a "natural" setting, and several criteria are obtained.
Then we consider all the cones in the von Neumann algebra context
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§2. The Jordan Case

2. 1. Notations and Preliminaries

In the following H will be a real or complex Hilbert space, and
let L(H} be the bounded operators on H.

Let H+ be a facially homogeneous selfdual cone in a real Hilbert
space H (see [9]). Let D(H+) be the derivations of H+ (i. e.5 (d^L(H) ;
expO5)//+c//+ for all fefl}) and M=D(H^s.a. be the Jordan
Banach algebra with predual (i. e.,JBW algebra, [8]) of the selfadjoint
derivations with product denoted byo([9], III. 2. 1). For ?e#, co^Ml
is defined by <ok (d) = <3f, f>, 3eAf. For ce#+, <£> denotes the face
generated by f, and for any face F in //+ 7^ = {£ <E#+;<f,C> = 0 for
all CGEF}.

We here summarize results which will be needed later.

Theorem 2. 1. 1. ([9], III. 5. 2) The map: ̂ H+-*co^M+ is a
homeomorphism with respect to the norm topologies. Furthermore, if (D^<O)^

then fi^£2(t.*., f2-£ie#+).

As in [1], [5], we denote the unique vector in H+ corresponding
to <p^Ml by (pl/2.

Lemma 2. L 2. ([9]? I. 1. 4) If {$n}nt=N+ is a norm bounded monotone

increasing sequence in H+, then g = \/£n^H+ exists and lim ||f — f«||=0.

2. 2. Linear Radon-Nikodym Theorems

Definition 2. 2. 1. Let pQ and <p be in M*. Then <p admits a linear
Radon-Nikodym derivative f in H+ with respect to <p0 if <p (<5) = 2<(^f , ^o/2)>,
d^M. (The factor 2 is just a normalization constant, and will disappear in
the W*-case, see Theorem 2.3.2, i).) The cone of such <p is denoted by
LRND(<pQ).

Remark 20 20 2. Note that £ is unique if pQ is faithful. Indeed,
if £ ' is another derivative, then for all d in M we get
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0 = <*(£-£'), ftf2) = <£-£', $vl/2>

and £ = £' due to the lemma below and [9], II. 1.5.

Theorem 2.2.3. Let y>0 and <p be in Ml. Then <p<=LRND(<po) if

and only if V«[(fo+«"V)1/2-^/2] « »» #+ (»•«-, sup «|| (?„ + «>) 1/2-
n nejvr+

^o/2||<oo? J00 Lemma 2> 2. 5). Moreover, if <pQ is faithful the derivative

of <p is exactly this vector,

Lemma 2« 20 40 Let <pQ be in Af J. TVze/z ^0 ^ faithful if and only if

<p\/2 is a quasi-interior vector in H+(i.e., ^J72)1" = {0} ) .

Proof, By [9], II. L 5, a vector in H+ is quasi-interior if and
only if it is cyclic and separating for M. Thus if <pl/2 is quasi-interior,
then <p0 is faithful. Conversely, if <pQ is faithful, the face <^O generated
by <pQ in AfJ is norm dense in AfJ ([9], Appendice 2, Lemma 9).
Thus for g^H+ there exists a sequence [a)g } in <<p0> with fne//+

and lim||o>| — ft>||=0. Theorem 2.1.1 implies that fne<<po /2> and

limjjf -— ?B||=0. Thus <(^o/2^ is dense in H+ and ^J/2 is quasi-interior.

Q, E. D.

Lemma 2.2.5. Let <p and <p0 be in Ml. Then fn = w[(po
<p\lr\, n£=N+. give rise to an increasing sequence in H+.

Proof. (Compare with [12].) Since £>0<po + «~V) £n is in //+ by
Theorem 2. 1. 1. Let m>n. We have to show

(the vector on the right side is in //+), or

for all S in M+. But the second expression is equal to

V) 1
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and positive. Q. E. DB

(Proof of Theorem 2. 2. 3.) If> = 2<-£, pl/2\ we get for each d in M+

(<pQ + n'l<p) (d)

Thus (<p, + n-l<p)l/2<<pl/2 + n-l% by Theorem 2. 1. 1 and ?z
^o/2]<f. The result follows from the previous Lemma. Conversely, let

f = Vc«e//+ with fn = «[(po + «"V)1/2-9o/2]- For eacn 3eAf, we compute

=<p(8)-

Here, on the second line the first three terms sum up to 0 by the
definition of the vector fn. Since sup ||f»|| = ||f||< + oo and Iim||(p0 +

w-ip) 1/2 _ 0#2||=o (2.1.1), lim 2<3fll,^
/2> = ^(3) and we have the result.

Q.E.D.

Corollary 2, 2, 6. L0£ ^0 ^ iw Af*. The face generated by <pQ is included
in LRND(<pQ}a

Proof. When (p<l(p^ <p^M%, we have

Therefore, f,-^[(^0 + ̂ ~V)1/2-^/2] <^[(1 +^-1/)1/2-l]^ It is ele-
mentary to see sup^[(l+^-1/)1/2-l]-2-1/. Thus Vf«<2-%#2 and

n n

the corollary follows from the previous theorem. Q. E. D0

It is also possible to characterize the existence of a derivative in
terms of the Jordan product °.

Theorem 2. 2e 7, Let <p and <pQ be in M% with (p0 faithful. Then <p e
LRND(<pQ} if and only if <p(d)2<c(/>Q(d°d) for all d in M and some

Proof. Suppose p(<5)2<^0(<5°<5), d^M. If P(S) =2d2-dod, then
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because P(<5) preserves the order ([9], III. 4. 5). Consider the linear

map: d<p\/2-xp(d}e This is well-defined because <p\/2 is separating (see the
proof of Lemma 2. 28 4) . Since the map is bounded, the Riesz
representation theorem asserts the existence of fe// with <p(S) =

2<f,^/2>0 Let f = £+-£- be the Jordan decomposition of £ ([9], I.
1.2), and let <?"> be the face generated by £~ in H+

e Let 8 > =

2~1(1+P — P ji_) be the associated positive facial derivation

([9], II. 2. 5). Here, PF is the orthogonal projection onto the closure

of F-F. Since 3<r> £=-£", we get

>) (the positivity of p)

<0 (the selfduality of

Therefore, <f~,^o/2> = 0, and consequently ?~=0 due to the fact that
#>J/2 is quasi-interior (Lemma 2. 2. 4). We thus have shown f = f+e//+

0

To show the converse we need the operator inequality d2<d°d (as

operators in L(H}}, Here <52 is the square of d as an operator in

L(H). To show this, we may assume <5>0. Indeed, let d = d+— d~

be the decomposition in [9], III. 2. 3 ^eAf^ 3+°3- = Q9 [3+,3"]=0).
If (d±)2<d±od± is known, one gets

32=(3+)2+(3")2-23+3-
< (3+) 2 + (3-) 2 (since 5+^- > 0)

Let 5 = AdSFW (>0) be the facial decomposition (see [9], II. 2. 6).
Jo

Then, for each e^>0 we have
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(see the proof of [9], III. 4. 5.) The operator concavity of
->log(/!+e) implies

Jo Jo

Since the involved operators commute, we get

that is, (d+£)2< (d+e) o(<5+e). The desired inequality 32<d°d can
be obtained by letting e\0.

When <p(d)=2<d£,<pl/2y, d(=M, we estimate
2 /2, ̂ J/2> (Gauchy-Schwarz)

\/2, <pl/2y (by d2<dod)
) Q.E. D.

Let <p and ^0 be in AfJ with <p0 faithful. If <p<l<pQ for some />0,
there exists 39 in Af+ such that <p1/2=d9<p1

Q
/2 and ||^||</1/2. In fact,

since <pl/2 <ll/2<p\/2 (Theorem 2. 1. 1), the assertion follows from [9],
III. 5. 4. In particular, we have

Conversely, if this is satisfied, then we compute

([9], L 1. 2)

, i. 2. 3)

Therefore, by uniqueness, we get <pl/2= |^J/2| - (Notice that if <pl/2

!^o/2 ! we can reverse the above computation.)
We emphasize the fact that <p is in general different from ^o0^

where

Even in the von Neumann algebra case, we get (with the notation
of 2. 3)

(xyx<p\/2, (pl/2y = pQ(xyx) =(p^i(xyx} (see the beginning of 2. 3.)
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Definition 2, 20 8» Let (p and <p0 be in MJ. We say that <p has a

quadratic Radon-Nikodym derivative with respect to cpQ if there exists
d<=M+ such that

The set of such <p is denoted by QRND (p0) •

We have thus proved:

Proposition 2. 2. 9, Z^£ ^ a?26? (pQ be in MJ zw'M <p0 faithful.

i) 7Vz£ /flc£ generated by <^0 w included in QRND (<p0) -

ii) <p<=QRND(<p^ if and only if <p1/2=\dtf%2\ for d,eAf+.

We remark that both of the inclusion LRND(<pQ} ^QRND(<po) and
QRND (<PQ) c LRND (^0) are false (even in the commutative case).

2fl 3« Connection with the von Neumann Case

Let *// be a von Neumann algebra, and <^0 be a faithful normal
state on Ji with the standard modular object J, y ([15]). Then
//+ = ^^ ( — ̂ "i) is a facially homogeneous selfdual cone (see [3]

or [9], VI. 1). There is a Jordan isomorphism i between Jts.a.(x°y
= 2-l(xy^yx}} and D(//+)s.fl. given by i(x) =2'1(^+/^7) (see [3] or
[9], VI. 2. 3). To each ^e^J we can associate ^5cE (Z»(//+)s.a.) J
in such a way that ^ is just the complex extension of ^of e Therefore,
for x = x* in ^, we get

Po (*) = & =» (*) = 2-X (x +JxJ) Vlf\ PJ/2>
= 2-1 «^J/2, ̂ J/2> + <^J/2, ̂ J/2» (since Jt = £,

Similarly, for £e//"t and x^^s,a,, we compute

Thus it is natural to introduce:

Definition 2.3.1. We say that (p<^Jt% has a linear Radon-Nikodym

derivative f (with respect to <p$} in the natural cone ^ if <p(x) =(xt;,<pQ/2y

, ?X x^^. The cone of such (p is again denoted by LRND(<p0).
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The results in 2. 2 read :

Theorem 2, 3. 2. Let <p and <pQ be in J£% with pQ faithful.

i) <p EE LRND (po) x/ ararf 0H(? if V w [ Oo + «" V) 1/2 ~ ^l exists in

's case, the vector ?= V ^[(^o + ^~V)1/2~^o/2] satisfies <p(x) =
"S ̂

ii) //* 9</^0 /or Jom^ Z>0 then cp^LRND((p^ (cf. [1], Theorem 5).
iii) <p^LRND(<po) if and only if

for all x in ^ (or equivalently for all x in ^s.a.) and some

Proof, i) and ii) follow from 2. 2. 3 and 2. 2. 6.

iii) The condition ] <p(x) !2<c2~1^o(^*^ + ^^*)5 x^Jt is equivalent to
$>(d)2<c$Q(dod), 3 eD(^ *)..«.- In fact, the latter implies

for all A;e^s.fl.. Since <fi=$°i, we get

For an arbitrary x in ^, we apply this to x + x* and ^ — l(x~x*)a

Adding the two resulting inequalities, we get

The converse implication is trivial. Therefore, the result follows from
2. 2. 7. Qe E0 D.

Finally, applying this result to a factor of type /<„, we obtain

Corollary 2. 3. 3. Let h0 be a non- singular positive trace class operator

on a Hilbert space //, and h be a positive trace class operator. The following
three conditions are equivalent'.

i) there exists a (unique) positive Hilbert- Schmidt class operator k
such that

ii) sup n\\(hQ-i-n-lk)l/2~hl
Q

/2\\2<oo, where || ||2 denotes the Hilbert-
neJV,
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Schmidt norm.
iii) there exists a positive constant c such that

for all x = x*

Although the previous result was obtained without using the
Tomita-Takesaki theory for von Neumann algebras, we shall use it
to get a generalization in the next section,, However,, such a theory
exists even in the non-commutative framework of the Jordan algebras
(see [7]). For instance, using [7] we can easily generalize [11],
Theorem L6 as follows:

Proposition 2* 30 4. Let M be a JEW algebra and <p^ pQ normal states
on M with y>Q faithful. Then <p = (pQ ( °°A) for h^M+ if and only if

f °°(p(S}=\ p(0f(5)) (cosh (fltf) ) "Vtf satisfies <p<l(p$ for some />0a Here,
J — oo

[6t] is the cosine family associated with <pQ.

§3o The von Neumann Case

3o 1. Notations and Preliminaries

Let Jt be a ((/-finite) von Neumann algebra with a standard form
(Jlf, H,J, ^O? [1]? [3], [5], and ?0 be a distinguished cyclic and
separating vector in the natural cone 3P* with <pQ= (o^EH^* (iaee,

fQ=:^J/2)8 Fixing these throughout, we denote the corresponding
modular objects by J, J, and the modular automorphism group on
Jl by at (=AdAu\ t<=R [15]. We also set

Jl§— {x^Jt\ t^R->Ot(x) ^Jt extends to an ^-valued entire
function} ,

which is (7-weakly dense in Jt,

Deinition 3.1.1. ([!]) For each 0<a<l/2, Pa ( = PJ0) denotes the

closure of the positive cone /fa^+f0 in H.

It is well known that P1/4 is exactly the natural cone ^ We here
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summarize results on the cones which will be needed later.

Proposition 3.1.2. ([1], [3], [5])
i) The map'. fe ^"^a^e^J is a homeomorphism with respect to

the norm topologies. Furthermore, if o)^<a)^2 (^e^3*)} then ?2 — fi
ii) p*=jpw-a^ and it is the dmi cone (/*/*-«) '={£e#; <

0 for all CeP1/2-*} of Pl/2-« (In particular, 0>* is self dual}.
iii) P«cs(J1/2-2«), the domain of 4l/2~2a, and ^2~2^=J^ if

As in [11], we denote the function (2cosh (nf) ) "\ t^R, by F(t),
and recall

Lemma 3.1.3. (Lemma 1.4, [11]) If f ( z ) is a bounded continuous
function on the strip 0<Re£<l which is analytic in the interior, then we
have

=\" lf(it)+f(l+it)}F(t)dt.

Lemma 3.1.4. Let /3>0 and (p^.Ji%. There exists Z>0 such that

\ <p(Gft(x)}F(f)dt<l<pu(x), x^J?+, if and only if for some (or equivalently
J — oo

all) s>0 there exists 4>0 such that \ (p(fft(x))dt<le(pQ(x) , x^^+ (thus
J-e

the condition does not depend on a value of /3) .

We notice that

Thus, similar arguments as Lemma 4. 1, [11], imply this result, and
full details are left to the reader.

3. 2. Linear Radon-Nikodym Theorems

Here we obtain some necessary and sufficient conditions for a state
to admit a linear Radon-Nikodym derivative in the cones.

Theorem 3.2.1. Let <p be an element in Ji% and 0<a<l/2. The
following conditions are equivalent'.
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i) <p(x) = <#f o, O + <X^ foX x^Jl, for a vector C in Pa, that is,
is a linear Radon- Nik odym derivative of <p in Pa (with respect to <p0),

ii) <p (*) =<(! -M1-2*)*^), *e^0, /or a
iii) There exists a constant c^>0 such that

vi) p°ffa_M,Oe)F(0# = <41/2-"*£o,C>> *e^, /or a twfor
J —oo

Furthermore, the vector in i), ii), fl/zd iv) are identical,

Proof. i)^>ii) Because of /J1/2-2aC=C (3. 1.2, iii)), for each
(hence xgQ^r\@ (Jw)) we compute

neZ

ii) =^>iii) This is just the Cauchy Schwarz inequality0

iii) =>ii) At first we claim that ^Of o is a core for zf~2a (It is obvious
if 1— 2a<l/2.) If one sets Jtext>= [x^J^Q there exist jS = jSx and f = fx

such that Ho-_^Wi|</3 exp(r^) for all n^N+], Jtexp^ (C^0f0) is
dense in H ([6], Lemma 4.2). For each x^^exp we estimate

= /3 exp(exp f

Thus J (hence J1"2") is essentially self-adjoint on ^expSo thanks to
Nelson's analytic vector theorem ([14], p. 202). Hence, ^Ofo is a
core for J1-2a, equivalently, (1 +^1~2a)^0?o is a dense subspace in //.
We consider the linear map : ( 1 + /I1"2") x$Q&(l+ Al~2a) J£0£Q-*(p (*) e C.
This densely defined (and well-defined) functional is bounded by the
assumption. Thus, ii) follows from the Riesz representation theorem
(applied to the extension of this bounded functional).

ii) =;>iv) The both sides of iv) define elements in Jl^ as seen easily.
It, thus, suffices to check iv) for each x^J?0. For such an #, we
compute
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r < ( i
J-oo

Here, on the last line, we used Lemma 30 1.3 for

iv) =^>i) the left side of iv) being an element in ^J, iv) shows that
C belongs to Pa (3.2. 1, ii)). To show i), we may and do assume
X^J(Q. For such an x, based on iv) we compute

<*&, O = <^1/2-^_,(a_1/2) oo f o, C>

= \ ^°<7(l-2a)f-t(a-l/2) W ̂ (0 *,
J-oo

<^C?fo> = <^1/2~a:^(a-i/2)WfoJC>(see the computation in i)^>ii))

= \ _ P0* a-2o>H-i<a-l/Z>

Thus, Lemma 3. 1.3 applied to

/CO =^°^-(l-2a)(,

implies that

f fo>=/(l/2) =pU).

Corollary 3.2.2. (Uniqueness) Assume that <p^J£% and 0<a<l/2.
If <p admits a linear Radon-Nikodym derivative C in Pa, then it is uniquely
determined by <p (and a).

Proof, This follows from Theorem 3. 2. 1, iv). Q. E. D.

Corollary 38 2. 3. Assume that <p^^l and Q<a<af<\/2e If (p admits
a linear Radon-Nikodym derivative in Pa\ then so does it in Pa

a

Proof. This follows from Theorem 3. 2. 1, ii), and the boundedness

of the operator (1 +^"2a/) (1 + ̂ "2a) -1. Q. Ee D.

Lemma 3.2.4, For each x^^Q and 0<a<l/2, we get
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This is a consequence of the spectral decomposition theorem, and
used to rewrite Theorem 30 20 1 in a "modular operator free" form.

Corollary 3. 2e 5» Assume that <p^Jil and 0<<*<1/20 There exists
a constant £>0 such that

\<P(X) | <C {<pQ (**#) + £>0 Oi(2a-l/2) O) ^(2a-l/2) O) *) 1/2
5

x^J(^ if and only if <p admits a linear Radon- Nikodym derivative in Pa
0

(When a = l/49 the theorem corresponds to Theorem 20 2. 7 and Theorem

2.3.2, iii). When a = 1/2, the right side is V2cp0(***)V20

Proof. For each x^^Q, we compute

*) •

On the last line we used the following easy consequence of unique-
ness of analytic continuation:

Now the corollary follows from Theorem 3. 20 13 iii), and Lemma
30 2e 4, Q, Ee D.

Proposition 3. 2e 60 Assume that <p^J%l and 0 <a<l/28 There exists
a (unique} ha in Jt+ such that <p(x) =(x£Q,daha{;Qy-i-(xdaha{'Q9 f0>3 x^.Jt^
if and only if for some (or equivalent ly all) £>09 there exists ZE>0 such
that

r
J-e

In particular^ (although ha does depend on a) the existence of ha does not
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depend on ore [0,1/2). (cf. [11], Theorem 1.6.)

Proof. If ^=Aaha^^Pa is a linear Radon-Nikodym derivative,
then Theorem 3.2. 1, iv), implies that

f °°where we define <pa = \ <p°a(i-2a}tF(t}dt. Due to JhaJ^Jlf, we get
J-oo

Conversely, if ipa<l<po for some />0, then the Radon-Nikodym
cocycle: t^R^-(D<pc'; D<p^)t^Jf, [4], extends to a bounded a- weakly
continuous function on —\/2<Im £<0 which is analytic in the
interior ([6], Lemma 3.3 for example). Setting ha=(D<pa',
(D<pa; Dy>o) _i/2e^'+, we compute

since J(D(pa\ D<pQ) -,72^0 = (D(pa\ Z)^0) -1/2^0 is the unique implementing
vector for ^a in «^. We thus have proved that

<pa<l<pQ<=> there exists a linear Radon-Nikodym
derivative of the form daha£0.

Now the proposition follows from Lemma 3.1.4. Q. E. D.

The case a = 1/2 is excluded from the above result. But this is a
trivial case (and, in fact, corresponds to the "most elementary" Radon-
Nikodym theorem). In fact, we get

9 00 = <*£

for some h^^+ if and only if <p<l<pQ for some />0.
Finally we relate Proposition 3. 2. 6 to Sakai's Radon-Nikodym

theorem.

Proposition 3. 2. 7. // £/^ condition in Proposition 3. 2. 6 w satisfied,
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then there exists a (unique) positive operator h in *^+ such that

Among other things, its proof will be given in the appendix.

Appendix

As before, let ^0~^i0 (?o^^*) be a fixed faithful normal state on

a von Neumann algebra ^. In the main part of the article we
studied linear Radon-Nikodym theorems. Here we investigate when
(p^Jt% admits its Sakai Radon-Nikodym derivative (with respect to
<po) in a quadratic form.

Theorem A. Let (p=w^ (^e^"1) be an element in Jt%. The following

two conditions are equivalent:
i) there exists a (unique) positive h in Jt such that <p(x) =<pQ(hxti),

ii) the positive part \%9\ of the polar decomposition of y.<p = (°^9, ?o>

^Jt* satisfies \%9\ <l<pQ for some Z^>0.

Furthermore, in this case, the quadratic Radon-Nikodym derivative h in i)

is exactly \ ( D \ f y \ ; Zty0) _ f /2 12.

In [13], the L(H) -version of the theorem was proved. It is
possible to generalize their arguments to an arbitrary von Neumann
algebra by making use of the non-commutative //-theory. But here
we present a self-contained proof based on our approach.

Proof. Let %9 = w9j %v| be the polar decomposition. For K^JC we
compute

= (u9\

*u9) =
(x*) =%<

Since Jl^Q is dense, the above computations show u9u%£9 = £9. We
claim that the unique implementing vector £* of <p in PQ=
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(p = <-fJ,£J» is Juj£9, hence, \ %9 \ = < •/<? * , ?0>. At first, since

<Mjfp, ^fo)^^*^, fo>= I 1? I O) >o
for any x£E^+, we know

(3. L 2, ii)). Also, for each #e^, we compute

=?>(*).
Therefore, we have shown ^=Ju*$9.

To prove i)i^>ii), let us assume (p = h<pji, h^^+. This means
?jp = Af05 and for each x^^+ we estimate

o, fo>

Conversely, let us assume IfoJ </^o- Then £=(Z) |%J; D<p0) _i/2

makes sense as an element in ^. Notice that Jk£Q = k£Q is the unique
implementing vector of \%9\ in ^". For each x^^, we compute

The density of u??0 shows that ?J = A*A;fo, that is, h = k*k=\k\2 is the
quadratic Radon-Nikodym derivative. Q. E. D,

Lemma B. If <p,<l> in Ji"i satisfy </><<£, %9, %# in the Theorem A satisfy

Proof. Here we have to use the non-commutative Z^-theory. We
use the approach in [2], [10], where a relationship between the
//-spaces and the cones are clarified. All the necessary definitions
and facts can be found in these articles. The I^-space can be
identified with the predual *^*. Then the element Al^Al/2 in the

I^-space corresponds to %9, and \19\ corresponds to the absolute

value part \^A/2\ = (A/2A99<P/2)m of the polar decomposition (as an

operator) . Therefore, the lemma follows from the operator monotonicity
of the square root function. Q. E. D.
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(Proof of Proposition 3, 20 7.) Let us assume <p(x) =(xh0t;09 f0> +

<*?o»A0?oX x^Jt^ for hQ^J£+ as in Proposition 30 20 6 (a = 0). We

observe that

Since ^=iM(i+fc0)f0 admits the quadratic Radon-Nikodym derivative

1 + /Jo? the result follows from Theorem A and Lemma B0

Q. E. D0

We remark that the converse of Proposition 30 20 7 is false. A

counterexample in the L(H) situation can be found in [12],

This work was completed while the first named author (B. I.) was

visiting the University of California at Irvine. It is his pleasure to

express his thanks to Professor B. Russo for the warm hospitality,,
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