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Dressing Transformations
and Poisson Group Actions

By

o A. SEMENOV-TIAN-SHANSKY*

Poisson properties of dressing transformations in soliton theory are explained.

Transformation groups for soliton equations were defined in [1].
They were also implicit in the earlier paper [2] and are known
under an alternative name of dressing transformation groups (which is
the one we shall use in the sequel). For a modern and comprehen-
sible treatment see [3,4]. These groups are generally regarded as the
hidden symmetry groups for integrable systems,, The infinitesimal
action of these groups was also studied by direct methods (see [5]
for a review).

We now come to a major puzzle that remained open in the theorya

Given the fundamental role of Poisson brackets on the phase space
one would expect that dressing transformation group preserves them0

Surprisingly3 however, this fails to be so in general*5. It is particularly
interesting to understand this phenomenon in order to decide whether
the dressing transformation group survives quantization,, Normally
this would have been the case if it preserved the Poisson brackets.
Since it fails to do so9 the situation becomes obscure0

The aim of the present paper is to explain the Poisson properties
of dressing transformations. The general set-up for the answer partly
results from my conversations with V0 Drinfel'd which I gratefully
acknowledge. It is important to observe that dressing transformation

Communicated by M. Sato, May 28, 1985.
* Leningrad Branch of the Stekiov Mathematical Institute, 191011, Leningrad USSR.
*)This was observed e.g. in [6] and also by the author (unpublished).
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groups (which in typical cases are related to Kac-Moody Lie groups,
or loop groups) carry a natural Poisson structure which is uniquely
defined by the specific type of the Riemann-Hilbert problem entering
the definition of dressing transformations. (A connection between
Poisson structures and Riemann problems is central in the so called
r-matrix formalism, see [7].) This Poisson structure has an important
property explicitly stated for the first time in [8]. (Although taking
its origin in earlier papers, cf. [7], [10].)

Definition [8]. A Lie group G is called a Poisson Lie group*} if a
Poisson bracket is fixed on G such that multiplication G X G^>G is a Poisson
mapping, the space GxG being equipped with the product Poisson structure,

Let M be a Poisson manifold. An action G X M->M is called Poisson
action if it is a Poisson mapping, the space GxM being equipped with the
product Poisson structure.

We refer the reader to [9] for the definition and standard proper-
ties of Poisson manifolds. In the sequel we shall make an extensive
use of various concepts from this paper.

Clearly, a Poisson action whenever non-trivial does not preserve
Poisson brackets on M (cf. formulae (15), (22) below). However,
the resulting category is quite rich in geometric structures (e. g. for
Poisson G-spaces there are analogs of the Hamiltonian reduction
technique, cf. n°3 below).

Our main result may be now stated as follows. Dressing transfor-
mation groups define a Poisson group action.

In order to put it more precily, we must have a closer look at the
definition of dressing transformations. Usually they are regarded as
acting not on the phase space B itself whose points are represented by
Lax operators, but rather on the fiber bundle P over B consisting of
wave function. Ordinary definition used in [1], [3], [4] does not
lead to an action on B since dressing transformations do not preserve
the normalization of wave functions (cf. formula (45) below). However,
there is a clever way around this obstacle: one can combine dressing
and gauge transformations in a natural way so as to get a group
action on the phase space itself. This use of gauge freedom is in

*) I prefer this term to the one originally used in [8] which was 'Hamilton Lie groups'.
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fact crucial since it changes the composition law of dressing transfor-

mations. With the group action on the phase space at hand, a ques-

tion on its Poisson properties may be correctly posed and solved. In

passing we discover a new Poisson structure which is in a sence dual

to the one studied in [7], [8]. It is precisely this new Poisson

structure that is relevant for the Poisson properties of dressing

transformations. It also plays an important role in the description of

Lax equations (as explained in sections 3-5 below). For technical

reasons we shall mainly deal with the difference Lax equations. The

results for the continuous case are analogous and are stated at the

end of Section 6.
Our result has a clear bearing on the quantization problem.

Namely, it indicates that the dressing transformation group itself
should be quantized, its matrix elements becoming g-numbers rather
than ordinary c-numbers. An appropriate algebraic notion of a

"quantum group" was recently proposed by V. Drinfel'd. I hope to
consider these questions more closely in a separate publication.
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§ 1. Basic Algebra Related to the Yang-Baxter Identity

The technical background for our study in provided by the r-

matrix formalism as developed in [7], [8]. We begin with a brief

review of the relevant facts.

Definition 1. Let $ be a Lie algebra, R^Eud g a linear operator.

We say (Q,R) is a Baxter Lie algebra if

(i) There is a nondegenerate invariant scalar product on g
(ii) R is skew-symmetric and satisfies the Yang-Baxter identity
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( 1 ) \RX, RY] =R(\RX, Y} + IX, RY]) - [X, Y], X, Feg.

An operator R satisfying the conditions above is called a classical
r-matrix. We refer the reader to [7] for a discussion of how the
present definition links with tensor formalism used in [10],

Proposition 1. (i) Let

( 2 ) [X, Y]R = ±-(IRX, Y] + pr,/ZY]).

Then (1) implies that (2) is a Lie bracket. We denote by QR the
corresponding Lie algebra (with the same underlying linear space), (ii) Let

R±= — (R±1). Then R±: g#-^g are Lie algebra homomorphisms.

Let b=g0g. Let 5gcb be its diagonal subalgebra. We embed
via X*-*(R+X9 R-X). Note that R+— /?_ = ! and hence every
admits a unique decomposition

(3) X=X+-X,

with (X+9 Jf_) eg^Cbo Equip b with the inner product

( 4 )

Proposition 2, (i) b^^g + g^ as a linear space, (ii) Let P8 , P$R,

be projection operators onto 5g3 gR parallel to the complementary subalgebra.
Then

(5) Rb = P8~PQRtEEndb
D «•

satisfies the identity (1) <272<f is skew-symmetric with respect to (4).

By virtue of Proposition 23 (b, /?„) is again a Baxter Lie algebra8

We shall call (b,/?b) the square of (g,^).

^. In a more general way3 one can define the square of an
arbitrary Lie bialgebra0 This general definition is due to V, Drinfel'd

([8]).

We now turn to the corresponding notions for Lie groups- Let
G3 GR be local Lie groups corresponding to g, QR. There are natural
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homomorphisms R±:GR->G:x^x± which correspond to the Lie algebra
homomorphisms denoted by the same letters. Let D = GxG, We
embed GRC>D via x*-*(x+9 #_). Each x^G admits a unique decomposition

(6) x = x+x~l

with (x+, #_) eGKcD. This mapping establishes a local homeomor-
phism of GR into G. The factorization problem (6) may be regarded
as an abstract version of the Riemann problem,,

Let 5GcGxG be the diagonal subgroup. For each (#,jy) eD
there exists a unique factorization

( 7 ) (*,jO - (f, f) (A+ y A.), (f, f) e5G, (A+, A.) eG*.

§2.

Classical r-matrices are used to define Poisson structures on Lie
groups. We shall eventually need quite a lot of them, their mutial
relations being of importance to describe integrable systems, their
dynamics and their transformation groups. A fairly general class of
Poisson brackets is defined as follows.

Let H be a Lie group, 5 its Lie algebra,, Suppose, there is an
invariant scalar product on \ For <p^C°°(H) let us denote by
V^V'y^fy its left and right gradients defined by

Put

( 9 )

Theorem 1. Suppose R,R'^Endty are skew-symmetric and satisfy the
Yang-Baxter identity (1). Then (9) is a Poisson bracket on H.

Sketch of a proof, (i) Consider first the right and left brackets (cf.
[11]).

do) {p,0r=(/2'(r;),F;), fe>,0.=(*(P,),r,).
Denote by yr, rje the corresponding Hamiltonian operators. By definition,
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the Schouten bracket of Hamiltonian operators is the right hand side
of the Jacobi identity. One checks, by direct computation, that

(ID [?., 7.] (dpi, d<p2, dW - (F, [/Z (F,) , £(F,)]) + c. p.,

-c. P.
For obvious reasons one has also [^,^1=0 (since right and left
shifts commute). Now, the r-matrices R, R' satisfy the classical Yang-
Baxter identity (1). Hence (11) simplifies to

(12) [?„ 7J = - [7rf 7r] - (Fv [F,2, F,3]).

It follows that 3?e±3?r has zero Schouten bracket with itself.

We denote by H(RiRn the group H equipped with the Poisson
bracket (9).

Theorem 2. Multiplication H X H-*H induces Poisson mappings

(13) H(Ri _£

(14) ^(/2,«O

Proof. Let ^, ^ be the right and left translation operators by an
element x^H acting on C°°(H). By definition, (13) is a Poisson
mapping if

(15) [<p, 0} y^j (^) = f^^, ̂ } X.-R) (A?) + {^, 4^} az.fi/) (7) •

Let 3$4.i2' be the Hamiltonian operator associated with (9) in the left
invariant frame. Obviously, one has

2%.fi/(*) =R' + Ad x^oRoAd x

whence

(16) 7fi,ff'(*jO =^R,R/(J) +Adj;-1o^>_R(^)oAd>

From the definition (8) of right gradients we get

(17) F^OO =r;c^), F' w =Ad^-r;c^).* j/
Clearly, (17) implies that (16) is equivalent to (15). The second
assertion is proved in a similar way.

Note. Our proof followed the general pattern indicated in [8].

In particular, if (Q,R) is a Baxter Lie algebra and (b, ̂ b)its square,
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we get the structure of a Poisson Lie group for both G and D = GxG,

We shall refer to the Poisson structure on G(-RiR^ as the Sklyanin
bracket,

Let us recall now the basic definition of [8]. Suppose H is a

Poisson Lie group, § its Lie algebra, I)* its dual. For fy^GEl}* choose

p,0eCco(flr) such that $ = djp, r] = de<p and put

(18) [£,?]* = </. fe>,0-

Theorem 3. [8]. (i) Formula (18) defines the structure of a Lie
2 2

algebra on I)*. (ii) The map Ij->A§ dual to the Lie bracket A §*-»§*
is a l-cocycle on 1).

We shall say that (§>§*) is a Lie bialgebra if there is a Lie

bracket on §* satisfying condition (ii) above and refer to (I), §*) as
the tangent Lie bialgebra of //.

Example, Let (g,R) be a Baxter Lie algebra. The Lie bracket

on g* defined by the Sklyanin bracket on G coincides with (2) under

the natural identification g* — g induced by the inner product on g.

Thus (g, gR) is an example of a Lie bialgebra.

Theorem 4. [8]. The structure of a Poisson Lie group is defined

uniquely by its tangent Lie bialgebra.

As a corollary we can state the following result,,

Proposition 2. Let G be a Poisson Lie group. Its subgroup H is a

Poisson Lie subgroup if and only if l^-cg* is an ideal. In that case the
tangent Lie bialgebra of H is (I),

Specifically, let (b, Rb) be the square of a Baxter Lie algebra

(Q,R)9 D = GxG. The tangent Lie bialgebra of D ( R I _ R : > coincides

with (b, bs ) under the isomorphism b* — b induced by the inner

product Clearly, bR =8§QQR (i.e. it is a direct sum of 5g and the

opposite of g^). So we get

Proposition 3. Both SG and GRdD are Poisson Lie subgroups. Their

tangent Lie bialgebras are (g, g#) and (g#, g) respectively.
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In a sence, the Poisson structures on SG and GR are dual to each

other3 the roles of g and QR being interchanged in their definition,

Note. In typical applications g is a simple Lie algebra. Hence,

GR does not contain any nontrivial Poisson subgroups.

Proposition 48 The Poisson structure on G induced via the embedding
GC5GcD coincides up to a sign with the one defined by means of the
original r-matrix J?eEndg.

This is again a direct corollary of Theorem 40

We shall give a more direct description of the Poisson structure
on GR in the next section.

§3«, Classical r-Matrices and Lax Equations

We shall now indicate how the r-matrix formalism is used to
produce Lax equations on Lie groups. We start with the most simple
theorem of this kind.

Let G be a Lie group, g its Lie algebra, R^ End g. Suppose (Q,R)
is a Baxter Lie algebra. We equip G with the Sklyanin bracket defined
by R. Let /(G) be the space of central functions on G= Denote
by 1L, pL the differentials of left and right translations by an element

Theorem 5. (i) Functions <p^I(G) commute with each other with
respect to the Sklyanin bracket on G.
(ii) The equation of motion defined by a Hamiltonian <pe/(G) with
respect to the Sklyanin bracket is given by

(]Q\ UJU — ^rM
\1U/ 1, AL^K1 r-L,***} -Lr-L o

CIL Z*

For matrix groups (19) is a Lax equation,

dL_=rL Mi
dt

(iii) Let g+(t), g-(t) be the solutions of the factorization problem (6)
with the left hand side
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(20)

The integral curve of equation (19) starting at LQ^G is given by

(21) L (O^CO-1^ CO-
lt is not difficult to check (21) by a direct computation. However,

a geometric proof which we are going to outline is more instructive

since it reveals the mutial relations of various Poisson structures

involved. The same considerations will also be of importance when

we turn to the study of dressing transformations,,

The next assertions are quite general and provide a basis for
applying the reduction technique to the problems we are concerned
with,

Let G be a connected Poisson Lie group, (g, g*) its tangent Lie
bialgebra. Suppose there is an action of G on a smooth Poisson

manifold M. For peC°°(Af) let £„(*) = dgcp(g*x) \ g=e, ^eg*. Let X

be the vector field on M defined by an element

Proposition 5o The action GxM-^M is a Poisson action if and only

if

(22)

This statement is a direct consequence of the definitions.

Theorem 60 Let GxM~>M be a Poisson group action. Let HdG

be a connected Lie subgroup. Assume that I)-1- eg* is a Lie subalgebra. Then

the algebra CH of H-invariant functions is a Lie subalgebra in C°°(M)a

Proof. Let <p,0^CH. Then X<p = X<f> = 0 for X(E% and f9,^e^-.

From (22) we get immediately

*fe>,0 =<[£„£#]*, -0=0, x^\
whence [<p , <fi} e CH.

Corollary,, Assume that the quotient space H\M is a smooth manifold.

There is a unique Poisson structure on H\M such that the natural projection

K : M->H\M is a Poisson mapping.

Note that condition on H in Theorem 6 is less restrictive than in
Proposition 2,
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We shall refer to it as the Poisson reduction map.

Note. The reduction technique (cf. [9]) is usually applied to
Hamiltonian group actions only. For such actions the space of
invariants is obviously a Lie subalgebra in C°°. However, the converse
is not true, and the reduction technique can be easily extended to a
more general setting. The necessary tools are provided by the notion
of dual Poisson mappings explained in [9] (and going back to Lie).
In the present context this technique was first applied by V. Drinfel'd
to describe symplectic leaves of Poisson Lie groups (cf. theorem 7
below). Further applications were found by the author.

It is frequently useful to realize Poisson structures as quotients of
a symplectic structure. An important tool for that is provided by
squaring the group G.

Proposition 6. The Poisson structure on D(RiR:> is nonde generate.

Basically this observation (due to Drinfel'd) motivated the defini-
tion of the Poisson bracket on D(RiR}. We now use it to describe a

new Poisson structure on G.

Proposition 7. (i) The natural action of the diagonal subgroup 8GdD
on D(Riin is a Poisson action, (ii) Canonical projections n* ': Z)->5G\Z>,

TT: D~>D/8G are dual to each other in the sence of [9].

Proof, (i) This is a special case of Theorem 2. (ii) By definition,
this means that left- and right 5G-invariant functions on D centralize
each other with respect to the Poisson bracket on D(RiR^. Suppose

is left-5G-invariant, 0eC°°(.D) is right-5G-invariant. Then

-L=8$ and

The natural model for the quotient spaces D/dG, 8G\D is G itself.

Projections TT, TT' are given by

(23) TT : (*, jO H-^jr1, TT' : (*, j>) ^y~lx.
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Proposition 8. Equip G with the quotient Poisson structure. Its
symplectic leaves coincide with the conjugacy classes in G.

Proof. According to a general theorem [9], symplectic leaves are

obtained by blowing up points in the double fibering G< - -D - >G.
From (23) we get

Corollary. Casimir functions of the quotient Poisson structure on G are
precisely central functions on G. (See [9] for the definition of Casimir
functions.)

An explicit formula for the quotient Poisson bracket is given by

(24) 2 {?>, ^} - (R (Fp , V$ + (R (F,) , V'$
- (R (F,) , r«o - (R (Q , rj) + (F; v$ ~ (F,, rj) .

To clarify the meaning of this Poisson structure we notice that
another model of the quotient space D/SG is GR. The two models
are related by the canonical map ff:GR^G:h^-^h+hll. The next
observations are basically due to V. Drinfel'd,

Proposition 9. The quotient Poisson structure on GR — D/8G equips it
with the structure of a Poisson Lie group. Its tangent Lie bialgebra is

Hence injection GR^D and projection D~+GR give the same Poisson
structures on GR (at least up to sign). The dual assertion is also
true.

Proposition 10. The quotient Poisson structure on G~D/GR coincides
with the Sklyanin bracket on G.

Proposition 11. Canonical projections GR\D^-D—>D/GR are dual to
each other.

As a corollary we get the following theorem, again due to DrinfePd.

Theorem 7. Symplectic leaves of the Sklyanin bracket coincide with
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projections of double cosets GRxGR/GR.

We shall give a more explicit description of these symplectic
leaves in Section 6.

We now turn to the proof of Theorem 5.

Proposition 12. Let n: D->G: (x,yy*-*xy~l be the standard projection,
^Ei/(G)5 h9=(p°K. The integral curves of the Hamiltonian h9 on D(R <R } are

given by

(25) (xQetx\ y,etx'} , X' = V9

Proof, Projections of the integral curve onto the quotient spaces
Z)/5G, 5G\D remain fixed since the reduced Hamiltonians are Gasimir
functions of the quotient Poisson structure. Since h9 is both right-
and left-^G-invariant we have Fh , 7'h e

5g and for any

Obviously, F^=(X' ?XOeb3 X' = ?'9 (n(x,y)) and X' is time indepen-

dent. Now (25) follows immediately.

Consider the action GRxD->D defined by

(26) h:(x,j>)»(h+Xh-\ h+yh~1}.

Notice that the subgroup (G,e)dD is a cross section of (26). Hence
we get a canonical projection

p:D-*G: (*,jO ̂ y^xy^ y=y*y-\

whose fibers coincide with G^-orbits in D.

Proposition 13. (i) Invariants of (26) form a Lie subalgebra in
G°°(Z)). (ii) The quotient space is canonically isomorphic to G(-RR^,

We shall give the proof of a more general statement (Theorem 9
below) in the Appendix.

To finish the proof of Theorem 5 we observe that for <p^/(G) the
Hamiltonian h^ — cpon is invariant with respect to (26). The integral
curves (25) proiect down to G to give (21). Moreover, the reduced
Hamiltonian is <p since h9=(p°pe
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§ 4o Twisted Poisson Structures on the Square of
G the Genera! Reduction Theorem

Integrable systems on a lattice give rize to generalized Lax equations
of the form

(27) - ~ ,
at

Equations of this kind are covered by the general reduction theorem
which we shall state in this section,,

Applications to integrable systems on a lattice will be considered
in Section 58

We keep to the notation of previous sections, Let T be an automor-
phism of the Baxter Lie algebra (g, R) i. e. an orthogonal operator
reAut Q which commutes with R. It gives rize to an automorphism
of G which we shall denote by g^Tg, Define twisted conjugation
GXG-+G by

(28) g: h^gh'g-1.

Let r/(G) be the space of smooth functions invariant with respect to
twisted conjugations,,

Theorem 80 (i) Functions <p&I(G) are in involution with respect to
the Sklyanin bracket on G, (ii) Equations of motion defined by Hamiltonians

<p&I(G~) are of the form (27) with B = ±-R(P9)9 A=r(B}, (iii) Let

g^ (f) 3 g- (0 be the solutions to the factorization problem (6) with the left
hand side given by

(29) £(0=exp*F,(Lo).

The integral curves of equation (27) defined by <p&I(G) are given by

(30)

The proof of (30) follows the same lines as in Theorem 50

However, we shall now twist the Poisson structure on D. Extend T
to b = g©g by the formula

(31) t(X,Y) = (X,TY)

and put

(32) *R> = ioRbo}-\
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We also put *G=\8G) = {(*,**) ; x^G} cD.

Proposition 13. (i) The natural action of TG on D(XR R^ by left

translations is a Poisson action, (ii) The natural action of 8G on D r" t Ky K^)

by right translations is a right Poisson action.

This is a corollary of Theorem 2, since sGdD(R ,_5 ) and rGcZ) rn rn ^b' b (. K i , — K .)

are Poisson subgroups.

Proposition 14. Canonical projections TT: D-n D x->D/5G!. TT': D-n D ,
( Rb,Rb) ( R b , R j , )

— >rG\Z) ar^ dual to each other.

Both quotient spaces are naturally modelled on G. Projections
TT, TT' are given by

(33) TT: (x,i>)^xy-\ n'\ (x,y}^~ly~lx.

Proposition 15. Symplectic leaves in the quotient Poisson manifold
D/8G are orbits of twisted conjugations.

Proof. To get the symplectic leaves it suffices to compute n ( K ~ l ( x } ) .
Clearly,

Corollary. Casimir functions of the quotient Poisson structure on G
are invariants of twisted conjugations (28).

We leave it to the reader to write down an explicit formula for
the quotient Poisson structure on G.

Proposition 16. Let <p^I(G), h9-=(p°-K. Integral curves of the
Hamiltonian h9 on D z are given by

' "b* b'
(34) (x,etx\ y,etxf) , X' = F (n (

The proof is the same as in Proposition 12. It follows from the
definition of h9 that 7h erg, P'h e

5g whence
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for any 0<=C°°(D)e Furthermore, V((x,y) = (X', X*)9 where Xf =

Fp(rc(ffOO) is time independent.
Consider the action GRxD->D given by

(35) h:(x,y)»(h+xh-\ *h+yhll).

Theorem 9. (i) Invariants of (35) form a Lie subalgebra in
C°°(Dr ) (ii) The Quotient Poisson structure on D/GR — G coincides

( Rb.RJ

with the Sklyanin bracket.

We shall give the proof in the Appendix. The first assertion is
proved using Theorem 6. The calculation of the quotient Poisson
structure is straightforward and includes some remarkable cancellations.
This suggests that there should exist a more geometrical proof, but I
did not found one as yet.

Note that the subgroup (G, 0)cZ) is again a cross section of (35).
The canonical projection p: D-+G is now given by

(36) p: (x,y) ^^y^xy-, y=y+y~\

Again h(p=<p°p, so (30) follows directly from (34), (36).

§5» Difference Lax Equations

An important application of Theorem 8 is described as follows.
Given a Baxter Lie algebra (g, R) and a corresponding Poisson Lie

AT

group G, put G = GN, & — ©9- We shall think of elements g^G as of
functions mapping Z/NZ into G. We equip ^ with the natural scalar
product

(37) (X,Y)

and extend £eEndg to ^ by (RX)n = R(Xn)e This makes (&,R)
a Baxter Lie algebra. Equip G with the product Poisson structure.
Clearly, G is a Poisson Lie group and its tangent Lie bialgebra is
(^, &R). We shall denote elements of G by L= (Ll9 a o o f l N ) . Define
mappings <^m, Ti G-*G by

(38) ^(i) = H L4 , T(L) = ff Lk .
l<k<N

The functions $m satisfy the linear difference system
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(39) <pm+l = 0mLm, m = I,...,N,

T(L) is its monodromy matrix. Note that T\ G— >G is a Poisson map.
This property had originally served as a motivation for the definition
of the Sklyanin brackets. Subsequently it was formalized by V,
Drinfel'd in his theory of Poisson groups [8].

Let rGEAut & be the cyclic permutation

(40) r: (Xl9 ...,XN) ^(X2, X3,..., XN, Xj.

Clearly, the twisted coniugation L^>gUg~l coincides with the gauge
transformation for the linear system (39) induced by the right
translation (f)m^$mg7n in its solution space. Obviously, the operator
(40) is orthogonal and commutes with R. So we can apply Theorem
8 to our particular situation.

The gauge transformations orbits in G can be easily classified.

Theorem 10 ("Floquet"). (i) Two elements L.L'^G lie on the
same gauge orbit in G if and only if their monodromy matrices T(L), T(L'}
are conjugate in G. (ii) The algebra TI(G) is generated by the functions

As a corollary of Theorem 8 we get

Theorem 11, (i) Functions h99 ^?€E/(G), are in involution with respect
to the Sklyanin bracket on G* (ii) The Hamiltonian equation of motion
with the Hamiltonian h9 is given by

(41) = LmMm+1~MmLm,

(iii) Let (gm) ± (t) be the solution to the factorization problem (6) with the
left hand side given by

£ » = " e x p t 9

The integral curve of (41) with the origin at L° = (L\, . . . , Zw) is given

by

(42) Lm (0 = (gj ± (0 -^ (gm+J ± (0 .
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(For simplicity we assumed in (41) that G is a matrix group0 The
generalization is of course straightforward) .

§ 60 Dressing Transformations

We now turn to the definition of dressing transformations on the
group G, Consider again the linear difference system (39). Let (fik

be its solution given by (38) i. e. satisfying the normalization condition
<pi=l, (Note that arbitrary solutions of (39) may be obtained from
(38) by a left translation 9^.^— »A<^? /z£=G)0 The dressing action
GxGR->G is defined by

(43) (£*),= (fa1 a (g) <*„) ?LH (fcV (g) <pn+i} +

where a: GR-^G : g^-*g+g-1 is the canonical embeddingo

Theorem 12. (i) Formula (43) defines a right Poisson action of GR

on G. (ii) This action preserves symplectic leaves in G.

The proof will require some preparations0 Let us notice first of
all that in terms of the wave functions <J)n (i. e. solutions of (39)) (43)
takes the form

(44) <P/=g+-l<Pn(fa

The standard definition used in [1], [4] differs by the normalization
factor g+:

(45) <Png = <Pn(<Pn^g<Pn}^ g^G.

Note that the action (44) preserves the normalization condition ^i=l.
We shall see readily that the normalization factor g+l in (44) affects
the composition law of dressing transformations.

Proposition 17. Formula

(46) xff=g^1x(x'1a(g)x) +

defines a right group action GxGR->G.

Proof, We shall point out a natural geometric interpretation of
(46). Let D = GxG be the square of G, The quotient space D/GR is
naturally modelled on the subgroup 5GcD. Canonical projection p:
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D—>G is given by

(47) p: (*, jO »-»*(*'!?)+•

Now it is easy to check that natural action

DXGR-»D: (x,y)g=(g+-lx, g--1?)

projects down to (46) under the map (47). In passing we note an

identity

g+~lx (x~la (g) *) + =g-~lx (x~la (g) x) _ .

It is worth pointing out that the standard definition (45) corresponds
to the action of the subgroup (G, e) dD on D/GR. We have preferred
the definition (44) for two main reasons: first, (G, 0) CZ) is not a
Poisson subgroup. Second, the action (45) does not preserve normali-
zation of the wave functions and so does not lead to an action on
the phase space. On the contrary, the Poisson properties of (44),
(46) are quite nice. It goes without saying that all formulae of [1],
[3], [4] relating dressing transformations to quantum field theory
remain valid for the action (44) as well.

Theorem 13. (i) The dressing action (46) is a Poisson action, (ii)
The symplectic leaf in G containing a point x is the orbit of x under the
dressing transformations (46).

Proof, (i) The natural action D(R >R } XGR-*D(R iR ) is a Poisson

action which commutes with the projection p: D-^G. So it follows by
standard machinery that the induced action on the quotient space is
again a Poisson action, (ii) According to Proposition 11 the descrip-
tion of symplectic leaves in G is related to the dual pair D/GR

< - D(R ,R ) - *GR\D. Both quotient spaces are naturally modelled on
8GdD. The symplectic leaf containing x^G coincides with p ( p ' ~ L ( x ) ) .
Clearly, p'~l(x) = {(h+x, h-x) ; h^GR}. Our assertion now follows.

We shall now analyze the Poisson properties of the dressing
action (43). Formula (44) is somewhat easier to deal with. However,
first the Poisson structure on the space of solutions of difference
system (39) should be studied.

Denote by V the space of solutions to system (39) for arbitrary
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satisfying the normalization condition <fii(L)=l, We fix the

Poisson structure on V by demanding that

be a Poisson mapping. Clearly, <p is a Poisson isomorphism. We

shall need an explicit formula for the Poisson structure on V, It

suffices to compute the Poisson brackets of "cylindrical" function on V

depending on the value of <p at one particular site n each. We shall

denote such functions <pn(<fi) =^»(^«). Denote by V 9^ V'9n the left and

right gradient of <pn (regarded as a function of one variable (pn^G)a

Proposition 18. The Poisson bracket of functions <pn, <pm on V is given by

(48) 2 [pH, <pm] v(<f>) = (R (?'9n) , ft-1^,) - (R (?9n) , F,m) , n <m.

The proof is standard; we shall give it in the Appendix.

We have seen already that squaring the group G is crucial for the

study of Poisson structures on G itself. So a natural way to study
the Poisson bracket (48) is to realize it as a quotient Poisson structure

by squaring the space V. Let W=Dx... xD. Elements w^W are

sequences (z#n) f^1- We define the Poisson bracket of cylindrical functions

(pn,<pm on W by

(49) 2{^fPm} (w)=^R,(V;)9w-^9

A comparison with (48) immediately shows that the definition is

correct.

Proposition 19. Diagonal action DxW->W by left translations is a

Poisson action,

Proof. Rewrite (49) in the following form

2 {?»,?*}= <%(*;„), r9m>
where

(50) ^(zi;) =/Zb-Ad wnoRboAd w~\

One checks immediately that

f]n(hw) = Ad h°r]n(w} oAd h



1256 M. A. SEMENOV-TIAN-SHANSKY

Since V 9{hw) =Ad h° (F^ (te;)), our assertion now follows from the

definition of Poisson actions.

Define an action WxGN
R-+W by right translations

Proposition 200 Ri ght-GN
R-invariant functions on W form a Lie subal-

gebra with respect to the Poisson bracket (49).

Proof. It suffices to prove that the Poisson bracket of two cylindrical
G^-invariant functions is again Gf-invariant. Note that Gf-invariance
of <pn implies /2b(Fp ) = —p'<pn* Hence the formula (49) simplifies to give

(5 1 ) fe?,, <pm} , + , , ^3 + -

Since left gradients are right-invariant our assertion now follows.

We embed VdW via ̂ (^^JS1. The quotient space W/G^is
naturally modelled on V.

Proposition 21. The quotient Poisson structure on W/GN
R~V coincides

with (48).

The proof is again based on a straightforward computation. We
give it in the Appendix.

We are able now to finish the proof of Theorem 12. Just observe
that diagonal action GRxW->W projects down to the dressing action
(44) on V (this is basically the contents of Proposition 17). Since
DX W/G\->W/G\ is a Poisson action and GRdD is a Poisson subgroup,
our main assertion follows.

We conclude our paper with a few remarks on the continuous
case. The definition of dressing transformations in the continuous
case is given as follows. Let & =C°°(Ii°,Q) be the current algebra
associated with a Baxter Lie algebra (Q,R). We extend R to ^ by
RX(x) =R(X(x)) and define scalar product on ^ in the ordinary way
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The Poisson structure on <& R is the ordinary Lle-Poisson bracket

(52) {(pl9 (p2] (L) = (L, [grad ^ (L) , grad (p2 (L) ] *) .

Let (p(x) be the fundamental solution of the linear differential
equation

(53) dJ> = <f>L

normalized by
Put

(54)

Theorem 14. Formula (54) defines a right Poisson action & R X G^-> ^ #,

The proof follows the same lines as before with minor changes, so

we shall not dwell upon it.

We shall give here the proofs of several statements omitted in the
main text.

L Proof of Theorem 9o
Embed GR into D(TR ^_TR } xD^RyR^ via

Lemma A8 1. Natural action of D r r xD(-R R} on D T given
( ^b1"" RV b' b ( RvRJ

by (gi9g2) '-x^gixg2l is a Poisson action,

This assertion follows in a routine way from Theorem 2.

Clearly, the tangent Lie bialgebra of D X D is (b0b3 b T @bR ) .
- Rb b

Lemma A. 2. Embed $R into b©b via the differential of (A. 1). Then

R is a Lie sub algebra in b_r^
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Proof, An element ((Xi,X2), (Yi, Y2)) ̂ b©b annihilates QR if and
only if

R.(Xl~T~lX2)+R+(Yl~Y2)=Q.

Equivalently,

Since 8g, g^cb^, rg, r8/jCb_r are Lie subalgebras (at least, up to an
b

anti-automorphism) it suffices to check that

implies

*-([%, %L) = -*+(-
Now, the Yang-Baxter identity implies

Q.E.D.

The first assertion of Theorem 9 now follows from Theorem 6.
Recall that the canonical projection p: D->G is given by

(A. 2) p: O,j;) H-^~ ly+lxy- .

For 9, ^eC°°(G) put H9 = <pop, Hf = <f>op. Put Z-F^ ^/==F;5 Y=F^5

Y/:=F^. It is easy to check that the gradients of H9 restricted to the
surface (G,e)dD are given by

(A. 3) ?Hf= (X, X'+ -rX-) , F'H(p= (X', X'+ -rJQ .

Similar formulae hold for the gradients of H^,. Now,

(A. 4) Rb (F'Hv) = (X', X' - XL + rX_) ,

*R> (FBf) = (2T~1X'+ - X+ - X_, X'+ - rZ_) .

Hence

= 2 (r-1^, Y) - (Z+, Y) - (Z_, Y) - CT+, r+)
rY_) + (Z'+, rY_) + (Z'( Y')
'+) + (Zl, Y'+) + (A", rY_)
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+ (Z_,ry_)-(Xl,rY_)

= (X, Y') - (x1, r+) - (X, Y) + (X y+) =2 {?>, ̂ } G.

2. Proof of Proposition 18.

Linear difference system (39) implies, by the ordinary variational
method, that

(A. 5)

Hence

(A. 6)
A = l

n-1

~H-i(R($kl¥<p <Pk)3 fik1?* $1)9 n<m,k=i n m

The right hand side of (A. 6) is a total difference ; after cancellations
we get (48).

3. Proof of Proposition 21.

Let <pn,<pm (n<m) be cylindrical function on V. Extend them to
right Gf-invariant functions 0B, <pm on W7. Recall that we have denoted
V 9 y'9 the gradients of <pn regarded as a function of one variable.

Put V9n=Xn, V'9n = X'n. One checks that

Hence

(A. 7) F^ \v = (^(X) +

Now, (51) and (A. 7) imply

(jrj ^-^ _) , (<&„ crj ^
X) -^n1) +, ^« (X) +^»1) -

^M (X) +$?) - - ( (0. (X) -9&.-1) +, &, (X) -^i1)
+ ( (</>„ (X) +0n-

1) -, ^m (X) -9^)
- ( (0B (X) -fa1) +, ̂ .X^^1) - ( («&. (X) H-^.-1) -,
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Q.E.D.
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