Pubi. RIMS. Kyoto Univ.
21 (1985) 1223-1235

The Weyl Transformation and Quantisation
for Locally Compact Abelian Groups

By

Mark A. HENNINGS*

Abstract

Lunn’s method of constructing a Weyl transformation W to act on all the tempered
distributions &’ (R?") over R*" is considered. Ideas of Hudson, Peck and Wilkinson are
used to extend this construction to provide a Weyl transformation acting on the whole of
&’(G) for any phase space G, where G is a locally compact separable abelian group such
that x—2x is an automorphism of G. Lunn’s construction is also generalised directly to
provide a Weyl transformation for the whole of &’(G) where G=CXC is the phase space
associated with the configuration space C (a locally compact separable abelian group for
which the map x—>2x is an automorphism).

Finally, these two different formulations of the Weyl transformation are compared, and
algebras of physical observables ¢ ,(G) and 0 (G) are found. It is shown that 0 (G)=
0,(G) N0 ,(G)*, where* is the natural involution on $”(G), and that the algebra structures
of @ (G) and 0 ,,(G) coincide on 0 (G). Hence both formulations of the Weyl transformation
provide the same algebra of physical observables.

§1. Introductory

Lunn [10] has developed an extension of the Weyl transformation
for the group R™ Using the antisymmetric bicharacter

7(5,9) =exp(gp nn o= r e ]) 5= (myw), 3= 0w (1)
and the unitary o-representation U of R* on L?(R") given by

[UG)f1@) =exp(5 g —5) | f g =) (2)

she obtains a bijection W: %' (R™) —»Z (& (R"), ¥’ (R")), the space of
weakly continuous linear maps from & (R") to &’ (R"), whose restriction
to & (R*™) is the traditional Weyl transformation for Schwartz functions.
In [5] the author has identified a *-algebra @ (R*™) contained in
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&’(R™), and has shown that there is essentially only one strictly
irreducible representation of this algebra, and that this is given by
the Weyl transformation W, since for every ue 0 (R™) the map
W (u) may be regarded as a continuous linear map from % (E") to
itself which possesses an adjoint with respect to the natural preinner
product structure of & (R").

If we consider the twisted Fourier transformation %, from & (R¥)
to itself given by

Fop @ =h{{ L fOo (3)

and lift &, to a topological isomorphism from &’(R™) to itself, then
the Weyl transformation W can be decomposed into a composition
of two operators W=U-%, where U: &' (R™) ->Z (¥ (R"), &' (R")
is the bijection which has the weakly convergent formulation

U@ =i v U@ ve 7B, (4)

In this work we shall be interested in studying ways of extending
this construction to provide a Weyl transformation for more general
phase spaces than R™.

8§2. A Generalised Fourier-Plancherel Theorem

Hudson et al. [6] have considered a locally compact abelian group
G equipped with a multiplier ¢, and have found a generalised form
of the Fourier-Plancherel theorem which is compatible with the
multiplier ¢. This has been done by considering the associated
multiplier w(x,y) =0(,x) Y, and the regular w-representation R, of
G on L*(G)

[Ro(x) 1) =0 (3, 2) 7 f (0 +x). (3)

Then L'(G) NL*(G) becomes a Hilbert algebra when equipped with

its natural preinner product structure, multiplication and involution
being given by

(fo) @) = )00 5 G-y (6)

So(x) =0 (x, —x) f(—x). (7)
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For any feL'(G) N L*(G), we shall denote by 2,(f) the bounded linear
operator on L*(G) which is the closure of the map g—fog. If N, is
the von Neumann algebra generated by the operators R,(x), then
there exists a translation-invariant faithful normal semi-finite trace
on N, which is unique to within normalisation. If we let L*(N,,7)
be the Hilbert space generated by N, and t, then for any f&€L'(G)
NL*(G) the map 2,(f) €L*(N,,7) has the weakly convergent formu-
lation

SORIWIOY RO (8)

and, for a suitable normalisation of 7, the map f—2,(f) may be
extended to a unitary map U:L*(G) —L*(N,,7).

The close similarity between equations (4) and (8) leads us to
look for ways of relating these two approaches, and using and extend-
ing the formalisms of Hudson et al. to provide a generalised Weyl
transformation for a physical system with phase space given by the
group G. This is the aim of the work in the next two sections of
this paper. We shall simplify our notation, eliminating the need for
the multiplier @, by observing that

& Ru(x) > = (fog") (x) (9)

for f,geL*(G). Thus if we define the function R;,€L*(G) for any
f,e€L*(G) by

Rye(d) =, R(0)*®> (10)
then the map U(%) is defined for A= L}(G) NL*(G) by
SUBS =\ k@ Ry ds=Cfog, B> fe€L©@. (D

Equation (11) is what we shall use to extend our notion of the Weyl
transformation.

§3. The Schwartz-Bruhat Functions

Unfortunately, the results of §2 cannot be used immediately in the
required manner, because the twisted Fourier transformation %, cannot
be applied to the space L?(G) very conveniently.

The normal Fourier transformation of a function f&L'(G) is
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fe = Scf(x) (x,&dx  £€G6 (12)

where G is the topological dual of G. If we assume that G is separable
and that the multiplier is strongly nondegenerate as in [6], so that
the map £:G—G defined by

9, x>=8(x,9) =0(x,0)0(, )" x,y€G (13)

is bijective, then & becomes a topological isomorphism [3], and we can
define a twisted Fourier transformation &%, on L'(G) by setting

FH @) = fen ={ s e0i={ soaw s av

which agrees with the definition used in §1. However, it is difficult
to describe precisely for what functions feL'(G) it is true that
Z.f€L*(G), and so it is more natural to restrict our attention to the
Schwartz-Bruhat functions & (G) as defined in [1], [12], in which
case &, becomes a topological isomorphism from & (G) to itself, and
since & is an antisymmetric bicharacter we have that #/=I for a
suitable normalisation of the Haar measure on G. If we consider the
topological isomorphism §: & (G) — & (G) defined by (Sf) (x) =f(—x)
for fe #(G), then #, may be extended to a topological isomorphism
from &’(G) to itself given by

(F o, ) =, F:8f) = w, SF,f) ueF ' (G), feFL(G) (15)

such that #/2=1. Thus if we can find a suitable map U defined on
the whole of &’(G) we can compose these two maps to obtain a Weyl
transformation W.

§4. Construction of the Map U

Let us now suppose that ¢ is a strongly nondegenerate multiplier
on the locally compact separable abelian group G, and let &: G—G be
the associated isomorphism. As in [3], [4], [12], for any subset E
of G we define

(Eo) =E*={geGd(s,9) =1 VsEE} (16)

whence (Eo) is a closed subgroup of G. If H is a closed subgroup
of G then

§(Ho) =H+ &H=(Ho)*+ ((Ho)o)=H. a7
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A subgroup H of G is called isotropic if H S (Ho). Hannabuss [4]
has shown that &(G) is the inductive limit of the spaces & ((Lo), L),
where L runs over all compact isotropic subgroups of G such that
(Le) /L is elementary.

Let us now assume that o is itself an antisymmetric bicharacter,
so that §=¢°. This is not an unreasonable assumption, because it is
shown in [9] that for a large class of groups G every multiplier is
similar to an antisymmetric bicharacter. In particular this is true if
the map x—2x is an automorphism of G. If we now define {:G—G
by

D Co=0(xy) xy€C (18)
then it is easy to prove that { is also a group isomorphism. For any
subset £ of G we can define the closed subgroup E* by the analogous

formula to (16), and results analogous to those in (17) hold here.
Also E*C (Eo) for any set E.

Proposition 1. If (H,K) is an admissible pair for G, then K/KN H¢
is an elementary group.

Proof. [12].

Proposition 2. If ((Lo), L) is an admissible pair, then ((Lo), (Lo)*)
is also admissible, and (Lo)* is a compact subgroup of finite index in L.

Proof. (Lo) is open, so that (Lo)¢is compact. (Lo)*C ((Lo)o) =L,
so that (Lo)¢ is a compact subgroup of L. Thus (Lo)‘=LN (Lo)",
so that L/(Lo)¢ is elementary. Hence ((Lo), (Lo)%) is admissible.

If xeL, then ¢(2x,) =0d(x,9)*=6(x, y) =1 for all y= (Lo), so that
2x< (Lo)t. Thus every element of L/(Lo)* has order 1 or 2. Since
L/(Lo)t is compact and elementary, it is isomorphic to 7¢Xx I for
some ¢=0 and some finite group I'. But every element of L/(Lo)¢
has order 1 or 2, so that ¢=0 and hence L/(Lo)*=I"is finite.

Corollary 3. % (G) is a *-subalgebra of the twisted convolution algebra
L(G).

Proof. [4]. Proposition 2 has been proved in detail in order to
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clarify some points of obscurity in the proof of [4].

Theorem 4. The map o:F(G)RF(G) > (G) is separately con-
tinuous.

Proof. For any f€ % (G) and any admissible pair (H, K), we can
find a compact isotropic subgroup L of G such that (Lg)/L is elemen-
tary and with f€ & ((Le), (Lo)%) and & (H,K) S ¥ ((Lo), (La)*). The
known properties of Schwartz functions and bicharacters of elementary
groups tell us that the two linear maps from & ((Lo), (Lo)®) to itself
given by g fog and g—go f restrict to continuous linear maps g— (fog) ~
and g—(gof)”~ from & ((Lo)/(Lo)%) to itself, and hence they are
themselves continuous. Thus the two linear maps g—fog and g—gof
from &£ (G) to itself are both continuous when restricted to & ((Lo),
(Lo)%), and so are also continuous when restricted to & (H, K). Since
& (G) is the inductive limit of the spaces & (H,K) we deduce that
the maps g— fog and g—gof are continuous on the whole of £ (G),
as required.

Now consider the space % (G) of Gaussian functions as introduced
in [7]. Elementary calculations enable us to prove that

Proposition 5. ¢(% (G) X% (G)) =% (G).

Thus ¢ (G) Co(L(G)RZL(G)) CF(G), and so the fact that
% (G) is dense in & (G) tells us that ¢(L(G) XL (G)) 1is dense in
ZL(G).

We are at last in a position to calculate the required map U.
For any g€ & (G) and ve &’(G), consider the map U(v)g: & (G)—=C
given by

[U@gl(f) =, Sgaf)) [fE£L6). (19)
We now see that U(v)g is a continuous antilinear functional on & (G) ;
in other words U(v)ge #*(G), the conjugate dual of L (G). It is

also clear that we have defined a weakly continuous linear map
U@) from £(G) to ¥*(G) such that

U@g, fom)* = (v, S (ga (foh)*)) = (v, S((goh") o f°)) = (U (v) (goh?), ))*
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for any f,g,he £ (G). If we define Z,(G) to be the space of all maps
Ain (&£ (G), ¥*(G)) such that

(dg, foh)*= (A(gah%), /)* f,g,hEeF(G) (20)
then we have defined a linear map U: &' (G) ->%,(G).

Proposition 6. The map U is injective.

Proof. If v=e¥’(G) and U(v) =0, then (v,8(gof*)) =0 for all f,g
e #(G). Since d(L(G)RF(G)) is dence in L (G), we deduce that
So (& (G)RF(G)) is also dense in F(G), and so v=0 and hence U
is injective.

Thus we can combine U with &%, to obtain an injective Weyl
transformation W: %' (G) > %,(G). It would be desirable to show that
the map U is also bijective, but there are many technical difficulties
inherent in attempting to establish this. For example, if G were such
that for every compact isotropic subgroup L for which (Lg)/L is
elementary the space & ((Lo), (Lo)*) possessed a bounded approximate
identity, then U and W would be bijective. However, the fact that
& (G) is not metrisable in general, and the uncertainty as to whether
the multiplication ¢: ¥ (G)XF(G) — F(G) is jointly continuous or
not, makes it highly unlikely that the above condition is true, and
greatly hinders any other approach to answering the question.

We can, however, make some progress. Equation (19) not only
defines the map U, but also defines the inverse map U(v)+—v by the
density of ¢(¥(G) XL (G)) in &L (G). Since ¢ is an antisymmetric
bicharacter, w =0, and so if we consider the linear map p,: ¥ (G)—
& (G) given by

(0:1) ) =0 (%, ) f(x =) =[Ro(=) f1(x) =[Re ) *f1(x)  (2D)
for xeG and fe ¥ (G), and if we define ¢,.(G) to be the space of all

ve &’(G) such that the map fiovo,f is a continuous linear map from
F(G) to itself, where

(o f) (%) = (v, o) (22)
then, for ve 0 .(G), U(v) may be regarded as the continuous linear
map from & (G) to itself given by U(v)g=vog. It is also clear that
U@) =4,(v) for any v&e F(G), so that L (G) € 0,.(G) and the various
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convolution operators ¢ are the same. It may be shown that @ .(G)
has a multiplicative structure given by (u,v)—ugw where

(u022}7.f) = (u’ S(vale)) /23 veE @ c(G) 3 fE y (G> (23)

and we have that U(uow) =U@) U (@) for all u,ve 0,.(G). Hence
0,.,(G)=%,0,G) becomes an algebra with respect to the induced
multiplicative structure

wWo=F [(Fu)o,(F)] u,vE0,(G) (24)

and the Weyl transformation W provides a representation of the
algebra 0 ,(G). In the case G=R™, the algebras 0 ,(R™) and 0 ,(R™
are precisely the usual algebras of distributions of weak decrease
discussed in [8] and [14].

Finally, we notice that if we define the map *;: 0 ,(G) X ¥(G)—
& (G) by the formula v* f=F [ (Fp)o.(F.f)] forve 0,(G) and fE
& (G), then the convolutions *; and *, on @ ,(G) are more simply
related than are ¢, and o, on 0 .(G), since elementary calculations show
that

(u*zl),ﬂ = (u’ v*l_f) U, vEe 0 m(G) H] fE y(G) . (25)

§5. The Weyl Transformation for a Configuration Space C

We shall now attempt to generalise directly the constructions of
Lunn [10] outlined in §l, and then compare our results with the
general ones of §4.

In cases of physical interest, we naturally want] our observables to
be functions on some phase space G. Let us now assume in particular
that our physical system has phase space G generated by a configura-
tion space C, where C is a locally compact separable abelian group.
The phase space G will then be given by CxC. It is well known
that there is essentially only one antisymmetric bicharacter ¢ on G for
which both € and C are isotropic, and that is given by

a((x,8), (1)) =L 1<, 07 (x,8), (9,7 €G. (26)

Now ¢ is an antisymmetric bicharacter, and will be strongly nondegen-
erate if and only if x—2x is an automorphism of C.

For any locally compact separable abelian group C, let & denote
the family of all admissible pairs of subgroups of C, and let & denote
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the family of all admissible pairs of subgroups of C. There is of
course a one-to-one correspondence between &/ and &ZA, since (H, K)

e« if and only if (K+, HY) . f Hisa compactly generated open
subgroup of C, then we can define the nonempty sets ([12]):

Ay={KCSC|(H,K) ety Ay={LSC|(L,HYEAL}  (27)
and observe that K&/ if and only if Kresdly

Proposition 7. &/, has trivial intersection for any compactly generated
open subgroup H of C.

Proof. For any LE.R?H and any ¢=C, we know that (L+<&), HY)
e ([12]), so that L+ (&> €&y Thus C=\Uez, L=\Uxcy K" Hence,
if xENkew, K, then (x,&>=1 for all §&C so that x=0.

Theorem 8. If G, and G, are two locally compact separable abelian
groups with associated families of admissible pairs £y and f,, then & (Cy
X Cy) s the inductive limit of the spaces & (HiX H, KX K,) where (H,,
K) sy and (H,, K,) €L,

Proof. Consider the continuous open canonical group homomor-
phisms 7;: G X Co,—C. If f&eF(C1X(Cy), then fe F (H, K) where (H,
K) is an admissible pair for Gy, XC, Define H;=n;(H). Each H; is
an open compactly generated subgroup of C;, and H SH;X H, Thus
(H X H,, K) is admissible and fe & (H,XH,, K).

% = {LIXLZIL;E&{Hi} is a collection of compact subgroups of H,
X H, whose total intersection is {0}. Hence {(K+L)/K|LeZ} is a
collection of compact subgroups of HiX H,/K whose intersection is
{K}. Since H,X H,/K is elementary, it possesses no small subgroups,
so there exists L& % such that (K+L)/K={K}; in other words such
that LCK. Let L=K, XK, Then H;/K; are both elementary, so
that H,X H,;/KiX K, is also elementary. Thus (HiXH, K XK;) is
admissible, with (H;, K;) €.&/;, and since we see that K; X K,CKCHC
H, X H, we deduce that f&€ &% (H, X H, K;XK,).

Theorem 9. If C, and C, are two locally compact separable abelian
groups, then & (CyxCy) =7 (CHRIL(Cy.
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Proof. For (H; K;) €;, the kernel theorem of [14] tells us that
D (Hix Hy/Ky X Ky) = 9 (H/K) ® D (H,/K,). Since the injection from
D (H X Hy/K1 X K,) to & (Hy X H,/KiXK;) is continuous [1], it follows
that L (H/K) RS (H,/K,) is dense in F(H X H,/K;XK;). Since
& (H;/K;) are both nuclear, we deduce that ¥ (H,XH,/K;XK;) =
S (H/K) R (H,/K,), and so & (Hyx H, K;XK; 1is isomorphic to
P (Hy, K) RS (Hy, K;). We now use Proposition 14 of [2] to take
inductive limits and deduce that & (C;XC;) is indeed isomorphic to
L (CHRZ(Cy).

We now have enough technical detail to generalise the results of
§l. Consider the o-representation U of C x C defined on L*(C) by the

formula

UG Of10)=<2—x,f0—x [feL*0) (28)
and, for any f,g€L*(C), consider the function F, on CXxC given by
Fru(,® = SO UG 0 0. (29)

Consider the partial Fourier transform #,: & (CXC) - (CX (5)) given
by

(Fof) (2, 8) = Scﬂx,y) <y, &>dy. (30)

Since we are assuming that the map x—2x is an automorphism of C,
let us also consider the map R: #(CXC)—>& (CX(C) given by

1 1
RS) (5 9) =af(5 G +2), 5 =) 3D)
where « is the positive constant defined by the relationship
_ |
Vo= [ res©. (32)

Elementary calculations show that £, and R are both topological
isomorphisms, and that Fp,=%,R(fQg) for any f,g& L (C), so that
{Fsp\f, g€ #(C)} spans a dense linear subspace of & (CxC).
For any ve &' (C X ¢) and any g€ ¥ (C), consider the map U(v)g:
& (C)—C given by
U@ () =0 Fr) [fEFLQ). (33)

For any €&(C), the maps from &£ (C) to L(CXC) given by
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g—f&®g and g—g&®f are continuous, and so the maps from & (C) to
LCx0) given by—F;, and g—F,; are continuous. Hence U()ge
F’(C), and we have defined a weakly continuous linear map U (v):
FC)—>&L'(C). Thus we have defined a linear map U: P (Cx0)
—-Z (L), F(O)).

Theorem 10. U is bijective.

Proof. If € #’(CxC) and U@) =0, then (v, Fy,) =0 for all f,g
e & (C), and so our above observations tell us that v=0.

For any A€ Z(¥(C), #'(C)), consider the separately continuous
bilinear functional B,: (f, g)—(4g, f). For any (Hy, K;) and (H;, K;)
in &, B, is separately continuous when restricted to & (Hy, K;) QF (H,,
K,), and is thus jointly continuous, since & (H;, K;) is a Fréchet space
for each i. Since both spaces & (H,, K;) are also nuclear, there exists
some v [H;, K] in &' (HiX Hy, Ky X K;) such that

(alHy, K1, fQ2) = (g, /) fEF(H,LK), gEF(HyKy).
In the usual way we can now define a function v,: ¥ (CXC)—C by
setting v4(f) = (wa[H;, Ki]1, f) whenever f& % (H,X H,; K1XK;). Then
1 EF(CXC) and (v, fRg) = (4g, f) for all f,g €#(C). Thus we
can define use P’ (CxC) by setting (uy, F,RF) = (04, F) for all Fe
F(CXC), and u, satisfies

(U(uA)giﬂ = (u/h ng) = (UA’ f®g) = (Agsf)
for all f,ge ¥ (C). Thus U(u, =4.

Composing U with £, defined in the usual way, we obtain a
bijection W: %' (G) >Z (£ (C), &£’ (C)). As in [5], we now let & de-
note the *-algebra of all continuous linear transformations from & (C)
to itself that possess an adjoint, where & is regarded as a subspace of
(LG, L(C)) in the usual way. Define @ (G) to be the space
of all distributions ue &'(G) with W)= &. Then 0 (G) possesses
a structure of *-algebra making it isomorphic to & :

W) =W@W@ W =[Wwl* (39
and simple calculations show that if u€ @ (G), then *& 0 (G) is given
by the formula (u*,f) =(y, f) for any feZ(G).
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How does the algebra @ (G) relate to the algebra @ ,(G) found in
§4, and how do the various convolutions * and *, relate to each
other? It is easy to see that & (G) belongs to both @ (G) and @ ,(G),
so that in either case we have extended the old notion of the Weyl
transformation. These questions may now be answered fully.

Theorem 11. @ (G) € 0 ,(G), and the convolutions * and *, coincide
on O (G). Indeed, it is easy to see that O (G) =0 ,(G) N O .(G)*.

Proof. For any v€ 0@ (G), we notice that IQW () €L (L (CxC)),
and simple calculations show us that

SF; wiwe=[SFRURQW 1)) R*F3:'S1(SFs) =B (v) (SFyp)

for any f, g€ & (C), where B(v) € £ (¥ (G)). Now another simple cal-
culation shows that (0,5F7,) (x) =Fg57..(x), and so

(F o, 0,5F370) =<U) [, W) & = [SFr.wwel 0) =[B @) (SF7)1().

Since L(CXC)=L(C)RF(C), it follows that [SFy|f,g€L ()}
spans a dense linear subspace of & (C X é), so we deduce that B(v) f=
(Fp)orf for all fFEL(CxG). Hence Fp< 0,.(G), sove O ,(G), and
VOSF oF 5o =8SF Fsww, for all f,ge(C).

Thus if u,0€ 0 (G), then u,ve 0 ,(G) and

(uxv, SF Frp) = (W (uxv) g, f) = (W) W(v) g, f) = (U, SF Fs.wwe)
= (U, v 8 F Frp) = (uxp, SF,Fy,)

for all f,ge=¥(C), and hence wxv=u#w. The rest of the theorem
follows trivially.

It should be noted that any linear map from & (C) to #’(C) which
is weakly continuous is automatically continuous, because #(C) is
bornological, and hence a Mackey space [13]. If we had let & be
the space of all maps in End(%(C)) which possessed an adjoint, then
& is a subspace of Z(&(C), ¥'(C)), and so any map A€ & is a
continuous linear map from £ (C) to &£ (C), where the domain
& (C) has its natural topology, and the range & (C) has the topology
induced from &’(C), namely the topology given by the seminorms
p7(@ =1(g ] for all fe £ (C). Since these topologies are not equal,
& is always a strict subspace of &.
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The results in [5] show that there is essentially only one strictly

irreducible representation of the *-algebra @ (G), and this is provided

by the Weyl transformation W. The algebra @ (G) is in general very

large—in the case C=R"it contains all the natural physically interest-

ing observables for the free particle—and so the methods of this paper

provide a very powerful method of quantising physical systems whose

phase space can be described in terms of a configuration space C.
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