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The Weyl Transformation and Quantisation
for Locally Compact Abelian Groups

By

Mark A0 HENNINGS*

Abstract
Lunn's method of constructing a Weyl transformation W to act on all the tempered

distributions &"(R2n) over R2n is considered. Ideas of Hudson, Peck and Wilkinson are
used to extend this construction to provide a Weyl transformation acting on the whole of
&" (GO for any phase space G, where G is a locally compact separable abelian group such
that xi-*2x is an automorphism of G. Lunn's construction is also generalised directly to
provide a Weyl transformation for the whole of «$*"((?) where G=CxC is the phase space
associated with the configuration space C (a locally compact separable abelian group for
which the map x\-*2x is an automorphism).

Finally, these two different formulations of the Weyl transformation are compared, and
algebras of physical observables G m (G) and G (G} are found. It is shown that G (G) =
G m(G) R G „(£)*, where* is the natural involution on S'(G), and that the algebra structures
of G (G) and G m (G) coincide on G (G). Hence both formulations of the Weyl transformation
provide the same algebra of physical observables.

§ 1. Introductory

Lunn [10] has developed an extension of the Weyl transformation
for the group R2n. Using the antisymmetric bicharacter

), y=(ji,J>2) ( 1)

and the unitary ^-representation U of R2n on L2(Rn) given by

v "N ( o '\•x\) ( z )

she obtains a bijection W: 3"(R2n) -*&(ff>(Rn), ^(JR11)), the space of
weakly continuous linear maps from £f (Rn) to ^'(jR"), whose restriction
to ^(R2n} is the traditional Weyl transformation for Schwartz functions.
In [5] the author has identified a ^-algebra 0 (RZn) contained in
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3 and has shown that there is essentially only one strictly

irreducible representation of this algebra, and that this is given by

the Weyl transformation W, since for every u e 0 (R2n) the map

W(u) may be regarded as a continuous linear map from £f(Rn) to

itself which possesses an adjoint with respect to the natural preinner

product structure of ^(Rn)a

If we consider the twisted Fourier transformation 3Fa from £f(R2n)

to itself given by

00 =h-§R^f(y)*(x,yydy ( 3 )

and lift &„ to a topological isomorphism from &" (R2n) to itself, then

the Weyl transformation W can be decomposed into a composition

of two operators W=U^a, where U: ^f(R2n)-^^(^(Rn), 3"(Rn^

is the bijection which has the weakly convergent formulation

U(v)=h-*{{ v(x)U(x)dx yEE^'CR2"). (4)
JjR2n

In this work we shall be interested in studying ways of extending

this construction to provide a Weyl transformation for more general

phase spaces than R2n
0

§2B A Generalised Fourier-Plancherel Theorem

Hudson et al. [6] have considered a locally compact abelian group

G equipped with a multiplier a, and have found a generalised form

of the Fourier-Plancherel theorem which is compatible with the

multiplier a. This has been done by considering the associated

multiplier Q*(x,y) =o(y, x)~\ and the regular ^-representation Ra of

G on L2(G)

[*.(*)/] 00 ="O, *) -1/0>+*) • ( 5 )
Then LX(G) HL2(G) becomes a Hilbert algebra when equipped with

its natural preinner product structure, multiplication and involution

being given by

(fag} (*) = \ f(y) a (y, x -y) ~lg(x -y) dy ( 6 )
JG

/•(*)=* (*,-*)JF3. (7)
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For any/el/CG) n£2(G), we shall denote by 2a(f) the bounded linear
operator on L2(G) which Is the closure of the map g^fog. If N^ Is
the von Neumann algebra generated by the operators Rm(x) , then
there exists a translation-invariant faithful normal semi-finite trace T
on Na which is unique to within normalisation If we let L2(NQ}9T^
be the Hilbert space generated by Na and r, then for any f^.Ll(G)
n£2(G) the map 2a(f) ^L2(Nm,r) has the weakly convergent formu-
lation

and, for a suitable normalisation of r, the map /i— >^«,(/) maY ^e
extended to a unitary map U:LZ(G) -^L2(N(a, r).

The close similarity between equations (4) and (8) leads us to
look for ways of relating these two approaches, and using and extend-
ing the formalisms of Hudson et al. to provide a generalised Weyl
transformation for a physical system with phase space given by the
group G, This is the aim of the work in the next two sections of
this paper. We shall simplify our notation, eliminating the need for
the multiplier CD, by observing that

<g,R»Wf>=(f*&W (9)
for fjg^-L2(G). Thus if we define the function Rfg^L2(G) for any
f,gGL2(G) by

then the map U(K) is defined for h^Ll(G) DL2(G) by

G). (11)

Equation (11) is what we shall use to extend our notion of the Weyl
transformation.

§38 The Schwartz-Brafaat Functions

Unfortunately, the results of §2 cannot be used immediately in the
required manner, because the twisted Fourier transformation 3F'a cannot
be applied to the space L2(G) very conveniently.

The normal Fourier transformation of a function f^Ll(G) is
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/ce)=J/oo<*,ex* ee6 (12)
where G is the topological dual of G. If we assume that G is separable

and that the multiplier is strongly nondegenerate as in [6], so that

the map £ :G— >(5 defined by

<y,£x> = 3(x,y)=a(x,f)a(y,xrl x,y^G (13)

is bijective, then f becomes a topological isomorphism [3], and we can

define a twisted Fourier transformation !Fa on Ll(G) by setting

oo =/(e*) = /ooo,e*x*= f (&*(*,&<& a 4)
which agrees with the definition used in §1. However, it is difficult

to describe precisely for what functions f^Ll(G) it is true that

J%/eZ,2(G), and so it is more natural to restrict our attention to the

Schwartz-Bruhat functions SP (G) as defined in [1], [12], in which
case ^ 'a becomes a topological isomorphism from £f (G) to itself, and

since a is an antisymmetric bicharacter we have that !F? = I for a

suitable normalisation of the Haar measure on G. If we consider the

topological isomorphism S: <^(G)->^(G) defined by OS/) 00 =/(-*)
for /e«5*(G), then 3F0 may be extended to a topological isomorphism

from ff"(G) to itself given by

(^0u,f) = (u,^ffSf) = (u,S^0f) ^GE^'(G),/€E^(G) (15)

such that ^a=L Thus if we can find a suitable map U defined on

the whole of &"(G) we can compose these two maps to obtain a Weyl

transformation W.

§4. Construction of the Map U

Let us now suppose that a is a strongly nondegenerate multiplier

on the locally compact separable abelian group G, and let f : G->(5 be

the associated isomorphism. As in [3], [4], [12], for any subset E

of G we define

GE<0 =#= feeG \9(s,g)=l Vs^E] (16)

whence (Eo) is a closed subgroup of G. If H is a closed subgroup

of G then

=H± £H=(H0)± ((Ha)a}=H. (17)
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A subgroup H of G is called isotropic if H c (Ha). Hannabuss [4]

has shown that Sf(G) is the inductive limit of the spaces ^((La)9L),

where L runs over all compact isotropic subgroups of G such that

(La)/L is elementary.

Let us now assume that a is itself an antisymmetric bicharacter,

so that a = a2. This is not an unreasonable assumption, because it is
shown in [9] that for a large class of groups G every multiplier is

similar to an antisymmetric bicharacter. In particular this is true if

the map x^-*2x is an automorphism of G. If we now define £:£-»(?
by

<J>,C*> = *(*,jO x,y^G (18)

then it is easy to prove that C is also a group isomorphism. For any

subset £ of G we can define the closed subgroup £c by the analogous
formula to (16), and results analogous to those in (17) hold here.
Also Ec c (Ea) for any set E.

Proposition 1. // (H,K) is an admissible pair for G, then K/Kr\H^

is an elementary group.

Proof. [12].

Proposition 2. // ( ( L a ) , L) is an admissible pair, then ((La), (La)c)

is also admissible, and (La) ^ is a compact subgroup of finite index in L.

Proof. (La) is open, so that (La)c is compact. (La)c c ( (La) a) ~ L,

so that (La)** is a compact subgroup of L. Thus (La)** = LD (La)c,

so that L/(La)^ is elementary. Hence ((La), (L<r)c) is admissible.

If *eL, then a(2x,y) = a(x,y)2 = a(x,y) =1 for all j;e (La), so that
2#e(L<7)c. Thus every element of L/(La)^ has order 1 or 2. Since

L/(La)^ is compact and elementary, it is isomorphic to TqxF for

some q^Q and some finite group F. But every element of L/(La)^

has order 1 or 2, so that q = Q and hence L/(La)^ = F is finite.

Corollary 3. 3? (G) ij 0 *-subalgebra of the twisted convolution algebra

LHG).

Proof. [4]. Proposition 2 has been proved in detail in order to
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clarify some points of obscurity in the proof of [4].

Theorem 4» The map a: Sf(G) (x)^(G) -»«^(G) is separately con-
tinuous.

Proof. For any /e^(G) and any admissible pair (H,K), we can
find a compact isotropic subgroup L of G such that (La) /L is elemen-
tary and with /e«$*( (iff), (Ltf)c) and ^(H9K) ^^((La)9 (Z>)c). The
known properties of Schwartz functions and bicharacters of elementary
groups tell us that the two linear maps from ^ ( (La) , (La) c) to itself
given by g^fag and g^-^gaf restrict to continuous linear maps gi-> (fag) ~
and g^(gaf)~ from Sf ( (La) / (La) c) to itself, and hence they are
themselves continuous,, Thus the two linear maps g±->fag and
from &*(G) to itself are both continuous when restricted to
(La) s) 9 and so are also continuous when restricted to ^ (H, K) . Since
£f(G) is the inductive limit of the spaces £P(H,K) we deduce that
the maps g*-*fag and g*-*gaf are continuous on the whole of ^(G),
as required.

Now consider the space ^ (G) of Gaussian functions as introduced
in [7], Elementary calculations enable us to prove that

Proposition 50 a ( & (G) (g) & (G) ) = & (G) .

Thus ^(G)c ( 7(€^(G)(g)^(G))c f^(G)5 and so the fact that
(G) is dense in & (G) tells us that a(^(G) (x)^(G)) is dense in

We are at last in a position to calculate the required map U.
For any g^^(G) and v^&"(G), consider the map U(v)g: ^(G)~>C
given by

\U(v)g](f)=(v,S(gaf°)) /EE^(G). (19)

We now see that U(v)g is a continuous antilinear functional on &*(G) ;
in other words U(v)g^^*(G), the conjugate dual of ff*(G). It is
also clear that we have defined a weakly continuous linear map
U(v) from &(G) to ^*(G) such that

(U(v)g, fah) * - (v, S(ga (fah) °) ) = (v, S((gah°) af°) ) = (U(v) (gah°) , f) *
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for any /, g, A e <$* (G) . If we define &a(G) to be the space of all maps

A in j?(^(G)f ^*(G)) such that

(Ag,faK)*=(A(goh"),f)* fyg,h^^(G) (20)

then we have defined a linear map U: &" (G) ->«£?„ (G).

Proposition 68 T7z0 m<2/? [7 zj infective.

Proof. If z>e«5"(G) and [7(0) =0, then (v,S(gaf»=0 for all /,£
Since a ( £ f ( G ) (x)^(G)) is dence in 5*(G), we deduce that

is also dense in <^(G), and so 0 = 0 and hence f/

is injectivCo

Thus we can combine U with J% to obtain an injective Weyl

transformation W: Sf'(G) ->=£?ff(G)0 It would be desirable to show that

the map U is also bijective, but there are many technical difficulties
inherent in attempting to establish this0 For example, if G were such

that for every compact isotropic subgroup L for which (La)/L is

elementary the space &'((L0), (£tf)c) possessed a bounded approximate
identity, then U and W would be bijective0 However, the fact that
«^(G) is not metrisable in general, and the uncertainty as to whether

the multiplication a: SP(G) (X)^(G) ->«5*(G) is jointly continuous or
not, makes it highly unlikely that the above condition is true, and

greatly hinders any other approach to answering the question,

We can, however, make some progress, Equation (19) not only

defines the map f/, but also defines the inverse map [7(0)1— >0 by the

density of a(^(G) (X)^(G)) in ^(G). Since <J is an antisymmetric

bicharacter, o)=a^ and so if we consider the linear map px'-^(G)~ »

«5*(G) given by

(pj) 00 =°(x,y)f(*-y) =[^(-^)/l W =[^.W*/] (*) (21)
for ,?ceG and /e^(G), and if we define 0C(G) to be the space of all

v^SP'(G) such that the map f±-»v@if is a continuous linear map from

«5*(G) to itself, where

(wj) (x) - (v, Pxf) (22)

then, for z^0c(G), [7(0) may be regarded as the continuous linear

map from ^(G) to itself given by U(v)g = v0ig. It is also clear that

U ( v ) = X a ( v ) for any v e ^ (G) , so that ^ (G)^^ C (G) and the various
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convolution operators o are the same. It may be shown that 0 C(G)

has a multiplicative structure given by (u, v) \-*w2v where

(uw, f) = (u,S (vaiSf) ) if, i> e 0 c (G) , /€= ff> (G) (23)

and we have that U(ua2v} =U(u) U(v) for all w , y < E 0 c ( G ) . Hence
0 m(G) = «^"ff0c(G) becomes an algebra with respect to the induced
multiplicative structure

1 K,»e 0m(G) (24)

and the Weyl transformation W provides a representation of the
algebra 0«(G). In the case G = R2n, the algebras 0,(^2n) and G m(R2n)
are precisely the usual algebras of distributions of weak decrease
discussed in [8] and [14].

Finally, we notice that if we define the map*!: 0 m (G) X & (G) -»
by the formula v*if=&:

0[(&r
au)ffl(&

r
ef)'] fo rz ;eE0 m (G) and /e

, then the convolutions *x and *2 on $ »(G) are more simply
related than are ^ and <72 on ^C(G), since elementary calculations show
that

(^, f) = (u,v*J) u, VZE 0 m (G) , / e SP (G) . (25)

§5. The Weyl Transformation for a Configuration Space C

We shall now attempt to generalise directly the constructions of
Lunn [10] outlined in §1, and then compare our results with the
general ones of §4.

In cases of physical interest, we naturally want! our observables to
be functions on some phase space G. Let us now assume in particular
that our physical system has phase space G generated by a configura-
tion space G, where C is a locally compact separable abelian group.
The phase space G will then be given by CxC. It is well known
that there is essentially only one antisymmetric bicharacter a on G for
which both C and C are isotropic, and that is given by

(26)

Now o is an antisymmetric bicharacter, and will be strongly nondegen-
erate if and only if #H->2# is an automorphism of C.

For any locally compact separable abelian group C, let j/ denote
the family of all admissible pairs of subgroups of G, and let j/ denote
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the family of all admissible pairs of subgroups of C. There is of

course a one-to-one correspondence between j/ and «£/, since (H, K)

e <s$ if and only if (K^-, H^ e J/. If // is a compactly generated open
subgroup of C, then we can define the nonempty sets ([12]) :

jfs= [K^C | (H, K) <EEJ/} JH= [L^C | (L, H^) GEJ/} (27)

and observe that K^^H if and only if

Proposition 7. <s$ ' H has trivial intersection for any compactly generated

open subgroup H of C.

Proof. For any L^^H and any feC, we know that (L -}-<£>, H-*-)

<Ej/([12]), so that i + <f>e^H. Thus C = \^LejlTL = ̂ Kej/K-L. Hence,
-^ ^

if x^r\Kej/K9 then <^,f> = l for all feC so that ^ = 0axz

Theorem 8> // Ci a^rf C2 <2^ too locally compact separable abelian
groups with associated families of admissible pairs j/x and j/2, then

XC2) is the inductive limit of the spaces ^(HiXH29 KiXK2) where
! and (H2,K

Proof. Consider the continuous open canonical group homomor-
phisms TT,: CiXC2->Cf-. If /e«^(CiXC2), then /e «?"(//, JO where (//y

JO is an admissible pair for dxC2. Define Hi = ni(H}a Each //,- is
an open compactly generated subgroup of CI? and H^HiXH2. Thus
(H^HfrK) is admissible and /e ^ (J/i X H2> JO .

^T= {LiXZ/2 |Z*i^«53/ff.} is a collection of compact subgroups of HI
XH2 whose total intersection is {0}. Hence {(K+L)/K \L^^} is a
collection of compact subgroups of HiXH2/K whose intersection is
{K} . Since HI X H2/K is elementary, it possesses no small subgroups,
so there exists Le JT such that (K+L)/K= {K} ; in other words such
that L^K. Let L=KlxK2. Then HJKi are both elementary, so
that HiXHz/KiXKi is also elementary. Thus (HiXH2, KiXKJ is
admissible, with (H{, KJ ej/{, and since we see that I^xKz^K^H^
HiXH2, we deduce that /e ^ (Hl X H2, KlxK2).

Theorem 9. // Ci and C2 are two locally compact separable abelian

groups, then ^(dxC2) =^(Ci)®^ (C2).
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Proof. For (Hi9 JQ e jtfi9 the kernel theorem of [14] tells us that
X H2/K1 XK2)=^ (//i/JiTi) (g) 2 (H2/K2) . Since the injection from

iXH2/KiXKJ to ^(HiXHrt/KiXKz) is continuous [1], It follows
that ^)(Hl/Kl}®^(H2/K2} is dense in ^(HiXHz/^xKJ. Since

are both nuclear, we deduce that y(H1xH2/KiXK2) =

? and so ^(HXXH29 tfjXJQ is isomorphic to
. We now use Proposition 14 of [2] to take

inductive limits and deduce that ^(dxC2) Is Indeed isomorphic to

We now have enough technical detail to generalise the results of
§1. Consider the ^--representation U of CxG defined on L2(C) by the
formula

C) (28)

and, for any f,g^L?(C), consider the function Ffg on CxC given by

(29)

Consider the partial Fourier transform J^2: <$" (C X C) -* 5* (C X (?) given

by

(30)
Jc

Since we are assuming that the map x*-*2x is an automorphism of C3

let us also consider the map R: 3*(CxC) -^^(CxC) given by

where a is the positive constant defined by the relationship

(32)
JC

Elementary calculations show that «^2 ^nd /2 are both topological
isomorphisms, and that Ffg=&r

2R(f®g) f°r anY f9g^^(C)9 so that
(F/g-l/^e^CC)} spans a dense linear subspace of ^(CxC?)0

For any v^&"(CxC) and any ge^(C)3 consider the map U(v)g:
^(C)->C given by

[f/Wd(/) = (^^/g) /e^(C). (33)

For any e^(C)9 the maps from «^(C) to ^(CxC) given by
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and ^i->g(x)/ are continuous, and so the maps from ^(C) to
C) given byt->F/g. and g*-*Fgf are continuous. Hence £7(y)ge
, and we have defined a weakly continuous linear map £7(0):
*ff"(C). Thus we have defined a linear map £7:

Theorem 10. £7 is bijective,

Proof. If v ^ f f " ( C x f y and £7(0) =0, then (v,Ffs)=Q for all f,g
e^(C)5 and so our above observations tell us that v = Q.

For any A ̂ 3? (&*(€} , ̂ '(Q), consider the separately continuous
bilinear functional BA : (/, g) H-> (4g, /) . For any (//ly JQ and (H2, K2)
in j/5 J5A is separately continuous when restricted to ^(Hl9 KJ ®&>(H2,
^2)3 and is thus jointly continuous., since £P(Hi9K?) is a Frechet space
for each z. Since both spaces £P (Hi9 /Q are also nuclear5 there exists
some vA[Hi,Ki~] in &"(HiXH2,KiXK2) such that

(vAlHi9 JfJ , /(g)g) - Gte, /) /e ^ (H19 KJ, gSE<7 (H2y K2) .

In the usual way we can now define a function VA: ^(CxC)-^C by
setting VA (/) = (»A[^t.f ^-] , /) whenever /e ^ (^ X H2, ^ X K2} . Then

^e^'CCxC) and (»A,/(8te) = Gte,./) for all /,^ e^(C)0 Thus we
can define uA^ff"(CxG) by setting (UA, 3?2RF} = (vA9 F) for all
^(CxC)3 and UA satisfies

(U(uA}gJ} = (uA9 Ffg) = (vA,f®g) = (Ag,f)

for aU/ f^e^(C). Thus £7(^A) =A.

Composing £7 with 2F a defined in the usual way? we obtain a
bijection W: &"(G) -*&(&(€'), &"(€)). As in [5], we now let g de-
note the ^-algebra of all continuous linear transformations from Sf (C)
to itself that possess an adjoint3 where $ is regarded as a subspace of
JS?(^(C), ^7(C)) in the usual way. Define G (G) to be the space
of all distributions Me5"(G) with W(u)SE<%. Then G (G) possesses
a structure of ^-algebra making it isomorphic to $ :

W(u*v)=W(u)W(v) W(u*)=\W(u)Y (34)

and simple calculations show that if u e 0 (G) 5 then u*^@ (G) is given

by the formula (u*,f) = ( u , f ) for
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How does the algebra & (G) relate to the algebra 0 m(G) found in

§4, and how do the various convolutions * and *2 relate to each

other? It is easy to see that ^(G) belongs to both 0 (G) and 0 m(G),

so that in either case we have extended the old notion of the Weyl

transformation. These questions may now be answered fully.

Theorem 11. 0 (G) c 0m(G)5 and the convolutions * and *2 coincide
on 6 (G). Indeed, it is easy to see that G (G) = 0m(G) H 0 „(<?)*.

Proof. For any v<= 0 (G), we notice that /(g)J^(z;)
and simple calculations show us that

SFf>mv^iS^2R(I0W(v^R-l^lSl(SFfg) = B(v) (SFfg)

for any /, g<= & (C) , where B (v) e J? ( ̂  (G) ) . Now another simple cal-
culation shows that (pySFjg) (x) =Fu^fig(x)^ and so

(&j>,PJSF7g) =<C/O)/, ^(zO£> = [^WJOO

Since ^(CxC) =^(C)(g)^(C), it follows that
spans a dense linear subspace of «^(Cx(?)5 so we deduce that B(v)f=

e^(Cx(5). Hence J*>eE0c(G), s o y e ( P m ( G ) ? and

ftWWg for all/,£e^(C).
Thus if M , z ; e t P ( G ) , then w , y e ^ M ( G ) and

= (W(u*v)g,f) = (W(u) W(v)g,f) = (u,
= (u, v

for all /,^e^(C), and hence u*v = u*&. The rest of the theorem
follows trivially.

It should be noted that any linear map from ^(C) to &" (C) which
is weakly continuous is automatically continuous, because ^(C) is
bornological, and hence a Mackey space [13], If we had let § be
the space of all maps in End(^(C)) which possessed an adjoint, then
S is a subspace of JS?(«9*(C), <^"(C)), and so any map A<= / is a
continuous linear map from ^(C) to ^(C), where the domain
^(C) has its natural topology, and the range «^(C) has the topology
induced from <^'(C), namely the topology given by the seminorms

Pf(g) = I (Sf f) I f°r a^ /^^(Q- Since these topologies are not equal,
<f is always a strict subspace of /.
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The results in [5] show that there is essentially only one strictly

irreducible representation of the *-algebra 0 (G), and this is provided

by the Weyl transformation W. The algebra 0 (G) is in general very

large—in the case C = Rn it contains all the natural physically interest-

ing observables for the free particle—and so the methods of this paper

provide a very powerful method of quantising physical systems whose

phase space can be described in terms of a configuration space C.
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