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Cyclic Cohomology of Certain Affine Schemes

By

Tetsuya MASUDA* and Toshikazu NATSUME**

Abstract

Cyclic cohomology of the commutative C-algebra A = C[x]/(f) associated with /eCf[^]
is computed by making use of an explicitly constructed projective resolution. The result is
H""(A)=Cm and Hodd(A)=Q, where m is the number of mutually distinct roots of /=0
in C.

§ 1. Introduction

Recently, cyclic cohomology of algebras was discovered by A.
Gonnes in the formulation of non-commutative differential geometry
[3], [4], In connection with the pairing with algebraic or topological
^-theory, cyclic cohomology is quite useful also for the study of
jK"-theory. For instance, A. Connes uses cyclic cocycles to express
certain characteristic classes of a foliation in connection with the
topological JT-theory of the associated foliation C*-algebra, see [5].
In this context, it seems to be important to compute cyclic cohomology
of interesting algebras, which appear in differential topology or in
algebraic geometry,,

In [6], cyclic cohomology of group algebras of free groups is
computed. Dualizing cyclic cohomology, D. Quillen introduced cyclic
homology of algebras [8]. In [1], cyclic homology of group rings of
countable discrete groups with coefficient in commutative rings is
computed in terms of classifying spaces and homotopy theory,, It was
shown in [4] that cyclic cohomology of C°°(M) recovers the C-
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coefficient de Rham homology of the compact smooth manifold M.
Then it is natural to expect that cyclic cohomology of the C'-algebra
C\x^ ...,#„] of polynomials in ^-variable coincides with the de Rham
homology of the affine spaces, and actually it does so, [7]. It now
becomes an interesting problem to compute cyclic cohomology of the
quotient algebra C[xi,...,xn~]/I by an ideal /.

The present paper is the first attempt in this direction. We
compute cyclic cohomology of C-algebras A = C\_x\/ (f)^ f^C\_x\. Our
main result is:

Theorem, Let m be the number of mutually distinct roots of f=Q for
. Then Heven(A) = Cm, and Hodd(A) = 0.

Our proof is based on an explicit construction of projective resolu-
tion of A as a module over the enveloping algebra B of A, [2].

T. Goodwille seems to have first computed, but never published,
the cyclic homology of C[x~\/ '(xn+l). His method is reported on by
R. Staffeldt in [9]. Our computation is independent from the above.

Our research started during the participation of the second named
author to Mathematical Sciences Research Institute project "^-theory,
index theory and operator algebras."

The authors would like to thank Professor M. Takesaki for his
valuable suggestions. The first named author is supported by the
Educational Project for Japanese Mathematical Scientists and wishes
to express his gratitude to the project.

§2. Direct Sum Formula

Let AI, A2 be (7-algebras, and let A=Ai@A2 be their direct sum.
By the additivity theorem for Hochschild cohomology groups [Theorem
5.3,2], we have a natural isomorphism

(2. 1) H*(A,A*)^H*(A1,At)®H*(A29AH.

By making use of a long exact sequence of A. Connes relating cyclic
cohomology to Hochschild cohomology [Theorem 37, 4] together with
the five lemma [Proposition 1.1,2] we have

(2. 2) //; 04) =H? (Aj ©//? G42) .
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Hence, the spectral sequence for A splits into a direct sum and we
obtain,

(2. 3) Heven(A) = Heven(Al)@Heven(A2),

(2.4) Hodd (A) = Hodd (40 ®Hodd (A2) .

Let/eC[Y]. For the discussion of C7 [#]/(/), we can assume that
/ is monic. Since our field C is algebraically closed, we can choose
mutually distinct alf . B . , am^C such that

(2. 5) /(*) = (x - «0 NI • • ' (x ~ <* J N"\

where NI, . . . , Nm are positive integers satisfying NI~}-. . 8 + JVW = deg (/) „
Then, we have C*-algebra isomorphism

(2.6) CM/CflSCM/COc-aO*'1)©- ©CM/COc-O"").

By the direct sum formula (2. 2) , it suffices to compute cyclic cohomol-

ogy of each C [ X \ / ( ( X — OLJ) J') to compute cyclic cohomology of
C [#]/(/). We can also reduce the problem to the computation for
C [#]/(#"), n>l. In the later sections, we compute cyclic cohomology

of CM /(*»), rc>2.
Here, we introduce some notations. For each positive integer n,

let $A(x,y) denote the polynomial in two variables defined by

(2. 7) 0»(*oO =xn~l + x

for n>l and ®o(x,y) =0. For any m-tuple /= (z\, . . . , irn) of integers,
put |/|=ii+ ••• -\-im. Throughout this paper, all tensor products are
taken over the complex number field.

§ 3. Protective Resolution

From now on, let A = C\_x}/(xn^ n>2. In this section, we construct
a projective resolution of A as a module over its enveloping algebra
B = A®Aopp. Recall that B is a C7-algebra generated by two linearly
independent elements x,y with the relations xy=yx and xn=yn = Q.

For j>0, put Mj = B. Obviously, all Af/s are projective 5-modules.
Let e: MQ-*A be the canonical augmentation [p. 168, 2], that is,
e(x)=e(y)=x. Define 92j«: Af2j--»Af#-i and 32;-_i : M2j-_1->M2j-_2, j>l,
by the multiplications by $n(x,y) and (x— j;), respectively. Then we
get a sequence of B- modules and JS-homomorphisms :
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(3. 1) 0< - A<^—MQ<^—Ml<^-M2< ----

It is obvious that the sequence (3. 1) is a complex of 5-modules8

Proposition 3, 1. The sequence (3. 1) is exact.

Proof, Let /eker e. We may regard / as a polynomial in two
variables x and y. Since /eker e, there exists g^C[x] such that
f(x,x) = xng(x). This implies that/(*,jO —xng(x) is divided by (*— j;).
Thus, / is contained in the image of dlm This shows the exactness
at MQ.

Let f^M2j-i,j>l, be such that 92j-i(/) =0- Then there exist
ft, &eC|>,j>] such that

(3. 2) (x-y)J(x,y) =gi(x,y}x«+g2(x,y)y\

From this, it follows that

(3.3) ft (*,*)*"+&(*, *)*" = 0.

Since C[x\ is an integral domain, gi(x, x) +g2(x9x) = 0, which says
that

(3. 4) ft(*O>)

for some g^C\_x,y}0 Then

(3. 5) C*-jO/(*,jO - U

From this, we have

(3. 6) f(x,y) =g(x,y)

Consequently, /= 92y (ft) in M2j-\. This shows the exactness at Af2j-_ia

Finally, let f^M2j, J^l, be an element of ker(92j)» Then
®n(x,?)f(x,f) =gi(x,y)xn+g2(x,y}yn for some ft,&eC[Ar,j;]. Let zi; be
a primitive w-th root of unity. Put x = w'y in the above equality to
get

(3. 7) gi(wy,y) +g*(wy,y) -0, 1 <j<n- 1.

This means that gi(x,y) +g2(x,y) is divisible by (x — w j y ) , l<j<n — L
n-l

Therefore g\(x,y) +g2(x,y) is divisible by H(x~wjy) =®n(x,y)a Hence,

there exists g^C\_x,y~\ such that

(3. 8) gl(x,y) +g2(x,y) =®n(

Then it is easy to see f=d2j+i(—g2)9 which shows the exactness at
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Afjy. Q. E. D0

§4 Hochschild Cohomology

The projective resolution (3. 1) enables us to compute the Horchschild
cohomology H*(A,A*) of a C7-algebra A with coefficient A* =

The cohomology H*(A,A*) is isomorphic to that of the cochain
complex

(4. 1) 0 - *HomB(MQ,A*)^HomB(Ml9A*)-^->'-- ,

where the map ds is the transpose of 9,-.
Since Mj = B, j>0, the above cochain complex turns out to be

(4. 2) 0 - >^*-^->,4*— 2-*A* - >

where rf2y+i = 0, and (e/2/+2(00) (#*) =«p(**~1+*) for j>0D Hence we
obtain,

(4.3) HQ(A9A*)=Cn

(4.4) ^U,^*)^^""1, J>1-

For each 0<p<^ — 1, let 5(W denote the element of .4* defined by

(4. 5) 3(W(fl0 + fli*+ - H-fl.-!*"-1) =fl,.

Each 5(/>) determines an element ^ of HomB(MJ9A*) by the formula

(4.6) ^dB)=3tf).

The coboundaries rf/s are given by the following formula

(4.7) 4--i(ft)

(4.8) rfy(pp)=

(4. 9) o?2j- (pB_i)

Hence, we can see that H2m(A9 A*) =Cn~l is spanned by the classes
of <pl9aaoy(pn.l^HomB(M2m9A^, and H2m-l(A9A*)=Cn'1 is spanned
by the classes of <p0y . . . ̂ ^^Hom^Mz^-i, ^4*), m>l. We can also
see that H°(A, A*) =Cn is spanned by <p0, . . . , ̂ n_1

Proposition 40 1.
(1) /f°(^4,^*) =£7" with its generators given by <pQ9 . „ . , <pn-i
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(2) H2m(A,A*) = Cn~l with its generators given by <p\,...,<pn-\^
Hom5(M2m,^*), m>l.

(3) H2m~1(A1A^) = Cn~l with its generators given by <pQ, B . . , ^ n _ 2 e
HomB(M2m^lf ^4*), m>l.

§ 5. Quasi-isomorphisms

In this section, we give quasi-isomorphisms between our resolution
(3. 1) and the canonical projective resolution of A. This is used to
compute the cyclic cohomology of A in our later section.

To begin with, we give a brief description of the canonical projective
resolution of A as ^-module.

j
Let Mj = B®[®A]. Then Af/s are projective left 5-modules in

a canonical manner. Define iJ-:My--»^l3y_1, J>1, by the ^-linear
extension of

(5. 1) bjC

Then the sequence
B ~ h ~ 52

is a projective resolution of A with explicitly given homotopy maps.
We call (5. 2) the canonical projective resolution.

Proposition 5. 1. There exists a family of B-module homomorphisms
hj'.Mj->Mj, j>0, such that the following diagram is commutative:

(5. 3) 0< A<^-—MQ< M!< M2< •••

0< - A< - M,^—Ml

Proof. Since Mj = B, j>0, it suffices to define hj for the unit
Put

(5.4) h2m(lB)=
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and /ZO(IB) =1^. By the definition, £°hQ=£B We show the commutativity
of the diagram (5. 3) .

Let lBEEM27n_i. We use an abbreviated notation by which we write

I=(h, - • « »*m-i) and we use 2 instead of 2 . We compute
I Ktj.-.i^^n-l

(5. 6) ^-xC^

We put

fR 7\ C _ Vv (7
\^«J« / y Oi — / i Jd

for 2</><(m- l ) , and

(5. 9) 5W= i;^^-1^"-1

Then, we obtain,

(5. 10) ^-i°^

It is also seen by (5.7) and (5.8), using xn = Q, that

(^ in ^ — y r(m~1)(w^j. ii^ Oi — / j A
I with

i1=l

(5.12) 5#= 2 *("-1)(w-1)-|/l(x)(;t^^
I with

y,*P+lfi
__ o* \^y \^•v vx"v^ V^V y'Vl/VN^V''v yx'V1'*'VXV*

/ with
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for 2<p<(m-l). So it follows that

I with

I with

+ 2 x
I with
»OT_1=1

/r-\ /r^\ **n_9+l/

Therefore, by putting L = (pi,..., /Jm_i),

(5. 14) 6*1+ ••• +Sm-i + Sm=^x(m~lHn"l'>'~

__£x(m-lHn-V-lL\j(<

— fy _ «A Vy^-
— V1^ _// / i^

Z/

Thus, we obtain ^m-i^m-i^cm-i)0^-!.
Suppose lB^M2m. We next compute

-
J

with our abbreviated notation by /= (z'i, . . . ,i«). We put,

-
I with

(5.17)

Z_i ^
I with
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for 2<p<M, Then we obtain

(5. 18) TX+ ••• + Tm = xm(n-v-m+l®(x® ••• (g)*)

/ with

x l(g)^®2(X)A:(X) — (g)*)
I with

«-l+!x

2

Therefore,

(5.19) 42

X

This completes the proof, Q» E0 DB

Proposition 5. 20 There exists a family of B-module homomorphisms

kj\ MJ—>Mj, j>03 such that the following diagram is commutative:

e ~ 61 ~ 62

|« *0 *1 *2
I 4f * 4r

Proof. Put &0 = identity of 55 and define &i by

(5. 21) Ai(lB(g)#0 ^^(^jjv)-

For m>!3 put
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(5. 22) k2m(\B®xl®xJl® - (g)>(g)^»)

__ (xl+Jl~n .-. xm+Jm~n if zj+j^ra for

~ to else

and

Notice that, since M2m+i = M2m = B, (5.23) has its meaning.

By the definition, eokQ=e. Suppose \B®xp^Ml. Then

(5. 24) *0°ii(li*<8)*p) =**-yp

QnnnriCR 701— 1 fyW^fVW^fV^ ... fyW*OTfS?W mC^ A/f T'fifnOU.jJ|JUbC UU — I Byjy"^ \CyX \/N/ vCx1^ \^\/X Cn lv±2mm J. IlCil

— y—x

_1=1

-
1=1

We put,

/C OCN C _ L ( y,ll(\/\ ( J^(\/\ ... (^y-t?nfvW'7?«^
(D. ZO; 00 — /C2m-]A# ic9 V-^ W ^9-^ ^9-^ ) ) 5

(5. 27) S^Aj.-xaB®*1'1®*'1® - (g)*'*(8)*y'+''+1<8)*y'+1(8> ••• (8}xif

\<p<m-l,

T ~ —k2 p — '»'2?n— 1 k

i i
m m

First, we assume z'i+ji<X Then by (5. 22) and (5. 23) we get

(5. 30) k2m^ob2m(w) =

We have the following cases.
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Case (i). Assume ji + i2>n, Then x'1 '2 = 0, and consequently,

(5. 31) k2m^ob2m(w) =

because of the fact that k2m-i(xl®(x31® ••• ®xm®x3m} ) is non zero if

and only if k2n-i(\B®x^'l®x32® ••• ®xm} is non-zero, and if this is
the case,

(5. 32) Si = x™+w-*-*>«VJm(x,y) = -Tl9

where /= (il9 ..., ij and J= (Jl9 . . . ,jm_i) .

Case (ii). Assume that ji + i2<^n. Then

(5. 33) *2«-i°*2»(o>) =^ + ̂  = 0.

Thus, if ii-f/i<X tnen ^2m-i°b2m(w) =Q. On the other hand, the
condition ii~i~ji<^n implies that k2m(w) =0. Hence k2m-i°b2m(w} ~
^2m°k2m(w), if z'l+jiO.

We next assume ii+ji>w. We claim that if i2+J2<^n, then
k2m-i°b2m(w} =0. The conditions h+ji>w and i2+j2<^n imply

(5. 34) ^-io^2w(^)

We have the following cases.

Case (1). Assume that ji + i2>n, j2 + i3>n. Then Si = S2 = 0 and

(5. 35) k2M.lob2m(w) =

Case (2). Assume that ji + iz^n, j^ + ia^w. Then ^o^-S'i^O.
Therefore

(5. 36) k2m^b2m(w) =

Case (3). Assume that ji + 22<C^? j2 + ^3^^- Then So = 5*2 = 0. Hence

(5. 37) ^^oi^Cn;) ==

Case (4). Assume that ji + i2<X J2 + h<^n. Then ^0 = ̂ 1 = 0.
Consequently,

(5.38) *2m_1o62ll l(z«;)=52+r2 = 0.

On the other hand, if i2-fj2<X k2m(w) =0. This implies k2m-^b2m(w) =

d2m°k2m(w) if /2+J2<X

By the same argument as above, we can show that unless z'i+ji>
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H I - . . ,im+jm>n, we obtain k2m-i°b2m(w) = 0 and k2m(w) =Qe So, In
particular, K2m-i°b2m(w} = d2mok2m(w'). Thus, we only have to show the
commutativity of that diagram in the case when z'i+/i>/z, . . 8 , im+jm>ft.
Then 7*1 = ... = Tm_! = 0 so that

(5. 39) *2»-i°*2»(oO =

Put I=(ii,...,iJ, J=(ji,...,jJ and assume \I \ + \J\-mn>n,
Then

(5.40) k

We put /= (il9 . . . , zm_!), J= (Jl9 . . . jm_i). Then we obtain

(5. 41) ^/"^OcoO*171^^ -

_j_^"m+J"m~ra w~1~-7"ml N^ ^l/l + l Jl -0»-l)fi

= 0

due to im+j?n-7z+ l/l + l J | - (w-l)w = |/| + | / l-w«>w. We next
claim ^o^Oo Unless ji + i2>n, ... ,jm-i + im>n, S0 = 0e Suppose that
ji + i2>n,0. . ,jm-i + im>n. We put

(5042) r=0'i + «2-«)+ •" +(jm-i + im-n).

If r>7z, then we see

(5. 43) SQ = £2m_i (Ax) (^(g> • • • ®*l'"<8);cy») ) = 0.

Suppose r<n — 1. Then r + ii-}-jm — n>n, which implies ii+jm>2n — r.
Therefore,

(5.44)

Hence,

(5. 45)

due to
Next, suppose

i + r>H + l. Thus, if |7 | + \J\—mn>n, S0 = Qa

suppose ^^0 for some l<p<m—L Then ii+ji>n9. . . ,
>n, ip+jp + ip+1>n, jp+1 + ip+2>n, . . . JM-i + im>n9 jp + ip+i^n,

and f=(ii+ji-«)+ ••• + (ip+jp + ip+i~n) + ••• + 0'«-i + i«-w)<«. This
implies jm>2n~r^>n and hence, this is a contradiction. Therefore 6*^ = 0
for \<p<m — \. This implies that if \I\ + \J\—mn>n, we obtain

=0.



TETSUYA MASUDA AND TOSHIKAZU NATSUME 1273

Assume that p= \I\ + \J\—mn<^n. Then k2m(w)=xp* Therefore,

(5.46) S2mok

We also obtain

(5.47) Sm=

where q = \I\ + \ J\- (m-l)n.
We further assume p>im. Then,

(5.48) Sm

If 50^0, then J1 + i2>n, . . . ,jm-i + im>n, and

(5. 49) 50 = *1{*Wl+'2~")+-+y-1+'-~')} ̂ .C*^).

By using

(5850) 0"l + «2 — «)+ •'• +(jm-l + 2°m-^) =p — il+(n—jm)

= (p~jm) +n — ii,

we have

(5.51) Sa=x"+(P~im^im(x,y-)=Q

due to p—jm>0. This contradicts to the assumption vS'o^O. Hence,
50 = 0. Suppose St^0 for some \<l<m— 1, then 51/ must be of the
form

(5 52) S =^(''i+J'i~n)*'''+('''-i+''-i"")+t'''+J''+'''+i~")+w'+i+I''+2~")+'"+0'M-1+i'»"")

= 0,

which contradicts the assumption S^O. Therefore St = 0 for 1 </<m — 1.
Thus, by using (5. 46) and (5. 48), we obtain k2m-i0b2m(w} =32mok2m(w)
for jm<p<n.

Finally, we assume /?<O"m<ft. In this case, (5. 47) is equal to
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(5. 53) 5.=y-*-'»+*"1 +y"+1*""'-+'~2+ - +*'-+'-~y-1.
It is then seen that exactly one of the following cases occurs:

(c. 1)

(c. 2)

(c. /)

(c. (m-1))

Assume (c. 1). Then 6*1 = ... =5'jn_i = 0 and

(5.54) 50-^
1+0'1+t'2"n)+'"+°--1+^"w)^^,

Therefore

(5. 55) Aa.-xoA^czi;) =*«-y+*»-y+l+
Assume (c. /) for some 2<l<m — l. Then, 6*0= ••• =5^-1 =
= Sm-i = Q, and

(5.56) Sl

where

(5. 57) 1= (h+ji-w) +

Therefore

(5.58) Si=*
So, we have

(5. 59) ^^oi
Thus we obtain k2m-i°b2m(s) =S2mok2m in all cases.

By similar, but tedious arguments, the equality k2mob2m+i--

S2m+i0k2m+i is shown. Q. E. D.
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Remark. By making use of the explicit description of hn and kM

n>l, we can show that knohn=l on Mn. This, together with the
commutativity of the diagrams by Proposition 5. 1 and 5. 2y gives us

homotopy maps of our resolution (3. 1) using the explicitly given

homotopy maps of the canonical projective resolution (5. 2) . This
means that our resolution (3. 1) is a retraction of the canonical

resolution (5. 2) .

§60 Computation of Cyclic Cohomology

In this section, we compute cyclic cohomology of A = C\_x}/ ' (xn) .

Our computation is based on the spectral sequence associated with

the exact couple of A. Connes, see [4].

We compute the total differential

(6.1) Dn: Hn(A,A*)^Hn~l(A,A*), n>l,

in terms of the basis obtained in Section 4 using the quasi-isomorphisms
given in Section 5.

We first compute D2m+l: H2m+1(A,A*)-^H2m(A,A*). Recall that

H2m+l(A, A*) is spanned by the following cochains

(6. 2) (pj (aQ, ..., fl2m+1) = cpj (k2m+l ( 1 B(g)fl!(g). . . (g)02m+i) ) (fl0) ,

It suffices to compute

(6. 3) 3= (h;m8k;m+&j) (a),

where B is the map on the cochain level which induces the total

differential D2m+i, see [4], We have

(6. 4) 3 '

, x, x\

a, xy x 0 . . , x
m~ x)

, x,
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-f- ••

-$j(x, x\ a.*,x, xm, xm(»-»-]lla, 1)}

\ ' ffn f If (\ /'N/Nv'^^ — ̂ ) — 1 1 1 n fet\ v (\f\ v ^-(\fZj \.TJ \K2m+i\^B^<yx a(?S)X(g)X (^
i

Put

for l<

TR R^i 77 —(o. o ^^o—

for !</<m — 1, and

/"^ Q^ 77 —« o LLm~

••- (g)*)) (1)

) ••• (g)x(x)l)) (x''M)

*'"(g)*"('-1)-|7lfl)) (1)

*")) (1)

|/la)) (1).

-

We now put a = xp
9 l<p<n~le Unless (h, . . . , f») = (w — 1,

n — l j p ) , we have

(6. 9) ^^(Ifl®^"-""11^®^®^'1® — (x)^w) -0.

Therefore,

(6.10)

+ 1 if ^=j
0 else.
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Similarly,

(6.11) n^{j+1]fp-j+l

10 else,

for 1 <l<m. On the other hand, unless (ii, . , . , im_i) = (n — 1 , . . . ,

n — 1), we have

(6. 12) k2m+l(lB(S)xl®x® -" ®xM®xm(n--
= 0,

Therefore

) "- ®A:)) (1)

= I] ^O^XD
^•m^"-1

= (11-1)3^ (AT*-1)

_ m ~ l if /»=/+!

~ to else.

Thus, we get

(6.14) A»+i(a°')) = {w

It is also seen that (6. 14) holds also for m = 0. This implies that

(6.15) D2m+l: H2m+1(

is isomorphic, and

(6.16) A: /^

is injective with 1 -dimensional cokernel spanned by 5(0). Hence, by

using A«Am-i-i = 0, m>l ,

(6.17) A»= H2m(A9A*)-»H2m~l(A,A*), m>!9

is a zero map. Therefore, the chain complex (H*(A9 A*) , Z)^) is

acyclic except on //°(^,^4*)3 and we obtain E{(A) =0 for j>l and

£"i(-4) ^C7 with its generator given by 5(0)
0 We then use a spectral

sequence given in [4] (or equivalently, an exact couple together

with the injectivity of B2m^i- H2m^l(A,A*)->Hlm(A), m>0), we obtain

H\m(A) =Cn, Hlm+l(A) =0, m>0, and Heven(A) =C, Hodd(A) =0. It is

also seen that the generator of Heven(A)~C is coming from the

generator of E{(A) =C.
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Let us now come back to the case A = C\_x\/(f) with /(#) =

O-tfi)^1 — O-aJF?M. Define rx, . . . ,rm^A* by

(6.18) rl(g)=g(al}, \<l<m, g^A.

By using the computation for C\_x\/(xn) together with the direct sum
formula in Section 2, we obtain our theorem.

Theorem 6.1. In the above situation, we have;

(1) HQ(A,A*)=CNl+'"+Nm and Hj(A9A^ ~CNl+'"+Nm~m for j

(2) H¥(A) = C i " ' ™ , Hl^(A) = 0, 7>0.
(3) El(A)~Cm, Ej

n(A)=Q,j>l for n>l. This also means that
Heven(A)=Cm, Hodd(A)=Q. Furthermore, the generators are given by the
evaluation maps rh !</<m, (all of them are zero traces on A) at each
root of f=0.

Remark.
(1) In particular, in the case of A = C\jx\/ '(#") , (5(0) pairs non-

trivially with the class of identity [l]GEAoC4). This holds also for
the case 4 = C|>]/(/).

(2) Our discussion for A = C\_x}/(xn} works well not only for C
but also for any field with characteristic zero, but our discussion for
A = C\_x\/(f) works at most for algebraically closed field with charac-
teristic zero, in general.

References

[ 1 ] Burghelea, D., The cyclic homology of the group rings, Preprint Ohio State Univer-
sity (1984).

[ 2 ] Cartan H. and Eilenberg, S., Homological algebra, Princeton University Press, 1956.
[ 3 ] Connes, A., Noncommutative differential geometry, Chapter I : The Chern character

in K homology, Preprint IHES (1982).
[4] _ , Noncommutative differential geometry, Chapter II: De Rham homology

and non commutative algebra, Preprint IHES (1983).
[ 5 ] _ _, Cyclic cohomology and the transverse fundamental class of a foliation,

Preprint IHES (1984).
[6] Masuda, T., Cyclic cohomology of the group algebras of free groups, Preprint MSRI

(1984).
[7] __ _, Cyclic cohomology of polynomial rings, Preprint MSRI (1984).
[ 8 ] Loday, J-L. and Quillen, D., Cyclic homology and Lie algebra homology of matrices,

Comment. Math. Helv. 59 (1984), 565-591.



TETSUYA MASUDA AND TOSHIKAZU NATSUME 1279

[ 9 ] Staffeldt, R., Rational algebraic K-theory of certain truncated polynomial rings,
Preprint MSRI (1984).

Note added: A similar result was also independently obtained in "A model for cyclic
homology and algebraic JC-theory of 1-connected topological spaces" by Micheline Vigue-
Poirrier and Dan Burghelea.




