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§ 0.1. Introduction

The purpose of this paper is to provide a complete set of invari-
ants, up to cocycle conjugacy, of the possible actions, a, of a discrete
amenable group G on a semifinite injective von Neumann algebra Jt.
In the case where Ji = L°° (X', ft), this amounts to giving invariants,
up to conjugacy, for the non-singular actions of G on a Lebesgue
space (X,fjt), a problem which is unsolved even for G = Z', in the
general case, the action of G on the center of JK itself appears as
part of the invariant. If Ji is a factor and G = ZP or Z, the problem
was solve by fundamental work of A. Gonnes in [2, 4]; refining
Connes' techniques, V. Jones, [9], resolved the case where J£ is a
factor and G is finite, and A. Ocneanu, [14], resolved the case where
Ji is a factor and G is amenable. Also, in [10], Jones and Takesaki
gave a complete set of invariants for the case where Jt is no longer
a factor, but G is abelian. The main theorem of the present paper
subsumes all these results, and depends crucially on the results of
Ocneanu in [14], and the techniques developed by Jones and Takesaki
in [10] to handle the non-factor case.

For technical simplicity, we treat the case where the restriction of
a to the center ^(^) is ergodic (i.e. a is centrally ergodic) ; we let
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be a point realization, [12], of the restriction
of a to 3 (i/^) . In the case where G is abelian, the isotropy groups
Gx= {g^G: gx = x] are essentially constant, and the main technical
difficulty in handling the general case is that these isotropy groups
can vary drastically with x. In particular, it has been necessary to
adapt the "Cohomology Lemma" of [10] to a context where the
coefficient groups for cocycles vary from point to point over X\ this
adaptation, while reasonably straight-forward, requires considerable
preparation and has been treated in a separate paper, [16], written
with the specific needs of the present work in mind. With Ocneanu's
Theorem, [14], and this modified Cohomology Lemma at hand, our
treatment parallels that of [10] for abelian groups quite closely.

As in [10], we actually work with actions of the groupoid ^ =
GxX on a single factor 0* rather than with actions of G on *J(, It
is relevant only that & is amenable in the sense of [21], and our
main result is stated and proved in the context of actions of orbitally
discrete measured ergodic groupoids, as in [6], on semifinite, injective
factors; the corresponding result for actions of discrete amenable groups
on semifinite injective algebras is then derived as a Corollary, In
view of the fact that non-amenable groups can have amenable actions
on Lebesgue spaces, this groupoid point of view actually provides a
proper generalization of the case of actions of amenable groups,,

The organization of the paper is as follows; in §1 we show pre-
cisely how the cocycle conjugacy problem for actions of G may be
interpreted as a cocycle conjugacy problem for actions of the associated
groupoids G X X. We then consider actions of a fixed ergodic, orbitally
discrete groupoid ^ on a semifinite factor ^, define the invariants,
and state the Main Theorem; our situation is somewhat more com-
plicated than that of [10] in that we do not assume the existence of
an invariant trace, and our invariant involves both the "characteristic
invariant" of [10], and a "module" for the action as in [2]. The
space of invariants is analyzed in §2, using a "semidirect product
decomposition", & =Jt?X\stf9 of ^ as an "isotropy part" jf and a
"principal part", Jf . Next, in §3, we show that all possible values of
the invariants can occur for suitable actions of ^ ; in fact, to com-

plete the proof, it is necessary to show that each of the invariants
can be realized by an action which has an extra property. Techni-
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cally, this is the most complicated part of the paper, and uses the

Gohomology Lemma in the construction. In §4 the proof of the
Main Theorem is completed, using Ocneanu's Theorem and results

on the stability at infinity of actions of discrete amenable groups,

[14], and the Cohomology Lemma, [16], again. Finally in §5 we

give some applications to the structure of von Neumann algebras

associated to extensions of discrete amenable groups, and to the

classification of coactions of discrete amenable groups on certain von

Neumann algebras.

This work was conceived during the second author's visits to
U.N. S. W, and A. NB U. in 1983, and gestated and delivered during

the first author's visit to U. C. L0 A0 in 1984. Both authors are

grateful to all Universities and Administrations involved in making the

collaboration possible.

§ 00 2o Notation Terminology.

Throughout, G will denote a countable amenable group, Jl denotes
a von Neumann algebra, and & a factor, both with separable preduals,

[17]; -^ denotes the injective factor of type Hi, and ^0,i denotes the

injective factor of type !!«,. An action a of G on Jl is a homomor-

phism a\ geG— xXg-G Aut(.jf), where Aut(^) is the group of *-auto-

morphisms of ^, equipped with the usual topology and standard

Borel structure, [8]. A cocycle for an action a of G on Jt is a map
satisfying

where W (Jl) is the group of unitaries of Ji\ the space of such

a-coeycles is denoted Z*(G; % (Jt)) . Actions a and /3 of G on J£ and
Jf are said to be cocycle conjugate if there is an isomorphism 6: Ji^>Jf

with 6°a^0-1 = Adus^g, where u^.Z\(G\ W (JO) ; see [10, 14].

We denote by & a standard Borel groupoid, with unit space X= & (0)

and composable elements

( O * ) 6= 9 X 9 :s(ri)

where r and s are the range and source maps respectively. Through-

out, (X, v) denotes a standard measure space. Frequently, we will

need to invoke the existence of Borel maps on X satisfing certain



1090 COLIN E. SUTHERLAND AND MASAMICHI TAKESAKI

additional properties; typically, the existence of a suitable v-measurable

map follows from a standard application of the von Neumann Measu-

rable Selection Theorem, [17] and the existence of a suitable Borel

map follows after deletion of a y-null set from X. For the most

part, we will omit the arguments involved, although we make an

exception for Lemma 4. 3.

The reader is referred to [16] for details concerning Borel functors
to Polish groups, and to [10] for further discussion and interpretation
of the results.

§ 1. Group Actions, and Ancillary Actions of Groupoids

Let a be an action of G on Jt\ a is said to be centrally ergodic if
the restriction of a to the centre j/ of JH is ergodic. We consider
only centrally ergodic actions. If jtf is atomic, a is induced from an
action ft of some subgroup H of G on a factor ^, [19; Theorem
10.5] and the study of a is reduced to that of j8. Henceforth, we
assume #0 is non-atomic, that Ji is semifinite and injective, [3], and
we let T denote a faithful, normal, semifinite trace on Ji. Let

be the central decomposition of [df, r}, [17]; since a is centrally
ergodic, Jl is of type !„, n = l, 2, . . . ,00, type Hi or type II*,, so that
JK =<&(£)& with 9 a factor of type ln,& = 3% or ^ = ^0,i> by [3].
As in [16], there is a map (g, x) eGx X-*agiX^Aut(&) determined
by

here (g,x) ^GxX\->gx is a point realization of the restriction of a to
re

j/, and T=\ T(x)dv(x) ^Jt. Note that <$ =GxX becomes a standard
Jx

Borel groupoid with r(g, x) =gx, s(g, x) =x and (g, hx) (h, x) = (gh, x) \
furthermore v is quasi-invariant under G, so that ( ̂  , v) is, together
with the Haar measure on G, a measured groupoid. Note that we
may assume (g, x) ->agtX is Borel and satisfies

<xhx'<Xh* = <Xh* v~a.e. for

We thus have a Borel action of the measured groupoid (^ ,v ) on ^,
which will be referred to as the ancillary groupoid (and action) of the
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action a.

In general, actions a and /3 of an orbitally discrete measured

groupoid ( ̂  , v) , [6] on & are said to be cocy de-conjugate if there is
a Borel map 0: *eJf-»0*eAut(^) and a Borel function: 7-<E^-»

with

i) drW*ar«d~(7}=K&ur«l$r a.e. on ^,

ii) u7l$r(urr} — u^i a. e. on &(2\
A function u satisfying ii) above is called a fi-cocycle^ and the collection

of all such (identified up to sets of measure zero) is denoted

or Z ( # ,

Proposition L 1. Let a, ft be two actions of G on Jt and Jf respectively ^

and let (& a,va)9 ( & ̂  ^) be the ancillary groupoids with unit spaces X and

Y. Then a and ft are cocycle conjugate if and only if there is a G-

equivariant isomorphism 6\ (X, ua} — >(Y, v^ such that the actions (#,#)—>
ag,xi (§9 x) ->fig,ew of&a are cocycle conjugate.

The proof is routine, and left to the reader ; the same result holds

with "conjugate" replacing "cocycle-conjugate" throughout Also, note

that if a and /3 are cocycle conjugate, (&a,Va) is isomorphic to

(»*»/.)•
We now fix a (general) amenable, orbitally discrete, ergodic

measured groupoid ( & , v) , and consider its actions on a semi-finite

injective factor ^. Note that the "principal part" Jf of & „

tf={(x,f)^XxX:x = r('f),y=s('f) for some r^^K

is a hyperfinite equivalence relation on X^ by [21] and [5] ; also if

is the "isotropy part" of ^, then the groups

#,= {re^:r(r)=*(r)=*}
are (almost) all amenable by [21], These two facts are crucial to
the entire theory. A slight modification of Lemma 2, 2e 11 of [10]

yields the existence of a Borel left inverse £eJf— *f(K) e & to the

surjection /-e ^ -> (r (7-) , j (7*) ) , with f ( k l ) =r(*)r(0 on ^(2)j which
allows us to view Jf as a subgroupoid of ^ . With Hx as above, and

Hh(K) =r(k)hT(krl for /2e//s(,)?

H= (Hx, Hk) is a Borel functor from Jf to Polish groups as in [16, §4],

If we set
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(K) =r(A)},

then e?f*«>r becomes a standard Borel groupoid, written Jf Xls^ with

r(h,k)=r(k),s(h,k)=s(k), and (g, k) (h, 1) = (gHk (K) ,kl) .

Evidently, JfXls<>f is isomorphic as a (measured) groupoid with (^,^)
under the map (h, K) e Jf XL^HMe ^, so that 0 is a "semidirect
product" of c^f by an action of Jf . In analyzing actions of & we will
frequently restrict to each of Jf and Jf , and analyze each piece
separately-^ via Ocneanu's Theorem, [14], and Jf via the Gohomology
Lemma, [16].

We now turn to the invariants associated to an action: j\- >ar of

(&,v) on &. Let

Note Jfa is a Borel subset of ffl and *Vx = *Var\Hx is a normal Borel
subgroup of Hx for each x. Of course, if &* is type I, Jfa — ̂ f. Choose
a Borel function n^Jfa->u(ri) <^W (&) such that

an = Ad u (ri) on ^a ;

as in [10], we have

u(n)u(m) =/ia(n, m)u(nm) on

and

The pair (^«, //a) defines an "element" of Z(& 9jY*a, T) as in [10], and
a relative cohomology class ia = [4, fJta]&A(& , rf"a, T). (Note : The
order of the variables is different from [10]). Let r be a faithful
normal semifinite trace on ^, normalized in the usual way if & is
type I or type Hi, and define 4*(r) by the relation

T*ar=Aa(r)T.

Note Aa is a homomorphism from ^ to R*, which is trivial unless &
is of type Hoc. We let da denote the cohomology class of
Aa^&(9,v,Rl) in If(9,v,R*).

We now can state our main result.

Theorem 1.2. Let (& ,v) and & be as above. Then actions a and /3
of (& ,v) on & are cocycle conjugate if and only if Jfa = Jf '$, %a = /^ and
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The "only if" part follows from a direct calculation which is left

to the reader,, The converse will be accomplished in several parts*

§2o The Structure of A(y>JfjT)

In this section, we generalize Lemma 2 03 0 17 of [10],
Let ( ̂  , v) be an orbitally discrete, amenable measured groupoid9

and let ^ = Jf XL^ as described in §1. Note that if Jf<\ Jf is as in
[10], so that Jf={Nx°. x^X} with Nx normal in Hx, \jNx Borel in
\jHx and Hk(Ns(]t^=NrW for all AeEJf, then N=(NX!Nk) is a Borel
functor to compact abelian groups (by [16; Theorem 4B3])9 where
Nx is the Pontrjagin dual of Nx and Nk is the transpose of the res-
triction of Hk to NSW^HSW. We define a Borel functor JF^ by

j?f={<p<=Nx:<p(h-lnK)=<p(n} for all ht=Hn n^Nx] ;

JF* is the restriction of jTk to J*f. Let Z1^,./-*) be the group of
,/^-cocycIes (as in [16, Definition 5. 4]) ; an element X of
is a Borel function on (^TXJf) n ^(2) satisfying

, for (w, A, A) e ^(3) n (^X Jf X Jf),

nk,} for (;z,A:, Z) e ^ (3)

(In this section, abelian groups are written additively). If a is a

Borel section of \jJ*x , we define

= « , ( J - ; - » ; , ( 7 o n

when < , > is the pairing of Nx and Nx, and
Note da^Zl(3T, Jf&} ', the group of all such elements is denoted
Bl(JfT,rfX)9 and the quotient by Hl(tf,J*^)B

We now consider Z ( t f , J f , T) as defined in [10]. If
(J, //) eZ(Jf , e/T, T) and Ae Jf, define (A*^, k*fjf) ^Z(Hr(k}9 Nr(n}, T) by

(k*X) (n, h) =l(k~lnk, k~lhk) , (n,

(A*//) (m, TZ) =fi(k-lmk, k~lnk), (m, n)

We say that (*, //) eZ(^f, ^ T) is Jf -invariant if

(A**, A*//) = aw, ^tt)) mod B(Hrn, Nr(», T)

for all &<GJf; Z(Jf , J^, T)*" denotes the Jf -invariant elements of
, T), and A(tf, Jf$ T}* its image in A(#, Jf, T).

We can now state the main result of this section.
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Theorem 2. 1. In the above context, there is a natural short exact

sequence :

Proof. Throughout this proof we will use g, h for elements of tf ,

and £, I for elements of Jf without further mention ; equations are to

be interpreted as asserting that both sides have a common domain

and equality holds.

a) Injection of I f ( j ( r , r f X ) : Let JeZ^Jf,./*) be given, and

define 1 on ^ ( 2 ) n ( ^ X ^ ) by

l(n,hk)=JL(n,k).

If fi(m,n)=Q on «/T(2), then using the identity

one sees that (I, ft) <E Z( & , Jf , T) . If <r : ̂ ~» T is a Borel function with

a\X=\ and (%, ft) = (8i0 , d2a) 9 then since 52(7 = /Z=l , o^Jf (or, more

precisely, is a Borel section of \jNx). Since Z ( n , f i ) = l and dia = X,

', thus ^(»f A) =0(n) ~a(k-lnk), and ttEBl(tf9 Jf*), so that

is injected in ^(^,^ f 3T).

b) Exactness at /f ( & , ̂ T , T) . Let (I, #> e Z( ̂  , ̂ , T) and let 2

be the restriction of 1 to ^f, and ft = p. Clearly (^, //) eZ(Jf, «yT, T).

Also we have

, k) -Z(n, K)

where ak(ri) =l(n,k). Similarly, we have

, n) =fJt(m, n) +l(m, k) +Z(n, k) —l(mn, k)

so that (2, fi) eZ(Jf , Jf, T)*. Clearly, trivial elements of Z(& , Jf, T)

have trivial restrictions in Z(Jf, Jf, T), as does the image of

Conversely, suppose (I, (f) eZ(^, ̂ K, T) has a trivial restriction

(/!, fji) in Z(Jf, ̂ T, T). We may suppose A(n, h) =fi,(m, n) =0. Since
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lnh, K) =l(n9 h) + X(h~lnk9 k) =l(n, kk'lhk)
= l(n, k) + I(k-lnk9 k~lhk) = t(n, k) ,

as required.

c) Exactness at A(je, Jf, T)*. Let (*, /*) eZ(^f, Jf, I)*", and choose
0k with (A*^, k*[JL) = (^, /*) — (diffk9 $20k) • We may suppose that a:(n,k)
->ff(n,k)=ffk(n) is Borel on ^ (2) fl ( Jf X ./O 9 so that we have

t(k-lnk,k-lhk) =i(n,K) -o(n,k) +<r(hrlnh,k)9

ju(k~lmk, k~lnk) =fi(m, ri) —o(mn, k) +a(n9 k} +0(m, k) .

Define 1 on ^ ( 2 ) f ! (^X^) and p by p, = p and

l(n, hk) =l(n, K) +a(h~lnh, k).

Equations 2. 3, 5 and 2.3.8 of [10] are automatically satisfied by
(1, [£) , and equation 2. 3. 6 routinely verified. As defined above, I
does not necessarily satisfy equation 2.3.7 of [10]- it is necessary to
modify a to achieve this. To this end, note that

from which we see

Now, evaluating at (ft, A), we obtain

<p (h~lnh, k, I) =<p(n, k, /) ,

where

<p(n,k,l) =a(n9kl) —ff(n,k) —a(k~lnk, I),

Similarly, since d2ffki=^2ffk + k^d2ffh we obtain by evaluating at (m9ri)

(p(mn9k, 0 =(p(m,k,

Thus <p(m
9k9l) takes values in J^^, and, from its form, we have

£>eZ2(Jf, J^^). Since JT is hyperfinite, ^ is a coboundary i.e. there

is a Borel function <p from Jf to jf^ with

, Af I) =</>(n, k) +$(k-lnk, ft -0(n, kl}

[Note: Since the coefficient groups Jf^f vary from point to point
along X, this does not follow from [7] ; however, the usual proof of
triviality of Z2(Jf,.4) using a single generator for Jf generalizes
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routinely to our context]. Define p(n,k) by

p(n,k) =(f>(n,

so that

p(n, kl) =p(n, k)
-lhk) =X(n,K) -p(n,

9k~lnk) =ft(m, ri) — p(mn9k) +p(m,k) +p(n9k).

Defining now

l(n, hk) =Z(n, h) +p(h~lnh, A),

we have

-l(k-Ylngk, h) -p(h-lk~lg~lngkh, I) .

However, using 2.3.7 of [10], we have

l(n,gkhk-1} =l(n,

and since

l(k-lg-lngk, h) = (k*X) (g-lng,

=l(g-lng, AM-1) -ptg^ng, k} +p(kh~lk-lg-1 ngkhk'1, k\

we obtain

KII,^/) -l(n,gk) -l(k-lg-lngk, hi)
= p(kh-lk-lg-lngkhk~\ kl) -p(g-1ng, k) -p(h~lk-lg-lngkh, I)

+ P(g~lng, k} ~p(kh-lk-Ylngkhk-\ A) -0,

where we use the identity p(m, kl) =p(m, k) +p(k~lmk, /).
Since 1 restricts on (^XJc^f) D ̂ (2) to ^, the proof is complete.

Remark 2. 2. It is clear from the proof of exactness at A(J^9 Jf, T)

that if ^ = 2tf XlsJf is an arbitrary orbitally discrete measured groupoid
with isotropy part ffl and principal part <#*, no longer necessarily
amenable, then there is an exact sequence

In our situation, the hyperfiniteness of Jf forces

Remark 2.3. Despite the splitting ^ = ffl X3S^5 the exact sequence
of Theorem 2. 1 does not necessarily split, in contrast to the situation
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In [10], where & =X^G, with G abelian.

§ 3. Construction of Model

In this section, we show that any characteristic invariant % —
[^, f j i ] ^ A ( & , Jf, T) and module d:&\->R* appear as the invariant of
some action a of ^ on a semi-finite injective factor 0*. Depending
upon i and <5, there is a natural restriction on the type of &» For
example, if d is non-trivial, then only possible 0* is of type !!«,, and
if $e ̂ Jf, then & can not be of type I

Theorem 3.1. Let & be an amenable orbit ally discrete measured
groupoid with X= &(0) and associated ergodic principal groupoid C%\ and let
ffl be the isotropy subgroupaid of &. Let Jf be a normal Borel subgroupoid
of &. If %=[.A, f £ ] ^ A ( & , Jf, T) and d is any Borel homomorphism from
& to U+, such that d(n)=l for every n^Jf, then there exists an action
m of & on a semi-finite injective factor & with the following properties'.

a) The characteristic invariant j^m and the module dm of m are precisely
the given % and d°,

b) For any <p^Zl(Jf9^ there exist a Borel map: #eZH0,eAut(^)
and an m-cocycle {u(f) : j^^} such that (with ^e ^, g, Aejf, and
A,ZeJf) ,

i) mod(»,)=!, x(=X',
ii) 0rW • mr • ffr& = Ad (u (f)) mr.

iii) u (gk) mgk (u (hi) }=<p(k,h}u (gkhl),
Furthermore, if d=l9 then & may be chosen to be an injective factor of
type Hi, otherwise & must be of type !!„. If Jf^tf, then & must be of
type II.

We shall construct {&,m} in several steps.

Observation 1. We may assume 5 = 1. In fact, if {@*i,m'} realizes
1 with 5in/ = l, then we set

where ^0,i is an injective factor of type 11^ and {nt} is a one
parameter automorphism group of ^O.i with mod(72 f) =e^ If m'
enjoys the property (b), then so does m.
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Observation 2. It is sufficient to consider the case that 0* = $$ of
type Hi. If {<^,m'} realizes {/I, / j t , d ~ l } with property (b), then

?2 = m'(X)£} realizes { t , { j t , d = l } with & = 3$0il.

Observation 3. Properties (a) and (b) can be handled separately.
Suppose that [nr] and {pr} are actions of ^ on ^ such that

a) Xn = r-
b) %P— 1 and p has property (b).

Then we put

^e, on (X) = .

Clearly, {3$,m} has the required properties.
Thus, we can approach the two problems (a) and (b) of Theorem

3. 1 separately.
Let p be an action of ^ on ^ and let ^ (p) be the set of all those

Borel functions (p: (Jf X Jf) fl ^ (2)h->T for which there exist a Borel
field {#,J — {6^} of automorphisms on 3$ and a Borel function u — u9\

satisfying the following conditions:

2)
u(gk)pgk(u(hl^=9(k3K) u(gkhl) 3)

Proposition 3e 2. ^ (/?) ij a group which is an invariant under cocycle
conjugacy of p. Further , if (p^ff (p) and

9' (k, h) = &CB (AAA-1) ?> (A, A) x,0) (A) -1 4)

for some Borel family of characters %X^HX, then ^/e^(/?)°

Before the proof, we state the following:

Remark 3.3. Any (p^<£ (p) automatically enjoys the properties:

a) <p(k,gh) =<p(k,g)<p(k,K) ;
b) (p (kl, h)=p (/, A) ̂  (A, //z/-1) .

Thus ^eZ1^,^).
If {^?, 0*, Up] satisfies the above relations (1), (2) and (3), then

we say that {69
9 u9} realizes (p.

Proof of Proposition 3. 20 Suppose pe^C/O is realized by {69, u<p]
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and that qr=ffy°pr-ff~
l with x = s ( f ) and y=r(f). It then follows that

{oyflj-ffj1, oy(u<f(f)')} realizes (p. Hence <p G <£ (q). Suppose that
<7r = Ad(y(7-)) 'pr with yeZj(^). Then we have

We claim that [0, 0y(v(f)}u(f)v(?)*} realizes <p with respect to q.
With f=gk and ?' = hl and x=j(^), J> = r(f'), we compute:

^ (» (r) ) a (r) » (r) *<?r (4, (" Cr') ) « (r 0 ° (r ') *)
= *, (» (r) ) « (r) Pr (#* (» (r ') ) « (r 0 » (r 0 *) » (r) *

= », (» (rr') ) p(M) « (rr') » (rr') *.
Hence with 01(7-) =0y(v(-f) )a (7) 0(7-)*, {#, w} realizes p with respect to
<?. Thus ^ (/>) is a cocycle conjugacy invariant as a set.

We now turn to the group structure. Suppose that <p and $ are
realized by [6, u] and [a, v] relative to p respectively. We then have,
with x = s(f) and y=r(f),y^ & ,

with f=gk and f' — hi, we calculate

(^,-ff,-1) (^W^^WACC^-
= VJ1 (» (r) *) WJ1 ( (g.-g.-1) (KrO *) ) « (r)j&r (a (r
=g,(g;1(p(r)*)M
= ff/rj1 (» (r) *ff,M«

1 (^ (M) » (rr ') *) P (*, A) a (77')

Thus <p<p is realized by {Oya~l, 6a~l (v (f) *) u (7")}.

Suppose p is realized by {0, M} with respect to />, and

is a Borel field of characters. Put

Clearly,

^A^
and M' satisfies (2). Now, we compute, with j=gk and y' =
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= X,(g) X* (A) 9(*, h) %y (gkhk~l) M' 07')

Thus <p' defined by (4) belongs to #(/>). Q. E. D.

We are now going to construct an action/? with # (jb) = Z1 (Jf , «^) .

Define

^00 =#,/[#„#,], 5)

where [HX,H^\ means the commutator subgroup of Hx. Note that

since kHxk~l = Hy for &eJf with #=,?(£), y = r(k), there is, for each

k&tfj a natural isomorphism from ^.(x) to -4 (7). Thus, we can identify

Z^Jf,^) with Zl(3T,A), where 1 is the Borel field: x^X-*AW of

compact abelian groups (see [16; Theorem 4 a3]) 0 We then have

the following obvious lemma.

Lemma 3648 Suppose x: JfXls^h->4Xls^ is the quotient map, and q
is an action of Ay\s$f such that <g (q) ~Z^{3C , A). Then p = q*n is an

action of ^ =^y\s^ with <g (p) = Z1 ( Jf , &) .

Thus, it suffices to construct an action q of A"A^ with ^ (/?) =

Choose a family {Fx} of groups with the following properties:

Each Fx is a dense countable subgroup of A(x) ; 6)

x^X\- >FX is a Borel field, i.e. \jFx is a Borel set in \jA(x')e 7)

We note the existence of such a choice is guaranteed by [16,
Theorem 4.3 and Theorem 1,2],

We can saturate {Fx} with respect to the natural action of Jf on

i.e.

where k*a = kak~lm, thus we can assume:

The field [Fx] =F is invariant under the action of Jf*8 8)

By the Gohomology Lemma, [16; Theorem 5.5], every element of

Zl(Jf,A) is cohomologous to an element of Zl(3T9 F)a By Proposition

392, it suffices to construct q with <g (q) nZl(tf, F).
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Define

^,= (fl®( n®M(2; Oj). 9)
i=i %erx

Let Fx act on ^^ via the shift:

s*(n®( n® fl«))) =n®( n® flg ). 10)f=i *ier* «'=i *ier*
Also, if t: rx\->ry is an isomorphism, then there is an isomorphism
st: &x\->3$y via

n® f l«>)) =n®( n®^). ID
i=i i^rx i=i ^rx

The infinite tensor product guarantees the freeness of the action,, It
then follows that

12)

Thus, we have a family of covariant systems f«^*, s*,rx}, coherent
with respect to Jf. Put

13)

and let /? be the dual action of BX = FX on 0* x. Since s* is free, & x

is an injective factor of type II. Note that we have a canonical
inclusion: A (#)£ - >BX, which is faithful and with dense range. For
each %£E/\5 let {u(x, %)} be the unitary representation of /\ in 0*x

associated with the crossed product (13).

Lemma 3o 5. For ^c/z A;eJf , A;:^->jy, ^/z^ map

extends uniquely to an isomorphism, denoted again by pk, of & x onto & y

which satisfies

Pk°P«=Pkak-i*Pk, a^A(x). 15)

The proof is just routine, so we leave it to the reader. The iden-
tity (15) gives us an action p of AXlsJf on fff=[0f

x] by

16)

We now set up the following system:
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__ r®
x— -l-J-

n=— oo

= the shift to the left on

n=l

where index n means to repeat the same thing. Then we have the
following formulae:

qt'q*=qk.a'qk, 1?)
?••&=&•?« 18>
A'?»=?»'A.fa 19)
0*-qa'97l = q<,, 20)

21)
22)
23)

For a given (peZl(W,F), we define an action g<° of A><\s^f on

= { ,̂1 by

. 24)

Lemma 3.6.

Proof. With Ae«3f, £:.*—»)>, we compute

= Ad (?«•?, (zi

= Ad w(fl, A) •??,,.«,

where w(a,k)=ql!-qk(v((f>(k'))). We then have

But we have
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* 0 ) 4V • ?*'

here we use the fact that fir leaves v(f) fixed. Hence w realizes <p
with respect to q9. Q. E0 D0

Lemma 38 7* T7z0 action q9 is cocycle conjugate to q for all <p 6E

,/7).

Proof B Suppose that we can find [ax] and {£#(&)} with

25)

26)

27)

Then the hyperfiniteness of Jf enables us to adjust w(k) into a
cocycle with the above properties, which means that q9 and q are
cocycle conjugate as actions of Ay<\s^fa

Now, it follow from qk0fi<p(vaqkl==fi wk~l t'iat t'ie acti°ns: ^H^-jS^)

and Ah- >j f t differ by ^ for some ^B Furthermore, ^ and qa commute
by construction, and

^ = lim Ad bltn
n-*oo

with

*z..=n® iK(g)( n® a.(*,x))®n® i.e j,.
n^O l^n^m n>w

Since we have

qa(bx,m)=<a9x>mbx.m,

Ad(bXtm) and qa commute. Hence ^ belongs to the group Cx of all
those ^eAut(J2») such that 0 = limAd(6w) for some bm(=£x with

6m)0 By construction, we have

where Inte( J J is the group of all those inner automorphisms of £x

which commute with q(A(x)). Thus, the Gohomology Lemma, [16,
Theorem 5.5], yields the existence of {0X} dCx and {w(k}} such that

Mx) and



1104 COLIN E. SUTHERLAND AND MASAMICHI TAKESAKI

<V ?*' & » < * ) ' f f x l = Ad (w (k) ) ^.

Q.E.D.

Thus we now conclude that

which in turn implies that there exists an action p of & such that

28)

. 29)

Therefore, we have solved part (b) of the construction problem.
We now turn to the problem (a). Namely, we want an action p

of & on 3t such that

u(rri)u(ri) = (jt(n, m)u(mri) 30)
•/) (ii ( y wv I i -— / (YI v 1 7/ \ YI\ ( YI *f\ C~~- ( W ^ *^ ^ n ^^ 'V r \l^ \f •I' I J ) \ *" > / / w\iLJm \ i L y /y CZT ^ t/K /\ Z? y | | 5? a

Based on the semi-direct product ^ =^f Xjs^? we split the problem into
the "j^-part" and the "Jf-part", To put the "^f-part95 and the
"Jf-part together, we observe the following: if pgk = (Xga^ with a and
/3 actions of ^ and 3T respectively, then p will be an action of ^
provided

Next we have, with y~hk,

and

Thus, we shall need

and for this to obtain, it suffices to have

{ah(u(h-lnh^=l(nyh}u(n), (n, K) e (Jf X Jf)

U(fi(A"1mA;))=^(»i,A;)tt(»z), (wi,A) e (^fXJT) n ^(2). 32)

Now, ^T and Jf are nothing but Borel maps: x^X->Nx and
xE=X->Hx from J^ to countable discrete amenable groups, with
NX<(\HX for each x. So, we shall give a functorial construction which
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associates to each H 9 N 9 2 9 / j with N<^H and (Z9 p) ^Z(H9 N9 3T), a

factor £%H,N,I,IL carrying an action a of H for which %a=[^, /*].
Given {Uy JV, ^, /4 as above, let

n=l fcetf
33)

,
n=l A'eff n=l

Namely, ^ is the "Bernoulli" shift by h^.H, The infinite product is

needed only when H is finite to guarantee the freeness of the action

s. Now, set

a(H9N9^fjL)=^HX\MttlN. 34)

This factor is generated by the following operators on the Hilbert

space iQ(H, N) =^2(AO(X)L2(^^r), where r is the normalized trace on

(Up (m) O (72) = fjt (n~l, m) f (m"1??) ,

Lemma 3o80 The group H acts on & ( H , N 9 A , f j i ) as follows:

^CA-^A)) = ^ ( W , A ) M A £ ( « ) , Ae/f,

The proof is routine, so we leave the details to the reader

Suppose that 0: (N,H}\->(Nf , H f ) is an isomorphism with 0*2

)'1^' and 6*iJ.= (d2a}-ltJLf
0 We define &: 9tH\^&H, by:

JI »=1 Ae

and ft: & (H9N,t, /i)^-><% (H'9 N'9Z'9 /*') by:

One checks by straightforward calculations that ft is indeed an

isomorphism,,

Caution: In general, we do not have ft^ — ft^ft^ since there

will be no "multiplicative" choice of coboundaries, dffe
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However, suppose (3, ft) ^Z(& , Jf, T) with restriction (^, (JL)
,Jf, T). Then the arguments is §2 show that

with ak(n) = l(n,k),

. k*t*=t*(d0kr
l

and that

If k£=3f, k:x—>y, then we have a corresponding isomorphism

0fc: (tf,,#,)H (#„//,) given by Ok(K)=khk'\

Let

be the corresponding isomorphism defined above.

Lemma 3.9. phk = ahfik defines an action of & on the field:

^ (//s, JVX, ^, fj-x) which realizes the invariant (/£, //) .

Proof, We have only to check that /3 is an action of Jf satisfying
(31). With £eJfj;->£, and /eJf, ^->J9 we have

k~\ kl) u (klnl~lk-^ = ft, (u (n) ) .

The above calculation shows that

A («(«))=«/. (An*-1)

or

We now check or -ij3k=fikah. To this end, we check only for u(n) 's,

since the other part is a triviality as we have observed above:
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a-& (u (k~lnK) ) - a-i (1 (n,k)u (n) )

&«* (u (k-lnk} ) = & (* (hk~lnkh9 K) u (h
- ^ (hk~lnkh-\ K) 2 (khk-lnkh~lk-\ K) u

Thus, we further compute

*(n, k)l(khk-lnkh~lk-\ khk~1}
= Jt(n, k)l(khk~lnkh-lk-\ k) l(hk~lnkh-\ hk

k-\ k)l(hk~lnkh-\ h)

because

t(n9k)Z(k-lnk, r1) =l(n,kk'1} =1.

Thus we complete the proof. Q. E0 D8

Therefore, we have completed the " (a) -part" of Theorem 30 1.
Together with the previous "(b)-part?3

9 we complete the proof of
Theorem 3. 1.

We shall denote this action of ^ by 772 and call it the model action
with x-.=[^

§4o Proof of Theorem 1. 2— Comparison with the Model

We complete the proof of Theorem L 2 by showing that a given
action a of ^ is cocycle conjugate to the model action m with the
same invariants. So we fix an action a of ^ on ^0

Note that Ae^f |— >«A, mh are both Borel fields of actions of the isotropy
groups with the same (field of) characteristic invariants. By a result
of Ocneanu, [14], we can choose [Ox: x^X} and [v(h)} with the
properties :

Ox'ah'0;1 = Ad v(K)°mh on JT3 1)

oeZiCJf, *(£»)) 2)

Here, Z^(^f? ^(^)) is the space of m-cocycles with values in the
unitary group ^(^).

Replacing a by pe & -*0r(r)*ar*d~^9 we may suppose that
a) a and m have the same invariants,
b) ah = Adv(h) °mh on Jf0
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Now define {3k by the relation

3)

Lemma 4. L We have

4)

where

w(hjk)=ah(v(k-lhk^v(h}, 5)

and
6)

The proof is a straight forward computation and left to the reader8

Let £x=&y\mHx for each x, and let mx denote the coaction of Hx

on J* dual to 772, [13]. We set

mx = mx*(j} ; 7)

Note that each a^j^(x) is determined uniquely by its restriction 0 to
^c J^ and a w<^Zl

m(Hx, <%(&}} satisfying

6*mh°0-l = Ad w(h)*mh on #,. 8)

According to convenience, we shall think of elements of <$$ (x) either
as automorphisms of J^? or as pairs (0, ( w ( h ) } ) satisfying (8) with

Also, each <s$ ' (x) is a Polish subgroup of Aut( M x) and since the
J* are isomorphic to a fixed algebra, x\- ><%7(x) is a Borel map as in
[16; Theorem 2. 3]. Further, if k^$f, k: x^v and mk is the natural
extension of mk to an isomorphism Jj-> J^,, mkt^(x)m^l~ 30 (y) so that
#1— >j/(.*0 may be viewed as a Borel functor to polish groups as in

[16; §4]0
For n^Jf, let u(n)^^(^) be unitaries with

u) , on J = Ja~J

(n')=p(n,n")u(nn") on

If ff= ((9, (zi;(A)})e^(A?), then

Ad 0(u(n))=0*mn-0-1 = Ad w(n)

so

6 ( u ( n ) } =ca(ri)w(ri)u(ri)
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for some ca (n) €E T. Routine calculations show that

(ca(nn'}=ca(ri)ca(n'}, and

Wa'O) =ca(ri)ca,(ri)

We define

j*°00 = {<7e.j*(;c): ca=l on Nx], 11)

and let ak^^(x) be the element determined by (&, [w (k, h) } ) via

equations (4) and (5).

Lemma 40 2=

a) { j/° O) } w tf -invariant, and Q «^° W £= u ^ (#) w

b) e7feej/°(f(/t)) /or

o a) Let (^, [w(K)}) ej2/°(^) ; note that

°m^lamh°mk°0'l°m^l = mk°6-m^-ihk°6~l-m

= mk°Ad w(k~lhk) *m-l°mkl = Ad mk

and

= l(n9k) ~lmk (w (k~lnk) u (k~lnk) )
= mk (w (k~lnk} ) u (n) ?

where /I is (part of) the characteristic invariant of m« Thus (mk°6

{mk(w(k-lhk)}^^\r(k)) as claimed8

With y as in equation (1), and u(n) as in equation (9)5 let

a(n) —v(n)u(n)^ n^Jf^

so

an = Ad a(n)a

Now we may suppose that Am = Aa on ( J f X & ) n &(2\ so

) ~X (v (k~lnk) *a (A-^A) ) = ak (v (k~lnk) *) a ( w)

= aft (y (k~lnk) *) y (w) u(n) =w(nyk)u (n) ,

from which we conclude ffk^j/°(x)e

It is clear from the definition of j/°(x)3 equation (11), that it

is a closed subgroup of j/(x)? and that 0^°W is Borel in O^W*

Q. E0 D0
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Note that since both mk and ak may be assumed to scale the trace
r on & by the same factor (automatically one unless & is of type
IJ, ak^^(r(k)), where

TX being the trace on £x dual to T on ^, as in [19].

Lemma 4. 3- For a e * ( ̂ ) , to TT* (a) = (Ad a, {am^ (a*) }) for
Then 3% : x^X\—>& (x) = xx(

(% (0*) ) w # ^TZJ*, normal Borel subfunctor of
j/1 z. 0. ^(#) w J90r£/ <z?zrf normal in j t f l ( x ) , ^ <\^ as in [16; Definition
5.3] <2?zrf $*(*) Cja/1^) i^ dense for each

Proof, The fact that & (x) £ jaf l (x) is Borel and normal follows as
in the proof of Lemma 2. 50 6 of [10]; the in variance of j/1 and £%
under the action of 3C is obvious. Since the map

is surjective to 0 ^ (#) , is continuous in a for fixed x and Borel in
x for fixed ^e^(^)/T5 TT is a Borel isomorphism so that 0 3S (x) £

U^OO is a Borel set
It remains to prove that 3$ (x) is dense in j/l(x) for each AT. The

proof is modelled on that of Lemma 2.5.6 of [10]B So let 0 =
(0, {w(/i)} ) GE <stfl(x) ', with u(n) as in equation (9), we have, by
definition,

6(u(n)}=w(n)u(n}. 12)

Equation (12) replaces Equation 2. 5. 7 of the proof of Lemma 2. 5. 6
of [10], and the our Lemma follows in exactly the same way as in
[10] — the hypothesis that the group be abelian in [10] is not used
except to reach equation 2. 5. 6. Q. E. D.

We may now apply the Gohomology Lemma, [16, Theorem 5. 5]
to $ and jtf\ and the ??z-cocycle ft ; we conclude the existence of a
Borel map x^X->ax=(6x, [wx (K) } ) e j/ 1 (x) , and inner automorphisms
Ad a(k),k(=tf, with

0y'Pk*mk*0;l'mt1 = Ad a(k)

for k: x->y in Jf ; since Pk = ̂ ka^k1^ this yields

0y'<xk*071 = Ad a(k)-mk 13)
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Since 3C is hyperfinite, we may assume <2£EZ^(JT?

Now, for arbitrary y = hk£=L(&, we have

fc-^-Ad a(k) *mk

y(K)*mh*Ad a(k)°mk

= Ad 0, (v (K) )wy(K) mh (a (&) ) • row,

so that for all r<E^, 6y°ar«0-l = mr mod Int(^).
We replace o:r by 6y°ar°6~l, and define

so that we have now

ahk = Adb(hk)°mhka 14)

A routine calculation shows that Ae Jf Hi (A) =6y(v(K)}wy(h) defines
an element of ZL(Jf, «T(^)) ; we already know that
defines an element of Zj,(Jf, <

Lemma 4 a48 W^zM notation as above -, <2;2rf g,h^<2i? and A;?

b(gk}msk(b(hl}} =<p(k,K)b(gkhl)

for some <p e Z1 (Jf ', Jf1) .

Proof* Since ar = Ad b(y)«mr on ^, we have

* fe*) wrt (6 (A/) ) - .: (gA, A/) 6 (gAAZ)

for some K^Z2(&9T). However, we also have

b(gk)mgk(b(hl))=b(g^mg(b(k)mk(b(h)mh(b(l)))), 15)

while

16)

Comparing equations (15) and (16) we see that ic(gk9hl) depends
only on the middle two variables, k and /z, so that

for some Borel function <p on (Jf X Jf ) fl ^ (2)» A routine calculation
using the fact that /ceZ2(^,T) shows that peZ^Jf ,.#). Q0 E8 D0
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We now recall that the model action m was constructed, at consid-

erable effort, so that <% (m) — Zl(tf, ^)e Thus we can choose automor-

phisms {6X} of & and unitaries {c(y)\ f^&] in & such that

r on ^,

0 c(gkhl), 1 7 > j

in Zi(^f, ^

in J-Jm \*% 9 w

Completion of Proof of Theorem 1. 2. With a as in equation (14)

and 0 and £ as in equation (17), we have

for r e^> r ( r )=J ;» J ( r )=^ witn g,h<^tf and A,/eJf where Z:*
and £:jy->£, and Y=gk9f' = hl, we have

- ^ (?> (*, A) i (rrO) p (M) * (rr 0 - *. (* (rr 0) ̂  (rr 0,
so that r^^wCKr))^^) faHs in Z3L(^, «T (^)), and a is cocycle conju-
gate to m as requiredo Q. E. De

§ 59 Applications

Our first application is to the existence of Cartan subalgebras? in

the sense of [7], which are invariant under the action of a group or

groupoid. If a is an action of an orbitally discrete measured groupoid

(&,v) on a factor 0*9 an ^-invariant Cartan subalgebra of & will

mean a Borel family {0X: #e^(0)} of Gartan subalgebras of & such

that ar(&,w)=&rw a.e. on ^0

Theorem 591. Let a be an action of a discrete amenable group G on

a semi finite injective von Neumann algebra Jt, or of an orbitally discrete

amenable measured groupoid (&,v) on a semifinite injective factor 0*. Then

a is concycle conjugate to an action which possesses an invariant Cartan

subalgebra.

Proof. Consider first the case of actions of groupoids. By Theorem

1.2, it suffices to show that each of the model actions constructed in
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§3 admits an Invariant Cartan subalgebra —in fact, we do not have

to worry about part "b" of the construction of the model either.

Note that each of the factors &H (§3, equation 33) has a Gartan

subalgebra S H=fl® II® D(2, C)n h, where D(2, C) CAf(2, C) is the
11 = 1 &£#

diagonal matrices. Clearly, 2%H is globally invariant under the shift

sh9h<=H, so that its image & ( H , N , A , f J i ) in & (H,N,A, $ =&HX\StflH

is again a Cartan subalgebra; further & (H9 N9 X, fj) is manifestly

invariant under the action of H defined in Lemma 3. 80 It is also

clear that if 0:(H,N,A,[Ji)\-*(H',N',A',iJi') is as in the discussion

following Lemma 30 8, the corresponding isomorphism /V & (H, N, A, //)

->3t(H',N'9Z',t*') maps 0 (//,#, J,//) to 0 (#', #',*', A*') • Thus if
0* = 3$ is the hyperfinite IIx-factor, and a has characteristic invariant

X=[^, fj(\9 the Cartan subalgebras & (Hx, Nx, 2X, ft*) are coherent under

the model action with the same invariants.

Clearly the reductions to the case 5=1, and subsequently to the

Ili-case, accomplished in observations 1) and 2) at the beginning of

the proof of Theorem 3. 1 permit the synthesis of a suitable family

of Cartan subalgebras for any model action of (^, i/).

In the case of actions of groups, we let (^, v) be the ancillary

groupoid with action a on ^; if [@x: x^&(01} is invariant under an
f ®action m of ( ^ ,v ) cocycle conjugate to a, then \ <Bfxdv(x) is a Cartan

subalgebra of L°°(X, v;@*} invariant under an action of G cocycle

conjugate to the given one. Q. E. D0

This result in turn has applications to the structure of group von

Neumann algebras of non-simple discrete amenable groups; the first

named author intends to present these elsewherea

Our second application is to the classification of coactions of

discrete amenable groups G on semifinite injective von Neumann

algebras J(\ for the notion of coaction, we refer the reader to [13],
whose notation we shall use.

Definition 5.2e Let 5l9 d2 be coactions of G on Jii and J£2

respectively.

a) di and d2 are conjugate if, for some isomorphism 6: ^/l

we have
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b) ^i and d2 are stably conjugate if ^ is conjugate to 52.
Here dj is the coaction defined in [13; Theorem 2.7] by

8jW = Ad (1® We) • W8)tf) • (^(8)0 (*)

for x^Jtj®&(L2(G)}. Note that 5y is conjugate to the second dual
coaction J/ by [13; Theorem 2.7], so that stable conjugacy may also
be interpreted in terms of QI and d2.

If d is a coaction of G on JP, we let d denote the dual action of
G on iJ'XgG, [13; Proposition 2. 4], The next result is then a special
case of [23; Proposition 2. l]a Since the result of Nakagami is
presented in the context of Kac algebras, we present the full proof
for the sake of the reader's convenience.

Theorem 5* 3. Let d1 and d2 be coactions of an arbitrary second

countable locally compact group G on von Neumann algebras J£\ and Jt2*

Then di is stably conjugate to dz if and only if $i is cocycle conjugate to o2.

Proof, Let^fy = ̂ Xa.G and suppose that di is conjugate to 32 via

an isomorphism <p: ./FiX^G-^J^X^G. Note that if #e./fiXa1G, then

3i(*)=*(g)l if and only if 32(<p (#)) =<p W(x)l. Thus by [13; Chapter
II, Theorem 1. 1], <p restricts to an isomorphism 6 of J^i^^TiX^G to Jf2.

Further, if p is the right regular representation of G on L2(G),
and we define u(r) for reG by the relation

then since

and

we see d2(u(r)) =u(r) (8)1, and

Applying 9 to the identity

we find
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since Ad (1(8)1 (8)^0")) =4.r on ^^^zXI^G, n-»w(r) is a 1-cocycle for

the action 4 of G on Jf2. Finally

^- Ad (l(g) 1(8)^(0) -p-^A

so that 0*^i i r*0~1 = Ad u(r)*82.r as required.
Conversely, if 0: Jf\-*Jft is an isomorphism with

B\r 6~l = Ad M(r)-4.r

for some 4~cocycle {M(r)}5 we may suppose that 0 is implemented by
a unitary U:^i~>^2 (where Jij acts on §,-), and define F: jL2(G? $1)
^»L2(G?£2) by

A routine calculation shows that V implements an isomorphism of

e/^XI^G with JT2^2G with (Ad F(8)04=4°Ad F5 so dl is stably

conjugate to d2. Q. E0 D0

We now turn to the question of conjugacy of coactions. Recall
that if d is a coaction of G on Jt, and if p^Ji is a ^-invariant
projection, then dp: x^pJtp^-*d(x) ^.pJtp§§3% (G) is again a coaction.

Lemma 5* 4» Suppose d is a coaction of the discrete group G on Jt^
and p = l®e, where e^£?(L2(G)) is the projection on the subspace spanned
by the characteristic function of the identity. Then p is d-invariant and dp

is conjugate to d.

Proof. The invariance p under 8 is a special case of Equation
2.23 of [13, Chapter I], To establish the conjugacy, define Q\Jt->

by 0(*)=*(8>*; note that for a^Jl, rGEG and

(s, 0

Thus for x^Jt we have

«P(»W) =Ad(l(g)^G) -07(8)0 (^W(8)^)
- (^(8)a) (3 (A:) (8)*) = (0(8)0 -d(*)

and ^ is conjugate to ^. Q. E0 Da
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Theorem 5» 5. Let d^ d2 be coactions of a discrete group G on Ji\^
and J£2 respectively ', and let pj^^j^)^'(L2(G}') be the projections of
Lemma 5.4. Suppose <p: Jl<$)& (Z2(G)) H^2(x)J^(L2(G)) is an isomor-
phism with ($000 • 81=82 *<p. Then di and d2 are conjugate if and only if

9(pi)=6(p2) for some 0^Aut(^2^)^(L2(G))) commuting with 82.

Proof* The necessity is clear.
Conversely, suppose such a 6 exists; if ~ denotes conjugacy, we

have 51~5li#i~52i9,(j1)~52fl_1 =S2iPz~d29 using Lemma 5.4 and the fact

that (0®0 -82=82® 6. Q. E8 D.

Note that by [20], ^XIsG is injective whenever Jl is, so that
using Theorems 5. 3 and 5. 5, the invariants of §1 become available
to distinguish stable conjugacy and conjugacy classes of coactions of
discrete amenable groups as soon as the crossed products ^XlsG are
known to be semifinite. But the discreteness of G yields a simple
characterization for the semifiniteness of ^XIsG: the semifiniteness
of ,/^XidG is equivalent to that of the fixed point algebra Ji8

a By
duality, except for the obvious restrictions, all characteristic invariants
as well as modules can occur as invariants of coaction»

The following examples provide us further constructions of coac-
tions.

Examples 58 6» Let H, G be locally compact second countable
topological groups, and let <p\ H^>G be a continuous homomorphism
with kernel K, and let w<=Z2(H, T). If 9t»(H) is the von Neumann
algebra of the right regular projective ^-representation /offl of //, so for
that for f6EL2(G),

then we can obtain a coaction d=d(<p,Q)) of G on ^(H) via

«00=W7(*01)W^ x^^(H),

where W9 is the unitary on L2(HxG) defined by

Note that d(p(0(h')) =p"(h) 0/o(^(A))5 so that the generators of 9k* (H)
X5Gare given by p*(K) ®p(y(h^ for h^H and 1 0M/ for /<= L°° (G) ,
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where Mf is the operator of multiplication by / on L2 (G) . Note that
these are precisely the generators of the twisted crossed product
L°° (G) XI 9, a,//, where H acts on G through <p via right translation, so
that by varying H, G, <p and o) one can obtain any desired type for
&*(H)y4i/G. Also, the dual automorphism group 8r is given by dr =
Ad(l(X)/l(V)), /I denoting the left regular representation of G.

We assume from this point on that H and G are discrete, H=K><\SG,
and Q) is lifted from a cocycle, also denoted by ^, on G0 The
unitary U on Z,2(G;L2(//)) given by

(C/6) (j) = ^(A,)£W, f eL2(G;L2(//)),

carries &°(H)>4JG to p"(K)*®&(L2(G'))9 and the dual automorphism
group to reGHAd^CArXgJ^OO ; here r(=G\->hr<=H is the inclusion
of G in //, and /^(Y) is the projective left regular representation of
G i.e.

Recall that ^(r)^(j) =co(r, j)"^(rj) ; also, since o> is lifted from G,

If K is abelian, the restriction of the dual automorphism group to
the centre of ^(/^XbG is realized by the transpose to K of the
given action of G on K, so that for #eJt, the groups NX = HX of §1
are given by

Nx = the stabilizer in G of x^&°,

since the corresponding automorphism of J*?(L2(G)) is implemented by
^, we obtain

P* (r » -0 = ̂  (r* *) ~l on ^ x ^V*-

In this case, since

V (r) ̂  (r V) ̂  (r) * = 01 (r , r~V) -^ ( j, r) ̂  ( j) ,

the "^" part of the characteristic invariant is given by

on

Thus if K is also finite, coactions d(a)i) and ^(^2) arising from
different cocycles MI and o>2 on ^ are stably conjugate if and only
if o)i is cohomologous to w2, since Ni = G', the case where /f is
trivial was analyzed in [11] from a somewhat different perspective.
However, if K is infinite this no longer need be the case since it may
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happen that all isotropy groups except that at the identity character
are trivial.

We turn now to the other extreme, where K is an infinite conjugacy
class, or I. C. C. discrete group. In this case 3% (K) is a factor ; the
following result, generalizing [1; Theorem 5. 1], guarantees that the
dual automorphisms $r are outer except for the obvious cases i. e.
when r itself acts as an inner automorphism of K.

Proposition 5. 7. Let K be a locally compact separable group such
that 3% (K) is a factor, let a be an automorphism of K, and a the

corresponding automorphism of 3$ (K) . Then a is inner if and only if a is
inner,

Proof. Note that if j8eAut(^(JQ), then £ arises from an auto-
morphism of K if and only if d « ^3 — (/3(x)/3) • d. So if a — Ad u with

Me#(JQ, we have

d • Adu = Ad(u(x)u) *d

and hence

Ad Wi(u®l)=\d(u®u)Wt on dl(K)®C.

But then

for some

and hence

d(u)=t

But 3(M)e^CK)(gj^(JO, and u®u^&(K)®&(K), so that
as M(K) is a factor;

in addition, both d(u) and u®u are invariant under the symmetry 0-,
so that t is a scalar. But then

d(tu) = t

so that tu = p(r) for some r<=K, by [18]. Q. E. D.

We note that even if ^ (-ff) is not a factor, the proof above shows
that d (M)=f (M(g)M) with t <= % (K) ® % (K) , when ^f(#) denotes the
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centre of Si (K) . It also follows that the actions of H on & (K)
determined by arbitrary extensions of the form:

have trivial characteristic invariants whenever K is I. G. C,— this does
not occur for general discrete groups K as is seen by easy examples.

Returning to the situation of semidirect products A"X1SG and cocy-
cles (o(=Z2(G,T), we see that the coactions of G on St(K) deter-
mined by actions $1 and s^ and cocycles (Oi and o)2, are stably
conjugate if and only if

Ni = N2 and wi\NiXNi is cohomologous to co2\N2xN2,

where

Nj={T(=G: j,-(r)eAut(JQ is inner}.
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