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Self-similar Sets as Tarski's Fixed Points

By

Susumu HAYASHI*

J. E. Hutchinson [4] and M. Hata [2] investigated some self-similar fractals
as the unique non-empty compact solution X of the equation

(A) K=F1(X)\J'"^jFn(X)9

where each Ft is a contraction of Rp. They showed the solution is the unique
fixed point of a contraction of the complete metric space of non-empty compact
sets of Rp. In this note, we will show that the solution may be thought as
Tarski's fixed point of a continuous function of a complete ordered set.

Definition L A complete partial order, CPO in short, is a partial order
(D, c=) such that (i) D has the bottom element JL, and (ii) every directed set X
has the sup UX (cf. [1]). A function of CPO is said continuous, if and only
if it preserves the sup of every directed set, i.e. Uf(X}=f({jX}. Note that
continuous functions preserve the order.

Theorem 1 (Tarski's fixed point theorem). // / is a continuous endomorphism
of a CPO, then U/ n ( J_) is the least fixed point of f.

Let 5 be a compact Hausdorff space. Set

D={K^S\K^<f>, K is closed],

a^b if and only if b^a (a,

Then (D, !=) is a CPO with the bottom S, since every directed set in D has a
non-empty intersection. Note that a topological space is compact if and only if
its partially ordered set of non-empty closed sets (D, E) is a CPO. Any subset
of D, say X, has the inf Y\X, which is the closure of \JX. Besides, fljfl ••• fl an

is a continuous n-ary function, i. e. continuous with respect to each argument at.
We will call this kind of CPO a spatial CPO.

On the other hand, D is a compact Hausdorff space with the finite topology
[6], which is generated by bases of the form
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with open sets Ui, ••• , Un of S. So we have two kinds of continuity of the
functions of D. To distinguish them, we introduce the following terminologies.

Definition 2, An endomorphism / of D is said T -continuous, if and only if
/ is continuous in the sense of the finite topology. On the other hand, / is
said O -continuous, if and only if / is continuous in the sense of CPO.

Lemma 1. Every directed set X in D converges to U X in the sense of the finite
topology.

Proof. Let X be a directed set in D. Then X defines a net in the topolog-
ical space D of the finite topology. Since the space S is compact, this net con-
verges to the point \_\X. D

Corollary 1. // / : D— >D is order-preserving and T-continuous, then it is 0-
continuous.

Remark 1. Note that the converse does not hold. The following function
is 0-continuous, but it is not T-continuous, when a is an accumulation point :

S

{a} Otherwise.

We will give another example, later.

Assume F is a continuous endomorphism of a compact Hausdorff space S.
Let F* be the endomorphism of D defined by F*(X)=F(X). Then F* is T-
continuous.

Theorem 2, Let Flf ••• , F2 be continuous endomorphisms of S. Then the
following equation has the greatest solution.

Besides, the solution X is non-empty and compact.

Proof. Since S is compact, Fl(X)=Fl(X). So it is sufficient to find the least
fixed point of the following continuous endomorphism of D :

By Theorem 1, such a fixed point exists. D

By virtue of the above general argument, we can realize self -similar sets of
[2], [4] as Tar ski's fixed points. Let Flf ••• , Fn be contractions of Rp. Let
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the Lipschitz constant Lip(Fl) be Alt px be the fixed point of Flf and dl be
d( f l i , aj. Since 0^^<1, there exists s>0 such that

Let S be the closed ball B(alt s). Then Ft(S)^=S. (This argument is due to
[10].) Hence, the self -similar sets of [2], [4], each of which is the unique
solution of the equation of the form (A), are Tarski's fixed points in the CPO
of non-empty compact sets of S. Let F(X) be the right-hand side of the equa-
tion (A). Note that the solution is the intersection of the decreasing sequence
of sets

In another word, the solution is the limit set approximated by these from outside.
Since any approximation does not shadow the other approximations, we can see
the dynamic process creating a self -similar set in a static figure. We disply such
figures in figuer 1-4. All of those are fractals of M. Hata [2] except the Koch
curve (fig. 1). Each of them is the solution of the equation of the form (A).

The contractions of the equations of Hata's fractals are as follows :

figure 2. F0(z)=(l/2+V~3/6i)z,

figure 3. F0(z)=(l+/)z/2,

figure 4. F0(z)=2-1/3e(xl3nz, Fl(z)=(z+l)/2,

where z is a complex number. The numbers under each figure indicate the dis-
played approximations. The first approximation is the ball 5(0, 1) except the
fractal of figure 3, whose first approximation is 5(0, 1.2). Those figures were
drawn by programs written by Takashi Sakuragawa.

Hata [2] pointed out that the following equation has the greatest non-empty
compact solution, although it is not of the form of (A).

(B ) X=fl(XnA1)Vfz(X<^A2) .

where /li=[0, a], A1 = [_a, 1]. /As) ^l+6(s — a), and J\(s)=b(s — a) with the
conditions 0<f l<l , 0<6<1. Let g(x) be the right hand side of (B). Then g(x)
is not T-continuous, but it is 0-continuous. So the existence of the greatest
solution follows from Theorem 1. This gives an example of the lattice theoretic
approach which cannot be captured by the metric space approach. We gave an
0-continuous function which is not T-continuous in Remark 1. But this example
is much more interesting than the example of Remark 1, since the above equa-
tion originates in a study of a discreate dynamical system (cf. [2]). Note that
the specific definition of flf fz of (B) is not relevant to the existence of the
greatest solution. In fact, we can show the following theorem (cf. Theorem 3.6
of [2]).
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Figure 1. Approximations^!, 2, 3, 4, 6

Figure 2. Approximations^!, 2, 3, 4, 6, 8, 13

Theorem 3. Let S be a compact Hausdorff space, and let Alf ••• , An be a non-

empty compact covering of S. Assume Fl is a continuous function from At to S

for each i=l, ••• , n. Then the equation

has the greatest non-empty compact solution.
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FigurelS. Approximations = 1, 2, 3, 4, 6, 8, 15

Figuer 4. Approximations=1, 2, 3, 4, 6, 8, 15

Another example of a fractal as Tarski's fixed point is the set/(a) associated
with the mapping $a(z}-=-zn — a (n=2, 3 • • • ) , where z and a are complex numbers
(cf. Chapter 19 of [5]). The fractal set ](a] is defined as the set of points z
such that limzn^oo, where z^—z and zn+\=<l>a(zn\ It is easily checked that J(a)
is represented as LJ/n(J_), where J_ is the closed ball 5(0, a-f 1) and / is the
O-continuous function defined as f(X}=cf)~l(X). Note that J(a) is also an example
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of the fixed point of Theorem 3. Sakuragawa noted the following facts. Define
_L and F by

F(u, r) =

where u and v are complex numbers. Let M be U/ r a ( JL) , where f=F~1. Then
the section ( u \ ( u , a)^M} is /(a) (a^2), the section {a|(0, a)eM} is Mandelbrot
set (the bottom of Plate 188 of [5]), and MnCx[-l/4, 2] is Mandelbrot's
"draped sculpture" of Plate 187 of [5].

Soto-Andrade & Varela [9] suggested a relation between Tarski's fixed points
and fractals. But. their arguments are unclear and unsatisfactory. Besides, our
CPO seems to be much more universal and natural than the CPO suggested by
them. They pointed out that Koch curve could be derived by a diagonal argu-
ment, if their space of rectangles was embedded in a reflexive domain. This holds
in our case, since any CPO is a retraction of a reflexive CPO by Scott's D^-
construction (cf. [1], [7], [8]). Hence any self-similar sets of [2], [4] can be
derived by Curry's paradoxical combinator (cf. [1], [7]). This observation
may appeal to some readers, although we do not know any specific implications
from it.

So far we have not considered the uniqueness of the solution of (A), although
Hutchinson [4] and Hata [2], [3] have investigated it. In their setting, each
Ft is a contraction of a metric space, so the uniqueness is an easy consequence.
On the other hand, the spaces in our setting are compact Hausdorff space, which
are not always metorizable, and each Fl is any continuous functions. So we need
extra conditions for the uniqueness of solutions. We will give such a condition,
generalizing Hutchinson' s argument (cf. [4, 3.1]). Let [n] be the set {1, ••• , n] ,
let W be the set of finite sequences from [n], and C be the Cantor space [_n~]N •
Assume (D, [=) is a CPO and f l f - " , f n are O-continuous endomorphisms of D.
Set /(*)=/i(*)n ••• f l /nU) . Let k be any fixed point of /. Then set

Then k = f] {kw\w^W, \w\=n] for each n^N. Hence we can set

where a(ri) is the finite sequence a(l), ••• , a(n). Since _L is the least element,
we can define J_ t t , similarly. If the conditions

(C.I) _L« is maximal,

(C.2) k = [ ] k a ,

hold, then k is uniquely determined as n _ L « . Note that (C.2) holds for any
spatial CPO by a purely set-theoretic reason. On the other hand, if flf •- , fu

are induced from contractions of a metric space, then J_ a consists solely a point,
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for the diameter of _La ( r i ) decreases. Then the condition (C.I) holds, since a
point is a maximal element in a spatial CPO. This generalizes the uniqueness
result in [2], [4].

Remark 2. Hata [3] considers inhomogeneous equation of the form x=F(x)\Jv
and showed the solution is unique if the homogeneous equation x=F(x) has a
unique solution, under a condition on F. The result remains valid in our setting.
The equation x=f(x)r\v in a spatial CPO has a unique solution, if the equation
x — f ( x ) has a unique solution, whenever / is 0-continuous. Note that Hata's
solution of the inhomogeneous equation, RF=the closure of \jFn(v], is the greatest
solution r\Fn(v) from our viewpoint.

Remark 3. The solution K of (A) is also characterized as the closure of the
set of fixed points of compositions of contractions F^* ••• °Fin (cf. [4], [10]).
This holds for any continuous endomorphisms Flf ••• , Fn of a compact Hausdorff
space with the property (C.I), since the mapping a*->l_a is continuous in the
sense of the finite topology.
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authors of "A COMPENDIUM OF CONTINUOUS LATTICES, G. Gierz. et.
al., Springer-Verlag, Berlin, 1980". They consider the open-set lattice of a
locally compact space, say 0(X) for a locally compact space X, instead of
closed sets (see Chapter I, 1.7, (5) in the Compendium). Our CPO is equi-
valent to 0(X)—{X}, and Proposition 1.4 of Chapter I says that 0 ( X ) - { X ]
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