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§1. Introduction

In this paper we calculate the squaring operations in the 4-
connective fibre spaces over the classifying spaces of the exceptional
Lie groups.

Let G be a compact, I-connected and simple Lie group. As is
well known, its classifying space BG is 3-connected and H*(BG; Z)
=Z. Choose a generator y,& H*(BG;Z). Then the 4-connective fibre
space BG over BG is, by definition, the homotopy fibre of y,: BG—
K(Z,4). Note that BG is a classifying space of G, the 3-connective
fibre space over G. Here we quote the results in [2] and [4].
Define the sets J, (1=2,4,6,7,8) as follows:

J:=1{9,10,12,2°+1G=H}, J.=/.U (16,24},

Js=110,12,16,18, 24, 33, 34, 2:4-1(i1>6)},
J=1{ 12,16, 20,24,28, 33, 34, 36, 2'4+13>6)},
Je={ 16, 24, 28, 30, 31, 33, 34, 36, 40, 48,2° +1 (1 >6)}.

Theorem 1.1. Let G be one of G, F, and E, (1=6,7,8). Then
H*(BG;Fz) :Fz[)’j;iejz] (I=rank G, deg yj:j)

where the generators can be taken so as to satisfy the following equalities
whenever the suffixes in both sides appear in J:
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89" ys= 105 S¢* Y= 1 $¢*y10= Y1, SL Y= Y’}

(1. SG° y16= D2 ST* y2u= Y25, SG* Y= Y, S¢ Y= ya;
S' y5= Y31, ST Y= Y3 ST Y%= Juos SG° Y= Yus;
quyz"ﬂ:-yz"“ﬂ'

For the most part squaring operations on the y; are determined
from the data (1.1) by use of the Adem relations, but some remain
undetermined. Our objective is to determine them completely.

In §2 we introduce a space BT and a map 1:BT—BG, where the
induced homomorphism 1* is almost injective. In §§3 and 4 we
investigate the action of the Weyl group W(G) of G on BT, and the
Z*(p;) are determined. And in the final section we give the complete
list of quiyj and the correspondence of the generators between
different groups.

Throughout this paper H*( ) denotes the mod 2 cohomology ring,
and p:H*( ;A)—H*( ) denotes the mod 2 reduction for 4=2Z or
Z . 0:(%1,...,%,) denotes the i-th elementary symmetric polynomial

in the x;

§2. Cohomology of BT and BC

In this and the following two sections G denotes the compact 1-
connected exceptional Lie group of type E, ({=6,7,8), and T a
maximal torus of G. The Dynkin diagram of G is

a, o, a, as a,
o o [e] oo e o)
|
oz

where the «; are the simple roots. Define a 1-dimensional torus 7%
by the equations a;=0 (i#2), and let CCG be the centralizer of 7™
Note that (see [1], for example)

2.1 C=T"-SU().

The inclusions T7CCCG induce maps ¢: BT—BC, #:BC—BG and
A=rot: BT—-BG. Then the space BT (resp. BC) is, by definition, the
homotopy fibre of y,0A:BT—K(Z,4) (resp. y,ok:BC—K(Z,4)). The
maps ¢, # and 2 induce maps 7:BT—BC, #: BC—BG and i=Fko%7:BT
—BG, which make the following diagrams commutative:
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C/T——BT—BC G/T——BT—BG

T T

2.2) C/T——>BT—>BC G/T—BT—-5G
Lk | S S

where rows and columns are fiberings. From the first diagram we
have

Lemma 2.1. ¢ and 7 induce monomorphisms in H*( ;A) for any A.

In fact, H*(C/T;4)=0 by (2.1) and H**(BT;A4) =0, whence
the Serre spectral sequence collapses for the lower row. Then * is
onto, hence so is 7*, and the spectral sequence collapses for the upper
row.

From now on by use of ¢* (resp.*) we regard H*(BC;A) (resp.
H*(BC;4)) as a subalgebra of H*(BT;A) (resp. H*(BT;A)).

Recall that the fundamental weights w; (=1,2,...,]) form a
basis of H%(BT;Z). For convenience of calculation we introduce ¢,
¢t and ¢;€ H*(BT;Z) in the following way. Let R; be the reflection
in the plane a;=0. After [5] and [3] we define

bh=w, =R (i), L=Ri()

Cj:()'j(tlyo--’tl) and t:%(;l:wz'

Then each R; (:1#2) acts on {{;} as a transposition, and

t—b+t; (J<3)
(2. 3) Rg(tj) = . (b1:t1+t2+t3)‘
t (j=4)

Since the Weyl group W(G) (resp. W(C)) is generated by {R;}
(resp. {R;; 1#2}), we have from the data above that
HYBT;Z)" 9 =Z-(c,—4tY),

H* (BT’Z) W(C)zz[t; C25C35 200y cl]"

Note that the Weyl group W (X) acts trivially on the image of
H*(BX;Z)—H*(BT;Z), and that H*(X/T;Z) is torsion free by the
classical result of Bott. Consider the Poincaré polynomial of H*(BG;
Z), which is obtained from (2.1). Then we have

(2.4

Theorem 2.2. (1) *y,= =+ (c,—42?).
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(i) H*(BC;Z)=2Z[t,cyc3 ... 611 by means of *.
Now consider the fiberings derived from the columns in (2.2):

R

(2.5) BT —— BC —-> BG (I=Fo?)
g g g
Br —» BC —— BG (A=kor)

where the cohomology of the common fibre is given by

HAK(Z,9) = Filuy, 3> 11(deg 1,2, Sg¥u,, =ugon,.

By the definition of BT the fundamental class u; transgresses to
0(A*y) =p(cy), by (i) of Theorem 2.2. To avoid complexity we will
omit the symbol p except in the case of emphasis. Then

Lemma 2.3. (i) The transgression t is given by
T (us) =¢p T (us) =03, 7(ug) =ct, 7(ur) =co

and t(u; )=0 (i>5) modulo the images in lower dimensions,

241
where ci=cs+c,1, and cy=cet1+ oo’ e

(i) The sequence (cycsce,ce) is regular in both H*(BC) and
H*(BT).

Proof. (i) This follows from the Wu formula and the commuta-
tivity of the transgression with Sg'.

(i) Clearly the sequence is regular in H*(BC). Then its
regularity in H*(BT) follows from the fact that H*(BT) is a free
H*(BC)-module.

To simplify notation we will omit the symbol g* in g*x for
x€H*(BT;A). Define J'={2*+1; k>5}. Then the main theorem
in this section is stated as follows:

Theorem 2.4. There exist y,€ H*(BC) c H*(BT) (1=3,5,9,17)
and v;e H (BC) c HI(BT) (j&]') such that

H* (Bé) :FZ[CI’ Cayeeey3Cpy T3y T5y T9’ T177 Uj;je‘],]/(()z, C3y Cé, 65’)) )
H* (BT) :FZ[tly tz: s o0y tl, 73’ TS, 799 717’ Z)_i ;jEJ,]/<CZ, C3y C;r C;)
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where the generators are related by
SQZi_ZTi=Tzi—1 (1=3,5,9) and qu—lvj:UZj—l (JEJl)

Proof. Consider the Serre spectral sequence for the middle column
in (2.5). By (i) of Lemma 2.3 there exist nEHG(Bé) and 0;,E
H®(BC) such that f¥r;=u? and f*oy=uy Define 7y4.,=5S¢%71, (=
2,4,8) and u0,;,=8¢"%; (j€]J), so that ffr,=u? (1=3,5,9,17) and
Sffo;=u; (J€J'). Then by (ii) of the lemma we have

H*(BC) =H*(BC) / (¢ ¢3, 3y ¢c8) QF3[ 15,053 1=3,5,9,17, j€J']

and the same with C replaced by 7.

§3. The Action of the Weyl Group on H*(BT)

Recall that y,c2=2*y, is W(G)-invariant. Thus the action of
W(G) on BT lifts to BT in such a way that

(3.1)  the canonical map g:BT—BT is equivariant, and
(3.2)  W(X) acts trivially on the image of H*(BX;4)—>H*(BT;4)
where X=C or G.

By (3.1) the action of W(G) on {} in H*(BT) is the same as
that in H*(BT). In order to determine the action on f{r;} we
consider the cohomology with coefficients Z .

By Theorem 2.4 H*(BC;Z,) is torsion free for *<32. Thus we
can define g;€ H*(BC;Z ) cH*(BT;Z») (i=3,5,9) by

283=c3, 2g5=c5=c5Fcsc; and 2g,=cy= 001+ c76>+ o6

since p(c3) =p(cs) =p(cs) =0. As a corollary to 2.2 in [3]
Lemma 3.1. g5 is not divisible by 2.

Therefore f*: H*(BT) —H*(K(Z,3)) sends p(g) to uf, and so we
may take 7;=p(g;) in Theorem 2.4.

Now we shall determine the action of W(G) on {p(c)}, {e(gp}
and {r}. Each R; (i#2) acts trivially on them by (3.2) with
X=C. Our objective in this section is to determine the action of R,
From now on we will exclusively use the notations

R=R, and R=R-1.
Deﬁne bi:(ri(tl, tz, t3) a.nd a,-:()',-(t4, t5,. .o !tl) EHZI(BT;Z), SO that



1304 AKIRA KONO AND KIMINAO ISHITOYA
(3.3) =3 ba;
itj=n

By (2.3) R(a;) =a; for any j, and
TR () =R(3b) =R(L(A+8)) =L +R (1))
=i=1§11(1+t—b1+ti)=Z(1+t—b1)3"'b,-.

Substituting ¢, =3¢, ¢,=4¢ ¢;=2g; and ¢s=2g5—c,c, into (3.3), the b;
and a; are expressed in terms of g;, g5, a; (1<j<4) and ¢. Then so
are the R()):

R(b) =—a,, R(by) =a and R(b;) =—asm+a® mod (4,20),

and so are the R(c,) =Y.R(b,)a,;. For instance, R(cs) =2a,a,+2a;
mod (4, 2¢), which implies R(g;) =aa,+a,> mod (2,¢) since H*(BT; Z »)
is torsion free. In other words, in H* (BT)

(3.4 R(o(g)) =p(ay) p(a) +p(a)® mod (8).

Similar calculations give R(p(g;)) mod(#) for j=5 and 9. On the
other hand, since 73.:=35¢%7;,1 and R commutes with S¢’, R(y;) (J=
5,9,17) are derived from (3.4) by use of the Wu formula.

The results are given in the following table, where for simplicity
the symbol o is omitted again, and the a; (i1>1) is abbreviated as i;

e.g., 3212 is the abbreviation of asaa,® (0 denotes not a, but the
null) :

x x mod (f) R(x) mod (¢)
4] 0 b 1

€4 44224212414 31+14

Cs 424324214 3214214

¢y 43+421+ 3217+ 31*+221°4-21° | 421 +31*4-21°
Cg 431 +41°+ 3212432134+ 315+ 21° | 4212+414+ 321°4+31°422144-21°

73=&3 &3 21 +13
& gs g12+41+213
2 ) 8531 +2,(321 +21%) + 415+ 3221 + 3221243214+ 221°
7s Ts 3124+2% + 213+ 15
79 7o 32144241 +2215+1°
T17 T17 3%184-3221°+ 32318+ 322110+ 28] +
241942311 4 117 |
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Remark 3. 2. The disappearance of 5 (=a;) from the table results
from the relation 5=41+312+21° mod (¢), which implies 41=31*+21°
mod(?) for [=6, 7 and 312°=21° mod (¢) for [=6, since i (=a;=
o;(ty...,t)) vanishes if i>[—3.

§4. Invariants of the Weyl Group and the Image of *

By (3.2) with X=G and (2.5), we see that
(4.1) Im 7*c H*(BC)®*=H*(BC) ~Ker R.

The case of 1=8. In this case it is easily seen that

Lemma 4.1, In H*(BT)/(t) the monomials in vi and a; (1=3,5,
9,17; j=1,2,3,4) are linearly independent over IF,.

Consider the map H*(BC)—»>H*(BT)/(t) induced by R. Using
the table in the previous section we have

Lemma 4.2. H"(BC)®=0 for 0<n<16.

Since R (Sq%;) =S¢°R(13) =S¢*(a01+ a;®) =asa1+a,*=R(¢,) by the Wu
formula, we see that S¢%s;=c¢, by the previous lemma, which is suffi-
cient to make the following table by use of the Adem relations:

73 s IE] T17 ’

| |
Sq* !l C4 75 75 7o «
Sat ’ Cr=CrCeCr)
(4. 2) q s Cq E) 0
Sqt 0 79 €166 0
Sq's 0 0 717 ¢, cresd (For Sq%yy, see 5.6)

Remark 4.3. In the similar way we have the following relations:
Ts=gs+git’ i,
79:g9+g5(€4+t4) +g3(cs+od? +1°) +e® +elt 4o’
Now define polynomials I,e H*(BC) (k=8, 12, 14, 15, 17, 18, 20,
24) as follows:
Iy =cgt+cecl+ el +cpet+cf
Ly =8q s =csc,+c+cocicr +cle et

Q4T 2, 2.2
Ly =8q" 1, =cyt6+c7 +csc’ +coc i+ cocr®
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Lis=8q* 1y =cscr+creee? + creie1* + c6®
Iy=rn+rels+1slie+ i+ crest,
Ils:qull7=7’92+Tszls+7‘32]12+7’3[15+114c4+ ¢y

120=Sq4]18=7’54+ 75115_'_T3418+T32114+11456+112542+€"7266
124=Sq8120:TSIIS+7'52[14+7’34[12_'_738+Il45664+112062+18544_,_ C7CeCy »

Then the main results in this section are stated as follows:

Theorem 4.4. For E; we have
G) H*BOR=F,[I,, vs; k=8,12,14,15,17]1 for *<34.
I, (j=16,24,28, 30, 34, 36, 40, 48)
() *(O)={v; (G=2'+1 with i>5)
0 (=3D
Proof. Denote by T*(m) (resp. C*(m)) the subalgebra of H* (BT)
generated by f;,...,%s (resp. ¢1,...,¢s) and the y; with j<m. From
the table in the previous section follow
(4.3) R(C*(m)) cT*(m) and R(y;) €T*(0).

First we shall show H"(BC)RC F,[1;,v5; k=8,12,14,15,17] induc-
tively on n. By Lemma 4.2 this holds for n<{16.
Let x& H¥(BC)® and write it in the form

x=yspat1i0 1295+ 95 (p:EC(3), ¢;€C%(0)).

Applying R on both sides, we see, in view of the formula R(XY)
=XR(Y)+R(X)R(Y) and (4.3), that 0=y;R(ps) mod 7*(3). This
implies R(ps) =0, whence p;=0 since H*(BC)®=0. Then

0=7R(g») +7:R(gs) mod T%*(0)

which implies R(g;) =0, whence ¢;=0 since H*(BC)E=0 (1=2,5).
Thus x€C®*(0), and after some calculations we see that x=al; (a<
F,) using Lemma 4. 1.

Continuing this procedure yields the inclusion mentioned above
for n<34.

Next consider the Serre spectral sequence for the fibering Ey/T—

BTi>BE8. According to Bott the odd dimensional part of H*(FEy/T)
vanishes, and by Theorem 1.1 so dose that of H*(BE;) for *<30.
Therefore for p<30 we have EP°=E%’ which implies that 7*:
H*»(BEy) —H?(BT) is a monomorphism. In particular 1*(y;) and
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7% (93) do not vanish. Then the theorem follows from (4. 1) and (1. 1).

Next we consider the case of /=6 and 7. As is well known, there
is a sequence of inclusions E;CE;CE, We may assume that the
maximal tori 7% of E, ([=6,7,8) are chosen so that T°CT'CT®:
The inclusions induce maps ¢,;: BT '->BT' (BE,_,—~BE,) and &;:
BT''->BT' (BE,.,—~BE,) (I=7,8) such that

(4.4) Gof=f, ercg=gep and  §eA=1¢.

We may assume, in addition, that the systems of the simple roots
{a;; i=1,2,...,0} are chosen so that a;|T"'=a; (<), =0 @=D).
Then the corresponding systems of the fundamental weights are in the
similar relation, from which and the commutativity (4. 4) it follows that

@i (c) =c; (<D, =0 (G=0D; @I'(y)=r: and & (v;) =v;

for each /. Moreover, we have the following:

Lemma 4.5. @} (yi) =y and &} (ys) =y for each L.

Proof. Consider the Serre spectral sequence for the fibering E,/E,
—>BE,_1—>BE,, where the cohomology of the fibre is given by
H* (Ey/Ey) :A<x12a X230 X245 X295 X30) 5 H* (E;/Eg) :A(xm: X1gy Xo1) «
It follows that E4°=E%° (p=16,33), which implies &} (y,) #0,

and the lemma follows since dim H?(BE,_,) =1.

The case of |=7. Here the relation aa; =asa’+a,a,> mod (¢) (see
3.2) yields an invariant in dimension 12. To be precise, we have

Lemma 4.6. HZ(BC)RCF,- (yi+cel+cd).
Define polynomials I;€ H*(BC) (k=6,8,10,12,14,17,18) by
Ii=y2+cel 4, Lo=S8qli=71+ cscr*+cilel’+¢,;
and Ii=¢:(I) (j=8,12,14,17,18).
Then Theorem 4.4 together with 4.5, 4.6 and (1.1) implies:
Corollary 4.7. For E; we have

) I, (j=12,16,20,24,28, 34, 36)
Z*( )_: i/ J
PP, (=241 with i>5)

The case of 1=6. Here the relation aa’=aa,® mod (¢) vyields
H®(BC)RC Fy+ (75-+cie1+¢°). Define polynomials Iy H*(BC) (k=5,6,
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8,9,12,17) by

Is=pstcer o, I =8¢ =r+clei e’

and =@ ) (j=6,8,12,17).

Corollary 4.8. For E; we have

o) — Iy (G=10,12,16, 18,24, 34)
PP 0, (=241 with i>5)

§5. Squaring Operations on the y;

Now we are ready to compute Sg¢’y; First we shall consider to
what extent they are decidable by use of the Adem relations and the

algebra structure of H*(BG). We use the Adem relations not only
in the usual form but in the following forms:

-1 Y S 3 N
(5.1)  for a>2b, Sq°Sq®=Sq?Sq+ 2(“ Y J)Sq"*”"Sq’;
i=0 —<]
(5.2) for r=1 and 271, Sg¥"++7=8q" Sg¥ k2"

m—2 . .
+ Zqumk+r—-27Sq21; etc.
j=0

Lemma 5.1. For G=E,,

1D S¢ =214 (1=8,12,14,15), =y (i=16) and =0 otherwise.
(i) 5916)’24: Va6

Progf. (i) This follows from (1.1), (5.2) and the structure of
H*(BEy).

(i) We may put S916}’24:5})40+5,}24y16 (5,¢’EF,). Applying S¢®
we have Sg%yyx+ yi=eyste (h+ (S¢°ru) yi).  But Sg%p;=35¢"5q" s
= (S¢=Sq° +5925¢%) y1s=0 and  Sg®y,=S5¢°5¢% y1s= (Sq™Sq*+ Sqg*Sq*+
S¢°Sq") y15=0 both by (i), which imply ¢=0 and ¢'=1.

Lemma 5.2. For G=E,

1 Sq"y33=y34 =1), =0 (1=2,4,8), = Va3 )16 (z=16), = Jes (1=32).
(ii) Sqls_%s:,J’40J)z4+}’35)’23‘{‘}’34_))30"“)33)’31-

Proof. (i) From (1.1) and the structure of H*(BE,) follow all

but the case of i=16. We may put S¢*yu=cysuy; EEF,). Apply
S¢* and use S¢'Sg*=S5¢%5¢"+S5¢"S¢* from (5.2). Then S¢*yy
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eyuyi. Applying ¥, which is injective at dimension 50, we see that
e=1 since S¢*I;,=1;I; holds.

(i1) Since SqIy,=1Iynlyp+Iely+1ls and the kernel of 7I*:H®
(BE) —>H*(BT® is spanned by p;ys, we may put Sg%pg= yuyu+t
VsVt Yuynt0ruyn OEF,). Apply S¢' and use S¢2S¢*y,=8¢'»;=0
(j=34,36,40). Then we see that d=1.

These data together with (1.1) are sufficient to determine Sg’y;
for G=Ez by use of the Adem relations.
For G=F; and E; we need

(5.3) Sq’*]g:]é, Sqmliozﬁs‘!“[{zlg“f"ﬁoléi
SPLL =L, SPE =Tt I+ I
5. 4) Gil5=0, @5lp=1uT5+ 1D+ I+ I,

@5 oy =Lyl + IG5+ TI 8+ I8+ I

orly=1Ig, ¢1lu=0, ¢ Ls=1Ipls+1"+ 515"
Apply ()7 to these equalities in view of 4.7, 4.8 and (4.4).
The results are as follows:

Theorem 5.3. In H*(BE) (1=6,7,8) Sq¢'y; are given by

1
SN2 4 8 16 32
16 0 0 0 Vo ))lg 0
24 0 0 0 yuyis 0
28 0 0 0 iy 0
30 Ja 0 0 0 i 0
31 0 0 0 0 »avs 0
33 | yu 0 0 0 sy Jes
34 0 s 0 0 Duyis DYt Vi
36 0 0 0 s YuYut Y
40 0 0 0 i Yuods VigYout Vit
48 0 0 0 0 yoyut y%rst Yuynt Inya *
12 0 0 5 0 0
20 0 0 _)’1% Y2z Ve T Va2t Vs 0
10 0 yp 0 0 0
18 0 }’1(2) 0 0 yautrupn+ ysdis 0

(* :]48,))1% +)’4§ T+ VY2 V16T V36V28 V16 + V34 Y3001s +y33y31y15)
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where the y; with j& J, must be read as

Y0=0, Yyo=ymye+Iuys+ya+yeys for [=7;
Ju =)’1g, }’2820, yee=yz4y1z+y1§+ymy1§ for [=6.

For G=F, and G,, recall that the inclusions G,CF,CE; induce
two fiberings Ey/F—>BF>BE; and F,/G,~BG,>>BF, From

H*(Es/F,) =A(xg, x17) and H*(F,/G;) =A(x15, X25) (deg x;=1) it
follows that @&f yi=11, Gt yi=r¢ and &Ffye=y, Thus we have

Corollary 5.4. In H*(BF) and H*(BG,) Sg'y; (j=10, 12, 16, 24)
are given by those in H*(BE;) with yy replaced by ys, and

ST 5= D105 S7°95=35¢"99=0, Sg®ys=yn.

Remark 5.5. The & send the y; in the following way:

(1) @Fya=0ya=0, & yo=2mV2t Y+ Y+ Yy,
B8 Yis= Y )m +}’2421 + Yuris +_J’1g + 91

(i) &7 ym =_J’1g, 37 95=0, 37 Y%= )12 +_y1§+_y16y1%

(iii) @Fys=2¢, BEyn=2IutYulet Il P Iu=Iulwo + 5+ J6yss
B9y, =S¢ By, (i26)

(iv) @fys=0Fyu=0

and for the rest &;y;=y; holds.
Most of them follow from 4.7, 4.8 and (4.4). For @&fys; put

B yn=eynteyuds ey tesys (&EF,), and apply S¢, f*: H* (BG)
—H*(K(Z,3)), etc.

Remark 5.6. From Sq%ys= yyxyyn+ y4 it follows that
Sq327‘17 =vg+ 7’17132 + 7’911% + 7'5113 =+ 7’3[15 + (Tfeses+ (¢ +cse?) (e +¢) C;,
which completes the table (4.2).
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