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§ 1. Introduction

In this paper we calculate the squaring operations in the 4-
connective fibre spaces over the classifying spaces of the exceptional
Lie groups.

Let G be a compact, 1 -connected and simple Lie group. As is
well known, its classifying space BG is 3-connected and H*(BG', Z)
~Z. Choose a generator y^H^(BG',Z). Then the 4-connective fibre
space BG over BG is, by definition, the homotopy fibre of y^:BG— >
K(Z,ty. Note that BG is a classifying space of G, the 3-connective
fibre space over G. Here we quote the results in [2] and [4].
Define the sets Jl (/ = 2, 4, 6, 7, 8) as follows:

J6= {10, 12, 16, 18, 24, 33, 34, 2 £ +l (i>6)},
/7={ 12,16, 20,24,28, 33,34,36, 2' + l
Ji= { 16, 24, 28, 30, 31, 33, 34, 36, 40, 48, 2'' + 1 (f

Theorem 1. 1. Let G be one of G2, F4 and Et (/ = 6,7,8). Then

H*(BG\FJ =F2[^.; /e/j] (Z = rank G, deg y~j}

where the generators can be taken so as to satisfy the following equalities
whenever the suffixes in both sides appear in Jt:

Communicated by N. Shimada, June 17, 1985.
* Department of Mathematics, Kyoto University, Kyoto 606, Japan.

** Department of Mathematics, Aichi University of Education, Aichi 448? Japan.



1300 AKIRA KONO AND KIMINAO ISHITOYA

(1.1)

For the most part squaring operations on the yj are determined

from the data (1.1) by use of the Adem relations, but some remain

undetermined. Our objective is to determine them completely.

In §2 we introduce a space BT and a map l:J9T-»jBG, where the

induced homomorphism 1* is almost injective. In §§3 and 4 we

investigate the action of the Weyl group W(G) of G on BT, and the

l*(jj) are determined,, And in the final section we give the complete

list of Sq2*yj and the correspondence of the generators between

different groups0

Throughout this paper //*( ) denotes the mod 2 cohomology ring,

and p:H*( ;A)->H*( ) denotes the mod 2 reduction for A = Z or

2T(2). 0{ (%i, - • • 9 xn) denotes the z'-th elementary symmetric polynomial

in the xt.

§ 28 Cohomology of B f and EC

In this and the following two sections G denotes the compact 1-

connected exceptional Lie group of type El (/ = 6, 7y 8), and T a

maximal torus of G. The Dynkin diagram of G is

where the ai are the simple roots. Define a 1 -dimensional torus T1

by the equations 0^ = 0 (z'=£2), and let CcG be the centralizer of T1.

Note that (see [1], for example)

(2.1) C =

The inclusions TcCcG induce maps t'.BT->BC, K°.BC->BG and

l = K°c:BT~*BG. Then the space BT (resp. BC) is, by definition, the

homotopy fibre of y,°l'.BT-*K(Z, 4) (resp. yt°fc:BC->K(Z9 4)). The

maps £, K and 1 induce maps c:BT-^BC^ fo: BC-+BG and l=KQ~c:BT

, which make the following diagrams commutative:
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G/T

(2. 2) C/T—l-*BT—U#C G/T

I |V*v 4-

K = K K — K

where rows and columns are fiberings. From the first diagram we
have

Lemma 28 1. c and I induce monomorphisms in //*( I A) for any A,

In fact, Hodd(C/T',A)=0 by (2.1) and Hodd(BT;A) -0, whence
the Serre spectral sequence collapses for the lower row. Then z* is
onto, hence so is z*, and the spectral sequence collapses for the upper
row.

From now on by use of £* (resp. ?*) we regard H*(BC°,A) (resp.
H*(BC',A» as a subalgebra of H*(BT;A) (resp. H*(BT;A))a

Recall that the fundamental weights ^ (z" = l, 2 , . . . , / ) form a
basis of H2(BT\Z}» For convenience of calculation we introduce £,-,
^ and Cj£=H*(BT',Z) in the following way. Let ^ be the reflection
in the plane a£ = 0. After [5] and [3] we define

j. JL D (f \ ^ D /x \

j J g 1 2"

Then each ^ (z'^2) acts on {̂ -} as a transposition, and

(2.3) R2(tj)~-
0>4)

Since the Weyl group W(G) (resp. W(C)) is generated by {R{}
(resp0 {Ri; z=^2}) , we have from the data above that

Note that the Weyl group W(X~) acts trivially on the image of

H*(BX;Z)-*H*(BT;Z),zud that H*(X/T;Z) is torsion free by the
classical result of Bott. Consider the Poincare polynomial of H* (BC ',
Z), which is obtained from (2. 1). Then we have

Theorem 2. 2. (i) X*j,t = ± (c2 - 4f 2) .
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(ii) H*(BC',Z) = Z{_t, c2, c3,..., £z] by means of i*.

Now consider the fiberings derived from the columns in (2. 2):

K(Z, 3) =K(Z, 3) =K(Z, 3)

(2.5) BT —U £C -^> ^G (J=£o?)
ff I «r

5r —u
where the cohomology of the common fibre is given by

y = 7), ^%+

By the definition of BT the fundamental class u3 transgresses to
P(CZ)^ by (i) of Theorem 2.2. To avoid complexity we will

omit the symbol p except in the case of emphasis. Then

Lemma 2. 3. (i) The transgression r is given by

r(Mg) =c29 r(w5) =c3, r(M9) =4 r(M17) =^

<2/2d/ r(M
2* ^ ^^ (?'^5) modulo the images in lower dimensions,

where c'$ = cB + c4c^ and 0^ = 0^1 + 0^1 +c&Ci.
(ii) The sequence (c2, c3, c$, Cg) is regular in both //* (5C)

Proof, (i) This follows from the Wu formula and the commuta-
tivity of the transgression with Sql.

(ii) Clearly the sequence is regular in //*(5C). Then its
regularity in H*(BT) follows from the fact that H*(BT) is a free
H*(BC) -module.

To simplify notation we will omit the symbol £* in g*x for
x<^H*(BT',A). Define /'= {2*+ 1; ^>5}. Then the main theorem
in this section is stated as follows:

Theorem 2.4. There exist ri^H2i(BC) dH2i(BT) (i = 3, 5, 9, 17)
and Vj^Hj(BC)c:Hj(Bf) (j^/0 such that

=F2{cl9 c2,..., ch 7-3, rs, T*> TV,
=F2[tl9 t 2 , . . . , tl9 7-3, 7-5, 7-9, n?» »
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where the generators are related by

Sq2i-2
Ti = T2i-i (i = 3 f5,9) and Sq^v-v^ (je/%

Proof, Consider the Serre spectral sequence for the middle column
in (2.5). By (i) of Lemma 2.3 there exist j^H*(BC} and y33e
//33(J3C) such that /*^3 = M3

2 and f*v33 = u33. Define ^+i = SqziYi+i (i =
2,4,8) and v2j.l = Sqj-lvj O'e/'), so that/^-^2 (i = 3,5,9, 17) and
J*Vj = ttj (je/')- Then by (ii) of the lemma we have

and the same with C replaced by T.

§ 3. The Action of the Weyl Group on H*(BT)

Recall that y±°% = %*y± is W(G) -in variant. Thus the action of
W(G) on BT lifts to BT in such a way that

(3. 1) the canonical map g'.BT-^BT is equivariant, and

(3.2) W(X) acts trivially on the image of H*(BX;A)-*H*(BT;A)

where X=C or G.

By (3.1) the action of W(G) on fo} in H*(BT) is the same as
that in H*(BT). In order to determine the action on {7-,-} we
consider the cohomology with coefficients Z^y

By Theorem 2.4 H*(BC\Zv>) is torsion free for *<32. Thus we

can define gi^H2i(BC; Z(2}) dH2i(Bf;Z(^ (i = 3,5,9) by

2^3 = ^3, 2^5 = ^5 = ^5 + ^! and 2g2 = c/
9 = csc1^-c7cl

2 + c6cl
z

since p(cs) =p(c/
5) = p(c'B) — 0. As a corollary to 2.2 in [3]

Lemma 3. 1. g^ is not divisible by 2.

Therefore j*:H*(BT)-*H*(K(Z, 3)) sends p(gj to u-2, and so we
may take 7*3 = /0(g3) in Theorem 2.4.

Now we shall determine the action of W(G) on {/o(^)}, {/o(^-)}
and {^}. Each /?,- (z'^2) acts trivially on them by (3.2) with
X=C. Our objective in this section is to determine the action of R2.
From now on we will exclusively use the notations

# = £2 and R = R-l.

Define bi = ai(tl9t29t^ and ^=^(^4 ,^5 , . . . , ^ ) ^H2i(BT',Z), so that
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(3.3) c,= E My
i + j = n

By (2.3) R(a^ =aj for any j, and

SR(W=/z(ZW=/z(n

= H(1 + *-&! + *,)

Substituting ^ = 3^ £2 — 4£2, £3 = 2g3 and £5 = 2g5 — ̂  into (3. 3), the i£

and <25 are expressed in terms of g3, g$, a,j (1<J<4) and t. Then so
are the R(b{) :

R(bJ=-al9 R(b2)=a!2 and R^^-a^ + a? mod (4,20,

and so are the R(cJ =ZR(bi)an-i. For instance, ^fe)
mod (4,20, which implies R(g^) ^a^a^a^ mod (2,0 since
is torsion free. In other words, in H*(BT)

(3. 4) *(?(&)) =pMp(a^) +p(a,Y mod (0-

Similar calculations give R(p(g^)) mod(0 for j=5 and 9. On the
other hand, since 721+1 = Sq2iYi+i and R commutes with Sq*, R(fj) (J =
5,9,17) are derived from (3.4) by use of the Wu formula,,

The results are given in the following table, where for simplicity
the symbol p is omitted again, and the a{ (z>l) is abbreviated as i\
e.g., 32 12 is the abbreviation of a3a2a^ (0 denotes not aQ but the
null) :

x mod (0 R(x) mod (0

0

C7

2 +l 4

+214

43 + 421 +3212+314+2213

431+414+3212 + 3213+315 + 216

1

31 + 14

321+214

421+314+215

4212+414+3213+315+2214+216

21 + 13

gs
+ 415+3221+32212

312+221+213+15

3214+241+2215+19

Tn Tn 3318+32219+ 32318+ 322110+ 281 4
2419+231u+1i7
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Remark 3, 2, The disappearance of 5 (=fl5) from the table results

from the relation 5=41+312 + 213 mod(0, which implies 41=312 + 213

mod(0 for 1 = 6, 7 and 312=213 mod (0 for 1 = 6, since i ( = at =

<7i(£4, . . o , £ j ) ) vanishes if i^>l~ 3.

§4 Invariants of the Weyl Group the Image of 1*

By (3.2) with X=G and (2 0 5) 9 we see that

(4. 1) I

77z<? £0*0 o/ Z = 8. In this case it is easily seen that

Lemma 4, 1. In H*(BT)/(t) the monomials in j{ and a.,- (z' = 3, 5,

9,17; j = 1,2, 3,4) are linearly independent over .Fa-

Consider the map H*(BC)-*H*(BT)/(f) induced by R. Using

the table in the previous section we have

Lemma 4.2. Hn(BC)R = 0 for

Since R(Sq2
rJ = Sq2R(^ = Sq2(a2al + al

3) =a^l + a^ = R(c^) by the Wu
formula, we see that Sq2^ = c^ by the previous lemma, which is suffi-

cient to make the following table by use of the Adem relations:

Sq2

Sq*

Sq*

Sq™

Ts 7s T9 Tn

c4

T5

0

0

v 2 2
/3 / 5

cj 0
/

o ri7

rg2

0
0

^7 ^4 1 ^7^6

(4.2)
^° U 79 £7£6 U

(For %32ri?? see 5.6)

Remark 4, 3. In the similar way we have the following relations:

Now define polynomials Ik^H2k(BQ (k = $, 12, 14, 15, 17, 18, 20,

24) as follows:

/8 =
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715 = Sq2Iu

In

^24~ &?8/20 — 7

Then the main results in this section are stated as follows:

Theorem 4. 4. For EB we have

(i) H*(BC)R=F2Uk, 033; * = 8f 12,14,15,17] /or *<34.

/./2 (j-16, 24,28, 30, 34, 36,40, 48)

.0 0' = 31)

Proof. Denote by T* (rri) (resp. C* (m)) the subalgebra of //* (#T)
generated by J l f . . . , t8 (resp. GI, . . . ,£8) and the ft with j<??2. From
the table in the previous section follow

(4. 3) R (C* (m)) C T* (m) and R fo) e T* (0).

First we shall show Hn(BQRc:F2[Ik,v33', k = 8,12, 14, 15, 17] induc-
tively on n. By Lemma 4.2 this holds for n<^\6.

Let x^H16(BC)R and write it in the form

X = ?5p3 + 7*3^2 + 7*3^5 + ^8 (^^^(S), (^ £E C2'(0) ) .

Applying ^ on both sides, we see, in view of the formula R(XY)

= XR(Y)+R(X)R(Y) and (4.3), that 0=7-5^(^3) mod T*(3). This
implies R(pJ =Q9 whence p3 = Q since H6(BC)R = Q. Then

which implies J?(^-) =0, whence gf = 0 since H2i(BC)R = Q (z = 2,5).
Thus ^^C16(0), and after some calculations we see that x = aIB (a£=.
F2) using Lemma 4. 1.

Continuing this procedure yields the inclusion mentioned above
for rc<34.

Next consider the Serre spectral sequence for the fibering E8/T-+

BT^BE8. According to Bott the odd dimensional part of //* (E8/T)
vanishes, and by Theorem 1. 1 so dose that of H*(B]fo for *<30.
Therefore for p<30 we have E\P'* = E21>\ which implies that I*:
H2p(BE8)-*H2p(BT) is a monomorphism. In particular P(^16) and



4-CONNEGTIVE FIBRE SPACES 1307

do not vanish. Then the theorem follows from (4. 1) and (1. 1).

Next we consider the case of / = 6 and 7. As is well known, there
is a sequence of inclusions E6dE7c:E8. We may assume that the
maximal tori Tl of El (Z = 6,7,8) are chosen so that r6cT7cT8

0

The inclusions induce maps <pi*. BTl~l^BTl (BEi-i~*BEi) and <pt°.
Bfl-l->BT (££,_!->££,) (Z = 7,8) such that

(4.4) 9i°f=f> 9i°g=g°<Pi and fro^fcfr.

We may assume, in addition, that the systems of the simple roots
{a{; i=\j 2, „ . . , / } are chosen so that ai\T

l~l = ai (i<CO? —0 (i = l).
Then the corresponding systems of the fundamental weights are in the
similar relation, from which and the commutativity (4. 4) it follows that

$*(c3=Ci (KO, =0 (i = /); $ f ( r i ) = T i and ^*(^)=»y,

for each /. Moreover, we have the following:

Lemma 4.5. $* (j>ie) =J>i6 and <P* (y&) = y-& for each I-

Proof. Consider the Serre spectral sequence for the fibering Et/Et-i
where the cohomology of the fibre is given by

It follows that EP2'° = E*? (/> = 16,33), which implies 9? (yp)
and the lemma follows since dim Hp(BEt-i)=l.

The case of 1 = 7. Here the relation a^al=a3ai2 + a2ai3 mod (0 (see
3. 2) yields an invariant in dimension 12. To be precise, we have

Lemma 4. 6. H12 (BQR c F2 - (rs
2 + Vi2 + 'i6) •

Define polynomials I'k^H2k(BC) (k = 6, 8, 10, 12, 14, 17, 18) by

and /; = &*(/,-) O' = 8,12,14,17,18).

Then Theorem 4.4 together with 4.5, 4.6 and (1.1) implies:

Corollary 4. 7. For E7 we have

rj/2 (j= 12, 16, 20, 24, 28, 34, 36)
I* ( y,) = -

with i>5)

o/ / = 6. Here the relation a^ai=a2ai mod (0 yields
. Define polynomials Il^H2k(BC) (k = 5,6,
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8,9,12,17) by

and /'; = £*(/;) (j = 6, 8,12,17).

Corollary 4. 8. For Es we have

I"j/2 (j = 10,12,16,18, 24, 34)
y* vj C/ = 2'"+l with i>5)

§5. Squaring Operations on the jfy

Now we are ready to compute Sqlyja First we shall consider to

what extent they are decidable by use of the Adem relations and the

algebra structure of H*(B&). We use the Adem relations not only
in the usual form but in the following forms:

(5. 1) for a>2b, SfSqt = Sq!ltSqf-t+Zir 2b__2-

(5.2) for r=l and 2m~\ Sq2mk+r = Sq2m~1Sq2'"k+r~2'

; etc.
j-o

Lemma 50 1. For G=ES,

(i) SqlylB=ylM (1 = 8,12,14,15),=^! (z = 16) and =0 otherwise,

(ii) Sqlej24,

Proof, (i) This follows from (1.1), (5.2) and the structure of

(ii) We may put S^j^^JVw + e'j^ie (s,£/eF2)o Applying Sq8

we have Sq™y2,+y2\=ey^e' (y2i+ (5g8j;24) J16). But Sq2Qy2

= (Sq22SqlQ + Sq23Sq*)y16 = Q and ^8J24-^
8^8J16- (Sql2S

ql)yi6 = Q both by (i), which imply e = 0 and e'^L

Lemma 58 2. For G = £8

(i) ^33 = ̂ 34 (t = D, -0 (i = 2 y 4 ,8 ) , -j;33j;i6 (i=16), -j65 (i = 32).
(ii) 5g16j;48

Proo/. (i) From (1.1) and the structure of H*(BE8) follow all

but the case of i = 16. We may put Sq1By33=sy33yl& (seF2). Apply

Sq1 and use Sq1Sqw = Sq*Sq* + SqwSql from (5 e2) 8 Then Sq^y^ =
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£7347i6-> Applying 1*3 which is injective at dimension 503 we see that
s=l since SqlGIi7=Ii7I8 holds,

(ii) Since 5^16/24-/20/12 + /18/14 + /17/15 and the kernel of I*://64

(J3£8)-»H64(J3T8) is spanned by j^sJVsip we may put 5g16j48 = 740724 +

736728+734730 + ^733731 (5 ̂  F2) . Apply Sq1 and use SqlSql6y^ = Sgr1 j;~ 0
(j = 34, 36, 40) . Then we see that 5 = 1.

These data together with (1.1) are sufficient to determine
for G=E8 by use of the Adem relations,,

For G = E6 and E7, we need

(5.3) Sq%=r* ^16/Io=/i8 + /I2/J + /i,/i;

(5.4) ft*/15 = 0, ft

ft* /24 - /M/io

Apply (1*) "1 to these equalities in view of 40 79 40 8 and (4. 4) .
The results are as follows:

Theorem 50 S0 In H*(BE^ (Z = 6,7,8) Sq{j>j are given by
X\ z

16
24
28

30
31
33
34
36
40
48

12
20

10
18

1

0
0
0

731

0

JV34

0
0
0
0

0
0

0
0

2

0
0

Jf30

0
0
0

JF36

0
0
0

0
0

Jl2

JCio

4

0

J>2S

0
0
0
0
0

J40

0
0

Jl6

7ii
0
0

8 16

724 7lS

0 724716

0 728716

0 7so7i6

0 73i7i6

0 733716

7s47is

0 J36jl6

JF48 J)'4oJVl6

0 J)'40j)'24+J)'36j28 + jMj)'30+j33j31

^20 0

J-28 JV36+.M7I2+.W1,

J18 0

0 J31+^j;10+j18j16

32

0
0
0
0
0

JK

J36J3C+ JV33

JC^a+^M

J48724+J3I

*

0
0

0
0

* = 6 +734^30716 +73373l7i
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where the ys with j^Jl must be read as

^30 = 0, J40 =^28^12+^24^16+^20+^6^12 for 1 = 7',

= = = for / = 6.

For G = F4 and G2, recall that the inclusions G2cF4c:El
6 induce

two fiberings E6/F^-^BF^BE6 and FJG2-^BG2^>BF^ From

H*(EB/FJ=A(x9,xl7) and H*(FJGJ = A(xw, *23) (deg x~i) it

follows that ^*jyio=J)>ioj $fjh8— J>92 and ^fjyg^jyg. Thus we have

Corollary 5.4. In H*(Bffj and H*(BG2) Sq^j (j=lQ, 12, 16, 24)
are given by those in H*(BE^) with yu replaced by jy9

2
5 and

Remark 5. 5. The <p* send the ys in the following way :

(l) ^8* J30 = ^8*^31 = 0, ^g* J40 =

(H) ^20=^10, ^28 = 0, ^7*^36 =JV24jl2+^ll

and for the rest <p*yj=yj holds.
Most of them follow from 4. 7, 4. 8 and (4. 4) . For ^fjss put

£3^i7ji6+£4jViijV9 fe ^ F2) , and apply SqlJ*'.H*(BG}
, etc.

Remark 5. 6. From ^ ^ ^ V s e J s o + V s l it follows that

which completes the table (4. 2) .
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