Squaring Operations in the 4-Connective Fibre Spaces over the Classifying Spaces of the Exceptional Lie Groups

Dedicated to Professor Nobuo Shimada on his 60 th birthday

By

Akira KONO* and Kiminao ISHITOYA**

§1. Introduction

In this paper we calculate the squaring operations in the 4connective fibre spaces over the classifying spaces of the exceptional Lie groups.

Let G be a compact, 1-connected and simple Lie group. As is well known, its classifying space BG is 3-connected and $H^4(BG; \mathbb{Z})$ $\cong \mathbb{Z}$. Choose a generator $y_4 \in H^4(BG; \mathbb{Z})$. Then the 4-connective fibre space $B\tilde{G}$ over BG is, by definition, the homotopy fibre of $y_4:BG \rightarrow K(\mathbb{Z}, 4)$. Note that $B\tilde{G}$ is a classifying space of \tilde{G} , the 3-connective fibre space over G. Here we quote the results in [2] and [4]. Define the sets J_1 (l=2, 4, 6, 7, 8) as follows:

 $\begin{array}{ll} J_2 = \{9, 10, 12, 2^i + 1 \ (i \geq 4)\}, & J_4 = J_2 \cup \{16, 24\}, \\ J_6 = \{10, 12, 16, 18, 24, 33, 34, 2^i + 1 \ (i \geq 6)\}, \\ J_7 = \{ 12, 16, 20, 24, 28, 33, 34, 36, 2^i + 1 \ (i \geq 6)\}, \\ J_8 = \{ 16, 24, 28, 30, 31, 33, 34, 36, 40, 48, 2^i + 1 \ (i \geq 6)\}. \end{array}$

Theorem 1.1. Let G be one of G_2 , F_4 and E_1 (l=6,7,8). Then

$$H^*(B\tilde{G}; F_2) = F_2[y_j; j \in J_l] \quad (l = \operatorname{rank} G, \deg y_j = j)$$

where the generators can be taken so as to satisfy the following equalities whenever the suffixes in both sides appear in J_i :

Communicated by N. Shimada, June 17, 1985.

^{*} Department of Mathematics, Kyoto University, Kyoto 606, Japan.

^{**} Department of Mathematics, Aichi University of Education, Aichi 448, Japan.

AKIRA KONO AND KIMINAO ISHITOYA

(1.1)

$$\begin{aligned} Sq^{1} y_{9} &= y_{10}, Sq^{2} y_{10} = y_{12}, Sq^{8} y_{10} = y_{18}, Sq^{8} y_{12} = y_{20}; \\ Sq^{8} y_{16} &= y_{24}, Sq^{4} y_{24} = y_{28}, Sq^{2} y_{28} = y_{30}, Sq^{1} y_{30} = y_{31}; \\ Sq^{1} y_{33} &= y_{34}, Sq^{2} y_{34} = y_{36}, Sq^{4} y_{36} = y_{40}, Sq^{8} y_{40} = y_{48}; \\ Sq^{2^{i}} y_{2^{i}+1} &= y_{2^{i+1}+1}. \end{aligned}$$

For the most part squaring operations on the y_i are determined from the data (1.1) by use of the Adem relations, but some remain undetermined. Our objective is to determine them completely.

In §2 we introduce a space $B\tilde{T}$ and a map $\tilde{\lambda}: B\tilde{T} \to B\tilde{G}$, where the induced homomorphism $\tilde{\lambda}^*$ is almost injective. In §§3 and 4 we investigate the action of the Weyl group W(G) of G on $B\tilde{T}$, and the $\tilde{\lambda}^*(y_j)$ are determined. And in the final section we give the complete list of $Sq^{2^i}y_j$ and the correspondence of the generators between different groups.

Throughout this paper $H^*()$ denotes the mod 2 cohomology ring, and $\rho: H^*(;A) \to H^*()$ denotes the mod 2 reduction for $A = \mathbb{Z}$ or $\mathbb{Z}_{(2)}$. $\sigma_i(x_1, \ldots, x_n)$ denotes the *i*-th elementary symmetric polynomial in the x_i .

§ 2. Cohomology of $B\tilde{T}$ and $B\tilde{C}$

In this and the following two sections G denotes the compact 1connected exceptional Lie group of type E_l (l=6, 7, 8), and T a maximal torus of G. The Dynkin diagram of G is

$$\overset{\alpha_1}{\circ} \overset{\alpha_3}{\longrightarrow} \overset{\alpha_4}{\circ} \overset{\alpha_5}{\longrightarrow} \overset{\alpha_l}{\circ} \overset{\alpha_l}{\longrightarrow} \overset{\alpha_l}{\circ} \overset{\alpha_l}{\longrightarrow} \overset{\alpha_l}{\circ} \overset{\alpha_l}{\longrightarrow} \overset{\alpha_$$

where the α_i are the simple roots. Define a 1-dimensional torus T^1 by the equations $\alpha_i = 0$ $(i \neq 2)$, and let $C \subset G$ be the centralizer of T^1 . Note that (see [1], for example)

$$(2.1) C = T^1 \cdot SU(l).$$

The inclusions $T \subset C \subset G$ induce maps $\iota: BT \to BC$, $\kappa: BC \to BG$ and $\lambda = \kappa \circ \iota: BT \to BG$. Then the space $B\widetilde{T}$ (resp. $B\widetilde{C}$) is, by definition, the homotopy fibre of $y_4 \circ \lambda: BT \to K(\mathbb{Z}, 4)$ (resp. $y_4 \circ \kappa: BC \to K(\mathbb{Z}, 4)$). The maps ι , κ and λ induce maps $\widetilde{\iota}: B\widetilde{T} \to B\widetilde{C}$, $\widetilde{\kappa}: B\widetilde{C} \to B\widetilde{G}$ and $\widetilde{\lambda} = \widetilde{\kappa} \circ \widetilde{\iota}: B\widetilde{T} \to B\widetilde{G}$, which make the following diagrams commutative:

4-CONNECTIVE FIBRE SPACES

where rows and columns are fiberings. From the first diagram we have

Lemma 2.1. ι and $\tilde{\iota}$ induce monomorphisms in $H^*(;A)$ for any A.

In fact, $H^{\text{odd}}(C/T; A) = 0$ by (2.1) and $H^{\text{odd}}(BT; A) = 0$, whence the Serre spectral sequence collapses for the lower row. Then i^* is onto, hence so is \tilde{i}^* , and the spectral sequence collapses for the upper row.

From now on by use of ι^* (resp. $\tilde{\iota}^*$) we regard $H^*(BC;A)$ (resp. $H^*(B\tilde{C};A)$) as a subalgebra of $H^*(BT;A)$ (resp. $H^*(B\tilde{T};A)$).

Recall that the fundamental weights w_i $(i=1,2,\ldots,l)$ form a basis of $H^2(BT;\mathbb{Z})$. For convenience of calculation we introduce t_i , t and $c_i \in H^*(BT;\mathbb{Z})$ in the following way. Let R_i be the reflection in the plane $\alpha_i = 0$. After [5] and [3] we define

$$t_l = w_l, \quad t_i = R_{i+1}(t_{i+1}), \quad t_1 = R_1(t_2)$$

 $c_j = \sigma_j(t_1, \dots, t_l) \quad \text{and} \quad t = \frac{1}{3}c_1 = w_2$

Then each R_i $(i \neq 2)$ acts on $\{t_j\}$ as a transposition, and

(2.3)
$$R_2(t_j) = \begin{cases} t - b_1 + t_j & (j \le 3) \\ t_j & (j \ge 4) \end{cases}$$
 $(b_1 = t_1 + t_2 + t_3).$

Since the Weyl group W(G) (resp. W(C)) is generated by $\{R_i\}$ (resp. $\{R_i; i \neq 2\}$), we have from the data above that

(2.4)
$$H^{4}(BT; \mathbb{Z})^{W(G)} = \mathbb{Z} \cdot (c_{2} - 4t^{2}), H^{*}(BT; \mathbb{Z})^{W(C)} = \mathbb{Z}[t, c_{2}, c_{3}, \dots, c_{l}].$$

Note that the Weyl group W(X) acts trivially on the image of $H^*(BX;\mathbb{Z}) \to H^*(BT;\mathbb{Z})$, and that $H^*(X/T;\mathbb{Z})$ is torsion free by the classical result of Bott. Consider the Poincaré polynomial of $H^*(BC;\mathbb{Z})$, which is obtained from (2.1). Then we have

Theorem 2.2. (i) $\lambda^* y_4 = \pm (c_2 - 4t^2)$.

(ii)
$$H^*(BC; \mathbb{Z}) = \mathbb{Z}[t, c_2, c_3, \dots, c_l]$$
 by means of ι^* .

Now consider the fiberings derived from the columns in (2, 2):

$$(2.5) \begin{array}{ccc} K(\mathbf{Z},3) & \longrightarrow & K(\mathbf{Z},3) \\ f & f & f \\ \tilde{\mathbf{z}} & \tilde{\mathbf{z}} & \tilde{\mathbf{z}} \\ B\tilde{T} & \stackrel{\tilde{\iota}}{\longrightarrow} & B\tilde{C} & \stackrel{\tilde{\kappa}}{\longrightarrow} & B\tilde{G} \\ g & g & g \\ B\tilde{T} & \stackrel{\iota}{\longrightarrow} & BC & \stackrel{\kappa}{\longrightarrow} & BG \\ \end{array} \begin{array}{ccc} (\tilde{\lambda} = \tilde{\kappa} \circ \tilde{\iota}) \\ \kappa \circ \iota \end{array}$$

where the cohomology of the common fibre is given by

$$H^*(K(\mathbf{Z},3)) = \mathbf{F}_2[u_{2^{i+1}}; i \ge 1] (\deg u_j = j), \quad Sq^{2^i}u_{2^{i+1}} = u_{2^{i+1}+1}.$$

By the definition of $B\tilde{T}$ the fundamental class u_3 transgresses to $\rho(\lambda^* y_4) = \rho(c_2)$, by (i) of Theorem 2.2. To avoid complexity we will omit the symbol ρ except in the case of emphasis. Then

Lemma 2.3. (i) The transgression τ is given by

$$\tau(u_3) = c_2, \ \tau(u_5) \equiv c_3, \ \tau(u_9) \equiv c'_5, \ \tau(u_{17}) \equiv c'_9$$

 $\tau(u_{2^{i}+1}) \equiv 0$ (i \geq 5) modulo the images in lower dimensions,

and

where $c'_5 = c_5 + c_4 c_1$, and $c'_9 = c_8 c_1 + c_7 c_1^2 + c_6 c_1^3$.

(ii) The sequence (c_2, c_3, c'_5, c'_9) is regular in both $H^*(BC)$ and $H^*(BT)$.

Proof. (i) This follows from the Wu formula and the commutativity of the transgression with Sq^i .

(ii) Clearly the sequence is regular in $H^*(BC)$. Then its regularity in $H^*(BT)$ follows from the fact that $H^*(BT)$ is a free $H^*(BC)$ -module.

To simplify notation we will omit the symbol g^* in g^*x for $x \in H^*(BT; A)$. Define $J' = \{2^k+1; k \ge 5\}$. Then the main theorem in this section is stated as follows:

Theorem 2.4. There exist $\gamma_i \in H^{2i}(B\tilde{C}) \subset H^{2i}(B\tilde{T})$ (i=3, 5, 9, 17)and $v_j \in H^j(B\tilde{C}) \subset H^j(B\tilde{T})$ $(j \in J')$ such that

$$H^*(BC) = F_2[c_1, c_2, \dots, c_l, \gamma_3, \gamma_5, \gamma_9, \gamma_{17}, v_j; j \in J']/(c_2, c_3, c'_5, c'_9), H^*(B\widetilde{T}) = F_2[t_1, t_2, \dots, t_l, \gamma_3, \gamma_5, \gamma_9, \gamma_{17}, v_j; j \in J']/(c_2, c_3, c'_5, c'_9)$$

where the generators are related by

$$Sq^{2i-2}\gamma_i = \gamma_{2i-1} \ (i=3,5,9) \quad and \quad Sq^{j-1}v_j = v_{2j-1} \ (j\in J').$$

Proof. Consider the Serre spectral sequence for the middle column in (2.5). By (i) of Lemma 2.3 there exist $\gamma_3 \in H^6(B\tilde{C})$ and $v_{33} \in$ $H^{33}(B\tilde{C})$ such that $f^*\gamma_3 = u_3^2$ and $f^*v_{33} = u_{33}$. Define $\gamma_{2i+1} = Sq^{2i}\gamma_{i+1}$ (i =2,4,8) and $v_{2j-1} = Sq^{j-1}v_j$ ($j \in J'$), so that $f^*\gamma_i = u_i^2$ (i = 3, 5, 9, 17) and $f^*v_j = u_j$ ($j \in J'$). Then by (ii) of the lemma we have

 $H^*(B\tilde{C}) = H^*(BC) / (c_2, c_3, c'_5, c'_9) \otimes F_2[\gamma_i, v_j; i=3, 5, 9, 17, j \in J']$

and the same with C replaced by T.

§ 3. The Action of the Weyl Group on $H^*(BT)$

Recall that $y_4 \circ \lambda = \lambda^* y_4$ is W(G)-invariant. Thus the action of W(G) on BT lifts to $B\tilde{T}$ in such a way that

- (3.1) the canonical map $g: B\widetilde{T} \rightarrow BT$ is equivariant, and
- (3.2) W(X) acts trivially on the image of $H^*(B\tilde{X};A) \rightarrow H^*(B\tilde{T};A)$ where X=C or G.

By (3.1) the action of W(G) on $\{t_i\}$ in $H^*(B\tilde{T})$ is the same as that in $H^*(BT)$. In order to determine the action on $\{\gamma_i\}$ we consider the cohomology with coefficients $\mathbb{Z}_{(2)}$.

By Theorem 2.4 $H^*(B\widetilde{C}; \mathbb{Z}_{(2)})$ is torsion free for $* \leq 32$. Thus we can define $g_i \in H^{2i}(B\widetilde{C}; \mathbb{Z}_{(2)}) \subset H^{2i}(B\widetilde{T}; \mathbb{Z}_{(2)})$ (i=3, 5, 9) by

$$2g_3 = c_3, \ 2g_5 = c_5' = c_5 + c_4c_1 \text{ and } 2g_9 = c_9' = c_8c_1 + c_7c_1^2 + c_6c_1^3$$

since $\rho(c_3) = \rho(c'_5) = \rho(c'_9) = 0$. As a corollary to 2.2 in [3]

Lemma 3.1. g_3 is not divisible by 2.

Therefore $f^*: H^*(B\tilde{T}) \to H^*(K(\mathbb{Z},3))$ sends $\rho(g_3)$ to u_3^2 , and so we may take $\gamma_3 = \rho(g_3)$ in Theorem 2.4.

Now we shall determine the action of W(G) on $\{\rho(c_i)\}$, $\{\rho(g_j)\}$ and $\{\gamma_k\}$. Each R_i $(i \neq 2)$ acts trivially on them by (3.2) with X=C. Our objective in this section is to determine the action of R_2 . From now on we will exclusively use the notations

$$R = R_2$$
 and $\bar{R} = R - 1$.

Define $b_i = \sigma_i(t_1, t_2, t_3)$ and $a_i = \sigma_i(t_4, t_5, \dots, t_l) \in H^{2i}(B\widetilde{T}; \mathbb{Z})$, so that

AKIRA KONO AND KIMINAO ISHITOYA

$$(3.3) c_n = \sum_{i+j=n} b_i a_j.$$

By (2.3) $R(a_j) = a_j$ for any j, and

$$\sum \mathbf{R}(b_i) = \mathbf{R}(\sum b_i) = \mathbf{R}(\prod_{i=1}^{3} (1+t_i)) = \prod_{i=1}^{3} (1+\mathbf{R}(t_i))$$
$$= \prod_{i=1}^{3} (1+t-b_1+t_i) = \sum (1+t-b_1)^{3-i}b_i.$$

Substituting $c_1=3t$, $c_2=4t^2$, $c_3=2g_3$ and $c_5=2g_5-c_4c_1$ into (3.3), the b_i and a_5 are expressed in terms of g_3, g_5, a_j $(1 \le j \le 4)$ and t. Then so are the $\overline{R}(b_i)$:

 $\bar{R}(b_1) \equiv -a_1, \ \bar{R}(b_2) \equiv a_1^2 \text{ and } \bar{R}(b_3) \equiv -a_2a_1 + a_1^3 \text{ mod } (4, 2t),$

and so are the $\bar{R}(c_n) = \sum \bar{R}(b_i) a_{n-i}$. For instance, $\bar{R}(c_3) \equiv 2a_2a_1 + 2a_1^3 \mod (4, 2t)$, which implies $\bar{R}(g_3) \equiv a_2a_1 + a_1^3 \mod (2, t)$ since $H^6(B\tilde{T}; \mathbb{Z}_{(2)})$ is torsion free. In other words, in $H^*(B\tilde{T})$

(3.4)
$$\bar{R}(\rho(g_3)) \equiv \rho(a_2) \rho(a_1) + \rho(a_1)^3 \mod (t).$$

Similar calculations give $\overline{R}(\rho(g_j)) \mod(t)$ for j=5 and 9. On the other hand, since $\gamma_{2i+1}=Sq^{2i}\gamma_{i+1}$ and \overline{R} commutes with Sq^i , $\overline{R}(\gamma_j)$ (j=5,9,17) are derived from (3.4) by use of the Wu formula.

The results are given in the following table, where for simplicity the symbol ρ is omitted again, and the a_i $(i \ge 1)$ is abbreviated as i; e.g., 321^2 is the abbreviation of $a_3a_2a_1^2$ (0 denotes not a_0 but the null):

x		$x \mod (t)$	$\bar{R}(x) \mod (t)$			
c_1	0		1			
C4	$4 + 2^2 + 2^2$	$21^2 + 1^4$	$31 + 1^4$			
C ₆	$42 + 3^2 +$	-214	$321 + 21^4$			
C7	43 + 421	$+321^2+31^4+2^21^3+21^5$	$421 + 31^4 + 21^5$			
C ₈	431+41	$^{4}+3^{2}1^{2}+321^{3}+31^{5}+21^{6}$	$421^{2}+41^{4}+321^{3}+31^{5}+2^{2}1^{4}+21^{6}$			
$\gamma_3 = g_3$	g_3		$21 + 1^3$			
g_5	g_5	$g_{3}l^{2}$ -	$+41+21^{3}$			
g_{9}	g_9	$g_531 + g_3(321 + 21^4) + 41$	$5 + 3^2 21 + 32^2 1^2 + 321^4 + 2^2 1^5$			
γ_5	7 5	$31^2 + 2^21 + 21^3 + 1^5$				
7 9	7 9	32	$21^4 + 2^41 + 2^21^5 + 1^9$			
7 17	γ ₁₇	3 ³	$1^8 + 3^2 21^9 + 32^3 1^8 + 32^2 1^{10} + 2^8 1 +$			
			$2^4 1^9 + 2^3 1^{11} + 1^{17}$			

Remark 3. 2. The disappearance of 5 $(=a_5)$ from the table results from the relation $5\equiv 41+31^2+21^3 \mod(t)$, which implies $41\equiv 31^2+21^3 \mod(t)$ for l=6, 7 and $31^2\equiv 21^3 \mod(t)$ for l=6, since i $(=a_i=\sigma_i(t_4,\ldots,t_i))$ vanishes if i>l-3.

§ 4. Invariants of the Weyl Group and the Image of $\tilde{\lambda}^*$

By (3.2) with X=G and (2.5), we see that

(4.1)
$$\operatorname{Im} \tilde{\lambda}^* \subset H^*(B\tilde{C})^R = H^*(B\tilde{C}) \cap \operatorname{Ker} \bar{R}.$$

The case of l=8. In this case it is easily seen that

Lemma 4.1. In $H^*(B\tilde{T})/(t)$ the monomials in γ_i and a_j (i=3,5, 9, 17; j=1,2,3,4) are linearly independent over \mathbb{F}_2 .

Consider the map $H^*(B\widetilde{C}) \to H^*(B\widetilde{T})/(t)$ induced by \overline{R} . Using the table in the previous section we have

Lemma 4.2. $H^n(B\tilde{C})^R = 0$ for 0 < n < 16.

Since $\overline{R}(Sq^2\gamma_3) = Sq^2\overline{R}(\gamma_3) = Sq^2(a_2a_1 + a_1^3) = a_3a_1 + a_1^4 = \overline{R}(c_4)$ by the Wu formula, we see that $Sq^2\gamma_3 = c_4$ by the previous lemma, which is sufficient to make the following table by use of the Adem relations:

		γ_3	γ_5	γ9	γ_{17}	
(4.2)	Sq^2 Sq^4	c_4 γ_5	γ_3^2 c'_7	γ_5^2	γ_9^2	$(c_7'=c_7+c_6c_1)$
	Sq^8	0	7 9	$c_{7}^{\prime}c_{6}$	0	
	Sq^{16}	0	0	γ_{17}	$c_7'^3 c_4 + c_7' c_6^3$	(For $Sq^{32}\gamma_{17}$, see 5.6)

Remark 4.3. In the similar way we have the following relations: $\gamma_5 = g_5 + g_3 t^2 + c_4 t,$ $\gamma_9 = g_9 + g_5 (c_4 + t^4) + g_3 (c_5 + c_4 t^2 + t^5) + c_7 t^2 + c_4 t^2 + c_4 t^5.$

Now define polynomials $I_k \in H^{2k}(B\tilde{C})$ (k=8, 12, 14, 15, 17, 18, 20, 24) as follows:

$$I_8 = c_8 + c_6 c_1^2 + c_4^2 + c_4 c_1^4 + c_1^8$$

$$I_{12} = Sq^8 I_8 = c_8 c_4 + c_6^2 + c_6 c_4 c_1^2 + c_4^2 c_1^4 + c_4 c_1^8$$

$$I_{14} = Sq^4 I_{12} = c_8 c_6 + c_7'^2 + c_6^2 c_1^2 + c_6 c_4 c_1^4 + c_6 c_1^8$$

$$\begin{split} &I_{15} \!=\! Sq^2 I_{14} \!=\! c_8 c_7' \!+\! c_7' c_6 c_1^2 \!+\! c_7' c_4 c_1^4 \!+\! c_7' c_1^8 \\ &I_{17} \!=\! \gamma_{17} \!+\! \gamma_9 I_8 \!+\! \gamma_5 I_{12} \!+\! \gamma_3 I_{14} \!+\! c_7' c_6 c_4 \\ &I_{18} \!=\! Sq^2 I_{17} \!=\! \gamma_9^2 \!+\! \gamma_5^2 I_8 \!+\! \gamma_3^2 I_{12} \!+\! \gamma_3 I_{15} \!+\! I_{14} c_4 \!+\! c_7'^2 c_4 \\ &I_{20} \!=\! Sq^4 I_{18} \!=\! \gamma_5^4 \!+\! \gamma_5 I_{15} \!+\! \gamma_3^4 I_8 \!+\! \gamma_3^2 I_{14} \!+\! I_{14} c_6 \!+\! I_{12} c_4^2 \!+\! c_7'^2 c_6 \\ &I_{24} \!=\! Sq^8 I_{20} \!=\! \gamma_9 I_{15} \!+\! \gamma_5^2 I_{14} \!+\! \gamma_3^4 I_{12} \!+\! \gamma_3^8 \!+\! I_{14} c_6 \!+\! I_{12} c_6^2 \!+\! I_8 c_4^4 \!+\! c_7'^2 c_6 c_4 \,. \end{split}$$

Then the main results in this section are stated as follows:

Theorem 4.4. For E_8 we have

(i)
$$H^*(B\widetilde{C})^R = F_2[I_k, v_{33}; k=8, 12, 14, 15, 17]$$
 for $* \le 34$.
(ii) $\widetilde{\lambda}^*(y_j) = \begin{cases} I_{j/2} & (j=16, 24, 28, 30, 34, 36, 40, 48) \\ v_j & (j=2^i+1 \text{ with } i \ge 5) \\ 0 & (j=31) \end{cases}$

Proof. Denote by $T^*(m)$ (resp. $C^*(m)$) the subalgebra of $H^*(B\tilde{T})$ generated by t_1, \ldots, t_8 (resp. c_1, \ldots, c_8) and the γ_j with $j \leq m$. From the table in the previous section follow

(4.3)
$$R(C^*(m)) \subset T^*(m) \text{ and } \bar{R}(\gamma_i) \in T^*(0).$$

First we shall show $H^n(B\widetilde{C})^R \subset F_2[I_k, v_{33}; k=8, 12, 14, 15, 17]$ inductively on *n*. By Lemma 4.2 this holds for n < 16.

Let $x \in H^{16}(B\widetilde{C})^R$ and write it in the form

$$x = \gamma_5 p_3 + \gamma_3^2 q_2 + \gamma_3 q_5 + q_8 \quad (p_3 \in C^6(3), q_i \in C^{2i}(0)).$$

Applying \overline{R} on both sides, we see, in view of the formula $\overline{R}(XY) = X\overline{R}(Y) + \overline{R}(X)R(Y)$ and (4.3), that $0 \equiv \gamma_5 \overline{R}(p_3) \mod T^*(3)$. This implies $\overline{R}(p_3) = 0$, whence $p_3 = 0$ since $H^5(B\widetilde{C})^R = 0$. Then

 $0 \equiv \gamma_3^2 \bar{R}(q_2) + \gamma_3 \bar{R}(q_5) \mod T^*(0)$

which implies $\overline{R}(q_i) = 0$, whence $q_i = 0$ since $H^{2i}(B\widetilde{C})^R = 0$ (i=2,5). Thus $x \in C^{16}(0)$, and after some calculations we see that $x = \alpha I_8$ $(\alpha \in F_2)$ using Lemma 4.1.

Continuing this procedure yields the inclusion mentioned above for $n \leq 34$.

Next consider the Serre spectral sequence for the fibering $E_8/T \rightarrow B\widetilde{T} \xrightarrow{\tilde{\lambda}} B\widetilde{E}_8$. According to Bott the odd dimensional part of $H^*(E_8/T)$ vanishes, and by Theorem 1.1 so dose that of $H^*(B\widetilde{E}_8)$ for $*\leq 30$. Therefore for $p\leq 30$ we have $E_2^{2p,0}=E_\infty^{2p,0}$, which implies that $\tilde{\lambda}^*$: $H^{2p}(B\widetilde{E}_8) \rightarrow H^{2p}(B\widetilde{T})$ is a monomorphism. In particular $\tilde{\lambda}^*(y_{16})$ and

 $\tilde{\lambda}^*(y_{34})$ do not vanish. Then the theorem follows from (4.1) and (1.1).

Next we consider the case of l=6 and 7. As is well known, there is a sequence of inclusions $E_6 \subset E_7 \subset E_8$. We may assume that the maximal tori T^l of E_l (l=6,7,8) are chosen so that $T^6 \subset T^7 \subset T^8$. The inclusions induce maps φ_l : $BT^{l-1} \rightarrow BT^l$ $(BE_{l-1} \rightarrow BE_l)$ and $\tilde{\varphi}_l$: $B\tilde{T}^{l-1} \rightarrow B\tilde{T}^l$ $(B\tilde{E}_{l-1} \rightarrow B\tilde{E}_l)$ (l=7,8) such that

(4.4)
$$\tilde{\varphi}_l \circ f = f, \quad \varphi_l \circ g = g \circ \tilde{\varphi}_l \quad \text{and} \quad \tilde{\varphi}_l \circ \tilde{\lambda} = \tilde{\lambda} \circ \tilde{\varphi}_l.$$

We may assume, in addition, that the systems of the simple roots $\{\alpha_i; i=1,2,\ldots,l\}$ are chosen so that $\alpha_i | T^{l-1} = \alpha_i$ (i < l), = 0 (i=l). Then the corresponding systems of the fundamental weights are in the similar relation, from which and the commutativity (4.4) it follows that

$$\tilde{\varphi}_l^*(c_i) = c_i \quad (i < l), = 0 \quad (i = l); \quad \tilde{\varphi}_l^*(\gamma_i) = \gamma_i \text{ and } \tilde{\varphi}_l^*(v_j) = v_j,$$

for each *l*. Moreover, we have the following:

Lemma 4.5. $\tilde{\varphi}_{l}^{*}(y_{16}) = y_{16}$ and $\tilde{\varphi}_{l}^{*}(y_{33}) = y_{33}$ for each l.

Proof. Consider the Serre spectral sequence for the fibering E_l/E_{l-1} $\rightarrow B\tilde{E}_{l-1} \rightarrow B\tilde{E}_l$, where the cohomology of the fibre is given by

$$H^*(E_8/E_7) = \varDelta(x_{12}, x_{20}, x_{24}, x_{29}, x_{30}), \quad H^*(E_7/E_6) = \varLambda(x_{10}, x_{18}, x_{27}).$$

It follows that $E_2^{p,0} = E_{\infty}^{p,0}$ (p=16,33), which implies $\tilde{\varphi}_l^*(y_p) \neq 0$, and the lemma follows since dim $H^p(B\tilde{E}_{l-1}) = 1$.

The case of l=7. Here the relation $a_4a_1 \equiv a_3a_1^2 + a_2a_1^3 \mod (t)$ (see 3.2) yields an invariant in dimension 12. To be precise, we have

Lemma 4.6. $H^{12}(B\widetilde{C})^R \subset F_2 \cdot (\gamma_3^2 + c_4 c_1^2 + c_1^6)$.

Define polynomials $I'_{k} \in H^{2k}(B\tilde{C})$ (k=6, 8, 10, 12, 14, 17, 18) by

$$I_{6}^{\prime} = \gamma_{3}^{2} + c_{4}c_{1}^{2} + c_{1}^{6}, I_{10} = Sq^{8}I_{6}^{\prime} = \gamma_{5}^{2} + c_{6}c_{1}^{4} + c_{4}^{2}c_{1}^{2} + c_{1}^{10};$$

$$I_{j}^{\prime} = \tilde{\varphi}_{8}^{*}(I_{j}) \quad (j = 8, 12, 14, 17, 18).$$

and

Then Theorem 4.4 together with 4.5, 4.6 and (1.1) implies:

Corollary 4.7. For E_7 we have

$$\tilde{\lambda}^{*}(y_{j}) = \begin{cases} I'_{j/2} & (j = 12, 16, 20, 24, 28, 34, 36) \\ v_{j} & (j = 2^{i} + 1 \text{ with } i \ge 5) \end{cases}$$

The case of l=6. Here the relation $a_3a_1^2 \equiv a_2a_1^3 \mod (t)$ yields $H^{10}(B\widetilde{C})^R \subset F_2 \cdot (\gamma_5 + c_4c_1 + c_1^5)$. Define polynomials $I''_k \in H^{2k}(B\widetilde{C})$ (k=5, 6, -1)

8,9,12,17) by

and
$$I_{5}''=\gamma_{5}+c_{4}c_{1}+c_{1}^{5}, \ I_{9}''=Sq^{8}I_{5}''=\gamma_{9}+c_{4}^{2}c_{1}+c_{1}^{9};$$
$$I_{j}''=\tilde{\varphi}_{7}^{*}(I_{j}') \quad (j=6,8,12,17).$$

Corollary 4.8. For E_6 we have

$$\tilde{\lambda}^{*}(y_{j}) = \begin{cases} I''_{j/2} & (j = 10, 12, 16, 18, 24, 34) \\ v_{j} & (j = 2^{i} + 1 \text{ with } i \ge 5) \end{cases}$$

§ 5. Squaring Operations on the y_i

Now we are ready to compute $Sq^i y_j$. First we shall consider to what extent they are decidable by use of the Adem relations and the algebra structure of $H^*(B\tilde{G})$. We use the Adem relations not only in the usual form but in the following forms:

(5.1) for
$$a > 2b$$
, $Sq^{a}Sq^{b} = Sq^{2b}Sq^{a-b} + \sum_{j=0}^{b-1} {a-b-1-j \choose 2b-2j} Sq^{a+b-j}Sq^{j}$;
(5.2) for $r=1$ and 2^{m-1} , $Sq^{2^{m}k+r} = Sq^{2^{m-1}}Sq^{2^{m}k+r-2^{m-1}} + \sum_{j=0}^{m-2} Sq^{2^{m}k+r-2^{j}}Sq^{2^{j}}$; etc.

Lemma 5. 1. For $G = E_8$, (i) $Sq^i y_{16} = y_{16+i}$ (i=8, 12, 14, 15), $= y_{16}^2$ (i=16) and =0 otherwise. (ii) $Sq^{16} y_{24} = y_{24} y_{16}$.

Proof. (i) This follows from (1.1), (5.2) and the structure of $H^*(B\tilde{E}_{B})$.

(ii) We may put $Sq^{16}y_{24} = \varepsilon y_{40} + \varepsilon' y_{24}y_{16}$ ($\varepsilon, \varepsilon' \in \mathbb{F}_2$). Applying Sq^8 we have $Sq^{20}y_{28} + y_{24}^2 = \varepsilon y_{48} + \varepsilon' (y_{24}^2 + (Sq^8y_{24})y_{16})$. But $Sq^{20}y_{28} = Sq^{20}Sq^{12}y_{16}$ $= (Sq^{22}Sq^{10} + Sq^{23}Sq^9) y_{16} = 0$ and $Sq^8y_{24} = Sq^8Sq^8y_{16} = (Sq^{12}Sq^4 + Sq^{14}Sq^2 + Sq^{15}Sq^1) y_{16} = 0$ both by (i), which imply $\varepsilon = 0$ and $\varepsilon' = 1$.

Lemma 5.2. For $G = E_8$ (i) $Sq^i y_{33} = y_{34}$ (i=1), =0 (i=2, 4, 8), $= y_{33}y_{16}$ (i=16), $= y_{65}$ (i=32). (ii) $Sq^{16} y_{48} = y_{40} y_{24} + y_{36} y_{28} + y_{34} y_{30} + y_{33} y_{31}$.

Proof. (i) From (1.1) and the structure of $H^*(B\tilde{E}_8)$ follow all but the case of i=16. We may put $Sq^{16}y_{33}=\varepsilon y_{33}y_{16}$ ($\varepsilon \in \mathbb{F}_2$). Apply Sq^1 and use $Sq^1Sq^{16}=Sq^2Sq^{15}+Sq^{16}Sq^1$ from (5.2). Then $Sq^{16}y_{34}=$

 $\varepsilon y_{34}y_{16}$. Applying $\tilde{\lambda}^*$, which is injective at dimension 50, we see that $\varepsilon = 1$ since $Sq^{16}I_{17} = I_{17}I_8$ holds.

(ii) Since $Sq^{16}I_{24} = I_{20}I_{12} + I_{18}I_{14} + I_{17}I_{15}$ and the kernel of $\tilde{\lambda}^*: H^{64}$ $(B\tilde{E}_8) \rightarrow H^{64}(B\tilde{T}^8)$ is spanned by $y_{33}y_{31}$, we may put $Sq^{16}y_{48} = y_{40}y_{24} + y_{36}y_{28} + y_{34}y_{30} + \delta y_{33}y_{31}$ ($\delta \in \mathbb{F}_2$). Apply Sq^1 and use $Sq^1Sq^{16}y_{48} = Sq^1y_j = 0$ (j=34, 36, 40). Then we see that $\delta = 1$.

These data together with (1.1) are sufficient to determine Sq^iy_j for $G=E_8$ by use of the Adem relations.

For $G = E_6$ and E_7 , we need

(5.3)
$$\begin{aligned} Sq^{4}I_{6}'=I_{8}', \ Sq^{16}I_{10}'=I_{18}'+I_{12}'I_{6}'+I_{10}'I_{8}';\\ Sq^{2}I_{5}''=I_{6}'', \ Sq^{16}I_{9}''=I_{17}''+I_{12}'I_{5}''+I_{9}''I_{8}''. \end{aligned}$$

(5.4)
$$\begin{aligned} \tilde{\varphi}_{8}^{*}I_{15} = 0, \quad \tilde{\varphi}_{8}^{*}I_{20} = I_{14}'I_{6}' + I_{12}'I_{8}' + I_{10}'^{2} + I_{8}'I_{6}'^{2}, \\ \tilde{\varphi}_{8}^{*}I_{24} = I_{14}'I_{10}' + I_{12}'^{2} + I_{12}'I_{6}'^{2} + I_{8}'^{3} + I_{6}'^{4}; \\ \tilde{\varphi}_{7}^{*}I_{10}' = I_{5}''^{2}, \quad \tilde{\varphi}_{7}^{*}I_{14}' = 0, \quad \tilde{\varphi}_{7}^{*}I_{18}' = I_{12}''I_{6}'' + I_{9}''^{2} + I_{8}''I_{5}''^{2}. \end{aligned}$$

Apply $(\tilde{\lambda}^*)^{-1}$ to these equalities in view of 4.7, 4.8 and (4.4). The results are as follows:

\overline{j} i	1	2	4	8	16	32
16	0	0	0	y_{24}	${\mathcal{Y}_{16}}^2$	0
24	0	0	Y 28	0	$\mathcal{Y}_{24}\mathcal{Y}_{16}$	0
28	0	${\mathcal Y}_{30}$	0	0	$\mathcal{Y}_{28}\mathcal{Y}_{16}$	0
30	Y 31	0	0	0	Y 30 Y 16	0
31	0	0	0	0	${\mathcal Y}_{31}{\mathcal Y}_{16}$	0
33	${\mathcal Y}_{34}$	0	0	0	$\mathcal{Y}_{33}\mathcal{Y}_{16}$	${\mathcal Y}_{65}$
34	0	${\mathcal Y}_{36}$	0	0	$\mathcal{Y}_{34}\mathcal{Y}_{16}$	$y_{36}y_{30} + y_{33}^2$
36	0	0	${\mathcal Y}_{40}$	0	${\mathcal Y}_{36}{\mathcal Y}_{16}$	$y_{40}y_{28} + y_{34}^2$
40	0	0	0	${\mathcal Y}_{48}$	Y 40 Y 16	$y_{48}y_{24} + y_{36}^2$
48	0	0	0	0	$y_{40} y_{24} + y_{36} y_{28} + y_{34} y_{30} + y_{33} y_{31}$	*
12	0	0	${\mathcal Y}_{16}$	Y 20	0	0
20	0	0	${\mathcal Y}_{12}^{\ 2}$	${\mathcal Y}_{28}$	$y_{36} + y_{24}y_{12} + y_{20}y_{16}$	0
10	0	Y12	0	Y 18	0	0
18	0	\mathcal{Y}_{10}^2	0	0	$y_{34} + y_{24}y_{10} + y_{18}y_{16}$	0

Theorem 5.3. In $H^*(B\tilde{E}_l)$ (l=6,7,8) Sq^iy_j are given by

 $(* = y_{48}y_{16}^2 + y_{40}^2 + y_{40}y_{24}y_{16} + y_{36}y_{28}y_{16} + y_{34}y_{30}y_{16} + y_{33}y_{31}y_{16})$

where the y_j with $j \notin J_l$ must be read as

$$y_{30} = 0, \ y_{40} = y_{28}y_{12} + y_{24}y_{16} + y_{20}^2 + y_{16}y_{12}^2 \quad \text{for } l = 7;$$

$$y_{20} = y_{10}^2, \ y_{28} = 0, \ y_{36} = y_{24}y_{12} + y_{18}^2 + y_{16}y_{10}^2 \quad \text{for } l = 6.$$

For $G = F_4$ and G_2 , recall that the inclusions $G_2 \subset F_4 \subset E_6$ induce two fiberings $E_6/F_4 \rightarrow B\tilde{F}_4 \xrightarrow{\tilde{\varphi}_6} B\tilde{E}_6$ and $F_4/G_2 \rightarrow B\tilde{G}_2 \xrightarrow{\tilde{\varphi}_4} B\tilde{F}_4$. From

 $H^*(E_6/F_4) = \Lambda(x_9, x_{17})$ and $H^*(F_4/G_2) = \Lambda(x_{15}, x_{23})$ (deg $x_i = i$) it follows that $\tilde{\varphi}_6^* y_{10} = y_{10}$, $\tilde{\varphi}_6^* y_{18} = y_9^2$ and $\tilde{\varphi}_4^* y_9 = y_9$. Thus we have

Corollary 5.4. In $H^*(B\tilde{F}_4)$ and $H^*(B\tilde{G}_2)$ Sq^iy_j (j=10, 12, 16, 24)are given by those in $H^*(B\tilde{E}_6)$ with y_{18} replaced by y_9^2 , and

$$Sq^{1}y_{9} = y_{10}, Sq^{2}y_{9} = Sq^{4}y_{9} = 0, Sq^{8}y_{9} = y_{17}.$$

Remark 5.5. The $\tilde{\varphi}_i^*$ send the y_i in the following way:

- (i) $\tilde{\varphi}_{8}^{*} y_{30} = \tilde{\varphi}_{8}^{*} y_{31} = 0, \quad \tilde{\varphi}_{8}^{*} y_{40} = y_{28} y_{12} + y_{24} y_{16} + y_{20}^{2} + y_{16} y_{12}^{2}, \\ \tilde{\varphi}_{8}^{*} y_{48} = y_{28} y_{20} + y_{24}^{2} + y_{24} y_{12}^{2} + y_{16}^{3} + y_{14}^{4}$
- (ii) $\tilde{\varphi}_7^* y_{20} = y_{10}^2$, $\tilde{\varphi}_7^* y_{28} = 0$, $\tilde{\varphi}_7^* y_{36} = y_{24} y_{12} + y_{18}^2 + y_{16} y_{12}^2$
- (iii) $\tilde{\varphi}_{6}^{*} y_{18} = y_{9}^{2}, \quad \tilde{\varphi}_{6}^{*} y_{33} = y_{33} + y_{24} y_{9} + y_{17} y_{16}, \quad \tilde{\varphi}_{6}^{*} y_{34} = y_{24} y_{10} + y_{17}^{2} + y_{16} y_{9}^{2}, \\ \tilde{\varphi}_{6}^{*} y_{2^{i+1}} = Sq^{2^{i-1}} \tilde{\varphi}_{6}^{*} y_{2^{i-1}+1} \quad (i \ge 6)$

(iv) $\tilde{\varphi}_{4}^{*} y_{16} = \tilde{\varphi}_{4}^{*} y_{24} = 0$

and for the rest $\tilde{\varphi}_i^* y_j = y_j$ holds.

Most of them follow from 4.7, 4.8 and (4.4). For $\tilde{\varphi}_6^* y_{33}$ put $\tilde{\varphi}_6^* y_{33} = \varepsilon_1 y_{33} + \varepsilon_2 y_{24} y_9 + \varepsilon_3 y_{17} y_{16} + \varepsilon_4 y_{12}^2 y_9$ ($\varepsilon_k \in \mathbf{F}_2$), and apply $Sq^i, f^*: H^*(B\tilde{G}) \to H^*(K(\mathbf{Z}, 3))$, etc.

Remark 5.6. From $Sq^{32}y_{34} = y_{36}y_{30} + y_{33}^2$ it follows that $Sq^{32}\gamma_{17} = v_{33}^2 + \gamma_{17}I_8^2 + \gamma_9I_{12}^2 + \gamma_5I_{14}^2 + \gamma_3I_{15}^2 + (I_8^2c_6c_4 + (c_7'^2 + c_6c_4^2)(c_6^2 + c_4^3))c_7'$

which completes the table (4.2).

References

- Ishitoya, K. and Toda, H., On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ., 17 (1977) 225-243.
- [2] Kachi, H., Homotopy groups of compact Lie groups E_6 , E_7 and E_8 , Nagoya J. Math., 32 (1968), 109–139.
- [3] Kono, A., On the cohomology of exceptional Lie groups, to appear.
- [4] Toda, H., Classifying spaces of exceptional Lie groups, Manifolds Tokyo (1973), 265-271.
- [5] Watanabe, T., The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto Univ., 15 (1975), 363-385.