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Zero's of Exponential Best
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We show that the location of the m'th zero of the exponential sum g(z ;/3) =e~s+e~ps~23

0</3<1 depends monotonically on the Diophantine distance Jm=min|m]3— p\ of the para-
peZ

meter p. The approach of the zero's of the above function to the imaginary axis is deter-
mined therefore by the best Diophantine approximation denominators qa of )3.

§ 1. Introduction Results

In several papers [1-4] treating the problems of analytic extensions
of zeta functions respectively the closely related question of the decay
of correlation functions for certain flows [13] exponential sums of the
form g(z',fT) =e~z + e~l3z — 2 and especially the location of their zeros in
the complex £-plane play an important rolea Consider namely two
observables A and B of such a flow $t: M->M and their time
correlation function

)dt'-lim l/T^ * A(<f>t,x)dt'
T-»oo Jo

lim l/T(TB(0t,x)dt'a (1)
T-»°o Jo

For flows which are chaotic enough one expects their long time
behaviour to be described by some asymptotic measure /*[l-4], [13]
such that the above function can be written as

( 2 )
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Its long time behaviour for £->oo is closely related to the pole
structure of its Laplace transform

-Zt C(t)dt.

In the cases of mixing Axiom-A Systems considered in [1-4] and a
semiflow constructed as the suspension of a dissipative time discrete
model [15] in [13], this Fourier-Laplace transform has a very simple
form:

( 3 )

where / and A are holomorphic functions and ft some positive,
irrational parameter. The long time behaviour of C(t) can be simply
related to the pole structure of the function C(z) that means the
zeros of the exponential sum g(z> ft) :

( 4 )

where the sum is over all zero's of g(z>ff) different from £ = 0. Their
location therefore determines the exact decrease of C(0- It is
desirable to know the location of these zeros as precisely as possible
if one wants to know the exact behaviour of C(f) for large t.

Several facts about the zero's of exponential sums are known for
quite a long time. These functions are special cases of analytic
almost periodic functions of H. Bohr [5] studied in great detail by
Jessen and Tornehave [6]. Their results and also those earlier ones
by Tamarkin [7], Polya [8], Ritt [9] and others (see the literature
in [6]) deal mostly with global problems like the distribution of
zero's in strips and the existence of densities. They also found that
there exist lines such that all the zero's lie to its left or to its right,
on which the function comes arbitrarily near to, or takes, the value
zero. In our special case of the function g(z',fT) one of those lines is
the imaginary axis. For {3 rational the function g(z', ft) is periodic in
the ^-variable and infinitely many zero's lie on the imaginary axis.
The correlation function therefore does not decay and is oscillating in

time instead. For (3 irrational besides £ = 0 the function g(z', P) does
not vanish for x = 0 but it takes values arbitrary near to zero; with
other words, its zero's approach this axis arbitrarily close. From
this fact both Ruelle and Pollicott concluded that C(0 does not dacay
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exponentially fast for arbitrary mixing Axiom A flows. In [2] Me

Pollicott constructed flows which decay slower than any predetermined

rate. This happens for flows where the parameter ft can be approxi-

mated very well by rationals. Depending on the closeness of this

rational to /3 the correlation functions corresponding to the two values

stay close for a long period.

In the present paper we study the location of the individual
zero's of the function g(z',f$), in contrast to the global aspects consi-
dered up to now in the literature primarily. Our results are restricted
to the special case of exponential sums of the form g(z',fi). It would
be interesting to find out how far they can be extended to more
general exponential sums or even to general analytic almost periodic
functions.

Our main result is the following

Theorem I. For every 0</3<^1 there exist bounded periodic real

analytic functions £0: R— >R, y^: U— >U with period 1 with the properties:

a) £,(J)=f,(-J), ^(J)--^(~J) for all A^R

£*(0)=0, £,(l/2)=*oG8), 7*(0)=0, ^(1/2) =0
(where XQ(^ is the real solution of e~x — e~^x — 2 = Q)

<7r/2 for all

b) (J)=f;(J)<0 for all 0<J mod

^(J) <0 for all 0<J mod 1 <A for some A with 0<J<l/2.

such that any zero zm of g(zifi) can be written as

Z^GffVm) ±1*10(4*) +2mm,

where the "-f" sign corresponds to those m such that 0<m{3~ \mj£\ <—

and the cc — " sign to those with l>m/3— [m/3] >— . Am denotes the Dio-

phantine distance of ft'.

Am = mm \ m f i — p \ .

Remarks. (1) For /3 = 1 the zero's of^(^; l ) are simply given by the
formula zm = i2nm and the Theorem becomes trivial.
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(2) For P=p/q we know that Am is periodic in m with period q:dm

=dm+q. Because 4) — 0 for all n: dnq = Q and all the zero9s are
periodically located along the positive and negative imaginary
axis with every ^-th of them on this axis.

(3) Inside every rectangle

there is exactly one zero of g(z\f¥).

(4) The distance of the point zm from the imaginary axis given by
\xm\ is a strictly monotone function of the Diophantine distance

Am\ l # m ' i < C I # « l if and only if Am<^Amfa From this it follows that
the approach of the zero's to the imaginary axis is determined
exactly by those zm whose m is a best Diophantine approximation
denominator for /30 These numbers are inductively defined by
q0= I and the property that Am^>Aq for all qn-i <m<^qna It is
known that these qn are determined by the n-th convergents of
the continued fraction expansion of /3[10]. For /2-»°o we find

(5) The distance of the point zm from the line y = 2mn given by
\ym — 2mn\ is also a stricly monotone function of Am at least for

Am small enough: |^(4«) | < 1^(4^) | if and only if Am<Am, for
all Jm, An, </. Asymptotically we get for large n: i}0(dq) =

n

— — —Aq+Q(Afy. For reasons of simplicity we omit the index ft

in the functions f^ 27^ from now on.

(4) and (5) together tell us that as the zero's zm approach the
imaginary axis they also approach the centre of the corresponding
rectangle 3%B

m with respect to the y coordinate.

§ 20 Proof of the Main Theorem

Let A be any real and denote by g(&\$\A) the exponential sum

;/3; J) =*- + *-*-*"-2. ( 5 )
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For ^ = 0 appearently g(r,j8;0) =g (*;£). If C(4) =f (J) +17 (4) denotes
a zero of g ( z \ f i \ A ) then C*(4) is a zero of the function g(zifi°,—d)
and vice versa. Choose next a number Li>0 such that e2Li — 2eLi>
02/3Li which for 0</3<1 is always possible. If #0(/3) denotes the real
solution of the equation e~x~e~l3x = 2 let L be a positive number

L>max{Ll5 |#0 (£)!}• F°r £>0 denote by &BiL the closed rectangle

#8.L={C = 6 + i?: -L<?<£3 -7r<)?<7r}. (6)

Then we can show

Theorem II. For every A^.R the function g(z°,p'9A) has exactly one

zero C(4) = £ (4) + t'tf(4) iw f/z* J*n^ — -^-<3?<^r wAiVA even lies inside

the rectangle 3%etL for every s>0B The mapping J->£(J) ij a periodic
real analytic mapping with period 1 and has the following properties

a) C(-4)=C(^)

b) C(0)=0, Cd/2)=*oG8)

C) C'(0) - -i2;r/(j8+l), C7(l/2) =27ri e-
fh'o™/(e-*o«>-p

d) -<Q for 0<z? mod

<Q/or 0<J mod l<£ with some 0<1<1/20

From this Theorem I follows immediately:

We can restrict ourselves to the zero's in the upper half plane C+:
For zm^C+ with (2m — \}n<ym< (2m -f 1)^, m>0 we can write zm

where Cm lies in the strip —K<?]m<KB Therefore

The zero's of the function g(z\fT) in the strip (2m — l)?r<jy< (2/72 + 1) TT
are therefore related to the zero's of the function g(C;/3;?n/3) in the
strip — n<7]<'K. Theorem II tells us that there exists exactly one
zero C(ft2/3) for the latter function in ^O.z, which only for rational /3
can lie on the imaginary axis. Because of the symmetry and perio-
dicity of the function C(/f) we get, by using the fact that mfi—\mj£\ =^m

if the left hand side is smaller than — ? the result

respectively,
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C(^)=C(-4J for mp-[mp] = l-AM.

The zero's of g(z\jT) can therefore be represented in the form claimed
in Theorem I and have all the desired properties following from the

properties of the function C(^) in Theorem II.
The proof of Theorem II is divided into several Lemmatas.

Lemma 1. For every A^R there exists exactly one zero C(^) of

\jl]A) in the strip — K<iq<x. More precisely C(X)^Int 3%BtLfor all

£>0 and C(4)e Int 3$0iL if

Proof. Periodicity of g(z',f3',d) in A allows us to restrict the values

of A to the interval — -~-<J<— . If g(z) denotes the function g(z)

= e~z~2 then its zeros can be written down immediately: zm =

— In 2 + 27rim, m^Z. Only the zero ^ 0 —~l n 2 lies in the strip
~n<7]<K and trivially £0EiInt RO.L. We want to apply a Theorem

of Poincare and Bohl [11] respectively of Kronecker [12] to the

functions g(^) and g ( z ' , f i \ A ) on the rectangle £%BiL for some £>0. To

do this we have to show that for all £^d ^£>L the point OeC7 does

not belong to the straight line [gCO, ^U^»^)] connecting the two
points in C. Forjy=±7r, — L<x<£ we get for g(z) '.

respectively for

g(z;p-,4) = -e-x-2 + e-Bx(cos(ft7r + 2^ +i sn

Because both Re g(z) and Re g(z',fi',A) are obviously strictly negative

(/3<1!) we have 0£[^(^)5 ^(^;^;J)]. Consider next the boundary:
x=e', — 7r<j;<7r. There

g(z) =e~B(cos y — i sin y) —2

respectively

g(z\P\A) =e~s(cosy~i sinj;) - 2 + ̂ 8 (cos (jflj; + 2^4) - i sin (fry + 27rJ) ) .

Again both Re g(z) and Re g ( z \ f i \ A ) are strictly negative (remember

e>0) and hence 0^[g(£), ^(^;j8;J)]. There remains to consider only

the boundary #=— L, ~K<y<K. Because e2L — 2eL^>e20L we get

l£(£) l>k~^~ 2 7^ =^L. The Theorem of Poincare and Bohl shows
then that the function g(z',fi',A) has exactly as many zero's inside the
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rectangle ^E,L for any e^>0 as the function g(z). To see that there
does not exist any further zero of g(£',/3;J) in the strip — 7r<j;<7r we
only have to repeat the above reasoning for the rectangle &SiL for
bigger and bigger e and L. Let us next assume that C(J) lies on the
imaginary axis, that means f (J) =0. This leads to the equation

cos>?C4)-z sin^Od) +cos(/fy(J)+27rJ) -{ sin (^(4) +2^4) -2 = 0

and therefore to

cos3?(J) + cos 03?? (J) + 2?r/0 =2.

For — 7r<j;<7r the only solution is 7](A) = 0 and ^ = TZ? For J^ra hence
f(/f)<0 because C(^)^^O.L for all J. We can improve this result
even more: the function y (J) is bounded in absolute value by

— . That means for every A the zero of g(&\$\A) in «^0>L lies even in

the substrip — 7r/2<jy<7r/2. For, assume that 1^(^)1 >7r/2. Then
the equation g(z;[$m,A} =0 can be written as

~ftx cos (/3j; + 2?r A) = 2
~^ sin (^jy -f- 2;r J) =0

and therefore

= -^-^ sin j;
) =2e0x~e^~^x cos >

For ^ = f(J) and y = y(d) we get for 7r>|57(J)| > - - : cos 17 (J) <0

and therefore cos(/3/7(J) +2?rJ) > — ̂ (^~1)a: cosjy>0. Squaring both sides
and adding the two lines leads to the result

1>0<*-D*W) contrary to the relation f (4) <0.

Corollary. For /5 irrational no zero of g(z',fi) besides ^ = 0 fej1 on
the imaginary axis.

Proof. Follows from the fact that mfi=£n for all m, n

Lemma 2. The function //— >C(J) is real analytic, periodic of period 1
and fulfills the relation

Proof. The function g(z.;fi;A) is both holomorphic in z and real
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analytic in A. From Lemma 1 we know that g(^(A) \fi\A) =0 for all

We only have to make sure that
dz

Aa But the left hand side is simply

^0 for all

fi? °

For Re £<0 obviously \e~z\ >/3 e~ft*\ because 0<^<1 and therefore

&^>P> ) -£Q because Re C(/f) <00 The Implicit Function
VZ z=(,(A)

Theorem for real analytic mappings then shows that C(^) is real
analytic in A and that furthermore

-CM)- O)dA U

Because of the uniqueness of C(^) the periodicity of g(z;fi;d') in d
leads to the same periodicity of C in A:

and also to the relation: C( — 4) =
There we use also the fact that the rectangle ^O ,L is invariant

under complex conjugation. This means for C =

f(4)=f(-J) and (-^) = -

Lemma 3* J7z£ function C=C(^) fulfills the following relations:

(a) C(0)=0,
(b) C /(0)--

(c) r(J)<0/0r 0<J mod l<l/2, 3/(4)<0 /or 0<J mod

For
(d)

Proof. Because g(0;/3;0)=0 and O e ^ O L we have from Lemma 1

that C(0)=0. In complete analogy one argues for C(-o-) = ^o(^). Let

us next consider the different properties of the function C7(/0- From
g(z',P'*A)=Q we get the two equations for z = x + iy:

$x cos (/8^ + 27rJ) =2 (10)
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e~x sin y + e~** sin (fly + 2?rJ) =0. (11)

From (11) it is clear that sin y = Q if and only if sin (fly + 2?rJ) = 00

For ^e^0iL this can happen only for jy = TJ (A) = 0 and A = -~n, n^Z,

But then sin 57 (J) ^0? sin (^(4) +27rJ) =£0 for A^n/2, n^Z, especially

sign sin if] (A) = — sign sin (/fy (J) +27rJ) for 0<^ mod l<-o-= For these

values we can also write the two equations (10), (11) as follows

>= _sin 7(J)/sinG87(4) +27rJ) (12)

^^ = 1/2 sin((j8-l)7(J)+2^J)/sin(j87(J)+27rJ). (13)

The second equation shows that sign sin ( Q3 — 1 ) y (A) + 2?rJ) = sign sin

--sign sin 37 (J) for ^~|~3 ^^Z.

Let us calculate next C'(^) with the help of relation (9) and

After some trivial algebra we find

(14)
2

(15)

Inserting the values C(0) =0 and C(-^-)=^o(/5) then gives:

f (0)=0, J7'(0) = -2ff/(^8+l) and therefore C'(0) = -i
e'(l/2)=0,

which leads to

C /(l/2)=z27c

For ^^YWC know tna-t sin((jS— 1)^(^) +2?rJ) ^0 and has opposite

sign to sin Oy(J)). But ^'(OXO and 22(0)^0 show therefore sin

?C4)<0 for 0<^<-^- respectively 0<J mod 1<-|-.
^- ^

Relation (14) then shows that f'(J)<0 for these A values. Expre-
ssion (15) for rf (A) can be rewritten with the help of relations (12)
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and (13) as follows

2 e~20x(p-l+2 e^x cos

Because ^'(OXO and 37/(4-)>° there exists a 0</<— such that

j/(/) =0. This J is the solution of the equation

j8 -1 + 2^C(J) cos (fa (J) + 27T/) = 0.

The asymptotic formulas for J—»0 then follow immediately from a, b,
and c, together with real analyticity of C(^).
This concludes the proof of Lemma 3. Theorem II then follows from
Lemma 1 to Lemma 3.

Let us conclude with some remarks: How these results can be used
to improve the results on the long time behaviour of correlation
functions for certain turbulent systems mentioned in the introduction
will be discussed in [13]. Another problem which arises immediately
from our result concerns the zero's of more general exponential sums
of the form e~z + e~^z+ -\-e~^nz— (w + 1). We expect that more or
less analogous results hold and that the location of the zero's is
closely related to the simultaneous Diophantine distances ^ m (&) , . . . ,
dm(fin) respectively the best simultaneous Diophantine approximation
denomintors qn of the numbers &,... ,$,[14],
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