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Remarks on the Feynman Representation

By

Brian JEFFERIES*

Abstract

It is shown that there exists a complete space 3L1 (Mf, Mf) of integrable functions such
that for any potential V with zero //0~bound relative to the free Hamiltonian operator H0

C*of a finite non-relativistic quantum system, the function exp[—i \ V°XS ds] belongs to
Jo

dLl(Mf, Mf), and the Feynman representation e~
ic*0+|r)l=^ exp[-i{* V°X,ds] dMf is valid.

§ 0. Introduction

Suppose that A is the selfadjoint extension on L2(JJd)? rf=l,2,...
of the Laplacian operator 92/d#f + ... -i-d2/dx2

d acting on all smooth
functions of compact support on Rd. Then for the appropriate choice
of the dimension d, the free Hamiltonian operator of a finite non-

relativistic quantum system is equivalent to the operator H0=——-d.

If V:Rd->R is a Borel measurable function representing the potential
describing the interactions in the system, then under suitable condi-
tions, H = HQ+V is defined and selfadjoint on the domain of //0? and
it is equivalent to the Hamiltonian operator of the system.

The Feynman representation [2]

°XJs]dM? (1)

has recently been established for a large class of potentials V9 includ-
ing, for example, Coulomb interactions. For more singular V, such
as the attractive l/r2 potential, the definite integrals seem to give a
good description of the dynamics of the system [8]. A further
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extension has been considered for magnetic fields [3],

It was pointed out in [2] that the approach to integration with

respect to the relevant operator valued set functions developed there

is deficient in the sense that the space L^CAff, Af?) of (equivalence

classes of) Aff-Aff-integrable functions is not complete in its natural

topology. Examples of non-convergent Gauchy sequences in L*(Aff, Aff)
are provided by Johnson and Skoug [5] page 2640

The purpose of this note is to show that a slightly stronger

integration process is sufficient to produce a complete space dLl(M?9

Aff) of integrable functions, at the expense of diminishing the class

& of potentials V for which exp[ —i\ V°Xsds\ is integrable for each
Jo

£^>0. For example, the Feynman-Nelson approximating sequence will

not converge in 3L1 (Aff 9 Aff) for the attractive 1/r2 potential [8],
However9 the potentials with zero H0-bound [6] page 190 belong to

^9 so the Feynman representation (1) is still valid for the stronger

integrals, and the convergence of the integral is closer to Feynman's

original approach; namely, for each £^>0, the operator \ exp[ — !•
JQ

S t
V°Xsds}dM^ belongs to the closure in the strong operator topology

o

of the family A s dMf: s^sim(^t)} of bounded linear operators
JQ

on L2(Rd). In particular, 3P still contains Coulomb potentials,,

In Section 1, slight modifications of convergence results for one-

parameter semigroups of continuous linear operators on a Banach

space [9], [10] are optained to cover the case of the uniform conver-

gence of the limit of operators in the strong operator topology, as a
certain parameter varies over compact sets,

The result is applied in Section 2 to the Feynman representation,

An outline of integration with respect to closable set functions is

given in the appendix,,

§ 1. A Uniform Product Formula

The following lemma is probably well known, but because it is

used repeatedly in what follows (and in [2] Lemma 4e 3) it seems

worthwhile to state and prove it explicitly.

Lemma L Let E be a topological vector space. Let {TT(a) i r^T^
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be an equicontinuous family of linear operators on E such that for
each x^E, limteYTT(a')x converges in E uniformly for a^A.

Then limre/Tr(a)^: converges in E uniformly for a^A and as x ranges
over any precompact subset of E,

Proof. Let K be a precompact subset of E. Let U be a closed
neighbourhood of zero in E. Then there exists a finite subset
[xi'. i = l,...,n} of K such that /£cw(^ + F) and V is a neigh-

n
7=1

bourhood of zero in E such that

by virtue of equicontinuitye

If the limit of Tt(a) , r^T is denoted by T(a) for each
then for T^T sufficiently large, Tz(a)xi~T(a)xi^U for z = l , . . . , w
and every a^A, by the uniform convergence.

Therefore, for any x^K,

[rr(fl) -T(a)]xt=U+U-U

for every a^A, giving the result,

The domain of an operator T is denoted by 3ft (T) . The space of
all continuous linear operators on a Banach space X is written as

Lemma 20 Let X be a Banach space. Let T be a non-empty set and
B : @ (5) -^X a linear operator on X.

Suppose that there exist a number M^>Q and linear operators A(T) :
& (A (T) ) -> JL", T e T such that for each T e T the operator A (r) + B defined
on @(A(T))n@(B) is closable, and its closure T(r) generates a Co-
semigroup eT(r)*9 t^>Q such that

for every 0<£<1.
Suppose also that for each y e Y = r\ & (A (r) ) n ^ (-B) , the set

rer

(r)j; : r e F} z j <2 relatively compact subset of X^ and Y is dense in X0

Then for each
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as s ^ 0, uniformly for

Proof. For each

(r)

for each £>0. The integral is the limit of Riemann sums.
By virtue of the assumed uniform boundedness of er(r)s,

about j = 0, it follows that er(r)s/~^/ uniformly for reT as s->0, so

er(r)s#-*# uniformly for re 7" as j— »0, for each x£EX by equicontinuity.

We have used the fact that [A(r)f\ r^T] is a bounded subset of X.

Moreover

so the result follows from the precompactness of [A(T)f\ re 7*} and
Lemma 1.

The uniform product formula for contraction semigroups follows

from a minor variation of Nelson's proof [8] of the Trotter product

formula.

Theorem 1. Let X be a Banach space. Let B be a bounded operator

on X. For each re 7", let A(T) be the generator of a CQ- contraction

semigroup such that the set Y=r\^(A(r)) is a core for each A(r),
rer

r^r, and ri— ̂ 4(r)j>, reF is continuous for each y^Y, with T metrizable

and precompact. Then for each

in the strong operator topology on &(X), uniformly for r£=F.

Proof. It can be assumed from the outset that i|eB/||<l for all

£>0, since B can be replaced by B — H-BIU if necessary.
T ft*. Dr / ' fN ~C/4.(r)+.B)£ Cz'/'/^S 0A(r)i rf(i\ 0Bt Or-i^ T I* f+ \ T f+\ C^/ ' f^ fVvv.j^et /c (j,) — e , o \t) — e , i (t) — e ana u {t) — i (t)o {t) tor

each ^^>0 and rEE/\ For r^Y and J^>0, set xl=RT(s)x for each

Then for *>0
ii-i

j=0
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< sup n \ \ (R * (t/n) - U* (t /n) ) *J| | (2)
Q<s<t

for each
Let x^Y. By Lemma 2

as s I 0, uniformly for rEEF.
The continuity of R T ( ° ) and 5 r(e) is obviously uniform for rErT",

because it is for a dense set of vectors, and the families of operators
are equicontinuous. Now appealing to Lemma 1,

+ (T(s) -I)x/s-*A(i:)x + Q + Bx, s J, 0

uniformly for reT. Here we use the fact that {4(r);c: reT} is a
precompact subset of X, and so is {(iSr(jn) —I)x/sn: n = l 9 2 9 B . , , re 7°}
for ^re^0 as H->OO. The last assertion follows from strong resolvent
convergence [9] by the continuity of A ( • )jy, y e F9 and an elementary
topological argument, given explicitly, for example, in [4] Lemma 4. 1.
Therefore, limn_n[£rO/n) ~UT(t/n^x = Q in JT, uniformly for reF.

Let Z be the space of continuous functions TF— »£r
? re/* from F

into X such that £ re^(^4(r)) for each T^T and the function
ri— >v4(r)£r, reT is continuous. Equip Z with the norm

Then Z is a Banach space because A(r) is closed for each
The same argument as in Lemma 2 and as above shows that for

each ^eZ

lim w[/
W-»oo

in JT uniformly for r e T. By the uniform boundedness principle,
there exists C>0 such that

for all 72 = 1,2, . . . and £^Z. The convergence as n-^oo is uniform
as £ varies over compact subsets of Z.

Again, ,4 ( • )jy, j; e Y is continuous, so r-^^r(5), reT is continuous
for each ^^>0 by strong resolvent convergence. The uniform continuity
of J? r(-) for reT on [0,0 shows that
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is a compact subset of Z.
The right-hand side of (2) therefore goes to zero, uniformly for

T^T and for t in compact subsets of [0?oo[o

The notion of strong resolvent convergence needs to be extended
to uniform convergence as a parameter varies over a set. In this
case, the argument of Kato [6] IX. 2. 16 requires less modification
than does Nelson's proof of the Trotter product formula,,

Let Ea, a^A be dense subspaces of the topological vector space
E. The collection [Ea: aEiA} is said to be uniformly dense in E if for
each x^E there exists a directed set Z and xa^Ea, a^A, CeZ such
that lim^zxl = x °m E uniformly for a£=A.

The condition is clearly satisfied whenever r\Ea is dense in E.

Theorem 20 Lei T(a), Tn(a), n = l , 2 9 0 o a , a^A be the generators
of C$- semigroups. Suppose that there exist M9/3^>0 such that

for all
Suppose also that A is precompact and metrizable, and the operator

valued function a^->T(a)3 a^A is continuous in the sense of strong resolvent
convergence,

If {@(T(a)}\ a^A] is uniformly dense in E^ and for some
with

uniformly for a^A, in the strong operator topology as /z— »oo, then

in the strong operator topology, uniformly for a^A and as t ranges over
any compact subset of [0?°o]3 as n~^ooa

Conversely, if for each

uniformly for a^A, in the strong operator topology as n-^oo, then

in the strong operator topology, uniformly for a^A, and for A in compact
subsets of {z^C:
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Proof, The first statement follows by systematically applying

Lemma 1 to the proof of [6] IX. 2. 160 The converse follows by

noting that

for every l^C with Re/l = a>/3, and every vector x. Dominated

convergence gives the result,,

The notation adopted In the appendix will be adhered to in this

section,, The lack of completeness of the space Lx(Mf, Aff) Introduced

in [2] is a consequence of the space HC(D) being incomplete; this Is

the space of continuous functions on D, analytic in the Interior of D, and

equipped with the topology of uniform convergence on compact subsets

of the interior of D= In some ways, this Is a natural space to use

because we are dealing with a boundary-value problem for holomorphic

functions — solutions are constructed in the Interior of D so that

boundary-values are taken on continuously— a time-honoured technique

in analysis,

One way to ensure that boundary-values are taken on continuously

Is to approximate by holomorphic functions v/hich have this property.,

uniformly on compact subsets of D. It is to be expected that such

solutions have better stability properties than those which are con-

structed by approximation in the interior of Z).

Let ^ (D) denote the family of all compact subsets of Da For each

CetfCD) and 0eL2(H' f), set Bf-*= {(A/?^) : <;£EC, \\^\\2<l} and

St=[B?*: !^||2<1, CetfCD)}, for each £>0.

For each £>0, the increasing family of sub-semi-algebras is the

usual one, ̂ /5 /d]0s£] finite,, The set functions (Af?0, ^)3 <?,^G

L2CR*)> £e^ are viewed as elements of ba(^7 jC7)0

It is easily checked., as in [2] Theorem 30 43 that for each £>03

St is /Vclosable. Because the space ba(^/, C) is complete, every

function (Identifying a function with Its equivalence class, as usual)

belonging to the domain S(//^) of the closed linear map Irtst is

/VSt-integrable. Although this Is a simplification, the task of
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verifying that a function is F\-Bf-integrable is more difficult.
A /VS^-integrable function is said to be boundary-Mf-M^-integrable,

or briefly, d-M^-Mf-integrable. The space of (equivalence classes of)
3-Aff-Aff-integrable functions equipped with the coarsest topology
for which both the inclusion of L1^, Et) in Ll(M?) and the map
Irtst are continuous is denoted by 3L1 ( M f , Mf). Because the map

Irtst is closed, the space d~Ll(Mf, Aff) is a complete locally convex

Hausdorff topological vector space. The completeness of the space
of d-Aff-Aff-integrable functions is obviously a desirable property.

The cardinality of the topology of dL1(Mf9 Aff) is the same as
the cardinality of the continuum, because we are using the collection
of all finite subsets of the interval ]0, £]; the topology may or may
not be viewed as large, depending on whether or not one believes in
the continuum hypothesis. In any case, dLl(M?, Aff) is surely not
a Frechet space.

Because dLl(M?, Aff) cLx(A/f, Aff), the integrals /Aff: ^-»
c£?(L2(Ud)) of d-Aff-Aff-integrable functions are defined in exactly
the same way as for Aff-Aff-integrable functions [2] Theorem 3. 5.

Theorem 3. Let V:Rd->R be a Borel measurable function such that
the domain of the operator of multiplication by V contains 2 (//0), and for
each #>0, there exists £>0 such that

\\Vf\\2<a\\H0f\\2

for every /e 3f (//0) -
Then for each £^>0, the function

oXs ds~\\ oi->exp[

is defined on a set Qt of full Aff-measure and it is d-Mf-Mf-integrable.
Furthermore, HQ+V is self adjoint on 3f(H§) and

Proof. First suppose that V is continuous and bounded. Define

for a)^Q, and w = l,2, .... It is easy to see that each function
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77 = 1,2,.. . is 9-Mf-Aff-integrable by appealing to Lemma 19 and

For ^eTf, the Riemann sums converge everywhere on Q, and by
rt

dominated convergence, jfn->exp[ — i\ VoXsds~] in Lx(Mf) as ft->°°, and
Jo

lim Af? (/.)=

By virtue of Theorem 1, the left hand side converges uniformly
for £ in compact subsets of D.

Now fix J= {fj, . . . , tj] d]0, J] and let J3lf . . . , fi,- be Borel subsets
of Rd. We suppose 0<Oi<. . . <^-<^ and that n is so large that

Let nkt/n<tk<(nk+l)t/n, k = l,2,...J. Then

VS-(*/;i). . . e-i

e~m/nSz (t/n) . . .

S*(t1-nlt/n')e-iVt/HS*(t/n')... ^m/nSz(t/n}

By [2] Lemma 4.3, it follows that /BM*

77 = 1,2, . . . converges in the strong operator topology to
-i(HQ/z + VHt-t •) D - i(.ffg/«-t-TO (f f—•*,-_]) r> -i(H

e JDj-e £>j-i'•«c

e

uniformly for BI, ... , 5,- and for £ in compact subsets of D. Therefore
/„, 77 = 1,2, . . . converges in 9Lx(Aff, Mf), and (1) holds.

For F bounded, but not necessarily continuous, we can take a
regularization Fn, n = l ,2 , . . . of F by smooth functions, such that
] Fn| <||Fiioo, 77 = 1,2, . . . and Vn-^>V a. e. as 77-^00.

T"l l\Hn/Z-i-V )t i(Hn/Z-$-V)t p . _. -. v. .-. -I

Ihen e n ->e for each ^eZ) and £>0 by strong
resolvent convergence. To see that the convergence is uniform for £
in compact subsets of Z), we apply Theorem 2 and the argument of
[6] IX. 2. 4; the convergence of the second Neumann series is uniform
for £ in compact subsets of Z), and for each perturbation FB, w = 1,... , V.
Another application of [2] Lemma 4. 3 yields the convergence of

[-i{' Vn°X4s), 72 = 1,2, . . . to expC-iT V°X4s) in dLl (M?, M?)
Jo Jo
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and (1).

Now truncate the positive and negative parts of V to obtain the
bounded functions FM,W3 7z ,m = l, 2, „. „. The same argument is enough

to establish the convergence in dLl(M?,M?) of

exp(-i\'
Jo

as n~^oo and then m-^oo; namely, [6] IX, 20 4 and the relative

boundedness of V with respect to //0, Theorem 2, and [2] Lemma

40 30 It then follows that the Feynman representation (1) is valid.

Remark, The corresponding result for complex potentials was

proved in [2] 4, 8. It is not possible to control the convergence of

the approximating sequences for complex potentials on the boundary

of D3 so it is unreasonable to expect convergence of the integrals in

Appendix : Integration with Respect to Closable Set Functions

A semi-algebra of subsets of a set Q is a semi-ring [1] containing

the set Q. Let E be a locally convex space with a fundamental

system 0* of seminorms defining the topology of E.

The space ba((f ,£") of bounded additive [1] set functions m: $ ~^E

on the semi-algebra $ is equipped with the semivariation topology;
that is, for any seminorm /?e^3 pf: ba(<?,E)-»[0,oo[ is defined by

pc(m) = supp(m(£)) for each m^ba(^9E) -the collection {p^:p^^}

then defines the semivariation topology on ba ( $ , E) .

Let Z be a directed set and <^^ez an increasing family of
semi-algebras, Set ^~\J^r and let ba(^c, £) be the protective

CeZ . *~
limit of the spaces ba(^, £), C,^Z linked by the restriction maps,

Then ba(^c, £) is naturally identified with a space of additive set

functions on the semi-algebra £P which are locally boundedo

Let W09 W\ be index sets and let F be a collection of families
F^ £^WQ of measures ^:(7(^)— >[0, oo[ on the e7-algebra ff(^)

generated by «$* such that for each g^W09 sup{/^(^): //er5}<oo.

Let A be a collection of families A^ f e W\ of £"-valued additive

set functions //eba(^c, £) such that for each ?eW^, ̂  is a bounded
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subset of ba(^c?E)0

The space of finite linear combinations of characteristic functions

of sets belonging to &* is denoted by sim(^)0 If s^s'im(<9*) and

m^ba(^c?.E), then sm: &*->£ is the Indefinite Integral of 5- with

respect to m, defined in the obvious way; clearly sm^ba(^^ E).

Two topologies rr and TA are defined on sirn(^). The first, rr,

is defined by the family of seminorms jH->sup^epM(\ s |), j-esim(^)as

f ranges over W^ and the second Is coarsest such that for each

feW^!, s^sm, j^sim(^) is an equicontinuous family of linear maps

from sim(^) to ba(«9^, E) as m ranges over A*.

The topologies rr?TA may not be Hausdorff, so let slmr(^)3

sim^C^) be their respective quotient spaces,, In addition, it is

supposed that the Identity map /: sim(^) —>sim(<^) factors Into a map

IrA: simr(^)^sim^(^)0

Now let L^CT) be the space of (equivalence classes of) .T-integrabie

functions introduced by Kluvanek [7] page 40, IfL1^) Is complete,

then F Is said to be a closed system of measures [2], and in this case,

the completion simr(^) of simr(^) may be Identified with a closed

subspace of I/OO, which in practice is ail of L1^) (for example,

r% is uniformly countably additive for each fGEl/Fo).

If F is closed and the map IrA: simr(^)-^sim^(^) Is a closable

linear map from Ll(F) into the completion sim^(«^) of simA(<9*)<> then

A is F-closable,

The integration map s\-^sm, ^^sim(^) Is clearly continuous for TA

into ba(^c?£"), so a function f:Q->C Is called F-A-integrable if/

belongs to the domain @ (!PA) of the closure IrA of IrA, and the

image of f via the (continuous extension of) the integration map °m

belongs to ba(^c?E) for all m^.\jA,

If E Is complete, then this last condition holds whenever /EE @ (IPA) •

The uniquely defined image of f by °m Is denoted, of course, by fm]

it is the indefinite integral of f with respect to m.

A convergence theorem for these Indefinite Integrals can be read

straight off the closedness property of the map IrA [2] Theorem 2, 5.

To apply the definition to Schrodinger semigroups, set

K={ai: a
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for each ^eD and £>0. The operator A is the self-adjoint extension
of the Laplacian d2/dx\ + ... Jrd2/dx2

d on ~L2(Rd). The exponential is
defined by the operational calculus for self-adjoint operators.

Let Q be the set of all continuous functions CD: [0, oo]— >Rd
9 and set

X t (a))= CD (t~), a)(=@, £>0. The Borel ^--algebra of Rd is denoted by
S. A set will sometimes be identified with its characteristic function,
and a Borel measurable function will also be identified with the
operator on ~L2(Rd) it defines.

For each £>0, £^Z), define

for all ()<*!<... <**<*, Bl9.e.9Bk^S, k = l,2,.... Then M\\ «^->
££ (L2 ( Rd) ) is an operator-valued set function on the semi-algebra of
sets of the form [Xtl€=Bl9 . . . , Xt^Bk], 0<tl9 . . . , tk<t, Bl9 . . . , 54e=J,

4 = 1,2,....

For each z<=K, M* is the restriction to ^t of a unique 3? (L2(Rd))-
valued measure, also denoted by Aff, on cr(^ f). This follows by
representing M* in terms of the Wiener process [2].

Our space E will be the space HC(D) of continuous functions on
D which are analytic in the interior D° of Z), equipped with the
topology of uniform convergence on compact subsets of D° (it is not
complete) i

For each ct>,(/><^L2(Rd), (Aff^,^) represents the HC(D)~ valued set
function defined by

and
Finally, for each £^>0, our increasing family of semi-algebras is

the family <^/>je<^ of semi-algebras & 'j of sets of the form [Xt EiBi, . . . ,

Xtjs=Bj], Bl9..., Bjt=Z, J=(tl9...,tj}c:]Q,f]. The set &t is the

collection of all finite sets ,/c]0,^] directed by inclusion.
Put r?-«»={| (M?0,<P)\ : <p(EL*(Rd), |]^||2<1} and A={r?-': a>0,

<f>GU(Rd), Hf5| |2<l} for each *>0. Here |-| denotes the variation
(measure) of a complex measure on the <r-algebra a(SPt).

For each ^>0, A\= {(M?^,^ : 0^L2(Rd), i i^i |2<l}, and



REMARKS ON THE FEYNMAN REPRESENTATION 1323

A /"f-^-integrable function is said to be Aff-Aff-integrable. A
/Vintegrable function [7] III. 1 is said to be Aff-integrable. For

each Aff- Aff-integrable function /, the additive operator-valued set

functions

/Mi: <5

can be read off from the definitions in the obvious way [2],
These are our integrals. For £GE^5 they correspond to the usual

integrals with respect to an operator-valued measure [7], and they
are analytic continuations of these off K\ that is, for each t^>Q and
AEz&t, fM't(A) is continuous for the weak operator topology on all
of Z), and analytic in the interior of D.

The space L1^) is written as L^Aff) for each £>0. The space
L^CAff^Aff) of all (equivalence classes of) Aff -Aff-integrable functions
is equipped with the coarsest topology for which both the inclusion of
Ll(Mf, Aff) in L^CAff) and the map //^ are continuous. Unfortunately,

L1 (Aff, Af?) is not complete because HC(D} is not complete ; we shall
learn to live with this fact.

Expressions such as "Aff -a. e.", "Aff-null" have the obvious
meanings attached to them in [2], The set function M] is written
as Aff, £>0.
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