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Some Aspects of Normal Quantisation

By

Keith Ga HANNABUSS* and Mark A. HENNINGS**

Abstract

A generalisation of the process of normal quantisation is studied which deals with a
physical system whose phase space is given by a coadjoint orbit of a locally compact Lie group
G. Under certain conditions, an algebra structure—implemented by a Fronsdal *-product—is
assigned to the family of physical observables in such a way that the normal quantisation
provides a representation of the algebra. This method, then, provides a useful means of
determining a physically sensible Fronsdal *-product for a given system.

<5 J.

It is well-known that the traditional formalism of classical mechanics,

where the phase space for the physical system is described by a

symplectic manifold (M, co) and the observables jtf form a Lie subal-

gebra of C°°(M) under the Poisson bracket {,}, is not one which can

be conveniently reconciled to quantum mechanics,, Indeed Moyal

[10] has shown in the case M = R2n that, in order for classical

mechanics and quantum mechanics to be correctly related, the Lie

algebra structure {,} of stf should be deformed to a new structure

{*} (the Moyal bracket), which is related to the Poisson bracket {,}

in the sense that {fag} = {f,g} + 0(fi2) forf9g<=3/ and \f*g] = \f, g]

for/e stf and ge j/03 where j/0 is the Lie subalgebra of C°°(M) spanned

by the constant functions and the 2/2 coordinate functions f 1?. „. , £2n

of R2n, Indeed it has been shown that the algebra structure of

pointwise multiplication on C°°(M) can be deformed to a new associa-

tive structure * (the Moyal product) on C°°(M) such that f*g=

and/*£-£*/=*'
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It has been suggested that this process of deformation is the

correct approach towards quantising a physical system. Fronsdal [2]
has proposed that, for a general physical system with phase space

(M, <w), the algebra structure of the space sf of observables should
be deformed from pointwise multiplication to an associative structure

* such that

fog=f-g+0(K)
fog-g*f=iK{f,g}

where j/0 is the Lie subalgebra of C°°(M) contained in j/ chosen to

represent the basic geometrical symmetries of the system. Any such

structure * will be called an j/0-invariant Fronsdal ^-product on j/.

Quantisation of the classical system is now to be achieved by finding

a representation of the algebra (j/, *).

Of course, the problem remains of how to choose a physically

sensible Fronsdal ^-product. In this paper we shall investigate a

method which, under certain circumstances, generates meaningful
Fronsdal ^-products. The material in this paper relies partly on

unpublished lecture notes of the first author [4], and partly on the

D. Phil, thesis of the second author [5].

§2. Motivation for the Construction

Let U be a projective unitary representation of a separable locally

compact group G with multiplier a on a Hilbert space 3? which has

a unit cyclic vector Q. To specify our convention, this means that

U(gK) =ff(g, K) •U(g)U(h) for all g,h^G. The map taking a linear

operator A on Jf to the function

JA(g)=<U(g)Q,AU(g)Q> g^G (1)

is well-known, as is its transpose which takes a probability measure

/j, to a quasi-classical density operator

( 2 )

If G is a Lie group and Q an analytic vector then the function ®(g)

= (Q,U(g)Qy can be differentiated to give

( 3 )
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so that /e ^ *, the dual of the real Lie algebra ^ of G, Geometric
quantisation theory tells us that the G-orbit of / is a symplectic
manifold (M, CM). If the stabiliser of 0 coincides with the stabiliser
of/, then $A can be seen as a function on M. This provides a way
of associating functions on a symplectic manifold with operators on a
Hilbert space.

When G is the additive group of a symplectic space, and the
multiplier a is the exponential of the symplectic form, then the map
taking A to <f>A can be inverted to give the normal quantisation (see
§4). Consequently we shall call any linear map N from functions
on M to operators on Jf such that

<U(g)Q,N(ftU(g)a> = f(g-f) g(EG (4)

a generalised normal quantisation.

§3. Notation and Elementary Results

When considering a multiplier a on the group G, it is natural to
look at the new function

$(g,h)=a(g,h)a(h,h-lgh)-1 g.h^G (5)

(Hannabuss [3], Kleppner [9]). It is well-known that, if G is
abelian, then & is an antisymmetric bicharacter of G which depends
only on the equivalence class of a. In the general case this is no
longer true, but we shall now state the results concerning o that will
interest us.

Proposition 1. (a) d(gh,k) = o(gjh)d(h-lgh, k) g,h9ktEG;

(b) 9(g,h-lrl = 3(hgh-l,K)
(c) U(h-lgK)=d(g,K)U(K)*U(g)U(h) g,

Proof. Straightforward, see Hannabuss [3].

If we introduce the spherical function &(g) =<fl, U(g)Qy, then
formula (c) shows that

for g,kt=G. In other words when the cyclic vector changes from Q
to U(g)Q the spherical function changes to
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g). ( 7 )

One readily checks that this formula defines an action of G on spheri-

cal functions, and we let HI be the stabiliser of @, that is

Hl={h<EEG\0(h-lkh)=d(k,h)0(k) yk^G}. (8)

We also introduce the subgroup H2 which stabilises the ray through
£, that is

H2=

Proposition 2. H2 can be characterised as {h^G\ |<P(A) | =1}, and it

is a subgroup of HI.

Proof. The condition for equality in the Gauchy-Schwarz inequal-

ity says that \0(h)\ = |<fi,C7(A)0>| =\\Q\\*\\U(K)Q\\ = l if and only if
U(K)Q is a multiple of £?? namely if and only if h belongs to H2.

We also note that when h^H2, U(K)Q = <Q, U(h)QyQ = 0(h)Q, so that

0 is a unitary ^-character of H2. Finally, if h e //2? then (h • 0) (k)

= <U(h)Q,U(k)U(h)Q>=\0(h)\\Q9U(k)Q> = 0(k), so that

Proposition 3. <U(gh)Q, U(k)U(gh)Qy = <U(g)Q, U(k)U(g)Q> for
and

Proof. <U(gK)Q,

Theorem 1. // U is an irreducible a -re presentation then Hi = H2, so

that we may drop the suffix and write H = H1 = H2. For each bounded

linear operator A on ^ the function tf>A defined in (1) may be regarded as

a function on G/H, with

0A(gH) =<U(g)Q,AU(g)Qy (10)

for

Proof. Since U is irreducible the von Neumann algebra generated
by the operators U(k) is equal to the whole algebra «^(Jf) of bounded

linear operators on Jf7. Hence taking the weak operator limit of the

result of Proposition 3 tells us that <U(gK)Q, AU(gfi)Q> = <U(g)Q,

AU(g)Qy for all g^G, Aetfx and ^eJ'(Jf). Taking A= |^><^| and
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£=1, we deduce that |<P(A) 2=\\Q\\*=l for all h^Hla It follows that

//i^//2? which combined with Proposition 1 yields Hi = H2. The rest
of the theorem now follows.

Remark. We shall henceforth assume that U is irreducible.

Let us now also assume that G is a Lie group, that Q is an

analytic vector, and that the multiplier a is also analytic. 0 may now

be differentiated to obtain / in ^ * as in (3) „ It is natural to consider

the ff-coadjoint action of G on ^* defined by

where g~l°X denotes the usual adjoint action of G on ^9 and a#:

is given by

(12)
" dt ^ 's

(Hannabuss [3]). Let K be the stabiliser of/ under the (7-coadjoint

action,,

Proposition 4. H^K.

Proof * If f is an analytic vector we can define [/* (X) ? for

by U*(X)£ = -^—U (etx)t- . Then the definition of f amounts to
at t=o

f(X) =iK(Q, U*(X)Q\ and (A-/) (X) =iK<U(K)Q, U*(X)U(h)®y for

any htEH. It is now obvious that if h is in H it stabilises / and

the result follows.

If we let Mf be the (7-coadjoint orbit of/ then geometric quanti-

sation theory (Kirillov [8], Woodhouse [14]) tells us that Mf is a

symplectic manifold. Since any function on C°°(Af/) may be regarded

as a function on G/K, it follows that when H = K we can use (1)

and (10) to define a function <j)A in C°°(A//) for any A£=3$(ffl) given

by

tA(g'J)=<U(g)Q,AU(g)Q> g^G. (13)

When H = K, then there exists a (/-character on K which differen-

tiates to /, namely 0, and so geometric quantisation theory now tells

us that the symplectic manifold (Mf,co) is quantisable= When the

map At-»<f>A is injective, we may invert it to obtain a generalised
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normal quantisation.

Remark. It is by no means always the case that H = K, as the
following example shows.

Example 1. Let U be the natural real representation of S0(n) on
JS", and let Q be any unit vector in Rn. Since U is unitary,

<Q9 U*(X)Q>=-<U*(X)Q9 0>= -<0, U*(X}Qy X^ 99

so that/(^)=tfl<0,tf*CJ00> = 0, and since a = l we see that K=G.
On the other hand, the stabiliser H of the ray through Q is isomorphic
to 0(w — 1) which is strictly smaller. By complexifying U we could
obtain the analogous result for a complex representation.

There are, however, some interesting examples in which both H = K
and the map At-*$A is injective, and these form the subject of the
next two sections.

§4. The Group R2n

For Xi9x29j>i9y2 in Rn, i ( ( x l 9 x 2 ) 9 (yi9y£)=xl*y2-x2*yi defines a

symplectic form on R2n, Correspondingly ff^exp-^r- defines a multi-

plier on the additive group G of R2n. By the Stone-von Neumann
theorem, every unitary irreducible ^-representation of G is equivalent
to that defined on L\Rn} by

(14)

Consider the analytic vector Q^L2(Rn) given by

(15)

(here \q\2 = q-q). A simple calculation shows that

0(*) =exp(- \x\ 2/4^) x^R2n. (16)

In this case ^ may be identified with R2n so that the exponential
map is the natural identification of ^ with G, and so
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= 0 Xe&. (17)
dt t=Q

Also it
t=0

so that under the ff-coadjoint action

for

(18)

The fact that a is nondegenerate now forces ^={0}, and so by
Proposition 4 H= {0} also. Consequently we deduce that Mf=R2n,
and the methods of §3 lead us to look for functions on R2n of the
form

$A(X)=<UWQ,AUWQ> A<a@(L\Rn^. (19)
Since 0 is a type I multiplier on 122n, there exists a natural

Fourier transform ^a given by

(20)
JG

It is known that & 'G maps Schwartz functions to Schwartz functions,
and that &2

a = I (Reiter [12]). The Weyl quantisation W of a func-
tion 0 on R2n for which ^00eL(G) is

(x)3Fa<f>) (x)dXm (21)

Now Hudson [6] has shown that any G-invariant quantisation must
take (f> to U(F'^a(f>) for some function F0 The significance of this
is that W is the transpose of the map taking a density operator p to
its Wigner probability measure

)(x}= tr[>£/00 *]*(*, jOrfy. (22)JG

The intrusion of F has the effect of conditioning W'p by convoluting
it with ^oF. Such convolutions occur, for instance, in the Husimi
transform (Davies [1], Husimi [7]). We have observed that 0 is
nonzero, and that particular G-invariant quantisation called normal
quantisation is precisely that obtained by putting F=0~l,

Theorem 2, Let £P be the linear space of Schwartz functions on R2n

such that 0~l^^a^^L(R2n). A linear map N from &> to Hilbert- Schmidt
operators on L2(Rn) is a generalised normal quantisation if and only if

=U($~l° «^a0), i.e. if and only if N is the normal quantisation,
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Proof. If F^L(R2n) then

If ^e^, then 0 = ̂ a(F>®) for some FeL(G), and so <£/(*)#, U
(0-l"^"a^U(x)Qy = ̂ (x). Thus the map N: <f>^U(9~l •&,<!>) is a
generalised normal quantisation.

Conversely, suppose that ^V is a generalised normal quantisation.
Then for 0e^ the Plancherel theorem states that N($) =U(F£ for
some Fj£=L(G), and so the above argument tells us that <$>(x) =
<U(x)£,N(0)U(x)Qy = [^a(Ft»®)](x). Hence we deduce that F,=
0~l'^a^> as requireda

Thus we see that the map A^><f>A obtained in (19) may be inverted
(at least so long as A is a Hilbert-Schmidt operator) to give a
generalised normal quantisation of a familiar form. We shall discuss
briefly in §6 how this result may be bettered.

§5. The Algebra jf of Observables for a Compact
Semisimple Lie Group C?

In the preceding section H and K were trivially identical. This
is actually a special case of a more general result.

Theorem 3. Let M be a coadjoint orbit of G in &* which has a
Kdhler polarisation, and let U be the representation of G obtained by
geometric quantisation. Then the representation space 3? of U is a reproducing
kernel subspace of the space of L2-sections of the canonical line bundle over
M. If Q is the vector corresponding to evaluation at a point f in M, then

iK<Q, U* (X) £> =f(X) X^&,

and the stabiliser of the ray through Q is the same as the stabiliser of f,

Proof. The fact that Jf is a reproducing kernel space is shown
by Rawnsley [11]. It is also shown there that the reproducing
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kernel defines a symplectic diflfeomorphism from M to the projective

space of 3? . Comparison of the moment map of M and on its image in
the projective space then leads to iK(Q , U *(X) Q) = f (X) . But since

there is a symplectic diffeomorphism from / to the ray through Q

(which is also a G-map), the stabilisers of/ and of the ray through

Q must be identical.

This result provides a valuable tool for interconnecting geometric
and normal quantisation. One interesting case in which it applies is

the following.

Assume that G is a compact semisimple Lie group and that <r = l?

so that ffl is finite-dimensional. The vectors corresponding to repro-

ducing kernels are the highest weight vectors for maximal tori in G.

So if Q is a highest weight vector the theorem tells us that H = K,

In this case another simplification occurs.

Theorem 4* If Q is a highest weight vector for an irreducble represen-

tation of a compact semisimple Lie group G? then the map A^-*<f)A is an

injective map from @ ( tf ) to L2(G/K)a

Proof. The kernel of the map A*-+$A is {A^^(^) \<JJ(g)Q, AU

Introducing the projection P= \Qy(Q \ we have that

K\U(g)PU(g)*A\, so that ker^ is the orthogonal
complement in 38 (ffl ) of the subrepresentation of [/(§)[/* generated

by P.

Since ffl is finite-dimensional, every vector in ffl is analytic, and

so C7* defines a Lie algebra representation of & by antisymmetric

elements of & («#") . In the Lie algebra representation corresponding to

C/(g)C/* we have

Now if X is a positive root vector then U*(X)Q = Q and so

Iterating such operators we see that the subspace generated by P

must contain all operators of the form |£?X!| f°r anY ? ̂ ^ Using
similarly a negative root vector we see that the subspace must contain
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Since the second term is already known to belong to the subspace,

the subspace must contain all t/#(Z) |0><f| for X<= & and fejf.
Another iterative argument shows that the subspace generated by P

contains all operators of the form IfX3?! f°r ?» y^^- In other words
P generates the whole of 3&(tf). The kernel of <f> is therefore trivial.

Remark. A similar argument could have been used for the a-

representation of R2n considered in the last section, with creation and

annihilation operators playing the role of root vectors. However in

that case it is simpler to use the direct argument.

For the remainder of this section we shall assume that G is a

compact semisimple Lie group, that U is an irreducible representation

of G, and that Q is a highest weight vector. Let us now define j/ to

be

(23)

namely the image of 3% ( Jf ) under 0. Since 0 is injective it carries

the operator product on ^(Jf) to a product on jtf defined by

0A*$B=<?>AB A,B^<%(je). (24)

We define j&0 to be the subspace of <stf spanned by the images of the
operators / and ihU*(X) for X^&.

Proposition 5. J^0 is spanned by the constant functions and the

Hamiltonian functions A (X) for X^ & defined by

[A (X)~](m) = m(X) m^Mf. (25)

Proof. Clearly ^/ is the constant function 1, and since [/£

= (g-fHW=iK<U(g)Q,U*(X)U(g)Q> = fimmw(g-fl ^ any
we deduce that A. (X) = 0iw*m-

Corollary. j/0 is a Lie subalgebra of C°°(M/) considered as a Lie

algebra under the Poisson bracket.

Proof. Since G is semisimple, A is the usual comoment map of

geometric quantisation, so that A ([X, Y]) = {A (X) , A (Y)} for all X,

. Also we observe that {1,^A}=0 for all

Theorem 5. The product on j/ defined by (24) is an s$ '^-invariant
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*- product in the sense of Fronsdal [2]e

The proof of this theorem follows immediately from the next

lemma.

LemmaB $Wcx>,*i = i#{&M7,<jn, $A] for all

Proof. For any A^3$S(3F\ the space of self-adjoint bounded linear
maps on Jf, we observe that ^AeCS(Af/), and so we may define the
Hamiltonian vector field £A on Mf by

Since Mf is a transitive G-space, for each mEiMf there exists

such that (£A)« = ZW; in other words

(?A0) (m) =-*at

Thus, for any F<E & and

(m)

r
at

= <C/

where m=gaf for some g^G. It follows that

m([F, Z])-^^([F^])(m)-^,^(F).^(Z)](m

for anjy Jf? Ye ^ and m^Mf, so we deduce that we may safely choose

The Poisson bracket {,} on CS(Af/) is defined as usual by {0?
(p}=5^ for ^,^eCft(M/), where ^ is the Hamiltonian vector field
associated with 0. Thus for any X^ & we deduce that

(SW*), ^A} (w) - (Z™VA) (w) - (Z^A) (m) =^W)iA](m)

for all m€=Mf. Hence the result follows if we extend the Poisson

bracket structure from CH(M/) to C°°(M/) in the usual complex linear

manner.

Remark, By taking A=ihU*(Y) in the Lemma we obtain an
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independent proof that A (\_X, Y]) = {A ( X ) , A (Y)}.

The proof of Theorem 5 now proceeds by noting that

A (X)*$A-<I>A*A (X)=<f>LW^iA1 = ifi& (X),0A} (26)

l*$A-fA*l=fa.Ai = fa = 0=Ui{l,tA\ (27)

for all Z<E^, A^a(tf)-
Thus we see that the method of normal quantisation is a tool

which can be used to calculate Fronsdal ^-products. Also, the generali-
sed normal quantisation <j)A±-+A provides a representation of the algebra
(j/, *), and so automatically quantises (sic) the system.

Finally, we notice that j/0 is that algebra of observables that we
could have quantised had we used the elementary techniques of
geometric quantisation. Since jtf0 is generated by the Lie algebra
^, it can be interpreted as representing the infinitesimal geometric
symmetries of the phase space Mf, and so is a good candidate
for the second algebra in the ^-product definition of Fronsdal. Since
in general the algebra j/ will be much larger than j/0, the method
used here seems to be a great improvement on that of geometric
quantisation.

By way of example, consider the representation Dm of 5C/(2)5

where 2m^N. The algebra jtf is the subspace of L2(G/H) =L2(SU

(2)/[/(!)) which transforms under 677(2) like Dm®Dl = @Djt There
j=0

is only one such subspace, namely the space of spherical harmonics
of order less than or equal to 2m. The Lie algebra j/0, which
contains only the zeroth and first order harmonics, will generally be
much smaller.

§6. The Group R2n (Again)

The reason that we assumed G compact was so that Jf should be
finite-dimensional, and hence that every vector f in 3f? should be
analytic. We shall now see that we can still achieve this last result
(in so far as it is necessary) in this more general case.

We notice that every Schwartz function on Rn is analytic for the
representation £7, and that Q^&*(Rn). Hence the operators
may be defined on SP(Mn) for every X^&9 and since
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(28)

where Jl9 , • • 9 J2n is the canonical basis of ^, we see that U*(X) e
End(^GRw)) for all X<E<$ .

Since H ~K= {0}, Theorem 1 is trivially true, and we do not need
to restrict our attention to bounded linear operators on L2 (!?")„
Specifically, if we only consider operators A in End(^(i2ra))3 then
(19) may be used to define the function <f)A in (C°°(R2n)0 If we
define $ to be the algebra of all elements of End (^(Rn)) which possess
adjoints with respect to the natural inner product structure of £? (Mn) ,
we can construct the linear space

j f = { f A \ A E E £ ] (29)

and the subspace

sf0 =<1, A (X) |Ze 9O = <1, £1, • - - , f^- (30)

It is shown in Hennings [5] that the map <j> : $ -^>s$ is bijective, and
so (24) can be used to define an algebra structure on j/. Since
every vector that we encounter belongs to <y(Rn), and every operator
belongs to End (^(J?n)), we deduce that every vector that we meet in
the proof of Theorem 5 is analytic in this case also0 Hence the result
of Theorem 5 still holds (the proof still works in this case of a
projective representation), and so we deduce that j/0 is a Lie subal-
gebra of C°°(R2n) with respect to the Poisson bracket, and that we
have defined an j/0 -invariant Fronsdal ^-product on J/B

§ 7. The Bosoe-Fermion Correspondence

For an abelian group G, provided that $(g) does not vanish we
have

)Q, U(g)U(x)Q>/0(g) =&(x9g). (31)

Let us define the subgroup

(Get) = [g^G \9(x,g)=I V*eG}8 (32)

It is known that if a is a type I multiplier then the map g^>&(°yg) is
an isomorphism from G onto (Go1)-1-, the subgroup of the dual group
consisting of characters which are trivial on (Go1) (Hannabuss [3]).
It follows that when a is a type I multiplier and 0(g) does not
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vanish then every element of (Ga)^ can be normal-quantised.
When a is not type I, the map g^-*o ( • , g) only has an image

which is dense in (Ga)^. However, since every character £ in (Ger)-1-
can be approximated by a sequence of the form a ( - , pB) one can ask
whether 0 (fn) ~1U (7^) converges weakly to some operator which
provides a normal quantisation N(%) of %. In fact, as the following
example shows, it is useful to allow the convergence to take place
only on a dense domain, so that N(%) can be an unbounded map.

An interesting example of this occurs in the theory of projective
repesentations of loop groups, which play an important role in 2-
dimensional quantum field theory. The following discussion is moti-
vated by Segal [13], and unexplained notation is taken from there.

Let G = Map(.S'1, T) have the multiplier defined by

-/(0)MO)Y) (33)

for f,g^Fz. Then we observe that

[g(2n) +£(0)] [/(2ir) -/(O)]
^

(34)

and simple calculations show that (Go} is trivial. However a is not
T /f»\

of type I because, for instance, for CeS1 the character ^H->— 2y~-is

not of the form <f>*-*a (<j> , (p) for any <p in G (unless C — 1). Methods
analogous to those of Segal [13] enable us to find a unitary (7-repre-
sentation U of G.

Let us restrict our attention to the connected component G0 of the
identity of G-those functions in G of winding number zero. Then
(G00-) is the space of constant functions, so that the characters on G0

given by X^) =-^-and fcW=<KO expf-^-fVw^C where
<P\i) \ 2.-K Jo /

(f,(eie) =eifm for /e Map (S1,^)) lie in (G0a)\ If we introduce the
function ^ in G0 denned by

for 0^>?<1 then

d log 0u = (««-2 ( 1 - ««-') -1 + «-J ( 1 - ^C"1) -1) dz
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so if 0eG0, then we can write $ = eif where /fc) = £ fnz
n, and so

UI=1

(36)

As ^-»1 we see that

(37)

In Segal's notation, if C = 0''a then 0^ = ̂ 0*7 at, and the argument in
[13] shows that ®(<P^~1U($^ converges on a dense domain to the
operator U(?a^)*Ba, where Ba is the (unbounded) fermion operator.
Similarly considering P^ = j^°ja^ we can show that a(<j),P^-^X^((j))
as /£->!, and on the same dense domain as before <P(P^) ~1U(P^ ->

(C-l)fl0*5« when C=£l . Thus U(TaQ)*Ba and (C-l)B0*5a are the
normal quantisations for %^ and JSTC respectively,

One might wonder whether the evaluation character 0n->^(Q on
G could be normal-quantised in a similar way. In fact it is easy to
check that

linWK^r^^CC). (38)

However, the above method does not lead to normal quantisation
in this case. This is because jaX has winding number 1, and so
increases the charge of the vacuum vector Q. Consequently 0(ja;i)

vanishes.
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