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Introduction

Let Loo be a partial differential operator in R3 of the form

L^Dl+$(xYDl+Dl, Dx=± Af . . . , . . . ,

where 0eC°°, 0(0) =0, 0(jt)>0 U^O), <f>(x)=(f>(—x) and 0 is non-decreasing in
[0, oo). In the recent paper [6], Kusuoka-Strook have shown that Loo is
C°°-hypoelliptic in R3 if and only if <j*(x) satisfies

( 1) limx \og6(x)=Q.0:4.0

If ^(^)— exp(— l/\x\°) for (7>0 the condition (1) means a<l. This result was
given as an application of the Malliavin calculus ( , which is a theory about
stochastic differential equations). The purpose of the present paper is to show
the necessity of the condition (1) for C°°-hypoellipticity of Loo by another simple
method.

The method used here is analogous to the one of Bouendi-Goulaouic [1],
where nonanalytic hypoellipticity of the operator L1=Dz

x
J
rx

2Dz
y+Dz

t was proved.
In [1], a solution u of L^^O was constructed in the form

( 2 ) u(x, y, t}=}Qt2NA(x, Dx, Dy)
Nw(x, y)/(2N) ! ,

where A= Ll— D\ and w(x, y] (—u(xt y, 0)) is nonanalytic C°°-f unction defined
in a neighborhood W of the origin in Rz

Xiy and satisfies for any integer N>Q

(3) \\A(x, Dx, Dy}
Nw(x, y)\\L*w^CN"(2N)\.

Here C is a positive constant independent of N. The estimate (3) implies that
u is well-defined as an L2(PF)-valued analytic function with respect to t e(— d, d)
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for a small <5>0.
In the present paper, assuming that the condition (1) is not fulfilled we

construct a solution u&C°° of LooU=0 which has the same form as (2). To find
a convenient function w(x, y}&C°° satisfying (3) we consider an eigenvalue
problem in an interval [—1, 1] with the Dirichlet boundary condition for an

d2

ordinary differential operator AoU, Dx, T?)= — -T—^+^U)2^2 with a parameter

This point of view permits to extend the result of [1]. Namely, we can
also show nonanalytic hypoellipticity of operators Lk=D2

x+x2kD2
y+D2

t, k=2, 3, •••
(cf. [9]). We remark that the method of the present paper is applicable to show
non-hypoellipticity of degenerate elliptic operators of higher order than 2,
differing from that of [6].

As to the operator Loo, it should be noted that an operator Ao=^jD|+0(;t)2Z)|
is C°°-hypoelliptic in R2

x>y without the condition (1) (Fedii [3], cf. [10]). We
remark that £«, and A™ with infinite degeneracy do not satisfy Hormander's
sufficient condition for C°°-hypoellipticity in R3 and R2, respectively ([4]).

The author would like to thank gratefully Prof. T. Matsuzawa for useful
discussions. The author also wishes to express his hearty gratitude to Prof. H.
Tamura for his helpful suggestion to the eigenvalue problem.

§ L Main Results

Let L be a differential operator in Rs of the form

(4) L=D*x+gWDl+Dl,

where g(x}^C°° satisfies g(x)^Q and #(0)=0.

Theorem 1. Assume that g(x) satisfies

(5 ) l iminf | jc logg(*) |=£0,
X^O

or
f limsupUlogg(*)| ^0,

(5) '
I g(x)=g(—x) and g(x) is non-decreasing in [0, oo).

Then L is not C°°-hypoelliptic in Rs. More precisely, one can find a function u
defined in some neighborhood V of the origin, belonging to L2(F), not to C°° and
such that Lu=Q.

Remark 1. The condition (1) is equivalent to limsupU' \og6(x)\ =0. The
X*Q

operator L of (4) is more general than Loo because g is not always expressed
in the form g=<f>2 for a non-negative C°°-function ^ (see Remark 2 of Theorem
1.1 of [10]).
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Remark 2. The solution u will be constructed as an L2(WO-valued analytic
function with respect to t^(—d, 5), where W=(—l, 1)X^ an^ 5 is a small
positive constant.

Let j(s\Q) for real s^l denote a class of Gevrey function of order s defined
in an open set Q. (Here f (1 )(fl) denotes a class of analytic functions in Q). We
say that a differential operator L is 7 (s) -hypoelliptic in ^3 if and only if for
any open set Q of Rs we have

Theorem 2, Assume that g(x} equals xzk, k = l, 2, • • - , that is, the operator
= Lk (k = I, 2, • • • ) • Then L is not y(s) -hypoelliptic in R3 for any s such that

(, and hence L is not analytic hypoelliptic}. More precisely, for any
one can find a function u defined in some neighborhood V of the

origin, belonging to f(k+l\V), not to 7Cs)(F) and such that Lu=Q.

Remark 3. It is well-known that Ak=Dz
x + xzkDz

y is analytic hypoelliptic in
R2 for any k=l, 2, ••• ([7]). Recently, Matsuzawa [8] has shown that Lk is
pU+D -hypoelliptic in R3, more precisely, Lk is partially )'a+1)-hypoelliptic with
respect to y variable and partially analytic hypoelliptic with respect to x and t
variables (cf. Derridj-Zuily [2]).

Remark 4. Metivier [9] independently proved non 7(*+1)-hypoellipticity of
Lk in more general form (see Theorem 3.5 and Corollary 3.7 of [9]). In [9],
the existence of w(x, y} satisfying (3) is reduced to the subelliptic estimate
instead of the eigenvalue problem.

Theorem 3. Let I, m and n be positive integers and let L be a differential
operator of the form

where g(x}(=C°° satisfies g^O and g(Q}=Q. If g(x] satisfies

( 6 ) l imin fU z / Mog£U-) I^O
o;-*o

or

lim sup U'l/Tl log g-U)i ^0,
,,o

g(x)=g(—x) and g(x) zs non-decreasing in [0, oo) ,

then L is not C°° -hypoelliptic in R3.

Remark 5. If g(x) equals exp(— I/ \ x \ a ) then the condition (6)' means a^l
We remark that an operator J92

r
z+exp(— 1/1*1 ff)Dz

y
m is C°°-hypoelliptic in R2 for

any a>Q (see [10]).
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§ 2. Proofs

We begin with the proof of Theorem 1 in the case that g(x) satisfies the
condition (5). Note that log g(x) is negative for \x\ small enough. The con-
dition (5) implies that there exists a constant dQ>0 such that

(7) g(*)^exp(-«0/U|)

if x belongs to a small neighborhood of the origin. Consider an eigenvalue
problem in an interval 7 t t— (— 0, a)dRl

x (0>0)

[ A(x, Dx, tfv(x, ^(-d'/dx'+gWtfMx, tf=Zv(x, 77),
(8 ) <

( v(a, 7])=v(—a, 77)^0

where 37 is the dual variable of y and considered as a parameter for a while.
Since A is a selfadjoint operator that is bounded from below, it follows from
Theorem XIII. 1 of [11] that the minimal eigenvalue ^(a, 37) is given by the
formula

(9) Ua,j]}= inf

In view of (9), it is clear that ^(a, 77)^0(00, 7]) if 0^00. Set 00— 50/21og|iyl
and assume | g y | large enough. Then it follows from (7) that g(x)ij*^l for
xe/ao. Let I0(fl) denote the minimal eigenvalue of the eigen value problem
(8) with A replaced by —dz/dxz+L Comparing (9) and a similar formula for
^0(0o) we have 2Q(aQf 77)^^0(^0) for large t] \. Since 20(a0) equals C'a^ for a
constant C' independent of y we have

(10) 0<Jo(l, 7)^C^(logi7 |)» for large |7|,

where C/r is a constant independent of 37. Let i>0(#, 77) be an eigenf unction
associated with ^0(1, 37) such that \\VQ(X, r])\\L2Ul) = l. Take a function <p(y}<=Lz

satisfying for a constant c0>0

(11)

where ^(77) denotes the Fourier transform of <p(y). Set

Then it is clear that w(x, y}&C°°. Furthermore, we see that w satisfies the
estimate (3) with W=(—l, l)xRl

y for any ^V=l, 2, — . In fact, it follows from
A(x, DX3 r])NvQ(x, 7])=AQ(1, ?]}NvQ(x, 37) that the estimate



NON-HYPOELLIPTICITY 29

(~\9\ II A( v n Pi \Nin(r i »MI „ —II j H m^?; (y\±£i) l l ^ \^? LJXj Uy) W\X, y ) \\ L%(Ii\Ry~)— II^CR-1-* i]) ''OV-*

holds for constants Cl and C2 independent of N. Here in order to get the last
inequality, we used an elementary inequality sZNe~s/z^N(2N) I (s^O) by setting
s=log<)?>. Define a function u by the formula (2) with A=D2

x
Jrg(x)D2

y. Then
the estimate (12) shows that u is well-defined as an L2((—1, l)x/?y)-valued
analytic function with respect to t^(—d, d) for a small d>Q. Since M(*, 3>, 0)
= w(x, y) we see u^C°°. This concludes the proof of Theorem 1 when g(x)
satisfies the condition (5).

If g(x) satisfies the condition (5)' there exist a 5i>0 and a decreasing
sequence of positive numbers {a3}^=l such that lim a3=Q and —

J-oo

Since g(x)=g(—x) and g(x) is non-decreasing in [0, oo), it follows that

g(x)7]2^g(cij}y]2^l for

if

Replacing a0 in the above by a3 we see that the minimal eigenvalue
satisfies

^o(l, 7]}^o(aj)=C'aj2 if 1^

where C' is the absolute constant. Therefore, we get

(10)' Jo(l, ^)^C(log|^|)2 if exp^/Sa,;

where C is a constant independent of \y and /. Take a function <p(y}^L2

satisfying

(ID' if exp(d1/3aj)^\7}\^
=0 otherwise.

Using (10)' and (11)' in place of (10) and (11), respectively, we have the estimate
(12), which completes the proof of Theorem 1 in the case that g(x) satisfies the
condition (5)'.

Theorem 2 can be proved by the same way as in the proof of Theorem 1.
If we set a 0 = \ 7 ] \ - 1 / ( k + 1 > we have g(x)i]2=x2ki]2^\i)\*lUl^ for jce/a0. Con-
sidering a "majorant" eigenvalue problem in IaQ for an operator —(d/dx)2+
\iq 2/(k+1\ we also see that the minimal eigenvalue of (8) satisfies

(13) 0<^0(1, 5)^C,|7|8/(*+1) for large

where C3 is a constant independent of 37. For a fixed s satisfying l^s
take a function ^(jOe^+^nC? such that (f>(y}^fs\ Since ^efa+1)nC7 it
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follows that

(14) I^WI^e- ' expC

for a constant e>0 independent of TJ. Using (13) and (14) in place of (10) and
(11), respectively, we obtain the estimate (3), which shows the existence of the
desired solution u of Lku=Q.

The proof of Theorem 3 is also parallel to that of Theorem 1. For the
proof it suffices to consider an eigenvalue problem with the Dirichlet boundary
condition for an operator A(x, Dx, ^^=(~d2/dx2)ljrg(x^2m instead of (8) and
to replace (2) and (3) by

u(x, y, 0= 2o*'B*((-l)B-M(x, Dx, Dy»»w(x, y)/(2nN}\

and
\\A(x, Dx, Dy}

Nw(x, y}\\L*w^CN+\2nN}\,

respectively. The detail of the proof of Theorem 3 is left to the reader.
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