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Generalized Levi Conditions
for Weakly Hyperbolic Equations

—An Attempt to Treat the Degeneracy
with Respect to the Space Variables—

By

Takeshi MANDAT*

§0. Introduction

In the celebrated paper [3], Ivrii and Petkov showed that the effective
hyperbolicity of an operator is necessary for the Cauchy problem to be C=-well-
posed with arbitrary lower order terms. In the same paper, they also gave
general necessary conditions on lower order terms for the C=-well-posedness.
(Conditions of this kind are sometimes called “ generalized Levi conditions ”.)
The individual behavior of each characteristic root, however, is not reflected in
these conditions. Hence, when some characteristic roots coincide with one
another in a variety of ways, their results fail to give the conditions expected
to be necessary and sufficient.

In [8], we treated each characteristic root separately, restricting our con-
sideration to the degeneracy with respect to the time variable. We gave some
necessary conditions for C*-well-posedness and some estimates for the regularity-
loss of solutions. These results were “ micro-local” in the sense that conditions
were stated in terms of the characteristic root 0 in a fixed cotangential direction.
By applying these results after appropriate coordinate transformations, however,
we got a necessary and sufficient condition in case of the operators with only
finite-order degeneracy w.r.t. the time variable ([9]).

This paper is an attempt to treat the degeneracy with respect to the space
variables in a similar way. Though the results in this paper hold for the
operators with singular coefficients of the same kind as discussed in [8] and
[9], we restrict ourselves to the case of operators with C=-coefficients for
simplicity.

We introduce some notations for further explanation.

Communicated by S. Matsuura, March 20, 1985.
* Department of Mathematics, Faculty of General Education, Gifu University, Yanagido,
Gifu, Japan.



2 TAKEsHI MANDAI

&, x)=(t, x4, =+, xa)=(, x/, x,)ER™,

(z, §)=(z, &, =+, En)=(z, &, EL)ER™

0,=d/ot, 0,,=0/0x;, D,=—id,, D =—i0s,,
Dg=D3t--- D3, where a=(a,, -, @,) is a multi-index.
g8, x; T, §)=(0%402089)(¢, x5 T, €),

R*=R™{0}, e¢,=(0, --, 0, )eR™.

Let £ be an open neighborhood of (0, 0)=R"**! and let 2*={(t, x)=2; t=0}.
Let P be a differential operator on £ with C=-coefficients and set P=

’Lg}opm-h(t, x; D;, D;), where pn-n{t, x;7, &) is homogeneous of degree m—h

with respect to (7, & and p,(t, x; 1, 0)=1 on 2.
To avoid ambiguity, the definition of well-posedness will be specified as
follows.

Definition 0.1. We say that the Cauchy problem for P is well-posed on Q2+
if the following two conditions are satisfied.

a) For any feC=(2) such that f=0 for ¢=0, there exists u=C=(2) such
that =0 for <0 and Pu=f on Q.

b) For any =0 and any ueC>(2) such that u=0 for ¢+=<0, if there holds
Pu=0 for t=<{#, then there holds u=0 for t<?.

Remark 0.2. 1) In [3], [8] etc., certain conditions on dependence domains
are assumed. In this paper, we do not make such assumptions. Further, the
results in this paper hold under some other definitions of well-posedness. (See
Remark 1.3 1).)

2) If the coefficients of P are C* as we have assumed, then this definition
is equivalent to the following condition c).

¢) For any #=0, any feC=(R) and any g,eC=(QN{t={%}) (j=0,1, -,
m—1), there exists a unique u=C=(2) such that Pu=f for t=% and 0ju,,-i=g;
(=0, 1, -+, m—1).

Since the well-posedness implies hyperbolicity ([10]), we assume throughout
this paper that P is hyperbolic on £+, that is, the equation p(, x; z, £=0 has
only real roots 7 for any (¢, x; §)e2*XR™.

Now, we review the simplest version of the “ Levi condition” ([7], [11], [12],
[2]). Let pa-nlt, x; 7, en)=a{®{, x)t™ "+ - +aPr@, x). If a0, x)=--=
al®.,,,(t, x)=0 on 2* and the Cauchy problem for P is well-posed on 2+, then
there holds a{?,(, x)= - =a{.,(, x)=0 on 2+ for h=1, ---, r—1. This is
the condition to be called the “micro-local Levi condition with respect to the
characteristic root 0 in e,-direction™. If the characteristic roots of P have
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constant multiplicities, then the usual Levi condition, which is also a sufficient
condition, is obtained by combining the conditions which are cbtained as above
after transforming P by appropriate coordinate transformations. In this paper,
we are concerned with the case where a{®(, x), ---, a{2,+,(¢, x) vanish at (0, 0)
but do not vanish identically near (0, 0). To describe the behavior of a{®{t, x)
(=0, ---, m) near (0, 0), the Newton polygon shall play an important role.

Definition 0.3. We call a subset 4 of R? a Newion polygon of size m (m is
a non-negative integer) if 4={(j, w0, mIxXR; p=I"(j)}, where I'(j) has one
of the following forms.
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(A) I'm)=y, and ['(j)=oc0 for 0=<j<m, where vy, is a rational number.
B) I'()=vr—rwj for j=j=<jp-1 (k=1, -, r) and ['(j)=o0 for 0=;5<j,
where r is a positive integer, m=j,>7,> - >j,=0 are integers and
Y1 <Y< o <y, 0=k, <k, < -+ <k, are rational numbers.
The function p=I"(j) (0=;j<m) is called the lower side of 4.

In §1, we shall give necessary conditions for well-posedness with respect
to the characteristic root 0 (Theorem 1.2). This theorem is an extension of
Theorems 4.1, 7.1 in [3]. The proof is given in §3. In §2, we shall consider
a class of “t-involutive” operators (Definition 2.1). For such operators, a
necessary and sufficient condition is established (Theorem 2.5). The proof is
given in § 4 by applying Theorem 1.2 after appropriate coordinate transformations.

§1. Generalized Levi Conditions with Respect
to the Characteristic Root 0

Fix positive rational numbers ¢, (=0, 1, ---, n). Put @={(j, g.2+<q, )
éRz; P %, (0, 0; 0, e,)#0}, where <g, .B>=]é g,B;. Let 4 be the closed convex
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hull of the set {(j, p)€R*; p=p’ for some (j, # )€} in R®. This is a Newton
polygon. Since the coefficients are C* and p,(¢, x; 1, 0)=1, there holds (i, 0)
edcC{(j, p=R?; p=0}. For this 4, we get v, (case (A)) or 7, 74 £ and v,
(1Z£kE<7) (case (B)) as in Definition 0.3. In the case (B) with £,=0 (hence
v;=0), we may modify 4 as follows. Take an arbitrary rational number &}
such that 0=<«7T=k, and put v7=«7j,. Let S be the closed triangle with the
vertexes (m, 0), (j;, 0), (m, vT—kTm) and let 4~=4US. This is another Newton
polygon (Figure 2). In the case (B) with £,>0, we make no modification, that
is, put £7=k, and 47=4. In the case (A), put k7=c0 and 4"=4. We make
the following assumptions on ¢; (0=j=<n), #7 and p,. In other words, we
consider only ¢,, £7 that satisfy the following conditions.

A { 1) gotel>q, (=L,2, -, n).
2) If (J+lal, glk+lal)+<g, B—ad)&Ed™, then pF:% (0, 0; 0, e,)=0.

Remark 1.1. i) For a=0, the condition 2) is satisfied by the definition of 4~.

ii) If go=¢q; (=1, 2, ---, n), then the condition 2) follows from the hyper-
bolicity of p,. (The proof is given in Appendix 1.)

iii) Assume 1). Then, the condition 2) for such a as satisfy a,=0 implies
the condition 2) for all . Especially, the condition 2) is necessarily satisfied if
n=1.

Theorem 1.2. Assume the condition [A]. If the Cauchy problem for P is
well-posed on 2%, then the following holds:
If (G+lal+h, gle+lal+h)4<g, B—ad)ed™, then p3:% 4, 5(0, 0; 0, e,)=0.

Remark 1.3. 1) The assumption of well-posedness is used only to derive
the energy inequality (3-3) in §3. Hence, any definition of well-posedness that
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implies this inequality, such as the H>-well-posedness, can be adopted.

2) Though the definition of the well-posedness in [3] is not the same as
ours, we can easily derive Theorem 4.1 and 7.1 in [3] from the proof of the
above theorem. Especially, we can omit the assumption that P satisfies Con-
dition (Ur(z,,) and can relax the condition p=¢ to p+1>¢ in Theorem 4.1
in [3].

3) Theorem 3.1 in [5] can be essentially restated as follows in our setting.
(The statement of Theorem 3.1 in [5] is wrong (perhaps misprinted). The
condition (N) must be “for |a|+<{B—a, pd><r(l—po—(Gn—s)”.)

Theorem. (Theorem 3.1 in [5]) For a rational £>0, put 4. .={{, p); r=J
<m, p=0bU{({, p); 0=7=<r, p=k(r—))} and 47 .={(, p); 0=j<m, p=k(r—j)}
(1=r=m). Assume that q,+t>q; (=1, -+, n), p*(0, 0;0, ¢,)+0 and the fol-
lowing condition :

If G+lal, glk+lal)+<q, B—ay)edr, then pi:R 5(0, 050, e,)=0.
If the Cauchy problem for P is well-posed on 2%, then the following holds.

If G+lal+h, glk+lal+h)+<q, B—a))&d;.,, then
PR .50, 050, e,)=0 (h=1, ---, m).

Thus, our theorem is essentially an extension of Theorem 3.1 in [5].

Example 1.4. In the followings, let n=1 and assume that the Cauchy
problem is well-posed in a neighborhood of (0, 0).

1) Let m=3 and p;=(r—x&)(r—x%)r. Applying Theorem 1.2 with g,=e¢
(arbitrary positive number) and ¢,=1, we get the condition that p,=a(t, x)c*+
xb(t, x)té+x3c(t, x)&% and p,=d(¢t, x)r+xe(t, x)€ near (0, 0) for some C=-functions
a, b, ¢, d, e. This is also a sufficient condition for well-posedness. (See Example
2.7.)

2) Let m=3 and p,=(r—x&)(t—x28){r—(x+x2&}. Applying Theorem 1.2
with ¢,=e¢ (arbitrary positive number) and ¢,=1, we get the condition that
pe=a(t, x)r?+xb(t, x)r&+x%c(t, x)&% and p,=d({, x)r+xet, x)& near (0, 0) for
some C=-functions a, b, ¢, d, e. However, this is not sufficient for well-posedness.
This condition does not reflect the contact-order of characteristic roots x& and
(x+x*& If we apply Theorem 1.2 after transforming P by the coordinate
transformation s=¢{, y=xe¢’ then we get a further condition a(f, 0)+b(t, 0)+
¢(t, 0)=1. These conditions are sufficient for well-posedness. (The sufficiency
follows from Theorem 2.2 in §2.)

3) Let m=4and p,={c*— >+ x2)&} {2>— (£*+x2)%€*}. Put p,= ﬁg a,t, x)TiE.

Applying Theorem 1.2 with g,=¢,=1, we get a,(0, 0)=(370%a,)(0, 0)=0 for
j+k=2. The author does not know whether these conditions are sufficient or
not.
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§2. A Necessary and Sufficient Condition
to a Class of t-Invelutive Operators

In this section, put 2+=[0, T]JXR" and assume that the coefficients of p,
are bounded on £+,

Definition 2.1. 1) We say that p, (or P) is t-tnvolutive (resp. involutive)
if the following two conditions are satisfied. (M. Zeman [18], K. Yamamoto

[171)

i) pn has the smooth real characteristic roots. That is, there exist
A, x; E)EC“’(.Q*XR") (=1, -+, m) such that 2; are real-valued and pn(t, x; 7, §)

=1l e—2t, x; ).
ii) For any 1=<j, k<m, there exists A; ,(, x; £ €C=(2*x R such that

@1 Ae—=40 x5 8, =4, x; S)}:'}‘Aj,k(t; x5 O, x5 ) —Alt, x5 8))

(resp.=A; :(t, x; E)A,@, x5 &)=L, x5 ),

where {-, -} is the Poisson bracket w.r.t. (¢, x; 7, &).
2) Put 0,=D,—2;(t, x; D). For JcI={l, ---, m}, put m,= 1'58,-, where
JE

the order of the product is arbitrarily fixed. Let |J| denote the number of the
elements of J.

A sufficient condition for well-posedness of the Cauchy problem to {-involu-
tive operators is given by K. Yamamoto [17]. (Cf. M. Zeman [18], H. Uryu
[15], H. Kumano-go [6].) Let $?(V) denote the class of all classical pseudo-
differential operators of order p on an open subset V of R™.

Theorem 2.2, Assume that p, is t-involutive and that for any J<I, there
exists A;(¢, x; D)eC=([0, T1; $°(R™) such that

(2-2) P:n-I—f—JCZI P m AL, x; Do)y
Then, the Cauchy problem for P is well-posed on Q+.

Remark 2.3. 1) In [17], there is proved only the H=-well-posedness under
the assumption that all the coefficients belong to B=(Q*)={feC=(2*); 0i0%f is
bounded on 2+ for any (j, «)}. However, we can prove that there exists a
finite propagation speed (, that is, there holds the condition (U) with g,=1 of
Definition 1.1 in [9]). (See Appendix 2.) Hence, the C=-well-posedness holds
under our assumption.

2) The condition that P can be written as (2-2) is not always necessary
for well-posedness as is shown in the following example.
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Example 2.4. Consider P=D}—(x?+y%)?D2—a(x, y)D, in R°. The above
alx, y)
xZ__l_yZ
if and only if a(0, 0)=0,a(0, 0)=0,a(0, 0)=0. (The “only if ” part follows from
Theorem 1.2. The “if 7 part follows from Theorem 1 in [13].)

condition is eC=(R?, though the Cauchy problem for P is well-posed

The purpose of this section is to give an answer to the question when the
condition that P can be written as (2-2) is necessary for well-posedness. We
make the following assumption [B] on p.

For any (£, )2+, there exist a neighborhood U of (¢, %), a non-negative
integer n;, C=-functions C,(¢, x) (/=1, ---, n,) on U and non-negative
integers «([; j, k) ({=0, 1, ---, ny; 1=j, k=m) such that the following
three conditions are satisfied.

i)y G, £)=0 (=1, ---, ny).

[B] ii) {(grad.C)({, %); =1, -, n,} are linearly independent.

ili) For any 1=j, k=m, there holds either of the followings.

2) At x; O=2ult, 15 H=tw D IO, 09500, 40, 55 8),

where (Dj,keC“’(UxR”) and @, ,(t, x; £)=0 on UXR™.
b) A, x; &)=, x; &) on UXR™

Theorem 2.5. Assume that pn 1S t-tnvolutive and that p., satisfies the
assumption [B]. The Cauchy problem for P is well-posed on Q2+ if and only if
P can be written as (2-2).

Remark 2.6. Assume that £(0; j, 2)=0 for any j, 2. Then, p, is i-involu-
tive if and only if p, is involutive. Further, in this case, P can be written as
(2-2) if and only if P can be written as follows.

(2-2) P=r,+2 A, x; Do)z,
JeI

where A;(¢, x; D)eC=([0, T]; S*(R™)).

In some cases, the condition that P can be written as (2-2) (or (2-2)") is
reduced to a simpler condition. (Example 1.4, 1), 2).)

Example 2.7. (Cf. [14]) Let o(x)=C=(R") satisfy grad,e(x)=0 if o(x)=0.
Let » be an integer such that 0=r=<m and let #(1)=£(2)< --- <k(m—r) be
non-negative integers. Assume the following three conditions.
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m-r

i) H(z‘ A, x5 &) and 2t x; §=a(x)* P, x; &), where

{
=
J 5eC=(Q*xR™ and 3}, x; §)#0 on Q*XR" (j=1, ---, m—7r).
Lm If j#k, a(x)#0 and £+0, then 4,1, x; &)# 2., x; &).

iii)y If j#k and x(j)=x(k), then ;(t, x; &)#= ¢, x; & on QX R".

Let P= X a; .0, x)DiD%(a;,.< B=(2")) and put P(j)zzn_z‘lj/c(l) for j=r, r-+1,

Jtialsm
--, m. The Cauchy problem for P is well-posed on £+ if and only if there
holds
[ a; qt, x)=a(x)T™=1a0p, (&, x)
(2-3) 1 for some b; ,=C=(2%), if |a|Z=m—r,
a, ., x)=0 on Q* if |a|>m—r.

The “only if ” part is easily proved by Theorem 1.2. The “if ” part is proved
by showing that p, is involutive and P can be written as (2-2)’. (Cf. [16; §17.)

§3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. This theorem follows from
the following proposition.

Proposition 3.1. Let k, v be positive rational numbers such that q,+£>q;
(1=5=n). Assume the following three conditions.

1) pid:%.5(0, 050, e,)=0, if go(k+lal)+<g, f—a><v—r(j+lal).
2) There exist b, B, J such that p50g, 5,0, 050, e,)#0 and gok-+<q, >=v—rj.
3) Either of the followings is satisfied.
Case (a) There holds yslcf (, hence b=0, BZO).
Case (b) There exist rational numbers g*, v* such that 0=<g*<k, v¥—r*]
=y—rj and

3-1) bER, .00, 050, €2)=0,
if  qolk+lal+h)+<q, f—a) <v*—&*(j+|al+h).

Under this assumption, if the Cauchy problem for P is well-posed on 2%, then
there holds the following.

(3-2) D% 2. 50, 050, e,)=0,
if qk+lal+h)+<g, f—ad><v—k(j+|al+h).

Proof of Theorem 1.2 via Proposition 3.1. If 4 has a form of type (A), the
assumption of Proposition 3.1 with Case (a) in 3) holds for any x>0 with j=m,
y=gm, k=0, ,@zO. Hence, we get the desired result. Consider the case of type
(B). If k7=k,>0, then put j=m, and if £,=0, then put j=j,. Let v;=#}7.
In the case that £7>0, put x=«; and y=y;. Then, we can apply Proposition
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3.1 with Case (a) in 3) and we get (3-2). In the case that £7=0, put x=¢ and
y=¢j for an arbitrary positive number . We can also apply Proposition 3.1
and we get (3-2) for any £>0 and u:xf'. Hence, we get (3-2) for r=r=0.
Thus, we get (3-2) for x=«7, v=v;. Next, we shall prove (3-2) for x=«;,
y=y, under the assumption that there holds (3-2) for s=k;-;, v=v;-;. (f =2,
then regard &, as £; and v, as v7.) If /=2 and x7=k, then we have nothing
to prove. In the other cases, take j=7,.1, £=f; v=v, £*=f,;, v*=y,;. We
can apply Proposition 3.1 with Case (b) in 3) and we get (3-2) for k=k;, v=v,.
Thus, we have (3-2) for k=x;, v=v, (=2, ---, ). The conclusion of Theorem
1.2 is just (3-2) for k=k7, v=2] and k=«k,, v=y; (=2, -, ). O

In the following proof, we shall write p®=exp,a, when a is complicated.

Proof of Proposition 3.1. This proposition is proved by modifying the
method used by Ivrii [4], [5]. Since, the Cauchy problem for P is well-posed
on 2+, we have the following energy inequality.

Lemma 3.2. For any compact set KCQ*, there exist constants C, L such that
the following holds. For any (¢, )€K and for any ueCyK)={veCy(R"*);
suppvC K}, there holds.

3-3) lu(f, 2)]

A

C sup sup (0302 Pu)t, x)|.
p+I1fIsL z

(t, T)EK, t=

We may assume that 2+ is star-shaped, that is, for any (f, x)2* and any
0=2=1, there holds (i, Ax)e£2*. For a positive 4, consider the coordinate

transformation :

s=1 exp,(4q,)

(3-4) _ (p=1).
Y,;=x,€Xp,(4g,) (=1, -, n)

By this coordinate transformation, the operator P is transformed to another
operator P,. We have

Dom-n(S, ¥; 0, 7])=k ﬁZ Ku(k, B, j, a/)s*yiaip’e pp-r-i-la’l
B al

Xexpo[—A{gok+<g, B>—qoj—<q’, a'>—qn(m—h—j—la’}],

where Ku(k, B, j, @ )=(R! 817 a’ )7 p% 8 50, 050, en). (9'=(n1, =, Da-1)
¢’=(gs, ***, gu-1), etc.) For a real number 7, a C=-function ¢ and a positive
number §<1, set E=exp{i(yy,p0+¢p°}. These are determined later. We have

E7ePoE= 3 Kulk, B, j, a')s*y?

hok, 3,5, a
xexp,[—2{gok+<g, B>—(q0—0n)J—<q" —Gn, @’>—qulm—h)}
+0(j+ e’ N+m—h—j—la’l]
X {(asSD)Kay’SD)a"fm_h_]_m’ '+Rp,h,k, 13,],&’(3: y; Dy, DU)}’
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where R, are differential operators of order m whose coefficients tend to 0 in
C=(2*) as p—oo. Denote the exponent of p by da(k, B, j, a’). That is,
du(k, B, 7, @’ )=(Aqy—Aqn+0—1)j+<Aq'—2g,+0—1, a’>
—2Aqok—2g, B>+Ag+1)(m—nh).
Put dmax=do(2, B, 7, 0)=(Ago—2Aqn-+Ac+3—1)j—Av+(Ag.+1)m. Now, let e be
the maximum of &’ that satisfies the following. (The maximum does exist if

g=—oco is admitted.)
There exist h=1, k&, B, j, @’ such that

( qok+<q, B>+<qot+r—q’, >+ (go+R)h=yv—k]
and K,(k, B, 7, @')#0.

If ¢<1, then the conclusion of Proposition 3.1 holds.

Assume that e>1. Let HU={(h, &, B, 7, &'); qok+<g, B>+<q+r—q’, &>+
e(go+k)h=v—rj and Ki(k, B, j, @’)#0}. Note that (0, %, f, 7/, )% and that
there exists (4, &, B, j, /)M such that A=1. We have

dmax_dh(k; ‘8; j: a’)
=gk +<q, B>+qotr—q’, a’>+e(qgo+r)h—v+Es}
+(G—j— &’ |)Age—Agn+Ax+6—1)+(Agn+1—2eqo—Aer)h .
Since e>1 and ¢,+£>g,, we can take 1>0 and 0<d<1 such that Ag,—Ag,+2&
+0—1=0 and 2A¢,+1—2e(go+x)=0. We take such 2 and 4. If K(k, B, 7, &)
#0, then dmax=dn(k, B, 7, @’) and the equality holds only if (h, &, B, 7, a’) €.

Put O(s, y, 75 0, )= Ku(k, B, j, a)s*yPaiy’a'yi-1-1«' 1= Then,

we have (h.k,B,7,a)ESM
(3-5) E~'eP,oE=ptmaxy™=i{Q(s, y, 1; 050, 0, 0)+R(s, v; Dy, D)},
where R; is a differential operator of order m whose coefficients tend to 0 in
C=(2*) as p—+oo.
Lemma 3.3. If (h, k, B, j, &')E M, then there hold either (1) h=O0, j=f or
(i) h+s<].
Proof. Case (a). If v=kj, then
0=gok+<g, B>+<got+t—q’, a">+e(go+r)h—v+kj
=qok+<q, B>+<{qot+E—0q', &'>+E(j+h—])+(eqo+ex—k)h
Zr(j+h—7).

Hence, there holds h-+;<; and the equality holds only if £=0, B=0, a’=0,
h=0, j=j.
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Case (b). We have

v—£j=qok+{g, B>+<qo+£*—q’, a’>+(got+£*h+(k—r*)|a’|
+{(e—=1go+ex—r*t h=v*—5*j+(g—&%) | &’ |
+{(e—1)qo+ec—r*}h.

Since y—rj=yv*—r*; and £>£*=0, we have (k—i*)(—j—h)=(E—r%|a’|+
(e—1)(go+£)h=0. Hence, we have j+h<; and the equality holds only if
a’=0, h=0, ]':f. O

Lemma 3.4. (Cf. [5; Lemma 1.2]) There exist (3, )€, 7'eR™ {0},
7€R, 6<C such that O, %, 7; 8, 7")=0 and Im 6 <0.

Proof. Take B:max{(i——lzw; (h, k, B, j, a)EHM, ]'<f} (>0) and

=7
put M'={(h, &, B, j, & YeM; 0(—7)=(es—1)(g,+x)h}. For a positive parameter
w, we have

D(sw=, Y@, yot; 0-qu+0, v’wq')

=exp,{ —vHE+g+0)THPi(s, v, 75 0, )+01)} (@),
where
Di(s, 3, 75 0, )= DKk, B, j, a)s*yPalyepi-imiern,

Consider
Di(s, 3,75 0, 10)= 2 Asals, 3, p)airizin,

There exist (s7, y7)€f*, 7" €R™\{0}, j* h* such that Aj(s~, 37, 777)#0,
A (s, 97, 770, j¥+h*<j, h*=1. The root of the equation Do, 7=
Q,(s™, ¥7, r; o, yp’")=0 have the Peuiseux expansion with respect to y=C. Let
g=ay*, then

?.(a, T)=J_Ehz4; n(s™, 7, 77”")0-]'7»1',11+;—J'—h.

j— j—h ~ o~ e .-
If we take p:max{T_r; A3.87, 97, 77 #0, <7}, then 0<p<1 and By(a, 7)
=0 has a root og=ar#{l4+o(l)} as |y|—co with a#0. If we take a suitable
branch of 7#, then there exist y"R, ¢~ C such that @,(¢~, y™)=0 and Im ¢~
<0. Taking §=s"w™%, j=y 0™, 7=r 0", §)'=9"w? for sufficiently large
wER, we have the desired result. 0

There exists a neighborhood V of (§, $, %) in 2+ X R" such that @(s, y, 7;
g, 7)=0 has a root ¢ such that Im ¢ <0 for any (s, 3, )€V. There exist a
non-empty open set V,CV, a positive number 6§ and a real-analytic function
F(s, y, ") on V; such that Im F(s, y, )<—60 on V, and ¢=F(s, y,9") is a
root of @(s, y, 7; @, 5”)=0 with constant multiplicity d (=1). Retake and fix a
point (§, 9, #’) in V,. There exist a neighborhood W of (§, ) and a real
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analytic function ¢ on W such that

a.\3 :F(S;y;a’ )
(3-6) { ¢ v ) on W.
(8, y)=<), y>+ily—31*
Note that
=0 on W, if [+|v]|<d
(3_7) (aga;'m)(s} Y, ?7 asSD; ay'SD) .
+#0 on W, if [=d, v=0
and
(3-8) Ime(s, y)=ly—91*+0(8—s) for s=3, (s, y)eW.

Taking such ¢ as the function in E, we have from (3-5),
E-'eP,oE=p%maxp™=iR(s, y; D,, D,).
We shall show that R, has a suitable structure.

Lemma 3.5. There exists a differential operator

Qo= X X ajuls, y)p’* DD}
l+ivisd jEJ

such that

(1) Jo is a set of a finite number of rational numbers,

(ii) 0’ is a rational number such that 0=<0’<J,

(i) @y, are analytic functions on W, ao, 4,08, ¥)#0 on W and a,, (s, ¥)=0
on W if j+I+1vl>d,

(iv) for any N, the operator R,?:?””‘fp‘wR;—-Qo can be written as

N+1
R;?=h§1p"”‘Rn(s, ¥; Ds, Dy, o),

where R, is a differential operator of order=d-+h whose coefficients are bounded
in C=(W) as p—co. Further, the coefficients of R, (h=N) are analytic on W.

Proof. For an arbitrary function w(s, y), we have by Leibniz rule,

PyE-w)y= ¥ -1 DIDyw) @, )E),

t+ivism [ 1y!

where 0.0;P, is a differential operator with the symbol 0.0;p,.(s, ¥; a, ). We
have

E@L;P,)(E)=11y ptmax=+03pm-3{@LasD)(s, y, 73 Dsep, Dy)+0(1)},
by the repeated use of Corollary A.4 in [2]. Thus, we have
E-'P(E-w)=ptmax=24 3 32 DIDXw)as,,, (s, )p°-

l+lvism

Here, the second sum is taken for rational numbers @ such that w=<(d—|v|—0)o.
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By (3-7), if {+|v|<d and w=(d—|v|—{)d, then a7, ,=0 on W. Further, there

holds a3 o.o(s, ¥)#0 on W. Let 8'=max|{—————; d>|u|+1l, a},,.=0-U{0}].
d—|v|—I

We have 0<§’<0 and we can write

EP,(E-w)
=Pd"‘““i”{l+§5d2 a,.1,.(s, ¥)p* DID2(w)+R3(s, y; D, Dy)<w)},

where the second sum is taken for j=J, such that j<d—/—|v|, and J,, a, ..
R7 have the desired properties. O

From now on, regard (§, $) as the origin (0, 0). Under this situation, from
Lemma 3.2, we have the following.

Proposition 3.6. For any compact set KCW, there exist positive constants
L, H, C such that there holds

(3-9) [u(0, 0)1 =Cp™ sup sup [(0P05P,u)(s, ¥)]
p+1BIsL (s,syg)DEK

for any uesCy(K).

We want to construct an asymptotic solution u of P,u=0 that violates the
above inequality.

Definition 3.7. ([4]) Let d be a fixed positive integer. For a formal power

series g=g(w; z) of z=(z,, z’)C™*! with coefficients depending on a parameter
w, put

V(s 7, H=T ;08 |G 0)@; 0],

V@wie = 3 T-lewgs @i 0k,

k+1f1sd-1"a

which are formal power series of (z, &).
The following is given in [4].

Proposition 3.8. Let M be a positive integer, consider an operator Q=
Qw; z, 0,)=X b, ,wd% on a neighborhood U of 0=C™', where b, ; are holo-
morphic on U, bo,...00,0=1 and the sum is taken for a finite number of (a, j)
such that a is a multi-index, j is a rational number and j+|a|<d. There exist
positive constants K, &, and e, depending only on Q such that for any a, b which
satisfy b=<e, and 0<a=e;b, there holds the following. If v=v(w; s, y) and
g=g(w; s, y) satisfy
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Quv=g,

¥(g)< (1— %- —§—>—nexp(Kwr) .

00) s (1—-5) 7,

(3-10)

then v satisfies

(3-11) oW <o (1-< —-i—)_nexp(sz') ,

where AL B means that B is a majorant series of A.

Let u(w; s, y) be a formal power series of (s, y) with coefficients depending
on w. The following lemma is easily proved.

Lemma 3.9. (1) Consider an operator R=k3§ﬁak,ﬁ(a); S, ¥)0%05, where

az slw; s, ¥)= lZ; asH (@)styT< lETA,éf’ﬂ”s‘yY for any @ and ZZTI AP st yT is a con-

vergent power series. If T(u)<<(l—~2——§>_nexp(Kwr), then there exist posi-

b
tive constants C, a’, b’ such that W'(Ru)<<Cw”(l——aT7——;)_nexp(l{wr).

2 If W(u)<<A(l—%—§)_nexp(Kwr), then for a sufficiently small neigh-

borhood V of (0, 0) and for any (p, B), there exists a constant C, g such that
(3-12) [0205u(w; s, ¥)| =C)p, sw? exp(Kwls|) on V.

Now, we shall solve (Qo+R3)u,=0 asymptotically. Consider p% as w.
First, take uo(p; s, ¥) such that Q.u,=0 and 0ug;=e=0,; for 0=;=d—1 (d,,;
is the Kronecker’s 8). Since @(uo).=0<K p? %, there holds

T EN™ ainye .
¢(uo)<<(1—_ao—"'z) 04V exp(Kp% 1)

for some positive constants a,, b,, K. Assume that u,, ---, up (0ZAZN—1) are
taken such that

J
Qou1=— 121 p'szuj-l s

(D(u’)<<cf(l—aij__bé—j—>_n‘0(d—l)a, —J(&—o“')exp(Kpé'T) ,
(j:()) 1) 00t y h)’

where a,=a,= - =2a,>0 and b,=b,= --- =b,>0. Then, there exist positive

constants A1, Qney (2ay), bayr (5bhy) such that an.=e,b,., and
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T 13

TR unsr-1) < An, L<1_ >_"p(¢+z)5' —(ht1-1) ‘5"5"exp(Kp5'r) .

A+ bnss

Hence, there exists a constant Cj., such that

T £\ (@+R+1I - R+Dd gy iy [ ¥ 1)
a b o PR
n+1 n+1

qf( g p_laRluh+1—l) <<Ch+1(1—

By Cauchy-Kowalevskaya theorem and Proposition 3.8, there exists u.; such
that

h+1

J— -1lé
Qotni=— ;1 0 YRitpti-1 5

aguh%—l!s:ozo (]:0: ) d_l) ’

[ I —

(D(uh+1)<<ch+1(l— T 3 >_np‘d*”’5"‘h+”5exp(Kpa'r).
Qh+y b+
Thus, we can take u,, ---, uy such that
_ T ENT e &
(u,)<Cy1 . b,.) 079-"exp(Ko? 1),

E—IP E o d -déd & & ~hd —(N+1)6R z,
(EZuw)=otms{S 5 o7 Ruurt o™ Ryu( Z s}
For any h=1, ---, N-+1 and any (p, B), there exists a constant Cy, p, s such
that
[ @205 Rnu,)(s, 3)| =Ch, p, o ¢+ P7 -10-exp(Kp® | s|)

near (0, 0). Hence, there exist a neighborhood W, of (0, 0) and constants C{Y}
such that

afal;Pp(E'%ouj)(S, y)‘ gcé)l,vépdmax+p+l,3|-d6+d6'-(N+1)(5-5')
7=
xexp{—Im ¢(s, »)p’°+Kp*|s|} on W,.

Since —Im ¢(s, y)<0s—|y—91°<—0|s|—|y—7!? for s<0, we have
(3-13) iapaﬂp (E % > < CW) plmax+P+131-dd+dd —(N+1)(3-0')
| 950y L 'Fouj (s, M| =Ci%p '

on WiN{s=0} for sufficiently large p.

On the other hand, let W, be a relatively compact neighborhood of (0, 0)
such that W,CW, There exists a positive number ¢ such that for any (p, B,
there holds

(3-14)

8535(E-§%uj)(s, y)(éA;A,’,%p””'ﬁ'exp(—epa)
P

on (W \W)N{s=0} for some constant A{"}.
Now, we take Z(s, y)=C37(W,) such that X(s, y)=1 on W,. Then, by (3-13),
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N
(3-14), the asymptotic solution u(s, y)=X(s, y)-E-> u, violates the inequality
Jj=0

(3-9) as p—-+oo for sufficiently large N.

§4. Proof of Theorem 2.5

In this section, assume that p,, is t-involutive and satisfies the assumption
[B]. Further, assume that the Cauchy problem for P is well-posed on Q*.
Essentially, the proof of Theorem 2.5 goes along the same line as the proof of
Main Theorem in [9]. For simplicity, we assume that 1,52, if j#% and that
x(0; 7, £)=0 for any 7, & (, hence p,, is involutive). Fix an arbitrary (f, £)=0Q*.
We have only to show that there exists a neighborhood V of (#, £) such that
P can be written as (2-2)’ on V. The general case is proved by taking the
arguments in [9] into account and modifying the following arguments.

Fix 1=/<n, until Proposition 4.11. Since grad,Ci(f, £)+0, we can retake
a coordinate on a neighborhood U, of (f, £#) such that Ci({, x)=x,.

Fix an arbitrary z"=(", x™)€U, such that x7=0 and C,(f", x™)+#0 for all
1l Put J[[1={je{l, -, m}; there exists k+; such that «([; 7, k)#0}.

Lemma 4.1. If ]'E][f], then 0g,2,(t, x; ) is divisible by x,.

Proof. There holds 2;(t, x; §)—2x(t, x; §)=x5-¢(, x; &), where e=x(; 7, R)
>0 and ¢ is a C=-function such that ¢, x; &)#0 if C(¢, x)#0 for all 1]
Since
{r—=2,t, x5 &), t—(t, x; )} ={r—4,, 4,— A}

=x50,6— igl (05,49)%50,0— (0, 2,)Ex 5 P+ El (02,4,)x50;,6
is divisible by xf, the function 0,4, is divisible by x,. ]
For £<J[[], the following holds.

Lemma 4.2. There exists a nowhere dense subset S of R™ such that for any
E=R™\S, there exists a coordinate transformation T=T(z", k, é) which satisfies
the followings.

(1) T transforms z~ to (0, 0) and a neighborhood W of 2z~ onto a neigh-
borhood W~ of (0, 0).

2) T has a form s=t—t~, y=f{, x)=({, x), -+, f2{, x)). There hold
gradzfn”:p:é and that f,(t, x)=x,8@, x), where gC>(W) and g(t, x)+0 on W.

) Put (s, y; p=24,@, x; 0,f@, x), P)—0.,Lf(t, ¥, 7>, where {f(t, x), >
=;fi(t, x)ni.  There holds A%(s, y; e,)=0 on W™

Proof. We can take h, such that 8,h,=2;(, x; £-+0,h,) and /g n=0.
Put h,=0 for 1<;<n—1.
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First, consider the case n=2. Put S={éeR"; &;=0, for 2=<;=<n}. [f
£=R™.S, then we can take an invertible matrix A such that ‘Ae,=& and
(Ax);=x,. Putting f(¢, x)=Ax+h(t, x), we get the desired result.

Next, consider the case n=1. Put S={0}. If £=R\{0}, then put f(t, x)
=&x+ha(t, x). Since 8,f=2i(t, x; 0:1) =01 -8:As(t, x; 02f), fu-~=Ex and
0:2;:(, x; & is divisible by x, it is easy to see that f(¢, x)=xg(t, x) for a non-
zero C=-function g. Hence, we have the desired result. O

Note that p,= ﬁ(a—l}) is the principal symbol of the operator P~ which
j=1

is transformed from P by T. Put Ci(s, ¥)=C,(t, x). We may assume that
Ci(s, 3)#0 on W~ for all [+/.

Fix 1<k<m and £€R™\S. Denoting r(j)=«(l; j, k), reorder {k(y); j+£}
as £(p)= - Zk(pm-1). Let 4=4A[; k> be the Newton polygon of size m with

the lower side I'()=I'{; 15>(]'):m§/c(pi) (=1, ---, m) and I'(0)=oco. (This is

the Newton polygon determined by (k(pi), ---, £(pm-1), ©°) in the terminology of
§3 in [9].) For this Newton polygon, we get &, .-, k. as in Definition 0.3.
Note that «; are integers in this case. If x,=0, then modify 4 by setting
;=1 as in §1. Denote this Newton polygon by 4~=4~¢; k> and its lower
side by ;z=]“(j)=1“<i ; B>(7). Now, put ¢,=1 and ¢,=¢ (arbitrary positive
number) for j#1. It is easy to see that 4=4<; k> is the Newton polygon
drawn from P~ as in §1.

Lemma 4.3. The assumption [A] in §1 is satisfied for P~ and 4°.

Proof. The condition 1) of [A] is trivia. We have pun(s, ¥; 0, p)=
é)l(o—ms, Y9, A%(s, ¥; e)=0, A:(s, ¥; en)=y1P¢u(s, y; p). Further, by

Lemma 4.1, if x(k)>0, then 0, 4:(s, ¥; p)=3.0:(s, ¥; 7). (Here, ¢, ¢, are
C~-functions.) Hence, it is easy to see that 007pn(s, ¥; 0, ep)=y[~U+ian+al
X®D; q(s, ¥), where @; , is a C=-function. (Here, regard y7 as 0.) Thus, if
golk+lal)+<g, B—a><I~(j+|al), then B, <I~(j+|al)+a;, hence 005005
(0, 0; 0, e,)=0. This is the condition 2). O

Proposition 4.4. For h=1, -, m, there holds pm<% 5(0,0;0, e,)=0 if
Bi< I (j+a|+h)+a.

Proof. By Theorem 1.2, we have pnY%2 5,0, 0; 0, e,)=0 if go(k+|al-+h)
+<q, B—a><I'"(j+lal|+h). Since g(k+!al+h)+<q, f—a>=B,—a;+e(k+h+
|Bl—pBi+a,) and £>0 is arbitrary, we have the desired result. O

Now, we set up some classes of operators corresponding to a Newton
polygon. Let 4 be a Newton polygon of size m with the lower side I'(j) (see
§0). From now on, assume that all the Newton polygon that we treat satisfy
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I'm—1)—I'(m)=1, that is, £,=1 in Definition 0.3. Further, we always extends
I'(y) as I'(G)=I'm)—j+m for j=m.

Definition 4.5. (Cf. [9; Definition 3.6]) (1) Let p be an integer such that
0=p=<m. We say A=a(s, y; D,)=3?(4) if A satisfies the following conditions.

(i) AeC=([0, &); $7(G)), where ¢ is a positive number, G is a neigh-
borhood of y=0 and [0, e)XGCW".

| (i) Let a(s, y; )~ li ap-i(s, ¥; n) be the asymptotic expansion of the
=0

[ symbol a of A, where a,_; is homogeneous of degree p—I/ w.r.t. 7.
Then, there holds a$®;, &, 5,0, 0; ,)=0 if B, <I'(m—p+i+|al)+a.

(2) Let H be an integer such that 0=H=<m. We say QeWu{d) if
Q=3 au(s, y; D,)DP-", where as(s, y; D,) €S>,

Proposition 4.4 means that P~eW 4 <; E>>. We shall show some basic
properties of the above classes of operators.

Definition 4.6. (1) For a positive integer &, let 4[£] be the Newton polygon
of size 1 with the lower side y=k—£j (0=7=1). Let 4[0] be the Newton polygon
of size 1 with the lower side py=—j (0=<;<1). Put 4[co]={(1, p)=R?; p=0}.

(2) Let 4; =1, 2) be Newton polygons of size m; with the lower side
I';(j) 0=<j<m;). The Newton polygon Ad=4,+4, is the one of size m;+m,
with the lower side I'(j)=min{l(d)+1x(e); d-+te=j, 0=d=m, 0=e=<m,}
(0=7=m,;+m,). (Cf. Definition 3.1 and Remark 3.2 in [9].)

Lemma 4.7. (1) Let A(s, v; D,)C=([0, ¢); $X(G)) and let A/(s, y; 7) be its
principal symbol. Let r be a positive integer or co. If (s, ¥; en)=y5(s, ¥)
and 0,48, ¥; 9)=y:¢(s, y; 3) near (0,0) for some C=-function @&, ¢, then
As, y; D,)e8A[k]y and Dy—A(s, y; D,)EWA[k1>. Here, if r=oo, then
regard y¥ as 0.

@) If (s, y; D,H)eC([0, &); SYG)), then (s, y; D,)eS54[0]> and D,—
A(s, y; D,)EWKAL0]).

(3) Let 4; (¢=1,2) be Newton polygons. If A;837d;> (=1, 2), then
A A, e ST A+ A4, If QieEW 4D (=1, 2), then Q:Q:EW g s m,{di+45).

Proof. (1) Assume £<oco. From the assumption, it is easy to see that
2% 50, 0; e,)=0 if B,<I'(lal)+a,, where I'(j)=rk—rj for 0=7=<1 and I'(j)=
1—7 for j=1. Since I'l+|a])+a,; =<0 for any «, we have the desired result.
If k=o0, the proof is similar and easier.

(2) 1is obvious.

(3) Let m; be the size of 4; and I'y(j) (0=<;7<m,) be the lower side of 4;
(z=1,2). It is easy to see that if we extend [I"’s as already stated, then the
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lower side of Ad=4,+4, is I'(G)=min{l(d)+1:(e); d+e=j, d=0, e=0} for
7=0. (Remember that we have assumed [;(m;—1)—1",(m,)=1.) Let a;~

li a;p,-1 be the asymptotic expansion of the symbol of A; (i=1,2). The
=0

asymptotic expansion of the symbol of A4, is awLE @p,+p,-1, Where
=0

Tpyepy-r(S, V5 )=, 2 (CONSL)A{Ty S, ¥5 9)apyen, 0,08, V5 7)) -
Hence,

(a) — B+7)
Qi ipor, . Hy= 2 > (COHSt VAP (p, ) Q3% 20, (k- .04 B-w) -
Pripa LIS ) 1S, DSk, ws3 Pt (Bve re- p.0+E-

By the assumption, there holds a{‘?};{’_l,(p,w,(o, 0; e,)=0 if w,<I'y(my—p,+I+
[0+71)+0:+7:, and there holds af%2a, k-p,o+8-0(0, 0; €n)=0 if 0;+f;—w,<
F2(7n2—pz+h+]a_Tl)+a1_71- If w12F1(7711—P1+1+|5+7’[)+51+7’1 and 51"}’191
"wlgrz(7”2—‘p2+h+la_Tl)‘I‘al”‘Tn then ,Bl_Z_F(nll+77lz—P1—Pz+L+[al)+(11-
Hence, we get a5,z . 50, 0; e,)=0 if 8, <L (m;+m,— pl b+ L+ al)ta;.
Thus, there holds A,A,€$P172{4,+4,>. Next, let Q,= E a‘”(s, y; D)D"

m1+mo

(=1, 2). We have Q,Q.= 2 afP(s, y; Dy)(Dia,i“’)(s, y; D,)Dpa+me-L,

—H1+H2 h+ktl=L
Since a§(s, y; D,)ES*H1( 4,y and (DiafP)(s, y; D)3t (4,>, we get Q.Q:
EiVH1+H2<A1‘|‘Az>- O

So far, we have fixed z~, £, & We shall unite the above results for every

z, k, &

Definition 4.8. Let H be an integer such that 0<H=m. We say QeW x)
if the following conditions are satisfied.

(1) Q=£)Han(l‘, x; Dz)DP~", where an(t, x; D;)C=([0, T'1; S*~"(R™).

(ii) For any z°=(", x™)€U, such that x7=0 and C,(~, x7)+0 for [+,
any keJ [[1 and any é eR™\S, let Q~ be the operator transformed from Q by
Tz, k, ). Then, Q W x4, k).

By Proposition 4.4, we have the following theorem.
Theorem 4.9. There holds PEW,()).
On the other hand, we have the following lemma.

Lemma 4.10. Let AcsC=([0, T]; S®(R™) and JCI. Thren, there holds
A €W -1 (D).

Proof. Fix z°, &, é, and let 07 (resp. A~, ny) be the operator transformed
from @, (resp. A, z;) by T(", k, 8. By Lemma 4.7 (1), (2), we have
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0y eWdlk(; k, £)1), where &(; B, k)=oco. Note that 1€W (d[£]> for any &
(0=<rk=c0), and A~EW4,», where 4,={(0, #); #=0}. Since 4; k>=
Ale(l; 1, BY1+ - +4[k(; m, £)], we have A™r3EW 17 <4< ; £>> by Lemma
4.7 (3). Hence, there holds Az, &W,._ (). O

The following is the most important property of W (/).
Proposition 4.11. Let Q:hiah(t, x; D)DPreW () (H=1) and let its

principal symbo!l be q(t, x; t, E)=hia%(t, x; &)™ ", where al is homogeneous of

degree h—H w.r.t. & Then, for any 1=<k=<m and 0=r=m—H, there holds
@g)t, x5 Ault, x5 8), HE[EPTI X CAVXR™),

where V is a neighborhood of (£, %).

In the original coordinate, there holds

(4-5 @), x5 Axlt, x5 &), E)ECiE, x)TEPTHD X C=(V X R™) .

Proof. 1f keJ[I], then I'<, £X(j)=0 (1=<j<m), hence there is nothing to
prove. Assume that k< /J[[]. Fix z~, £ and let Q~ be the operator transformed
from Q by T, k,&. Since Q~eWg<d<; k>y, its principal symbol
q~(s, y; o, ) satisfies that ¢o%®(0, 0; 0, ¢,)=0 if 8,<I" ~; BY(r+H). Since
770, y5 0, en)=q(t", x; o+ (", x; §), &) and I'd; kX(j)=max(0, I'"d; k(7))
we have 0L (@), x; 4a(t”, x5 8), O} iaman=0 if j<I; k)(r+H). Since
E=R™S and (~, x™)€U, are arbitrary as long as x7=0 and C,(t*, x™)#0 for
[+[, we have the desired result. O

So far, we have fixed [ arbitrarily. If QeWgu() for (=1, ---, n, (H=1),
then for a sufficiently small neighborhood V, of (¢, £) there holds
4-2) @), x; Aut, x5 8), &€ lﬁlCz(t, x)TE BT 5 OV X R™)
for any 1=k=<m, 0Zr=m—H,
since {grad.C,(t, x); [=1, ---, n,} is linearly independent.
Lemma 4.12. For any 1<kE<m, there exists an ordering (¢, -, Om-1) Of

{1, -, m}N\{E} such that for any 1=<I=<n,, there holds r(l; b, ¢)<k(l; E, a5)
<=6 R, 0pey).

Proof. Put p{l; j, k)=min{x(; &, j), k(; k, k)} for j#Fk, k+k, j#k. For
such j, k, by the assumption [B]-iii)-a), there holds A,(t, x; &§)—A.(t, x; &)=

=)= 2i—2)=(TLCutt, 2752 ),4¢, 53 8), where
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n1 “ n1 -
(4-3) W, a=(TLCut, )t B mmetiam )b —(TLCut, 1) et 0) Dy
=1 =1

(4_4) :(ﬁcl(t; x)lc(l;_;,k)"p(l;.z,k))@j,k'

Assume that there exist [y, /5, 7, & such that «(/,; E, D>kl kB, k) and &(,; E, k)
>kl B, 7). Note that j, &, £ are distinct. By (4-3), neither C,, nor C,, divide
¥, .. Hence, by (4-4), if C,(t, x)#0 for [#{,, I, and £+0, then ¥; (¢, x; &) +0.
On the other hand, by (4-3), if C.,(¢, x)=C,¢, x)=0, then ¥; .(, x; §)=0.
These contradict each other, since there exists (f, x) such that C,(¢, x)+0 for
I#10y, I, and Cy,@¢, x)=Cy,(¢t, x)=0. Thus, if (l; &, )>x(y; B, k) for some [,
then x(; &, N=x(l; E, k) for any [. The desired result easily follows from
this. O

Remark 4.13. The assumption ii) in [B] can be replaced by the following
two conditions.

ii)-a) (grad,C))(#, £) (=1, ---, n,) are pairwise linearly independent.
ii)-B) There holds the statement of Lemma 4.12.

By using this lemma, the following proposition is proved similarly to Prop-
osition 5.1 in [9].

Proposition 4.14. Let q(t, x; 7, 5):§3Hah(t, x; &)™ satisfy (4-2), where

areC(V, xR is homogeneous of degree h—H (H=1) w.r.t. & Then, for any
JCI such that |J|=m—H, there exists A;(, x; E)EC‘”(VIXR") such that Ay is
homogeneous of degree 0 w.r.t. & and there holds

ot xie, = B A x5 OTLE-20, x; 8).

Theorem 2.5 is proved similarly to §6 in [9], by combining Theorem 4.9,
Lemma 4.10, Propositions 4.11 and 4.14.

Appendix 1. Proof of Remark 1.1, ii)

Lemma A.1. Assume that pn(t, x; t, & is hyperbolic and g, (j=0, ---, n), v
and & are positive rational numbers. If 00801p,(0, 0; 0, e,)=0 for any (k, B, J)
such that qok-+<gq, B> <v—rj, then 808010¢ (0, 0; 0, ¢,)=0 for any (k, B, j, @)
such that qok—+<q, B><v—r(j+lal).

Proof. For arbitrary (£, £), consider f(t; t, &)=pn(fi%, £1%; 7, §). Then,
01f(t; 0, en,)Et**XC[0, T]. We can apply Proposition 3.2 in [8] when we
regard f(t; 7, &) as Pp(, £;7,& and p,=1. Thus, we get 010¢f(t; 0, e,)<
prorriad s Cor0, T]. Since (£, £) is arbitrary, this means that 050500¢1.(0, 0;
0, e,)=0 for any (&, B, 7, @) such that gok+<g, 8> <v—r(j+|al). O
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If go=¢q; (j=1, -+, n), then gok+|al)+<q, B—a><v—k(j+|al|) implies
qok+<g, B><v—&(j+|al). Hence, Remark 1.1, ii) follows from this lemma.

Appendix 2. The Existence of a Finite Propagation Speed

In this appendix, we shall give a rough sketch of the proof that there
exists a finite propagation speed, as is stated in Remark 2.3, 1). First, assume
that p, is involutive and has the form of (2-2)’ on R"*'. We have only to
show the invariance of the conditions under space-like coordinate transformations.
Let ¢(x) be a Cx>-function such that |grad.p| <[sup{|4,(t, x; &)|; (¢, x)ER™",
[é]=1, j=1, ---, m}]-. Consider a coordinate transformation T'; s=t—¢(x),
y=x. Let P® be the operator transformed from P and put P"={pn(s+¢(y),
y; 1, —grad,p)}~'P~. It is easy to see that P~ is also involutive. The problem
is whether P~ can be written in the form of (2-2)’. The main difficulty comes
from the fact that A;(¢, x; D,) is not necessarily a pseudo-differential operator
on R**', In fact, A,(t, x; D) is pseudo-local on R"*! if and only if A;(¢, x; D)
is a differential operator. (We say that an operator Q; & (R™\)—9'(R"™) is
pseudo-local if singsupp QuCsingsupp u# for any ue&’(R**?).)

Let S={{¢, x; 7, g R+ x Rr+1; =2, x ; €) for some k}. Take 4,5 (R™*")
whose principal symbol is 7—4,(, x; &) near S. Put AJ:JIE'[JAj for JCI.

Proposition A.2. The operator P can be written in the form of (2-2)" if
and only if it can be written in the following form:

P:AI+ Z B,]AJ+R y
Je1

where B;8(R™), ReS™R"Y) and the symbol of R is rapidly decreasing
near S.

The “only if ” part of this proposition is almost trivial. The “if ” part is
proved by using the following lemma and noting that P and A,({, x; D)x,
(J&I) are differential operators w.r.t. £

Lemma A.3. Let ¢, x; 7, g eC=(R*'x R*) (I=1,2) be homogeneous
functions of degree 0 w.r.t. (r, &) such that ¢,=1 near S, @,=1 near supp ¢,
and ¢,=0 near I'={(t, x; 7, SR X R"*'; £=0}. Put @,=¢t, x; D,, D,)e
BAR™1).  Assume that By(t, x; D,, D,)ES(R™) (|J|=m—h) and the principal
symbol of |J|=z7)n_nBJ(t’ x; Dy, Do)rey Dy is a polynomial of © on supp¢,. Then,

there exist A, x; D,)eC>=([0, T]; SUR™) (|J|=m—h) and Bx(t, x; D,, D,)<
SUYR™) (|K|<m—~h) such that

> hBJ(t; x; Dy, D)9,

1Jl=m-

= > A x; Dz)ﬂJ@l+lK!§z—hBK(t’ x; Dy, D) g®, .

1Jl=m-h
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The latter condition in Proposition A.2 is clearly invariant under the
coordinate transformation 7. Thus, we have the desired result in the case of
involutive operators on R**1. The case of involutive operators on 2+=[0, T]X R"
is easily reduced to the case of R™"'. The case of f-involutive operators is
proved by the same arguments in the proof of Lemma 2.11 in [15]. (See also
Theorem 3.3 in [6] or the last part of §2 in [9].)
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