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Generalized LevI Conditions
for Weakly Hyperbolic Equations

-An Attempt to Treat the Degeneracy
with Respect to the Space Varlables-

By

Takeshi MANDAI*

§ 0. Introduction

In the celebrated paper [3], Ivrii and Petkov showed that the effective
hyperbolicity of an operator is necessary for the Cauchy problem to be C°°-well-
posed with arbitrary lower order terms. In the same paper, they also gave
general necessary conditions on lower order terms for the C°°-well-posedness.
(Conditions of this kind are sometimes called "generalized Levi conditions".)
The individual behavior of each characteristic root, however, is not reflected in
these conditions. Hence, when some characteristic roots coincide with one
another in a variety of ways, their results fail to give the conditions expected
to be necessary and sufficient.

In [8], we treated each characteristic root separately, restricting our con-
sideration to the degeneracy with respect to the time variable. We gave some
necessary conditions for C°°-well-posedness and some estimates for the regularity-
loss of solutions. These results were " micro-local" in the sense that conditions
were stated in terms of the characteristic root 0 in a fixed cotangential direction.
By applying these results after appropriate coordinate transformations, however,
we got a necessary and sufficient condition in case of the operators with only
finite-order degeneracy w. r. t. the time variable ([9]).

This paper is an attempt to treat the degeneracy with respect to the space
variables in a similar way. Though the results in this paper hold for the
operators with singular coefficients of the same kind as discussed in [8] and
[9], we restrict ourselves to the case of operators with C°°-coefficients for
simplicity.

We introduce some notations for further explanation.
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(t, x)=(t, x1} -, *„)=(*, x', *„)€=«»«

dt=d/dt, dxj=d/dx3-, Dt=-idt, Dx.=-idXj}

Da
x—Da

x\'"Da
xi, where a=(a1} • • - , an] is a multi-index.

qW*, ^ ; r, 0=@J3ga>3?0)(f, % ; r, I) ,

JR»=B»\{0}, *B=(0,-,0, l)e=/Z».

Let fi be an open neighborhood of (0, 0)e/2w+1 and let Q+={(t, x)<=Q ; f^O}.
Let P be a differential operator on Q with O-coefficients and set P=

m
2 Pm-h(t, x ; A, Z^X where pm-h(t, x ; r, {) is homogeneous of degree m— h
fl=0

with respect to (r, £) and £m(£, x; 1, 0)=1 on fi.
To avoid ambiguity, the definition of well-posedness will be specified as

follows.

Definition O.L We say that the Cauchy problem for P is well-posed on Q+

if the following two conditions are satisfied.
a) For any f<=C°°(Q) such that /=0 for f^O, there exists u^C°°(Q] such

that w^O for ^0 and Pu=f on fl.
b) For any f^O and any u^C°°(Q) such that w^=0 for f^O, if there holds

Pw=0 for t^t, then there holds u=Q for ^f.

Remark 0.2. 1) In [3], [8] etc., certain conditions on dependence domains
are assumed. In this paper, we do not make such assumptions. Further, the
results in this paper hold under some other definitions of well-posedness. (See
Remark 1.3 1).)

2) If the coefficients of P are C°° as we have assumed, then this definition
is equivalent to the following condition c).

c) For any f^O, any f^C°°(Q] and any ^eC°°(fin{f=f}) O'=0, 1, -,
?72—l), there exists a unique u^C°°(Q) such that Pu=f for t^t and d{u{t=i=gj
(;=0, 1, -,m-l).

Since the well-posedness implies hyperbolicity ([10]), we assume throughout
this paper that P is hyperbolic on Q+, that is, the equation pm(t, x; r, £)=0 has
only real roots r for any (t, x ; f)eJ3+xJSre.

Now, we review the simplest version of the " Levi condition " ([7], [11], [12],
[2]). Let pn-h(t, X ; T , en}=a^(tf x}rm-h+ - +a£lh(t, x}. If afftf, x)= - =
fii?-r+itf, ̂ ):=0 on Q + and the Cauchy problem for P is well-posed on J3+, then
there holds a%lh(t, x}= - =aSf2r+1tf, ^)=0 on fi+ for A=l, -, r-L This is
the condition to be called the "micro-local Levi condition with respect to the
characteristic root 0 in en- direction". If the characteristic roots of P have



GENERALIZED LEVI CONDITIONS 3

constant multiplicities, then the usual Levi condition, which is also a sufficient
condition, is obtained by combining the conditions which are obtained as above
after transforming P by appropriate coordinate transformations. In this paper,
we are concerned with the case where a(^(t, x), • • • , a£Lr+i(t, x) vanish at (0, 0)
but do not vanish identically near (0, 0). To describe the behavior of ajQ^(t, x)
(j=Q, • • • , in} near (0, 0), the Newton polygon shall play an important role.

Definition 0.3. We call a subset A of R2 a Newton polygon of size m (m is
a non-negative integer) if A={(j, jte)e[0, m]x!2; /j^/1 (;')}, where/X/) has one
of the following forms.

Case (A)
m " 0

Figure 1.

Jr J2

Case (B)

(A) r(m)=vQ and r(j)=oo for 0^/<m, where y0 is a rational number.
(B) r(f)=vk-Kkj for jk^j^jk-! (k = l, -, r) and A/) =00 for Org/</r,

where r is a positive integer, m— /0>/i> ••• >/r^O are integers and
^i<^2< ••• <vr, 0^/c1</c2< ••• <KT are rational numbers.

The function ft=r(j) (0^/^m) is called the lower side of A.

In § 1, we shall give necessary conditions for well-posedness with respect
to the characteristic root 0 (Theorem 1.2). This theorem is an extension of
Theorems 4.1, 7.1 in [3]. The proof is given in §3. In §2, we shall consider
a class of " Mnvolutive " operators (Definition 2.1). For such operators, a
necessary and sufficient condition is established (Theorem 2.5). The proof is
given in § 4 by applying Theorem 1.2 after appropriate coordinate transformations.

§ 1. Generalized Levi Conditions with Respect
to the Characteristic Root 0

Fix positive rational numbers q3 (/— 0, 1, • • - , n). Put S — { ( j t #0&+<#, /3»

/>#;&./»,((), 0; 0, O=£0}, where <0, /3>= S ?,&. Let A be the closed convex
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Figure 2

hull of the set {(;, $^R2; /*^// for some (;, /O^S1} in Rz. This is a Newton
polygon. Since the coefficients are C°° and pm(t, x; 1, 0)=1, there holds (m, 0)
eJc{(/, j>jt)^Rz; /jt^Q}. For this J, we get v0 (case (A)) or r, /*, Kk and p*
U^&^r) (case (B)) as in Definition 0.3. In the case (B) with ^=0 (hence
Vi=0), we may modify A as follows. Take an arbitrary rational number K~
such that Q<^K~^KZ and put V~=K~J\. Let 5 be the closed triangle with the
vertexes (m, 0), (j\, 0), (m, v~—K~rri) and let A~=A\JS. This is another Newton
polygon (Figure 2). In the case (B) with ^X), we make no modification, that
is, put tc~— KI and A^—A. In the case (A), put /£=oo and A~=A. We make
the following assumptions on q3- (0^/^n), K~ and pm. In other words, we
consider only qjf K~ that satisfy the following conditions.

f 1) q*+K~>q3 (/=!, 2, ••• , n).
[A] ^

I 2) If (j + ki, ^ 0(fe+|a | )+<^ ]8-a»^J~, then />£;?£ /»((), 0; 0, en)=0.

Remark 1.1. i) For a=0, the condition 2) is satisfied by the definition of J~.
ii) If <?o^<?.7 (;=1, 2, •-, n), then the condition 2) follows from the hyper-

bolicity of pm. (The proof is given in Appendix 1.)
iii) Assume 1). Then, the condition 2) for such a as satisfy a^^O implies

the condition 2) for all a. Especially, the condition 2) is necessarily satisfied if
n=l.

Theorem 1.2, Assume the condition [A]. // the Cauchy problem for P is
well-posed on Q+, then the following holds :

If (j+\a +h, qQ(k+ a\+h)+<q, j8-a»SEj~, then ptt-Kik.?)®, 0; 0, en)=0.

Remark 1.3. 1) The assumption of well-posedness is used only to derive
the energy inequality (3-3) in § 3. Hence, any definition of well-posedness that
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implies this inequality, such as the #°°-well-posedness, can be adopted.
2) Though the definition of the well-posedness in [3] is not the same as

ours, we can easily derive Theorem 4.1 and 7.1 in [3] from the proof of the
above theorem. Especially, we can omit the assumption that P satisfies Con-
dition (f/ru, ,?)) and can relax the condition p^q to p+l>g in Theorem 4.1
in [3].

3) Theorem 3.1 in [5] can be essentially restated as follows in our setting.
(The statement of Theorem 3.1 in [5] is wrong (perhaps misprinted). The
condition (N) must be "for |a|+</}— a, py<r(l—p0)—(m—s)n.)

Theorem, (Theorem 3.1 in [5]) For a rational /c>Q, put Jr, «={(/, p) ; r^j
, A^O}U{(/, / f ) ; 0^/gr, ^(r-j)} andd~K={(j, /i); Org/^m, p^ic(r-f)}

^r^m). Assume that qQ+K>qj (j=l, ••• , n), p%'°\Q, 0; 0, en)^Q and the fol-
lowing condition :

// O '+la l , ?o(fe+|a |)+<0, j8-a»€£^, then p(A\ad,?^, 0; 0, *n)=0.

If the Cauchy problem for P is well-posed on Q+, then the following holds.

If (j+\a\+h, qo(k+\a\+h) + (q, ̂ -a))^.,, then
Pfr-Ktk.p)®, 0; 0, eB)=0 (h = l, - , m).

Thus, our theorem is essentially an extension of Theorem 3.1 in [5].

Example 1.4. In the followings, let n=l and assume that the Cauchy
problem is well-posed in a neighborhood of (0, 0).

1) Let m=3 and pz—(r— X^)(T— x2f)r. Applying Theorem 1.2 with <?0=£
(arbitrary positive number) and ql—ly we get the condition that pz=a(t, z)r2+
xb(t, x}r^+xsc(t, z)f2 and p1=d(tt x}r+xe(t, %)f near (0, 0) for some C°°-functions
a, b, c, d, e. This is also a sufficient condition for well-posedness. (See Example
2.7.)

2) Let 771=3 and PS=(T-X^(T-XZ^{T-(X + X^}. Applying Theorem 1.2
with #0—2 (arbitrary positive number) and ^=1, we get the condition that
pz=a(t, x)T2jrxb(t, x)r£+x*c(t, x)^2 and p,= d(t, x)T+xe(t, x)£ near (0, 0) for
some C°°-functions a, b, c, d, e. However, this is not sufficient for well-posedness.
This condition does not reflect the contact-order of characteristic roots xg and
(x+x2^. If we apply Theorem 1.2 after transforming P by the coordinate
transformation s=£, y = xe*, then we get a further condition a(t, Q)+b(t, 0)+
c(t, 0)=1. These conditions are sufficient for well-posedness. (The sufficiency
follows from Theorem 2.2 in §2.)

3) Let??z-=4and^4={r2-a2+x2)?2}{r2-a2+x2)2 |2}= Put />3= S al(t, ^)r*f3-'.
l = Q

Applying Theorem 1.2 with ^=^=1, we get a^O, 0)=(3{3*a0)(0, 0)=0 for
j+k^2. The author does not know whether these conditions are sufficient or
not.
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§2. A Necessary and Sufficient Condition
to a Class of £-Involutive Operators

In this section, put Q+= [0, T~]xRn and assume that the coefficients of pm

are bounded on Q+.

Definition 2.1. 1) We say that pm (or P) is t-involutive (resp. involutive)
if the following two conditions are satisfied. (M. Zeman [18], K. Yamamoto
[17].)

i) pm has the smooth real characteristic roots. That is, there exist
*j(t, x ; %)<=C°°(Q+xRn) (/=!, — , m] such that ^ are real-valued and pm(t, K ; r, £)

= n(r-J/f, *;?))•

ii) For any lg/, &<^m, there exists 4/,fe(£, *; f)eC°°(fl+xBn) such that

(2-1) {r-J,(f, x ; f), r-^a, x ; £)} = ^, *(f, * ; fitf ,fc * ; £)-Jl,(f, x ;

where {•, •} is the Poisson bracket w. r. t. (t, x; r, £).
2) Put dJ=Dt-Xj(t, x; Dx}. For /C/={1, — ,m} , put nj^Iidj, where

J&7

the order of the product is arbitrarily fixed. Let |/| denote the number of the
elements of /.

A sufficient condition for well-posedness of the Cauchy problem to ^-involu-
tive operators is given by K. Yamamoto [17]. (Cf. M. Zeman [18], H. Uryu
[15], H. Kumano-go [6].) Let SP(V) denote the class of all classical pseudo-
differential operators of order p on an open subset V of Rn.

Theorem 2.20 Assume that pm is t-involutive and that for any /§=/, there
exists Aj(t, x; Dx)s=C°°([Q, T] ; S°(Rn)) such that

(2-2) P=xI+'St^-nAj(t9 x; DX}TCJ.
,/g/

Then, the Cauchy problem for P is well-posed on Q+.

Remark 2.3. 1) In [17], there is proved only the //°°-well-posedness under
the assumption that all the coefficients belong to .®°°C0+) — {/eC°°GQ+); d{d%f is
bounded on Q+ for any (/, a}}. However, we can prove that there exists a
finite propagation speed (, that is, there holds the condition (£7) with ^0=1 of
Definition 1.1 in [9]). (See Appendix 2.) Hence, the C°°-well-posedness holds
under our assumption.

2) The condition that P can be written as (2-2) is not always necessary
for well-posedness as is shown in the following example.
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Example 2.4. Consider P=D2
t~(x2+y2)2Dj-a(xf y}Dx in R\ The above

a(x v)
condition is — 2 * 2 ^C°°(E2), though the Cauchy problem for P is well-posed

x -\-y
if and only if a(0, Q)=dxa(Q, 0)=3ya(0, 0)=0. (The "only if" part follows from
Theorem 1.2. The " i f " part follows from Theorem 1 in [13].)

The purpose of this section is to give an answer to the question when the
condition that P can be written as (2-2) is necessary for well-posedness. We
make the following assumption [B] on pm.

[B]

For any (i, i)efi+, there exist a neighborhood U of (i, x), a non-negative
integer nlt C°°-functions Ct(t, x) (1=1, • • • , nj on U and non-negative
integers ic(l\ j, k) (l=Q, 1, ••• , n±\ l^j, k^m} such that the following
three conditions are satisfied.
i) Ci(/, *)=0 (/=!, -, ni).
ii) {(gradaA)(£, £); /==!, ••• , nj are linearly independent.
iii) For any l^j, k^m, there holds either of the followings.

a) l,(t, x;®-lk(t, x; ^=t^^'k^Ct(t} x)*«-'>-k>0j.k(t, x;&,

where 0j>k^Cco(UxRn) and 0J>k(t, x ; f)^0 on UxRn.
b) ^, z; £)=**(*, %; K on Uxfi".

Theorem 2.5. Assume that pm is t-involutive and that pm satisfies the
assumption [B]. The Cauchy problem for P is well-posed on Q+ if and only if
P can be written as (2-2).

Remark 2.6. Assume that /c(0; j, k)=Q for any /, k. Then, pm is £-involu-
tive if and only if pm is involutive. Further, in this case, P can be written as
(2-2) if and only if P can be written as follows0

(2-2)r P=*/+ E Aj(t, x ; DJnj ,
jzi

where Aj(t, x; ^)eC°°([0, T] ; SW))-

In some cases, the condition that P can be written as (2-2) (or (2-2)') is
reduced to a simpler condition. (Example 1.4, 1), 2).)

Example 2.7. (Cf. [14]) Let a(x)^Cco(Rn] satisfy grad^UO^O if ff(*)=0.
Let r be an integer such that O^r^m and let £(l)^/r(2)^ ••• ^K(m—r) be
non-negative integers. Assume the following three conditions.
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m-r

i) />»=r r n(r-^(f ,x ;e) ) and W, x; &=a(xY^%(t, x\ ®, where
.7=1

^eC-CQ+xB11) and ^y, *; £)=£0 on S+xE71 (; = !, • • - , m-r).
ii) If j^k, a(x)^Q and £^0, then JL3(l9 x; %)^lk(t, x; £).
iii) If ;=£& and ic(f)=ic(k\ then ^(f, * ; £)=£>£(*, * ; £) on Q+xRn,

m-j
Let P= S flj «(*, x}D{Da

x(ajia^$~(Q+}} and put T(/)= S/c(/) for y=r, r+1,
j + i a i ^ r a ' Z=l

• • • , 7?z. The Cauchy problem for P is well-posed on J3+ if and only if there
holds

r a j i a ( t , x)=a(x)r<m-**»bj.a(t, x)
(2-3) I for some bj^^C^Q*), if \a\^m— r,

( a j i a ( t , x)=Q on Q+, if \a\>m— r.

The "only if" part is easily proved by Theorem 1.2. The " i f " part is proved
by showing that pm is involutive and P can be written as (2-2)'. (Cf. [16; § 1].)

§3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. This theorem follows from
the following proposition.

Proposition 3.1- Let K, i> be positive rational numbers such that
(Irg/^n). Assume the following three conditions.

1) />£;8U(0, 0; 0, *n)=0, if q*(k+\a\)+<q, 0-a><p-</+|a|).
2) There exist k, J3, j such that /J^a.^CO, ^^ 0, ^^O and qQk + (q, j3y=v—/cj.
3) Either of the fallowings is satisfied.

Case (a) There holds V—RJ ( , /2enc£ £=0, /3=0).
Case (&) There exist rational numbers yc*, j^* suc/z ^/ia? 0^/c*</»:, v*—/c*j

=V—KJ and

(3-1) Pfr-ak\<k.v(Q, 0 ;0 , eB)=0,

Under this assumption, if the Cauchy problem for P is well-posed on Q+, then
there holds the following.

(3-2) ^-tu.MO, 0;0, eB)=0,

Proof of Theorem 1.2 wa Proposition 3.1. If J has a form of type (A), the
assumption of Proposition 3.1 with Case (a) in 3) holds for any £>0 with j=m,
u=Km, k=Q, fi=Q. Hence, we get the desired result. Consider the case of type
(B). If £?— £i>0, then put j=m, and if ^=0, then put j=j\. Let v~=ic~j.
In the case that K~>®, put R—R^ and v=u~. Then, we can apply Proposition
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3.1 with Case (a) in 3) and we get (3-2). In the case that tc^=Q, put K=Z and
n= ej for an arbitrary positive number e. We can also apply Proposition 3.1
and we get (3-2) for any yc>0 and V—K]. Hence, we get (3-2) for K~^=Q.
Thus, we get (3-2) for K=K~, v=v~. Next, we shall prove (3-2) for K=Kif

v—Vi under the assumption that there holds (3-2) for K=/ci-1, u=vi-1. (If i=2,
then regard K± as K~ and i^ as i/TO If z=2 and K~=K.2, then we have nothing
to prove. In the other cases, take j=ji-i, K—Ki} U=VL, yc*=ycl-1, p*=vl_1. We
can apply Proposition 3.1 with Case (b) in 3) and we get (3-2) for K=Ki} u—Ui.
Thus, we have (3-2) for K=Kif v=v% (i—2, ••• , r). The conclusion of Theorem
1.2 is just (3-2) for K=K~, v=v~ and K=/clf u~Vi (i=2, ••• , r}. D

In the following proof, we shall write pa~exppa, when a is complicated.

Proof of Proposition 3.1. This proposition is proved by modifying the
method used by Ivrii [4], [5]. Since, the Cauchy problem for P is well-posed
on Q+, we have the following energy inequality.

Lemma 3.2. For any compact set KdQ^, there exist constants C, L such that
the following holds. For any (/, x)^K and for any utEC™(K)
supp^C/Q, there holds.

(3-3) ] u(l, x ) I ̂ C sup sup 1 (dpMPu)(t, x) \ .

We may assume that Q+ is star-shaped, that is, for any (t, x)^Q+ and any
O^/^l, there holds (tt, Xx)^Q+. For a positive /I, consider the coordinate
transformation :

(3-4)
(j=l, -, n)

By this coordinate transformation, the operator P is transformed to another
operator Pp. We have

)= S Kh(k,
ft, j8, j,a'

where Kh(k, /3, /, «')=(£ ! /3 ! ; ! a7 !)-^^f;(
0^,(0, 0; 0, ̂ ). Oy'-O?!, - , ^-J,

qf—(qi, '" > q-n-i)> etc.) For a real number j, a C°°-f unction <p and a positive
number 5<1, set E=Qxp{i(^ynp+<ppd)}' These are determined later. We have

E-1-PP*E= E Kh(k, A /, «0s^/3
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where Rp are differential operators of order m whose coefficients tend to 0 in
C°°(Q+) as p->oo. Denote the exponent of p by d h ( k , ]8, /, a')- That is,

dh(k, j8, /, aO=M?o-^n+«-l)/

Put dmax=d0(k, /3, j, 0)=(^o-^7»+^+5-l);-^+(^n+l)w. Now, let e be
the maximum of s' that satisfies the following. (The maximum does exist if
£——oo is admitted.)

There exist h^l, k, fl, j, a' such that

and Kh(k, P, j, a')

If e^l, then the conclusion of Proposition 3.1 holds.
Assume that e>l. Let 31= {(h, k, 0, /, a7); Qok+<q, py+<q0+K-q', a'>+

6(qt+K)h=v—Kj and Kh(k, /3, /, a')^0}. Note that (0, jS, /3, ;, 0)e^ and that
there exists (h, k, /3, /, a')^3t such that /i^l. We have

+ (J -j- I OL'

Since s>l and q^K,>qn, we can take ^>0 and 0<d<l such that lqQ—^qn-}-^K
+8-1=0 and lqn+l-fe(qQ+K}=0. We take such 2. and 8. If 7rft(^, j8, /, «')
^0, then dma^dh(k} p, j, a'} and the equality holds only if (h, k, j8, 7, ax)^^-

Put #(s, ;y, 7; (7, »')= 2 Kh(k,B,j,a')skyPa*y'a'r'-J-]a'l-h. Then,
' ( fc , * f 0 , j , a ')eJH

we have

(3-5) £-1-Pp-£ = /O
dmax rm-5{(P(S j 3;, y; 3.^ 3r^) + ^(s, ^ I D» Dy)},

where R^ is a differential operator of order m whose coefficients tend to 0 in
C<%Q+) as ->+oo.

Lemma 3.3e // (/i, fe, ̂ 8, /, a')e^ ^^ ^^ /io/d e/f/zer (i) A=0, ;=; or
(ii)

Proof. Case (a). If P=^J, then

Hence, there holds h+j^j and the equality holds only if fe=0, ]8=0, a'=0,
A=0, ;=;.
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Case (b). We have

+ {(s-l)q0+eK-ic*}h.

Since V—KJ=V*—K*J and K>K*^Q, we have Or— £*)(; — ;-- A) ^(A:—/C*)| a' | +
(£— 1)G?0+£)A^O. Hence, we have j+h^j and the equality holds only if
a'=0, A=0, j=j. D

Lemma 3.4. (Cf. [5; Lemma 1.2]) There exist (st

(5, >•, f ; a, i?')=0 and l

Proof. Take 0=max|-^^(^0+A:)/l -; (A, fc, j8, /, a')e.5H, ;<;} (>0) and1 - J

put M'—{(h, k, £, 7, a')^3lim, 0(j—f)=(G—l)(q0+ic)h}. For a positive parameter
ty, we have

@(so)~q°, ya)~q,

where

Consider

There exist (s~, y~)^Q+, 7}'~tERn\{0}, j*, h* such that ^/.0(s^, ;y~, T)'~)±Q,
Aj*.hi(s~, y~, ^H^O, y*+A*</, A*^l. The root of the equation (P2(cr, 7) =
^i(s~, 3;~, 7; o1, ̂ ^H^O have the Peuiseux expansion with respect to ^e{7. Let
a=a^, then

02(e?, r)= S ^ h(s^, y~, ij'~)(T*rJtt+'~3-h-
j, h

If we take jg£=max|'y ^J . Z ; ^^(s", y", )?'~)^0, j<;k then 0<^<1 and 02(cr, f)

=0 has a root <;= a^{l+o(l)} as l^i-^oo with a^O. If we take a suitable
branch of 7-^, then there exist ?~^R, a~^C such that ®z(0~, 7")=0 and Im o-"
<0. Taking s^s^ty'50, j}=yv«, f— ̂ ff+5°, j]'=i)'~<oq' for sufficiently large

we have the desired result. D

There exists a neighborhood F of (s, j), 7?') in Q+xRn such that <P(s, 3;, f ;
0, ^0=0 has a root c? such that Im(r<0 for any (s, 3;, ̂ Oe^- There exist a
non-empty open set V^cV, a positive number ^ and a real-analytic function
^(s, y, i)') on Vj such that ImF(s, y, ?]'}< — 0 on Vl and a—F(s, y} rj'} is a
root of $(s, y, f', 0, "jyO^O with constant multiplicity d (^1). Retake and fix a
point (5, j), 7^0 in Fj. There exist a neighborhood W of (s, j)) and a real
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analytic function (p on W such that

(3-6) | ' on W.
( <p(§, y)=<f]', yfy+i\y—y\2

Note that
f=0 on W, if l+M<d

i^O on Wj if l=d, i>=0
and

(3-8) Imp(s, y}^\y-y\z+6(s-s) for s^s, (s,

Taking such <p as the function in E, we have from (3-5),

E-1°Pp°E=pd™xfm-JR;(s, y; Ds, Dy).

We shall show that R^ has a suitable structure.

Lemma 3.5. There exists a differential operator

Oo= S Vaj.Us.yW'DlDS
l+\V\£d J&JQ

such that

( i ) Jo is a set of a finite number of rational numbers,
( i i ) d' is a rational number such that Q^d'<d,
(iii) a j t t i V are analytic functions on W, aQjdj0(s, y}^Q on W and a 3 t i , v ( s , 30=0

on W if j+l+\v\>d,
(iv) for any N, the operator Rf=fm'^pddR^—Q0 can be written as

N + l

ĥ=l
-ohRu(s, y;Ds, Dy, p} ,

where Rh is a differential operator of order^d+h whose coefficients are bounded
in C°°(W) as p-»oo. Further, the coefficients of Rh (h^N) are analytic on W.

Proof. For an arbitrary function w(s, y), we have by Leibniz rule,

where dlJd^Pp is a differential operator with the symbol dl
ad^pp(s, y, a, rj}. We

have

llvlp*™*-^^^ y, f ; 3S^, dy<

by the repeated use of Corollary A. 4 in [2]. Thus, we have

E^PJE-w^a*™*-*8 S S DlD»(w)aTv m(s, y)p<°.y ' l+\v\^m

Here, the second sum is taken for rational numbers o) such that o)^(d— M— l)d.
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By (3-7), if l+\»\<d and <0 = (d—\v\—l)d, then aTiViQt=Q on W. Further, there

holds flrfoo(s, 30 =£0 on W. Let df=max\\-—^-—r; d> v\+l, ar,v.»
L I a — I v | — t

We have 0^<5'<<5 and we can write

where the second sum is taken for /e/0 such that j^d— I— \ u \ , and /0, a; Z i l ; ,
J?;? have the desired properties. D

From now on, regard (s, j>) as the origin (0, 0). Under this situation, from
Lemma 3.2, we have the following.

Proposition 3.6. For any compact set KC.W, there exist positive constants
L, H, C such that there holds

(3-9) |w(0, 0)!^Q>J/ sup sup |@?3gP,M)(s,

for any

We want to construct an asymptotic solution u of Ppu—$ that violates the
above inequality.

Definition 3.7. ([4]) Let d be a fixed positive integer. For a formal power
series g=g(<0; z] of z=(z0, z')<^Cn+1 with coefficients depending on a parameter
Q), put

which are formal power series of (r, £).

The following is given in [4].

Proposition 3.8. Let M be a positive integer, consider an operator Q=
Q(ti); z, dz")=^,baija)jd? on a neighborhood U of OeCre+1, where baj are holo-
morphic on U, b(dio!...iQ)i0=l and the sum is taken for a finite number of (a, j)
such that a is a multi-index, j is a rational number and j+\a\^d. There exist
positive constants K, e± and ez depending only on Q such that for any a, b which
satisfy fr^Si and Q<a^e2b, there holds the following. If v=v(a)°, s, y} and
g=^g(a); s, y) satisfy
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(3-10)

then v satisfies

(3-11} v «

where A<^B means that B is a major ant series of A.

Let u(a)m, s, 30 be a formal power series of (s, 3;) with coefficients depending
on a). The following lemma is easily proved.

Lemma 3.9. (1) Consider an operator R— S ak,p(®', s, y)dk
sd^} where

dk 3(0)', s, 30= S a(
k
l'0

n((f))slyr< S AP'Pslyr for any co and E Ailt/}slyr is a con-
1,7 1.7 F. i>r

/ T E \~n

vergent power series. If W(u)€.(l -H exp(J^(wr), then there exist posi-

tive constants C, a', bf such that W(Ru)^iC(t)H(l -. rr) exp(/&wr).
\ a o /

( <£• p \-n
1 -r) exp(J^r), then for a sufficiently small neigh-

borhood V of (0, 0) and for any (p, j8), there exists a constant Cpip such that

(3-12) |3f3£w(<y; s, 3;)! ^CPR<*)P exp(/fru|s|) on V.

Now, we shall solve (Q0+R^)up=Q asymptotically. Consider pd' as
First, take uQ(pm, s, y) such that QQuQ=0 and dJ

suols=Q=dotj for Og/grf— 1 (
is the Kronecker's 3). Since ^(M0)!r=o</o (c f~1)5 ' , there holds

for some positive constants aQ, b0, K. Assume that UQ) ••• , M^ (Q^h^N— 1) are
taken such that

a j

(/=0, 1, -, A),

where a0^^i^ ••• ̂ «f t>0 and 60^6i^ ••• ̂ ^>0. Then, there exist positive
constants Ahtt, ah+1 (^ah}> bh+l (gfe f t) such that a/i+i^Sz&^+i and
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Hence, there exists a constant Ch+1 such that

ah+1 bh

By Cauchy-Kowalevskaya theorem and Proposition 3.8, there exists uh+i such
that

(;=0,

Thus, we can take MO, ••• , UN such that

S S /B-Mfi»M>+p- (W+1)a/?WH-i( S «^)}.
h=l j=N+l-h \j=0 /J

For any h = l, • • - , JV+1 and any (j&, ̂ 8), there exists a constant C^ I P ] ^ such
that

s, y) \ ̂ Ch, p, pp«+*+p>» ->«-*' >

near (0, 0). Hence, there exist a neighborhood W\ of (0, 0) and constants C
such that

Xexp{— Im<p(s , y}pd+Kp8' \ s \ } on

Since — lm<p(s, y)^0s— [3 ;—j>l 2 ^ — 6\s\ — \ y — y \ 2 for s^O, we have

(3-13) j

on W^is^O} for sufficiently large p.
On the other hand, let W2 be a relatively compact neighborhood of (0, 0)

such that WzdWi. There exists a positive number e such that for any (p, £),
there holds

(3-14) s, 30

on (Wi\pr2)n{s^0} for some constant
Now, we take *(s, ^JeC?^) such that X(s, y)=l on P72. Then, by (3-13),
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N
(3-14), the asymptotic solution u(s, y)=I(s, y)-E^ Uj violates the inequality

j=0

(3-9) as p^+oo for sufficiently large N.

§4. Proof of Theorem 2.5

In this section, assume that pm is Z-involutive and satisfies the assumption
[B]. Further, assume that the Cauchy problem for P is well-posed on Q+.
Essentially, the proof of Theorem 2.5 goes along the same line as the proof of
Main Theorem in [9], For simplicity, we assume that /l^/U if J^k and that
fc(Q; j, &)=0 for any /, k (, hence pm is involutive). Fix an arbitrary (/, #)e£?+.
We have only to show that there exists a neighborhood V of (/, x) such that
P can be written as (2-2)' on V. The general case is proved by taking the
arguments in [9] into account and modifying the following arguments.

Fix l^l^ni until Proposition 4.11. Since gradxQ(/, #)=£0, we can retake
a coordinate on a neighborhood Ul of (i, x) such that Ct(t, x}=x±.

Fix an arbitrary *~=(r, x^}^Ul such that Xi=Q and Ci(t~, O^O for all
1^1. Put /[/] = {/e{l, • • • , 772}; there exists ki-j such that ic(l', j, £)^0}.

Lemma 4.1. // /e/[/], then d^3(tt x\ £) is divisible by x^

Proof. There holds Jtj(t, x; £)— -**(*, A:; f) = *J-0(f, x; f), where A:=A:(/; /, ^)
>0 and 0 is a C°°-function such that 0(f, z; |)^0 if Ci(t, x)^Q for all
Since

is divisible by ^f, the function 9fl^ is divisible by x^ D

For le/[/], the following holds.

Lemma 4.2. There exists a nowhere dense subset S of Rn such that for any
n\S, there exists a coordinate transformation T~T(z~, k, |) which satisfies

the followings.

(1) T transforms z~ to (0, 0) and a neighborhood W of z~ onto a neigh-
borhood W~ of (0, 0).

(2) T has a form s=t-f, y=f(t, *)=(/&, x), • • • , fn(t, x}}. There hold
gradxfnlt=t~=£ and that f^t, x)=x1g(tj x}, where g^C°°(W) and g(t, x)^0 on W.

(3) Put ^7(s, y ; 5)=^^, x ; dx<f(t, x\ )7»-3J</(f, x\ 7

holds XJ(s, y; en}=Q on W~.

Proof. We can take hn such that dthn=Zz(t, x\£+dxhn} and hnlt=t~=Q.
Put ^=0 for lgygw-1.
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First, consider the case n^2. Put S={£e/Zn; £,=0, for 2^j^n}. If
S, then we can take an invertible matrix A such that fAen=^ and

(Ax)1=x1. Putting f ( t , x)=Ax + h(t, x), we get the desired result.
Next, consider the case n=l. Put S={0}8 If £eB\{0}, then put f ( t , x)

= %x + hn(t, x}. Since dtf=l*(t, x ; dxf) = dxf-d^(t, x ; d x f ) , /, t=*~ = |x and
d^k(t, x ; |) is divisible by x, it is easy to see that f ( t , x)=xg(t, x) for a non-
zero C°°-function g. Hence, we have the desired result. D

ra
Note that p^n=Ii((J— X?) is the principal symbol of the operator P~ which

j=i
is transformed from P by T. Put C?(s, y}=CL(t, x}. We may assume that
C7(s, 3>)^0 on W^ for all 1*1

Fix l<;£gm and |eEn\5. Denoting K(j)=K(l; j, k), reorder {</); /=££}
as jc(/0i)^ ••• ^(pm-!). Let J=J</; &> be the Newton polygon of size ??i with

the lower side r(/)=r</; fo(j)=^ie(pi) (j=l, - , m) and HO) =00. (This is

the Newton polygon determined by Wpi), ••• , /t(pm_i), °o) in the terminology of
§3 in [9].) For this Newton polygon, we get Klf ••• , KT as in Definition 0.3.
Note that KJ are integers in this case. If Ki= 0, then modify A by setting
/cr=l as in §1. Denote this Newton polygon by J~=J~</; l> and its lower
side by ft=r~(j)=r~<t; k^(j). Now, put qi—l and ^-=e (arbitrary positive
number) for /=£!. It is easy to see that J=J</; £> is the Newton polygon
drawn from P~ as in § 1.

Lemma 4.3. 77ze assumption [A] m § 1 fs satisfied for P~ and £~.

Proof. The condition 1) of [A] is trivial. We have pm(s, y> 0, y} —
m

S(ff—4T(s, ?; i?))» ^I(s, j; en)=0, ^(s, y; en)=3'i (* )^ft(s> y; i?)- Further, by

Lemma 4.1, if £(fe)>0, then 39l^(s, ^; y)=yi*f>k(s, y; 7). (Here, 0A, ^^ are
C°°-f unctions.) Hence, it is easy to see that dJ

Gd%pn(s, y; 0, en)=y{"^(j+lai:>+ai

X0j,a(s, y}, where @jia is a C°°-function. (Here, regard y™ as 0.) Thus, if
^o(*+kl)+<^j8-a><r^(;+ a|), then j81<r^(;+ «!)+«!, hence dffid&Jipn
(0, 0; 0, en)=0. This is the condition 2). D

Proposition 4.4. For /z=l, ••• , m, if/2grg AoWs /C-'rf.'i.^CO, 0; 0, en)=

. By Theorem 1.2, we have /C^"*./*>(0, 0; 0, en)=0 if ^0(^+ a +/i)
+<<?, /3-a><r^(y+|ai+/2). Since ^0(*+!a|+W+<^ /3-a> = j81-«1+£(^ + /2 +
Ij8 |—j8i+t f i ) and s>0 is arbitrary, we have the desired result. D

Now, we set up some classes of operators corresponding to a Newton
polygon. Let J be a Newton polygon of size m with the lower side F(j) (see
§0). From now on, assume that all the Newton polygon that we treat satisfy
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r(m—l}— r(ni)^l, that is, K^l in Definition 0.3. Further, we always extends
TO') as r(y)=r(m)-y+m for j^m,

Definition 4.5. (Cf. [9; Definition 3.6]) (1) Let p be an integer such that
^p^m. We say A—a(s, y; Dy)^$p(A> if A satisfies the following conditions.

(i) 74<EC°°([0, e); $P(G}), where e is a positive number, G is a neigh-
borhood of y=Q and [0, s}xGdW~.

\ (ii) Let a(s, y\ rf) ~ 2 a p - L ( s , y; rj} be the asymptotic expansion of the

symbol a of A, where ap-t is homogeneous of degree p—lw.r.t. T].
Then, there holds a^.u.^O, 0; eB)=0 if £1<F(7n-£+/+kl)+tfi.

(2) Let # be an integer such that Q^H^m. We say Q^WH<^> if
771

0= S a*(s, 3>; Dy}Df-h, where GA(S, 3>; £y)eESft-*<4>.
h = H

Proposition 4.4 means that P~eT/F0<J~</; &»• We shall show some basic
properties of the above classes of operators.

Definition 4.6* (1) For a positive integer K, let Jj>] be the Newton polygon
of size 1 with the lower side p—K—itj (O^/^l). Let J[0] be the Newton polygon
of size 1 with the lower side fi=— j (O^/^l). Put J[oo] = {(l, ^)eE2; ^0}.

(2) Let At (/=!, 2) be Newton polygons of size mt with the lower side
/\0') (Ogygmi). The Newton polygon ^=^+^2 is the one of size
with the lower side n/^mini/^H^e); d+e=j, 0^d^mlf

). (Cf. Definition 3.1 and Remark 3.2 in [9].)

Lemma 4.7. (1) Let Z(s, y; jDy)eC°°([0, e); SJ(G)) and let J0(s, y, i}) be its
principal symbol. Let K be a positive integer or oo. // ^0(s, 3;; e7l)=^i^(s, 3;)
an^ 37l^0(s, y] f]}—yi<p(s, y\ ij) near (0, 0) for some C^-f unction <j>, (p, then
A(S, y; DJeSXJM) and Ds-t(s, y; J5y)eT70<JW>. fters, // A:=OO, ^en

regard y™ as 0.
(2) // ^(s, 3;; I>tf)eC°°([0, e); S^G)), then Z(s, y; jDy)eSX4[0]> and D8-

(3) Le^ J^ (f=l, 2) &? JVew^n polygons. If ^eS^i) (/=!, 2),
J,> (i = l, 2),

Proof. (1) Assume A:<OO. From the assumption, it is easy to see that
Wik.f*>(0, 0; eB)=0 if j8!<r(| a !)+«!, where r(f)=K-icj for O^y^l and r(;)=
1— ; for y^l. Since 7^(1+ al^+a^Q for any a, we have the desired result.
If /c— oo, the proof is similar and easier.

(2) is obvious.
(3) Let mi be the size of AI and F^j) (Ogy^mj) be the lower side of AI

(i=l, 2). It is easy to see that if we extend 7""s as already stated, then the
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lower side of J=4+J2 is Fty^miniF^+F.^); d+e=j, d^Q, e^Q} for
7^0. (Remember that we have assumed F^mi—1)—Fl(??zl)^l.) Let at^

^aiiPi-i be the asymptotic expansion of the symbol of At (/=!, 2). The
1 = 0

asymptotic expansion of the symbol of A^A.2 is a^J} aPl+p2-L, where
L—0

Spi^-zXs, y, y}= S (constOflif^-^s, y, 7])a2ip9-hi(0id)(s, y°,r]}.
L + h+ldl^L

Hence,

'' l + Ii+\ol=L - f = a , P = k , ( a ^ ^ ' ' ' "

By the assumption, there holds a{?JP-i,cPiao(0, 0; 0n)=0 if (t)i<ri(jn1—p1+l+
r1} and there holds a^p^hi (k-P,d+p-a>)(Q, 0; ^re)=0 if ^1+^1—6)i<

I a—7* l)+«i—ri» t̂ 611 ]8i=^
Hence, we get a(

p
alp Li(ki8)(Q, 0; ej=0 if /3A<

Thus, there holds yl1^2eS?)1+p2<^i+4>. Next, let Q,= 2 ^}(s, 3^; Dy)
h=Himi+mo

(j = l, 2). We have Q,Qt= S S ai»(s, y ; Dv)(D\a^)(s, y ; Dy)Df
L=H1+H2 h+k + l = L

Since fli»(s, 3^; X^eS*-*^) and (Z){ai2))(s, 3^; /?y)eS*- f f«<A>, we get
D

So far, we have fixed z~, k, |. We shall unite the above results for every

*, k, I-

Definitlon 4.8. Let H be an integer such that Q^H^in. We say
if the following conditions are satisfied.

TO

(i) 0= S a»(f, x;Dx)D?-h, where a f c(f , x; Z)»)eC-([0, T] ; Sh~"(Rn)).

(ii) For any z~=(f, x~)^Ui such that ,^=0 and Ci(C, x~}^Q for /^/,
any £e/[/] and any |e/2n\S, let Q~ be the operator transformed from (J by
T(z^, £, |). Then, Q~e^H<^</, £».

By Proposition 4.4, we have the following theorem.

Theorem 4.9, There holds P^WQ(i}.

On the other hand, we have the following lemma.

Lemma 4.10. Let AeC°°([0, T] ; S°(#n)) and /c/.

Proof. Fix z~, I, |, and let 8^ (resp. ^4", ?r7) be the operator transformed
from dk (resp. ^4, ̂ rj) by T(z~, k, |). By Lemma 4.7 (1), (2), we have
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i; k, &)]>, where *(/; jS, j?)=oo. Note that lefF^M) for any K
(0^/c^oo), and yre=JF0<4,>, where J0 = {(0, ^); jt£^0}. Since /T</; £> =
J|>(/; 1, £)]+ ••• +J|>(/; ?n, &)], we have A^eETFm-m<J~</; £» by Lemma
4.7 (3). Hence, there holds A^j^Wm-}Jl(i). D

The following is the most important property of WH(i).

m „
Proposition 4.11. Let Q= 2 ah(t, x ; Dx)Df-h<=WH(l) (H^l) and let its

h=H
m

principal symbol be q(t, xm, r, £)= 2 a£(£, jc ; f)rm"ft, K;/iere a°h is homogeneous of

degree h—H w.r.t. £. T/ien, for any l^k^m and Q^r^m—H, there holds

where V is a neighborhood of (t, x}.
In the original coordinate, there holds

(4-1)

If fe £/[/], then T</, ft>(;)=0 (lg/^m), hence there is nothing to
prove. Assume that &e/[/]. Fix z~, | and let Q~ be the operator transformed
from Q by T(z~,k,£). Since Q~eWJff<4'X/; £», its principal symbol
^(5, j; (7, 57) satisfies that ?70,%

0)(0, 0; 0, en)=0 if &<r~</; k>(r+H). Since
^(0, 3^; «r, cB)=^(r, x; (T+^fe(r, %; |), |) and T</; ft>(;-)=max(0, r~<J; k>(j)),
we have Si^O^Xr, x; i*(r, x; |), |)},,,^=0 if j<r<t; k>(r+H). Since
%<=Rn\S and (f, O^t/! are arbitrary as long as x~=Q and Ct(r, O^O for

l, we have the desired result. D

So far, we have fixed / arbitrarily. If Q^WH(l} for 1=1, ••• , n, (H^
then for a sufficiently small neighborhood FI of (f, f ) there holds

(4-2) @fr)(f, A:; ̂ *tf, x; «, f)eIIC^, x^^
£ = 1

for any l^k^m, 0^rg??z-//,

since {gradxQ(^ x); /—I , ••• , n^ is linearly independent.

Lemma 4.12. For any l^k^in, there exists an ordering (alt ••• , am-i) of
{1, ••• , m}\{k} such that for any l^l^nlf there holds ic(l', k, ffi)^ic(l] k, az)

Proof. Put p ( l ; j, k}=mm{K(l; k, /), ic(l; k, k)} for j^k, k^k, j±k. For
such /, k, by the assumption [B]-iii)-a), there holds ^(£, *; £)— ̂ *(£, x; £) =

,*a, *; a where
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(4-3)

(4-4)

Assume that there exist llf 12, j, k such that ic(lim, k, /)>&(/! ; k, k) and /c(lz't k, k)
>K(IZ', k, /). Note that j, k, k are distinct. By (4-3), neither Ctl nor dz divide
VJik. Hence, by (4-4), if Ct(t, x)^Q for I^ll9 12 and f^O, then W5tk(t, x\ £)=£().
On the other hand, by (4-3), if Ctl(t, x)=Ch(t, x}=Q, then W J t k ( t , x ; £)=0.
These contradict each other, since there exists (t, x) such that Ci(t, x}i^§ for
l=£llf 12 and Cifi, x}=Ciz(t, x)=0. Thus, if /c^; ft, y)>/c(^; k, k} for some 11}

then K(lm, k, j)^ic(l', k, k} for any /. The desired result easily follows from
this. D

Remark 4.13. The assumption ii) in [B] can be replaced by the following
two conditions.

ii)-«) (gradxCL)(i, x) (1=1, ••• , nj are pairwise linearly independent.
ii)-j9) There holds the statement of Lemma 4.12.

By using this lemma, the following proposition is proved similarly to Prop-
osition 5.1 in [9].

m
Proposition 4, 14. Let q(t, x ; r, £)= S ah(t, x ; ^Tm~h satisfy (4-2), where

Ji = H

a^eC°°(F1Xl^71) is homogeneous of degree h—H (H^l) w.r.t. f. Then, for any

Jdl such that \J\=m—H, there exists Aj(t, x; DeC^FjX.R71) such that Aj is
homogeneous of degree 0 w. r. t. f and there holds

q(t, * ; T, 0= s ^j», x ; 6) n (r-^a, x • D) .
\J\=m-H jfEJ"

Theorem 2.5 is proved similarly to § 6 in [9], by combining Theorem 4.9,
Lemma 4.10, Propositions 4.11 and 4.14.

Appendix 1. Proof of Remark 1.1, ii)

Lemma A.I. Assume that pm(t, x; r, f) is hyperbolic and q} O'=0, ••• , ri), v
and K are positive rational numbers. If 9*3£3j/>m(0, 0; 0, en}—§ for any (k, £, 7)
such that qQk + <q, p><i>-iej, then dld<8

xd
J
Tdjpm(Q, 0; 0, 0n)=0 for any (k, ]8, j, a)

;— /c(/+ |a|).

For arbitrary (/ ,£), consider f ( t ; T, &=pn(tt
q°, xtq', T, £). Then,

9£/(*; 0, O^~*'XC0[0, T]. We can apply Proposition 3.2 in [8] when we
regard / ( f ; r , £) as Pm(f, *;r, £) and ^=1- Thus, we get d$$f(t; 0, en}^
^-«( j+i«i)Xco[o, T]. Since (f, jc) is arbitrary, this means that 8kMdidjpm(Q, 0;
0, en)=0 for any (k, j8, ;, a) such that qQk + <q, )8><y— «(;+ |a|). D
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Qv^qj (; = !,-, n), then $0(fc+ 1 <*!)+<?, j8-a><i;-A;0'+ |a|) implies
, fiy<v—K(j+\a\). Hence, Remark 1.1, ii) follows from this lemma.

Appendix 28 The Existence of a Finite Propagation Speed

In this appendix, we shall give a rough sketch of the proof that there
exists a finite propagation speed, as is stated in Remark 2.3, 1). First, assume
that pm is involutive and has the form of (2-2)' on Rn+1. We have only to
show the invariance of the conditions under space-like coordinate transformations.
Let <p(x) be a C°°-function such that |grad^| <[sup{ \l3(t, x; £)| ; (t,
If 1=1, /=! ,••• , wx}]-1. Consider a coordinate transformation T; s=£
3;=je. Let P~ be the operator transformed from P and put P~— {
y; 1, — grad^)}'1/^. It is easy to see that P~ is also involutive. The problem
is whether P~ can be written in the form of (2-2) '. The main difficulty comes
from the fact that /,{£, x ; D^) is not necessarily a pseudo-differential operator
on Rn+1. In fact, lj(t, x ; iy is pseudo-local on Rn+1 if and only if lj(t, x ; Dx)
is a differential operator. (We say that an operator Q ; e'(Rn+l}-^£>'(Rn+l} is
pseudo-local if singsupp QwCsingsupp u for any u^e'(Rn+l).}

LetS={(t,x;T,&^Rn+1xRn+1; T=Xk(t, x; f) for some fe}. Take Aj^Sl(Rn+l)
whose principal s)rmbol is r—lj(t, x; f) near 5. Put Aj—YLAj for /C/.jc/

Proposition A.2. 77zg operator P can be written in the form of (2-2)' z'/
only if it can be written in the following form :

where BjtE$°(Rn+1), R^Sm(Rn+1) and the symbol of R is rapidly decreasing
near S.

The " only if " part of this proposition is almost trivial. The " if " part is
proved by using the following lemma and noting that P and Aj(t, x ; DX}XJ
(/§=/) are differential operators w. r. t. t.

Lemma A.30 Let <pt(t, x ; r, &^C°°(Rn+1xRn+1) (1=1,2) be homogeneous
functions of degree 0 w.r.t. (r, f) such that <p±=l near S, <pz=l near supp^i
and <pz=Q near F={(t, X ; T , &^Rn^xRn+1; f=0}. Put 0t=<pi(t, x; Dt, Dx}^
S°(Rn+1). Assume that Bj(t, x; Dt, Dx)<=SQ(Rn+1) (\J\=m-h] and the principal
symbol of 2 Bj(t, x; Dt, Dx}7Tj02 is a polynomial of T on suppc^. Then,

\Jl=m-7i

there exist Aj(t, x; ^)eC°°([0, T] ; S°(Rn}) (\J\=m-h) and BK(t, x; Dt, Dx

S°(Rn+1) (\K\<m-h] such that

2 Bj(t, x ; Dt, DX)7TJ01\j\ = m-h

= S Af(t,x;D,frj01+ S Bx(t,x;Dt,Df)irlc$1.\J\ = m-Ji \K\ <m - h
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The latter condition in Proposition A. 2 is clearly invariant under the
coordinate transformation T. Thus, we have the desired result in the case of
involutive operators on Rn+1. The case of involutive operators on £?+ = [0, T] xRn

is easily reduced to the case of Rn+l. The case of ^-involutive operators is
proved by the same arguments in the proof of Lemma 2.11 in [15]. (See also
Theorem 3.3 in [6] or the last part of §2 in [9].)

References

[ 1 ] Chazarain, J., Operateurs hyperboliques a caracteristiques de multiplicite constante,
Ann. Inst. Fourier, Grenoble, 24(1974), 173-202.

[2] Flaschka, H. and Strang, G., The correctness of the Cauchy problem, Advances in
Math., 6 (1971), 347-379.

[3] Ivrii, V. Ya. and Petkov, V.M., Necessary conditions for the Cauchy problem for
non-strictly hyperbolic equations to be well-posed, Russian Math. Surveys, 29 (1974),
1-70.

[4] Ivrii, V. Ya., Conditions for correctness in Gevrey classes of the Cauchy problem
for weakly hyperbolic equations, Sib. Math. J., 17 (1976), 422-435.

[ 5 ] 1 Cauchy problem conditions for hyperbolic operators with characteristics
of variable multiplicity for Gevrey classes, Sib. Math. J., 17 (1977), 921-931.

[ 6 ] Kumano-go, H., Fundamental solution for a hyperbolic system with diagonal principal
part, Comm. in Partial Differ. Equations, 4(1979), 959-1015.

[7] Lax, A., On Cauchy's problem for partial differential equations with multiple
characteristics, Comm. Pure Appl. Math., 9 (1956), 135-169.

[8] Mandai, T., Necessary conditions for well-posedness of the flat Cauchy problem
and the regularity-loss of solutions, Publ. RIMS, Kyoto Univ., 19 (1983), 145-168.

[9] f A necessary and sufficient condition for the well-posedness of some
weakly hyperbolic Cauchy problems, Comm. in Partial Differ. Equations, 8 (1983).
735-771.

[10] Mizohata, S., Some remarks on the Cauchy problem, /. Math. Kyoto Univ., 1
(1961), 109-127.

[11] Mizohata, S. and Ohya, Y., Sur la condition de E.E. Levi concernant des equations
hyperboliques, Publ. RIMS, Kyoto Univ. Ser. A, 4(1968), 511-526.

[12] , Sur la condition d'hyperbolicite pour les equations a caracteristiques
multiples, II, Japan. J. Math., 40 (1971), 63-104.

[13] Olejnik, O. A., On the Cauchy problem for weakly hyperbolic equations, Comm,
Pure Appl. Math., 23 (1970), 569-586.

[14] Sakamoto, R., Cauchy problem for degenerate hyperbolic equations, Comm. Pure
Appl. Math., 33 (1980), 785-816.

[15] Uryu, H., The Cauchy problem for weakly hyperbolic equations, Comm. in Partial
Differ. Equations, 5 (1980), 23-40.

[16] , The Cauchy problem for weakly hyperbolic equations (II) ; Infinite de-
generate case, Tokyo J. Math., 3 (1980), 99-113.

[17] Yamamoto, K., The Cauchy problem for some class of hyperbolic differential
operators with variable multiple characteristics, /. Math. Soc. Japan, 31 (1979),
481-502.

[18] Zeman. M., The well-posedness of the Cauchy problem for partial differential
equations with multiple characteristics, Comm. in Partial Differ. Equations, 2
(1977), 223-249.




