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Stationary Fourier Hyperprocesses

By

Yoshifumi ITO*

Introduction

In this paper, we will define stationary Fourier hyperprocesses as an
extension of stationary random functions and stationary random distributions in
a similar way to Ito [6] and study their properties.

In § 1, we will first introduce some fundamental notions and prepare some
notations.

In § 2, we will define the covariance Fourier hyperfunctions of stationary
Fourier hyperprocesses, which correspond to Khintchine's covariance functions
and Ito's covariance distributions [15], [6].

In §3, we will prove the spectral decomposition theorem of covariance
Fourier hyperfunctions.

In § 4, we will prove the spectral decomposition theorem of stationary
Fourier hyperprocesses.

In § 5, we will mention the derivatives of stationary Fourier hyperprocesses.

§ 1. Fundamental Notions and Notations

In this paper we will restrict ourselves to complex valued random variables
with mean 0 and finite variance. Let H be the Hilbert space constituted by all
such variables. In H, we define the inner product by the following relation:

(X,Y)=E(X-Y), for X, Y^H,

where E denotes the expectation. We will here consider only the strong
topology on H. A continuous random process X(t\ — oo<£<oo, is an //-valued
continuous function on R=(—oo, oo). The set of all continuous processes will
be denoted by C(H).

Now we will remember the notions of Fourier hyperfunctions and vector
valued Fourier hyperfunctions following Sato [17], Kawai [13], [14], Ito and
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Nagamachi [9], [10], Junker [11], [12], Ito [7], [8]. Let #=[-00, oo] be a
directional compactification of R= (— - oo, oo). Let Jl be the sheaf of germs of
rapidly decreasing real analytic functions over D. Let A=Jl(D) be the space
of all sections of cj on D. A is endowed with the usual DPS topology. A
Fourier analytic functional defined on A is called a Fourier hyperfunction on D
and a Fourier analytic linear mapping from A to H is called an //-valued
Fourier hyperfunction on D, We will denote by A' the space of all Fourier
hyperf unctions on D and by A'(H) the space of all //-valued Fourier hyper-
functions on D.

Definition 1.1. A Fourier hyperprocess is defined to be an //-valued Fourier
hyperfunction.

Remark. Our concept of Fourier hyperprocesses is a generalization of
Okabe's concept of hyperprocesses in [18], Definition 6.1.

Let C(H} be the set of all //-valued continuous functions on R which satisfy
the following estimate:

for any s>0, sup{||*(f)lk-"f l; fef l}<oo,

where || || denotes the norm on //. An element of C(H) is called a slowly
increasing continuous process. Then C(H) may be considered as a subsystem
of A'(H\ since we can identify a slowly increasing continuous random process
X(t) with the following Fourier hyperprocess X($) determined by it:

for

The following notations will be often used in the theory of Fourier hyper-
functions. Let F^Af or A'(H] and

rh (shift transformation): rh$(t)=$(t+h), rhF($)=F(T-h$).

D (derivative): D$(t)=$'(t), DF($)=-F(D$).
v (inversion): $(t)=$(-t

~ (conjugate): 0(0=

" (Fourier transformation): $(X)=( €-***

The following relation should be noted.

Generalizing Khintchine-Ito's notions of (weakly) stationary processes, we
have the following
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Definition 1.2. We will call X^A'(H) weakly stationary or merely station-
ary for short if we have, for any <f>,

and strictly stationary if the joint probability law of

is independent of h for any n and $lf ••• , <f>n^A.

We shall adopt here the following notations :

S: the totality of stationary Fourier hyperprocesses,
S° : the totality of slowly increasing stationary processes,
5: the totality of strictly stationary Fourier hyperprocesses,
S°: the totality of slowly increasing strictly stationary processes.

Clearly we have

Definition 1.3. A Fourier hyperprocess X is called a complex normal Fourier
hyperprocess if X($), $^A, constitute a complex normal system and a real
normal Fourier hyperprocess if X is real viz. X—X and X(<j>), 0 running over
real functions in A, constitute a (real) normal system (see Ito [4], [5] and
Hida [3]).

This is an extension of normal processes or Gaussian processes (Doob [1],
II, § 3) and complex (or real) normal random distributions (Ito [6]). A (complex
as well as real) normal Fourier hyperprocess will be strictly stationary, if it is
weakly stationary. The corresponding fact is well-known regarding stationary
processes.

We shall here mention a typical example of real stationary Fourier hyper-
processes which are not stationary processes. Let B(t) be a (real) Brownian
motion process (Doob [1], p. 97). The derivative (in the sense of Fourier
hyperf unctions) of this process B'=DB is a Fourier hyperprocess defined by

(Wiener integral, see Ito [4]). This is evidently real normal and stationary,
since



34 YOSHIFUMI ITO

which shows that 5'eS. The fact that B'GS* will be proved in §2.

§2. Covariance Fourier Hyperf unctions

Similarly to Khintchine-Ito's notion of covariance distributions, we will here
define the notion of the covariance Fourier hyperfunctions.

Theorem 2.1. Let X($) be any stationary Fourier hyperprocess. Then there
exists one and only one Fourier hyper/unction p<^A' satisfying the relation

Definition 2.2. The Fourier hyperf unction p in Theorem 2.1 is called the
covariance Fourier hyperfunction of X.

Proof of Theorem 2.1. If we put

then we get a Fourier hyperfunction T^Af for each 0eA Taking into
account the fact that T#(0) is continuous in (jfr, <f))^AxA and by virtue of
Kernel Theorem, we will easily see that 0->T0 is a continuous linear mapping
from A into A' (see Grothendieck [2], Chap. II, Theorem 12 and Ito [7]).
Furthermore this transformation commutes with the shift transformation :

Here we will use the following

Lemma. A continuous linear mapping <j>-*T$ from A to Af commutes with
the shift transformation if and only if there exists a Fourier hyperfunction T
such that T$=T*<j> holds.

Postponing the proof of this Lemma until the end of the proof of this
Theorem, we will continue the proof of the Theorem. Thus by the above
Lemma T<j> is expressible as a convolution of a Fourier hyperfunction T and 0 :

Tt=T*$.
Hence it follows that

where we put p = fa

The uniqueness of p follows at once from the fact that the set of all
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elements of the form 0*^, $,(/>^A, is dense in A. Q. E. D.

Proof of Lemma. It is evident that a continuous linear mapping 0— >70 =
T * $ commutes with the shift transformation. Thus we have only to prove
that T^ is expressible as a convolution of a Fourier hyperfunction T and
(j>:T^ — T^(j) if it commutes with the shift transformation.

We will first show that, if a^A, we have

Ta*f=Ta*$.

In fact, we have, by the definition of integration,

for any <f>^A considering 0 as a Fourier hyperfunction, where S's are finite
71

sums. Thus we have the relation

as a Fourier hyperfunction. Therefore we have

Hence we have, by the assumption,

Then if we choose a sequence #ye4 which converges to d in A', the sequence
av * $ converges to 0 in 4- Hence T«ySI!^ converges to T$ in 4X- Hence, for
the Fourier hyperf unctions Tap, their regularizations Tav * ̂  converges in Ar

for every <j)^A. Thus Tay itself converges in A'. If T is its limit, we have

7>=T*0, Te4'- Q.E.D.

Theorem 2.3, // X(0) is a real stationary Fourier hyperprocess, then its
covariance Fourier hyperfunction is real, i.e. p = p.

Proof. Let p be the covariance Fourier hyperfunction. Then that of X
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will become p, since we have

, X(<f>))=(X($),

Thus X=X implies p = p. Q. E. D.

Example. The covariance Fourier hyperf unction of B' is Dirac's d-f unction,
since

Thus we see that B'&SQ, because, if J3'eS°, then the covariance Fourier
hyperfunction would be induced by a slowly increasing continuous function as
shown similarly to It 6 [6], §2.

§ 3. Spectral Decomposition of Covariance Fourier Hyperf unctions

Let X(fi) be any stationary Fourier hyperprocess with the covariance Fourier
hyperfunction p. Then we have

which implies that p is a positive semidefmite Fourier hyperfunction. Thus, by
virtue of Bochner-Nagamachi-Mugibayashi-Junker's Theorem (see Nagamachi-
Mugibayashi [16], Theorem 4.1 and Junker [12], Theorem 5.8), we have the
following

Theorem 3.1. p is expressible in the form

in one. and, only one way, where, p is a nonnegative measure satisfying

for every s>0.

Definition 3.2, We will call the expression (*) the spectral decomposition
of p and n the spectral measure of p.

Conversely we have

Theorem 3.3. Any Fourier hyperfunction of the above form (*) is the
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covariance Fourier hyperf unction of a stationary Fourier hyper process which is
complex normal.

Proof, Let p be a Fourier hyper function of the above form. Put

Then F($, <p) is positive semidefinite in (0, <f>), as we have

2 r(tt, $tf£,=p(0 * 0)^0 , 0=S Wt .
i ,j=i t

Therefore we can define a complex normal system X(<j>\ $^A, such that
EX(<j>}=Q and E(X(<f>)-X($))=r(<}>, <f>)=p($ *£) as in Ito [5] and Hida [3]. It
remains only to show that X($) is a Fourier hyperprocess. From the identity:

= ccp(<j> * ^)}—

=0,

it follows that X(c$)=cX($). By a similar way we can see that
X(<S)+*(0). Therefore Z(0) is linear in ^. By the identity l|Z((^)]i
we obtain the continuity of X Thus our theorem is completely proved.

Q. E. D.

Next we shall discuss the case of real stationary Fourier hyperprocesses.
By Theorem 2.3 we see that p= p in this case. But we have

By the uniqueness of the spectral measure we will obtain the following

Theorem 3.40 In the case of a real stationary Fourier hyperprocess, the
spectral measure /JL is symmetric with respect to 0, viz. fjt(E)=/jt(—E).

Conversely we have

Theorem 3.50 Any Fourier hyperf unction of the form (*) with a symmetric
measure p is the covariance Fourier hyperf unction of a certain stationary Fourier
hyperprocess which is real normal*

The proof is similar to that of Theorem 3. 3; we use the existence theorem
of real normal systems instead of complex normal ones.
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Example. Ef is a real stationary Fourier hyperprocess whose spectral
measure is the ordinary Lebesgue measure, because we have

§4. Spectral Decomposition of Stationary Fourier Hyperprocesses

We will first introduce a random hypomeasure. Let p be a nonnegative
measure defined for all Borel sets in R and B* denote the system of all Borel
sets with finite ^-measure.

Definition 4.1. An //-valued function M(E) defined for E^B* is called a
random hypomeasure with respect to p if

(M(El)f M(E2}}=p(E1r\E2) , E19 E2tEB*
holds.

We get, by the definition,

Theorem 4.2. Let M(E] be a random hypomeasure with respect to p. Then
we have

(1) \\M(E)\\*=t*(E),
(2) M(E1)1_M(E2) if E,r\E2=0}

(3) // EI, E2, ••• are disjoint to each other and belong to J?* with their sum

We can easily define the integral with respect to the random hypomeasure
(Doob [1], IX, § 2) :

for
Then we have the following

Theorem 4.3. Let M(f) be as above. Then we have, for f l f f 2 ^ L z ( R ,
and clf

(1)

(2)

Theorem 4.4. Let X be any stationary Fourier hyperprocess with the spectral
measure p. Then X($) will be expressible in the form

(**)
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in one and only one way, M being a random hypomeasure with respect to p.
Conversely, any Fourier hyperprocess of such form is a stationary Fourier hyper-
process.

Definition 4.5. We will call the expression (**) the spectral decomposition
of X and M the spectral hypomeasure of X.

Proof of Theorem 4.4. We will first remark that A is dense in L2=L2(R, p).
Then the Fourier transformation is a topological isomorphism from A onto itself.
Thus the uniqueness of the expression is clear.

In order to prove the possibility of the expression, we will put

T(p)=X(^) for <f>=$.

Then T will be a mapping from A (CL2) into H, which is clearly linear and
isometric on account of the identity:

since (0 *$)"=!$ I2. A being dense in L2, we can extend T(<p] to a linear
isometric mapping from L2 into H. As the characteristic function 1E(X) of a
set E^B* belongs to L2, we may define M(E) as follows:

M(E)=T(7LS).
Then we have

since T is isometric. In addition to this, we will have

(***) M(/)=T(/) for

for this is evidently true for any simple function / in L2 by the definition and
we will easily see that it is also true for any /el,2, by taking into account the
fact that both sides of (***) are isometric in / and any /eL2 is expressed as
the L2-limit of a sequence of simple functions. If we put /=$ in (***), we
obtain (**) at once. The last part of the theorem is clear by the definitions.

Q. E. D.

Making use of this theorem we can characterize the class of slowly increasing
stationary processes.

Theorem 4.6. A slowly increasing stationary process X is a stationary Fourier
hyperprocess with the spectral measure such that
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(dfjt(X)<oo.

Proof. A slowly increasing stationary process X is a stationary continuous
random process. By Khinchine's Theorem (see Khinchine [15]), it spectral
measure p satisfies the assumption of the theorem and, by virtue of Doob [1],
XI, §4, we have the expression

Thus, by Theorem 4.4, X induces a stationary Fourier hyperprocess with the
spectral measure /£.

Conversely, let X be a stationary Fourier hyperprocess with the spectral
measure ft which satisfies the assumption of the theorem. Then we have

where

Put

which may be defined, since the ^-function e~i2nXt belongs to L2 by virtue of
the assumption on p, Y(f) proves to be a stationary continuous random process
and, what is more, it becomes a slowly increasing stationary continuous random
process. Therefore, we have, for 0e4,

which implies that X(<j>) is induced by a slowly increasing stationary process Y.
Q. E. D.

In the proof of the above theorem, we have the following

Corollary. A slowly increasing stationary continuous random process and a
stationary continuous random process are identical.

By the same way as in Theorem 3.4, we will obtain

Theorem 4.7e In the case of a real stationary Fourier hyperprocess the
spectral random hypomeasure M is hermitian symmetric, i.e. M(E)=M(—E).
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§ 5. Derivatives of Stationary Fourier Hyperprocesses

Any Fourier hyperprocess has derivatives of any order, which are also
Fourier hyperprocesses.

Theorem 5.1. Let X be a stationary Fourier hyperprocess with the spectral
measure p and the spectral random hypomeasure M. Then X(k} (=DkX) is also
a stationary Fourier hyperprocess whose spectral measure /jtk and spectral random
hypomeasure Mk are given by

Proof. We have, by definition,

since we have, for

Thus X(k* proves to be a stationary Fourier hyperprocess satisfying the above
conditions. Q. E. D.

By Theorem 4.6 we have the following

Theorem 5.2. In order that X ( k ) is a stationary continuous process, it is
necessary and sufficient that the spectral measure [j. of X satisfies
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