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On the Spaces of Self Homotopy Equivalences
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Introduction

Let X be a connected CW complex with non-degenerate base point x0. And
let G0(X) be the space of self homotopy equivalences of (X, z0).

The purpose of this paper is to study G0(E) when E is a fibre space of a
fibration with fibre K(G, n) (n>l):

i p
K(G, n) — > E — >B.

If a base space B is simply connected, we had some results on G0(E) in the
previous papers [16, 17, 18, 19]. Here we treat G0(£) for the case of a non-
simply connected base space B.

Let G be an abelian group and let Aut(G) be its group of automorphisms.
Denote by L(G, n+1) the classifying space for fibrations with fibre K(G, ri)
and by W an Eilenberg-MacLane complex K(Aut(G), 1). Then we have the
fibration :

K(G, n + 1) -> L(G, n + 1) -> W.

Under these notations our main results (Theorem 3.3, 4.4 and 4.7) are stated as
follows.

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, x0) to
(L(G, n+1), /0) and p^k = k ' \ ( X 9 x0)-*(W, w0) be a space over (W, w0). Then
the space map0(^, L(G, n+l))TF of maps over (W, w0) has the same weak homotopy
type as

Hn+1(X, x*; G)X i^H^-KX, x0; G), 0*=i

where the cohomology is taken with local coefficients classified by the map k ' : X
), 1).
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Denote by Q (E mod F) the space of self fibre homotopy equivalences of E
i p

leaving a fibre F fixed in a fibration: P — > E — > B. We denote by X^Y

when X has the same weak homotopy type as Y. Then, by using the result
proved in [18, 19] we have

Theorem 4.4. Let p:E-+B be a fibration with fibre F=K(G, n) (n>l)
such that B is a CW complex. Then if we denote by k : (B} b0}-*(L(G, n+1), /0)

i P
a corresponding map to the fibration : F — > E — > B, we have

Q (E mod F} ^ map0(£, L(G, ri)}w -

Let e(X) denote the group 7C0(GQ(X)) for a CW complex X. Then we have
the following theorem which is a generalization of Theorem 10 in [18].

Theorem 4.7. For a given l^m<n, let

F=K(G, n) -U £ -^> K(n, m}=B

be a fibration with a corresponding map k : (B, bQ}-*(L(G, n+1), /0)- Then we
have

G0(£) ^ RxHn(B, G)x II #(//B-'(B, b»; G), f)
w 1=1

where R is the subgroup of Aut(7r)xAut(G)=s(£)X£(F) consisting of ([g],
with

and the cohomology is taken with local coefficients classified by the map pQ°k:

Thus as a corollary of Theorem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.80 Under the same hypothesis of Theorem 4.7 there exists the
following exact sequence

1 —> Hn(B, G) —> £(£) —> R —> 1,

where R is the same group as the group stated in Theorem 4.7 and the cohomology
is taken with local coefficients classified by the map p Q ° k : 5—>/f(Aut(G), 1).
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§ 1. FIbrations

Throughout this paper, we shall work within the category of compactly
generated Hausdorff spaces [13] and by a base point we mean a non-degenerate
base point.

Let X and Y be spaces with base points x0 and jy0 respectively. The space
of maps of X to Y will be denoted by map(Z, Y) and map0(^, Y) will be the
subspace of map(Z, F) of maps of (X, x0) to (Y, y0). Moreover, when k is a
map of X to Y, we denote by map(X, Y; k) the path component of k in
map(Z, 30, and map0(X, Y; k) is defined similarly.

Furthermore, throughout this paper a CPF complex means a connected CPT
complex with base point, unless otherwise stated.

Let k : ( X , *o)-»(£, b0) and k':(Y, y*)-*(B9 &0) be spaces over (B, &0), then
we denote by map0(^, Y)B the subspace of map0(Z, Y) of maps over (5, b0} of
k to k'. That is, each element / of map0(^, Y)B satisfies k'°f=k,

Let £ : £->J3 be a space over 5 and let X be a space. We denote by Ej
the space of maps each of which is a map of X to E such that its composition
with p is a constant map of A" to 5. Then the following diagram is commu-
tative :

Eg - - - » map (A; E)

\p*
map (X, B)

\pf

where p# : map(AT, E)— >map(A, B) is the map induced by ps p' i Ej—^B is defined
by P'(f)=P°f(x\ c is a map defined by

c(b)(x)=b (bELB, x^X)

and / is the inclusion map.
Let p : E—>B be a map and let ^¥ be a space in the category. Then we

say that p is a fibration, if and only if it has the homotopy lifting property
with respect to every X. Thus our fibration p : E-+B is not necessary surjective.

Note that p':Ej-*B is a fibration if p:E->B is a fibration. Let X be a
space with base point x0. Define a map o)imap(X, £)-»£ by Q)(f)=f(x0). The
restriction of (D on Ef will be denoted by the same co, then we have the
following
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Proposition 1.1. With the above notations, a) : EB-*E is a fibration and the
following diagram is commutative :

Ej

B

Proof. Define a map p:map(X, E)->Exmap(X, B) by

£(/)=(«(/), £*(/)) •

Then we can easily see that the following diagram is commutative:

E$ - i - >map(*, E)

c
E - £ - *£Xmap(X B)

where c: E->Exmap(X, B) is defined by

c(e}=(e, Cp ( e ) ) ,

Since p:map(X, E)-*Exmap(X, B) is a fibration (see Theorem 10 in [14])
and c is injective, we see that <o : E][-+E is a fibration.

The equality p°(o=p' follows immediately from the definition a), p and pf.

Remark 1.2. In Proposition 1.1, when a fibration p:E-*B has a cross-
section s : B-+E, the fibration p$ : map(Z, E)-*map(X, B) has also a cross-section
s# : map(X, J3)->map(Z, E). Thus, since pf : Ej-*B is a pullback of the fibration
j&#, the fibration £' has a cross-section s' : B-+Ej defined by

s'(b)W=s(b) (ftefi, xeX),

and the following diagram is commutative:

We need the following

Proposition 1.3. Let p: (E', e'Q)-*(E, eQ} and k : (E, eQ)-»(B, b0} be fibrations.
Put k'=k°p. Moreover, let s:(B, bQ)-*(E, eQ) and sx:(5, 50)->(£', ei) be cross-
sections with p°s'=s for the fibrations k and k' respectively. When k" is a map
of (X, XQ) to (B, bo), we have the following fibration
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p#:mapQ(X, £')*-» map0(X, E)B.

Proof can be done easily, so it is omitted.

§ 2. Fibrations with Fibre K(G, n)

Let p : E->B be a fibration with fibre K(G, n} (G is an abelian group) over
a CW complex B, In the following, we denote by B™ the classifying space for
fibrations with fibre K(G, n) and we shall investigate the loop space
Qmap0(B, B^\ k} [18] of map0(£, £L; k), where k is the classifying map of
the above fibration.

For this purpose we prove the following

Theorem 2.1. Let X be a CW complex, and let K be an arbitrary group,
then every path component of map0(^, K(n, 1)) is weakly contractible.

Proof. First we shall show Tr^mapoC-X, K(n, 1); &))— 0 for z'^2, where k
is a map of (X, XQ) to (K(x, 1), ;y0). Let / be a map of (S\ *) to
(map(X, K(x, 1) ; k), k}. Then we have its associated map/: SixX-^K(nJ 1)
with f\*xX=k. The map/: (S*xJ£, *Xx0)->(/!C(;r, 1), J0) induces the homo-
morphism /* :

which is the same as the homomorphism k* : n^X^—tn induced by the map k.
Let c be a map of S*xX to K(n, 1) defined by

c(y, x)=k(x) (xeX, yeS*).

Then obviously c induces the homomorphism c*:n1(S
ixX) = 7u1(X)-*7c which

may be regarded as the homomorphism k* : x^X)-*^. Therefore / and c are
homotopic relative to (*, XQ) [20]. This means that every map of Si to
mapG^, K(n, 1); k) is freely homotopic to the constant map c defined by c(y}—k
for all jyeS*. Therefore we have ^j(map(Z, K(n, 1); ^))— 0 for z'^2.

Now, let o> be a map of map(Z, K(n, 1); k} to /T(^, 1) defined by

T, 1);

We get the following fibration:

where F is the fibre over yQ which contains map0(-^, K(n, 1) ; k). Since K(n, 1)
is aspherical, it holds that

r, 1); ^)^7r l

for z'^2. Consequently we have
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, K(n, 1); ft))=
for

Next we note that the following lemma holds.

Lemma 2.2. ^(mapo^, K(n, 1); k) is trivial.

A proof of this lemma is similarly performed to the proof of Lemma 3 in
[3], so it is omitted.

Thus our proof of Theorem 2.1 is completed.

On the homotopy sequence of the fibration:

F -U map(Z, K(n, 1) ; &) -^-> 7f(;r, 1) ,

we have the following

Corollary 2.3. Let k* : iti(X)-*n be the homomorphism induced by the map
k and denote by Ck the centralizer of k*(ni(X}) in n. Then we have the following
homotopy sequence of the above fibration

j* cu* 3
1 — > Ck — > ?r — > R — > 1

where Ck is isomorphic to 7r1(map(Xi K(n, 1); k) and R is the subset of
HomCTTiC-X"), TT) consisting of elements a~lk*a (ae?r).

Proof. We shall show in the following that the boundary 9:7Ti(7C(7r, 1)) =
7T->7r0(F) is just given by

d(a) = a"1k^a ,

where x0(F) may be regarded as R. For a given element a of ni(K(n, 1)),
let f : ( I , d I ) - + ( K ( 7 c , l ) , y o ) be a map representing a and let F: (7, 0)->
(map(Z, 7f(^r, 1); &), ̂ ) be a map such that a)°F=f. Then there exists the map
F:XxI->K(x, 1) associated with F such that

F(x, 0)=

F ( x 0 , t ) = f ( t )

If we put F(J, 1)=&'CO for zeZ, we easily see

fe^a^fe+a.

Namely, for every X of rc^X) it holds that

Thus we see SGaO^or
Furthermore we can easily see that
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By using this equality we find that 9-1(**) is a subgroup of ni(K(n, I)) which
is the centralizer of k*(id(Xy) in iti(K(n9 1)). By Theorem 2.1 map0(^, K(n, 1); k)
is weakly contractible. Therefore we have

Note that this is known in Lemma 2 of Gottlieb [4].
Now, for the classifying space B^ we have the following fibration:

K(G, n + l) -X Boo -^ #(Aut(G), 1).

Let X be a CW complex, then we have the following fibration:

F—>map0(Z, Boo', k)^>map0(X, 7f(Aut(G), 1); p 0 ° k ) ,

where F is the fibre over pQ°k.

Proposition 2.4. With the above notations, we have

where Y^Z means that Y has the same weak homotopy type as Z,

Proof. By Theorem 2.1 map0(Z, K(Aut(G), 1); pQ°k) is weakly contractible,
Therefore F is weakly homotopy equivalent to map0(Z, £L; k). Thus we have

QF ^ QmapQ(X, Boo] k).

§3. The Classifying Space for Fibration with Fibre K(G, n)

Let G be an abelian group and Aut(G) its group of automorphisms. Then
there exists an Eilenberg-MacLane complex K(G, n + l) (n^O) which is a topolo-
gical abelian group [7] and on which Aut(G) acts on the left by base point
preserving cellular homeomorphisms ((5.2.5) Lemma in [1], 1.2. Lemma in [12]),
here the base point is the identity element of K(G, n+l). Let W be a complex
K(Aut(G), 1) and W its universal covering complex. Then Aut(G) acts on W
freely and cellularly on the left. Thus Aut(G) acts on WxK(G, n + l) diagonally.
We denote by L(G, n+l) the quotient

, n + l)j /Aut(G).

The projection of WxK(G, n + l) onto W induces a map p0: L(G,
W=K(Aut(G), I) which is a fibre bundle with fibre K(G, n + l) and with struc-
ture group Aut(G). Each fibre of this fibration is a topological abelian group
isomorphic to K(G, n + l) and there exists a canonical cross-section s0: IT"->
L(G, n + l). It is well known that L(G, n + l) is a classifying space B~ for
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fibrations with fibre K(G, n) [5, 10].
Let X be a CW complex and let k : (X, xQ)^>(W, wQ}=(K(Aut(G), 1), WQ)

be a space over (W, WQ\ Then we define a multiplication in the space
map0(Z, L(G, n+l)V, where the fibration pQ: (L(G, n+1), /0)-KWf M>O) is the
space over (P7, w/0) and the canonical cross-section s0:(W, wQ}-^(L(G, n+1), /0)
is equipped.

Let / and g be any elements of map0(^, L(G, n+l)V, then we define
multiplication f-g of / and g by

because both /(*) and g(x) are contained in the fibre p~l(k(x)} over k(x). We
can easily see that

Thus we obtain the following

Proposition 3.1. Let X be a CW complex and k: (X, x0)-+(W, wj=
(K(Aut(G), 1), WQ) be a space over (W, w0). Then, with respect to the multipli-
cation defined above map0(^, L(G, n+l)V is a topological abelian group.

Proof is easily done, so it is omitted.
We observed that for n^Q there exists the following fibre bundle with

structure group Aut(G) :

K(G, n+1) -X L(G, n+1) -^> K(Aut(G), 1)=W.

In the following we abbreviate this fibration by the fibration pQ : L—*W. So we
have the space p Q : ( L , 10)-*(W, WQ) over (W, iu0) and the canonical cross-section
sQ:(W, M;0)->(L, /0).

In Remark 1.2, if we replace (X, x0) by (S\ *) (f^O) and replace a fibration
/> : .E-^5 by the fibration pQ : L->W, then we have the fibration o) : L$-*L, and
the cross-section sf : (W, w^-*(L% , CLQ) for the fibration p0*a):Lw-*W, where
CIQ denotes the constant map of S* to 10. Also we have the following commu-
tative diagram

Let us denote a)~1(s0(W)) by Q1L for n+l>/^0, then we have a fibration
((2.5) in [1], the proof of Lemma 1.2 in [2], [6]):

— 7)n

K(G, n+1-0 — > Q1L — -> W,

such that Q1L may be regarded as a space L(G, n+1— f).
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With these notations we have the following

Lemma 3.2. Let X be a CW complex, k be a fixed map of (X, *<,)->(£, /0)

and p0°k = k':(X, XQ)— >(W, WQ) be a space over (W, WQ). We have the following

isomorphisms :

^(mapotY, L}w, So°£ ') = [Z, frL^H^-^X, *0; G) ,

where \_X, <Q*L]?F denotes the pointed homotopy classes over W of maps from

(X, XQ) to (QiL, CIQ) and the cohomology is taken with local coefficients classified

by the map kf : X-+W.

Proof. Let / be a map of (S£, *) to (mapQ(X, L)w, s0°k'). Then we have
its associated map /: SiX(Xf Xo)-*(L, /0) with f\*xX=So°k' such that the
following diagram is commutative

(W, WQ)

where pz is the projection of Slx(X, XQ) onto (X, XQ).
Furthermore / corresponds to the map / of (X, x0) to (L&, ciQ) defined by

In fact, since for y^S1 we have

we see that f(x) is an element of L|* for x^X. By using

we can easily see that / is a map of (X, x0) to (QiL> ct^ and the following
diagram is commutative:

7
(L, /0)

¥ ^P.
(W, u/o)

where p' denotes pQ°o).
Similarly a homotopy H: (S\ *)x/->(map0(^, L)w, sQ°k'} corresponds to a

homotopy H : ( X , z0)X/->(J27[L, clQ). We can easily see that this correspondence
induces the bijection

Y, L)w, s,*k'}~[_

Since J2^L is a £(G, n+ !—/), we have the following isomorphisms ((5.2.4)
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Theorem in [1], 3.1 Definition in [10], (6.13) Theorem in Chapter VI of [20])

IX, &LJW=[_X, L(G, n+l-0]ftrSffn+1-*(*, x0; G) ,

where Hn+1~l(X, x0; G) is the cohomology group with local coefficients classified
by the map k'.

From this lemma we get the following

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, *0) to
(L, IQ) and pQ°k=k' : (X, x0)-+(W, WQ) be a space over (W, w0). Then map0(^, L)w

has the same weak homotopy type as

Hn+1(X, *0; G)X ILKW+^X, *0; G), i),1=1

where the cohomology is taken with local coefficients classified by the map kf : X^W.

Proof. Notice that \_X, L~\Q
W is isomorphic to the group Hn+1(X, XQ; G).

Thus by using Proposition 3.1 and the theorem of J. C. Moore [8] we have

:, L)w ^ H«+i(X, x0; OxUKW+^X, x0', G), f) .
w i=i

§4. Main Results

Recall the fibration :
?0£

F — >map0(Z, 5oo; k) — > map0(X, 7f(Aut(G), 1); p Q ° k ) ,

where F is the fibre over p0°k = k'. In the following we shall investigate the
loop space QF of F.

Since the fibration p0 : L-+W has a canonical cross-section s0 : (W, wQ)-+(L, /0),
by Proposition 1.1 and Remark 1.2 we have the following commutative diagram:

W

W

where pf=p0°a) and s0=a)°s'. Let k be a map of a given CW complex (X, XQ}
to (L, IQ). If we put p0°k = k', by Proposition 1.3 we have the following
fibration a)* :

, L}w .

On a relation between this fibration and QF, we have the following

Lemma 4.1. QF is homeomorphic to the fibre ($)*l(k) over k.
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Proof. Let / be a map of (S1, *) to (F, k}. Then we have its associated
map f:S1x(X> *„)->(£, /0) such that

/(*,*)=*(*),

We may define a map / of (X, *„) to (L&1, ̂ 0) by /(*)(*)=/(*, x) for
and jtej£, because

*'(*) (x<=X).

Thus we see that f : ( X , xQ}->(L?y, ci() is a map over (W, WQ). Also we see
that Q)#(7)=k9 that is, / is an element of a fibre a)'f(k) of the fibration GD$:
map0(^r, LW)W—>map0(-X, L)w. As easily seen, this correspondence gives rise to
a'homeomorphism of QF onto the fibre (t)~$l(k) over k.

Now, for any CW complex K we have the following commutative diagram:

W

,£ w

W

We denote by L$XT7L$- the fibred product of the fibration p': L$->W and
itself. It should be noted that there exists a map /i of L$XWL$ to L& defined
by

because f ( y ) and g(y) for every y^K are contained in the same fibre pol(p'(f})
—pQ\P'(g)\ Especially we have a map p of L?yXwL?v to Lf/. By using this
multiplication of LW we have the following

Proposition 4.2. Let X be a CW complex, k be a fixed map of (X, XQ) to
(L, /0) and pQ°k = kf : (X, xQ)-+(W, w0) be a space over (W, WQ). Then mapoC-X", LW)W
is a topological abelian group and the projection a)% : map0(J^, L^1)^— >map0(-X', L)w

is an e Dimorphism of topological groups.

Proof. For any elements / and g of map0(^, L$}w the multiplication f-g
is defined by

where f ( x ) - g ( x ) means ^(f(x), g(x}). Note that p(f(x), g(x)) is well defined,
because (f(x\ g(x}} is an element of LfyXwL?y by
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Since p'(f°g)(x)=p'°f(x)=k'(x), we see that/- g is an element of mapQ(X,
We can easily prove that with respect to this multiplication map0(X,

is a topological abelian group with the identity element s'*k'.
Next we shall show that a)$ is a homomorphism of map0(X, Lfv)w onto the

group map0(Z, L)w. Let / and g be any elements of map0(^, L$)w- Then we
have for

=(/(*)(*))(*(*)(*))

Thus we have ct)#(f'g)=<o#(f)'(0#(g).
Define a map a : L-+L$ as follows:

Then we see easily that <r is a map over (W, w;0) and a cross-section for the
fibration <y: L&-+L. So cr induces the map crs : map0(^T, L)^->map0(Z, Lgr1)^
which is a cross-section for the fibration a)% : map0UC L?v)w-+map0(X, L}w.
Therefore we see that a)$ is surjective.

We can easily see (o^1(s0°k^=mapQ(XJ QL)W. Hence the following is an
immediate consequence of Proposition 4.2.

Corollary 4,3* Ker w$= (t)#l(s0°kf) is homeomorphic to the fibre o)~f*(k} over
k. In other words,

G)$l(k} = m&VQ(X, @L)w=map0(X, L(G, ri))w •

Now, let p:E-+B be a fibration with fibre F=K(G, n} (n>l) over a CW
complex B. In [18, 19] the following result is shown for a simply connected B :

G (E mod F) =± map0(5, K(G, n})

= H-(B, G)x ]I/C(7f»-*(B, G), 0,

where ^ (£ mod F) is the space of self fibre homotopy equivalences of E leaving
a fibre p~1(b0)=F fixed. Here without assuming that B is simply connected, we
have a following generalization of this result which follows from our previous
Proposition 2.4, Lemma 4.1, Corollary 4.3 and Theorem 3.3.

Theorem 4.40 Let p : E-*B be a fibration with fibre F=K(G, n) (n>l) such
that B is a CW complex. Then if we denote by k:(B, b0)-*(L(G, n+1), /„) o.

i p
corresponding map to the fibration: F —> E —> B, we have
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S (E mod F) ^ map0(5, L(G, n)}w

^ Hn(B, G)x n1 #(#"-*(£, 60 ; G), f)

£ftg cohomology is taken with local coefficients classified by the map
p0°k:B^K(Aut(G), 1) (p0 is the projection of L(G, n+1) to K(Aut(G), 1)).

Now, we quote the following two theorems [18, 19], where GQ(X] denotes
the space of self homotopy equivalences of a CW complex (X, x0).

Theorem 4.5. Let E and B be CW complexes and let p : E—>B be a fibration
with fibre F. For a given n>l if F is (n — l}-connected and xl(B)=Q for every
i^n, then we have the following fibration :

Q (E mod F) — > G0(£) -^ G0(5) X G0(F) .

Theorem 4.6. Under the hypothesis of Theorem 4.5, the image of p : G0(£)
-*G0(B}xGQ(F) is just the union of the path components in G0(5)xG0(F) each of
which contains (g, h) satisfying

where Ioo(h) is a self map of (£«,, b^ and k : (B, bQ}-*(Ba*, b^} is a corresponding
i p

map to the fibration : F — > E — > B.

Let e(X) denote the group xQ(GQ(X)) for a CW complex X. Since GO(/C(TT, n))
Tr) for n^l, by Theorem 4.4, 4.5 and 4.6 we have the following theorem

which is a generalization of Theorem 10 in [18].

Theorem 4.7. For given l^m<n, let

F=K(G, n} -U E -^ K(n, m} = B

be a fibration with a corresponding map k : (B, bo}-^(L(G, 72 + 1), /0), Then we
have

G0(£) - RxPIn(B, OXUKW-^B, b0; G), 0,
w i=l

where R is the subgroup of Aut(^)xAut(G) = e( JB)Xe(F) consisting of ([g], [ft])

/2g cohomology is taken with local coefficients classified by the map p Q ° k :
£->/f(Aut(G), 1)=W (p, is the projection of L(G, n + 1) to /f(Aut(G), 1).

Note that the map p : GQ(E}-+G0(B")XGQ(F) induces the homomorphism p* of
e(E) into s(B)Xe(F), that the image of p* is just R in Theorem 4.7 and that
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the kernel of p* may be regarded as Hn(B9 G). Thus, as a corollary of Theo-
rem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.80 Under the same hypothesis of Theorem 4.7 there exists the
following exact sequence

I —> Hn(B, G] —> £(£) —> R —> 1,

where R is the same group as the group stated in Theorem 4.7 and the cohomology
is taken with local coefficients given by the map pQ°k: B-*K(Aut(G), 1).
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