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On the Spaces of Self Homotopy Equivalences
for Fibre Spaces I

By

Tsuneyo YAMANOSHITA*

Introduction

Let X be a connected CW complex with non-degenerate base point x,. And
let Go(X) be the space of self homotopy equivalences of (X, x,).

The purpose of this paper is to study G.(F) when E is a fibre space of a
fibration with fibre K(G, n) (n>1):

i p
K(G, n) — E —> B.

If a base space B is simply connected, we had some results on G,(E) in the
previous papers [16, 17, 18, 19]. Here we treat G,(E) for the case of a non-
simply connected base space B.

Let G be an abelian group and let Aut(G) be its group of automorphisms.
Denote by L(G, n-+1) the classifying space for fibrations with fibre K(G, n)
and by W an Eilenberg-MacLane complex K(Aut(G), 1). Then we have the
fibration :

K(G, n+1) —*> L(G, nt1) 2> W.
Under these notations our main results (Theorem 3.3, 4.4 and 4.7) are stated as

follows.

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, x,) to
(L(G, n+1), ly) and pock=Pk’: (X, x0)—>W, w,) be a space over W, w,). Then
the space mapy(X, L(G, n+1))y of maps over (W, w,) has the same weak homotopy
type as

H™ (X, xo; G)X T KH™7(X, x45 G), 1)

where the cohomology is taken with local coefficients classified by the map k' X—
W=K(Aut(G), 1).
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Denote by ¢ (E mod F) the space of self fibre homotopy equivalences of E
leaving a fibre F fixed in a fibration: F—L E—f—> B. We denote by X%Y
when X has the same weak homotopy type as Y. Then, by using the result
proved in [18, 197 we have

Theorem 4.4. Let p:E—B be a fibration with fibre F=K(G, n) (n>1)
such that B is a CW complex. Then if we denote by k: (B, by)—(L(G, n+1), ly)

a corresponding map to the fibration: F N E-2> B, we have
¢ (Emod F) = mapy(B, L(G, n))w.

Let e(X) denote the group m,(Go(X)) for a CW complex X. Then we have
the following theorem which is a generalization of Theorem 10 in [18].

Theorem 4.7. For a given 1=m<mn, let
F=K(G, n) —> E > K(x, m)=B

be a fibration with a corresponding map k: (B, by)—(L(G, n+1), l,). Then we
have

GiE) 3 R HB, ©)x T K(H"(B, by; G), 1)

where R is the subgroup of Aut(zx)X Aut(G)=e(B)Xe(F) consisting of ([g], [h])
with
[Xe(h)]e[k]=[k]1-[g],

and the cohomology is taken with local coefficients classified by the map pook:
B—-K(Aut(G), 1)=W.

Thus as a corollary of Theorem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.8. Under the same hypothesis of Theorem 4.7 there exists the
following exact sequence

1— H*B,G)—> e(E)—> R—>1,

where R is the same group as the group stated in Theorem 4.7 and the cohomology
is taken with local coefficients classified by the map pe°k: B—K(Aut(G), 1).
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§1. Fibrations

Throughout this paper, we shall work within the category of compactly
generated Hausdorff spaces [13] and by a base point we mean a non-degenerate
base point.

Let X and Y be spaces with base points x, and y, respectively. The space
of maps of X to Y will be denoted by map(X, ¥) and map,(X, ¥) will be the
subspace of map(X, Y) of maps of (X, x,) to (Y, v,). Moreover, when % is a
map of X to Y, we denote by map(X, Y; k) the path component of %2 in
map(X, Y), and mapy(X, Y; k) is defined similarly.

Furthermore, throughout this paper a CW complex means a connected CW
complex with base point, unless otherwise stated.

Let 2:(X, xo)—(B, by) and k':(Y, y,)—(B, b,) be spaces over (B, b,), then
we denote by mapy(X, Y)p the subspace of map,(X, ¥) of maps over (B, b,) of
k to k’. That is, each element f of map,(X, Y)z satisfies £’ f=E,

(X, 1) —T (¥, 30

et

(B; bﬂ)

Let p: E—B be a space over B and let X be a space. We denote by E#
the space of maps each of which is a map of X to E such that its composition
with p is a constant map of X to B. Then the following diagram is commu-
tative:

E¥ — map (X, E)

| |7+

B—"C s map(X, B)

where p.:map(X, E)—map(X, B) is the map induced by p, p’: Ef—B is defined
by p'(f)=p-f(x), ¢ is a map defined by

c(b)(x)=b (beB, x=X)

and 7 is the inclusion map.

Let p: E—B be a map and let X be a space in the category. Then we
say that p is a fibration, if and only if it has the homotopy lifting property
with respect to every X. Thus our fibration p: E—B is not necessary surjective.

Note that p’: Ef—B is a fibration if p: E—B is a fibration. Let X be a
space with base point x,. Define a map w:map(X, E)—E by o(f)=f(x,). The
restriction of w on EX will be denoted by the same w, then we have the
following
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Proposition 1.1. With the above notations, w: EE—E is a fibration and the
following diagram is commutative:

Ef 2 _LF
f\ /
Proof. Define a map p:map(X, E)—»E Xmap(X, B) by

PN=((f), p+(f)).

Then we can easily see that the following diagram is commutative :

E¥f——t 3 map(X, E)

Jo I

E.__E___>E><map (X, B)
where ¢: E—-E Xmap(X, B) is defined by

i(e)=(e, cpw)
Cp(e)(x):p(e) (QEE, JCEX).
Since p:map(X, E)—»EXmap(X, B) is a fibration (see Theorem 10 in [14])

and ¢ is injective, we see that w: Ef—F is a fibration.
The equality p-w=p’ follows immediately from the definition w, p and p’.

Remark 1.2. In Proposition 1.1, when a fibration p: E—B has a cross-
section s: B—F, the fibration p.: map(X, E)—map(X, B) has also a cross-section
sz:map(X, B)—map(X, E). Thus, since p’: Ef—B is a pullback of the fibration
b, the fibration p’ has a cross-section s’: B—~EZ defined by

s'(b)(x)=s(b) (beB, x€X),

and the following diagram is commutative :

We need the following

Proposition 1.3. Let p:(E’, et)—(E, e) and k: (E, e))—(B, b,) be fibrations.
Put k'=kep. Moreover, let s:(B, by)—(E, ¢,) and s’:(B, by)—(E’, e;) be cross-
sections with pes’=s for the fibrations k and k’ respectively. When k” is a map
of (X, x,) to (B, b,), we have the following fibration
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Py :mapy(X, E')g—mapy(X, E)s.

Proof can be done easily, so it is omitted.

§ 2. Fibrations with Fibre K(G, n)

Let p: E—B be a fibration with fibre K(G, n) (G is an abelian group) over
a CW complex B. In the following, we denote by B. the classifying space for
fibrations with fibre K(G, n) and we shall investigate the loop space
2 mapy(B, Bw; k) [18] of mapy(B, B«; k), where £ is the classifying map of
the above fibration.

For this purpose we prove the following

Theorem 2.1. Let X be a CW complex and let ™ be an arbitrary group,
then every path component of mapy(X, K(x, 1)) is weakly contractible.

Proof. First we shall show =z;(map.(X, K(x, 1); £))=0 for =2, where &
is a map of (X, zx,) to (K(z 1), y,). Let f be a map of (S% %) to
(map(X, K(z, 1); k), k). Then we have its associated map f: S*X X—K(x, 1)
with fl*xX=Fk. The map f:(S*XX, *Xx¢)—(K(x, 1), y,) induces the homo-
morphism f:

(S X X)=2x (X)—>x,(K(x, 1))=x

which is the same as the homomorphism %, : x,(X)—= induced by the map k.
Let ¢ be a map of S*xX to K(x, 1) defined by

ey, x)=k(x) (x€X, y&S59.

Then obviously ¢ induces the homomorphism cx: 7, (S*XX)=n,(X)—x which
may be regarded as the homomorphism ky:z,(X)—=n. Therefore f and ¢ are
homotopic relative to (*, x,) [20]. This means that every map of S? to
map(X, K(x, 1); k) is freely homotopic to the constant map ¢ defined by ¢(y)==Fk
for all y=S® Therefore we have m;(map(X, K(=x, 1); k))=0 for i=2.

Now, let w be a map of map(X, K(x, 1); k) to K(x, 1) defined by

o(f)=1(x0) (femap(X, K(z, 1); k).
We get the following fibration:
F—> map(X, K(z, 1); k) —> K(x, 1),

where F is the fibre over y, which contains map,(X, K(x, 1); k). Since K(z, 1)
is aspherical, it holds that

”i(ma’po(XJ K(ﬂ', 1); k)5”1<map(X: K(TE, 1); k))

for 7=2. Consequently we have
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m(mapy(X, K(x, 1); £))=0
for 1=2.
Next we note that the following lemma holds.

Lemma 2.2. =z,(map(X, K(x, 1); k) is trivial.

A proof of this lemma is similarly performed to the proof of Lemma 3 in
[3], so it is omitted.
Thus our proof of Theorem 2.1 is completed.

On the homotopy sequence of the fibration:
P 1> map(X, K(z, 1); &) —> K(z, 1),
we have the following
Corollary 2.3. Let ky:n(X)—nm be the homomorphism induced by the map

k and denote by C, the centralizer of ky(w (X)) in w. Then we have the following
homotopy sequence of the above fibration

Jx % a
1—-C,—>n—>R—1

where C, is isomorphic to =m,(map(X, K(zx,1); k) and R is the subset of

Hom(z,(X), ©) consisting of elements a™*kya (a<mx).

Proof. We shall show in the following that the boundary a:m,(K(x, 1))=
r—mo(F) is just given by
oda)=a~‘k.a,

where mo(F) may be regarded as K. For a given element a of =, (K(m, 1)),
let f:(,0I)—(K(x, 1), v be a map representing « and let F: (I, 0)—
(map(X, K(x, 1); k), k) be a map such that weF=f. Then there exists the map
F: XxI—K(x, 1) associated with F such that

F(x, 0)=Fk(x)
F(x,, )=f1) (x€X, tel).
If we put F(x, 1)=Fk'(x) for x=X, we easily see
ki=a k.
Namely, for every A of =,(X) it holds that

ki) =a~tki(da.
Thus we see d(a)=a 'k.a.
Furthermore we can easily see that

d(aP)=p-"0(a)8 .
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By using this equality we find that 0-%(k4) is a subgroup of =,(K(x, 1)) which
is the centralizer of ky(7,(X)) in 7 (K (x, 1)). By Theorem 2.1 map,(X, K(=x, 1); k)
is weakly contractible. Therefore we have

my(map(X, K(x, 1)); k)=C,.

Note that this is known in Lemma 2 of Gottlieb [4].
Now, for the classifying space B. we have the following fibration:

K(G, n+1) 2> B 2% K(Aut(G), 1).

Let X be a CW complex, then we have the following fibration:

D
F —> mapy(X, Bu; k) —> mapo(X, K(Aut(G), 1); pook),

where F is the fibre over pgok.

Proposition 2.4. With the above notations, we have

2 mapy(X, Bw; k) = QF,

where Y%Z means that Y has the same weak homotopy type as Z.

Proof. By Theorem 2.1 map,(X, K(Aut(G), 1); p.-k) is weakly contractible.
Therefore F is weakly homotopy equivalent to map,(X, B«; k). Thus we have

.QF% 2 mapy(X, Be; k).

§3. The Classifying Space for Fibration with Fibre K(G, n)

Let G be an abelian group and Aut(G) its group of automorphisms. Then
there exists an Eilenberg-MacLane complex K(G, n-+1) (n=0) which is a topolo-
gical abelian group [7] and on which Aut(G) acts on the left by base point
preserving cellular homeomorphisms ((5.2.5) Lemma in [17, 1.2. Lemma in [12]),
here the base point is the identity element of K(G, n-+1). Let IV be a complex
K(Aut(G), 1) and W its universal covering complex. Then Aut(G) acts on W
freely and cellularly on the left. Thus Aut(G) acts on WX K(G, n+1) diagonally.
We denote by L(G, n-+1) the quotient

(Wx K(G, n+1))/Aut(G) .

The projection of I/IN/XK(G, n+1) onto W induces a map po: LG, n+1)—
W=K(Aut(G), 1) which is a fibre bundle with fibre K(G, n+1) and with struc-
ture group Aut(G). Each fibre of this fibration is a topological abelian group
isomorphic to K(G, n+1) and there exists a canonical cross-section 5,:71 —
L(G, n+1). It is well known that L(G, n+1) is a classifying space B. for
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fibrations with fibre K(G, n) [5, 10].

Let X be a CW complex and let k:(X, xo)—W, we)=(KAut(G), 1), w,)
be a space over (W, w,). Then we define a multiplication in the space
mapo(X, L(G, n-+1))», where the fibration p,:(L(G, n+1), l)—(W, w,) is the
space over (W, w,) and the canonical cross-section sq: (W, wo)—(L(G, n+-1), )
is equipped.

Let f and g be any elements of map.(X, L(G, n+1))w, then we define
multiplication f-g of f and g by

(f-ox)=f(xgx) (x€X),

because both f(x) and g(x) are contained in the fibre p~*(k(x)) over k(x). We
can easily see that
f-g€map(X, L(G, n+1)w.

Thus we obtain the following

Proposition 3.1. Let X be a CW complex and k: (X, xo)—>W, wo)=
(K(Aut(G), 1), wo) be a space over W, w,). Then, with respect to the multipli-
cation defined above mapy(X, L(G, n+1))w is a topological abelian group.

Proof is easily done, so it is omitted.
We observed that for n=0 there exists the following fibre bundle with
structure group Aut(G):

K(G, n+1) —> L(G, n+1) > K(Aut(G), 1)=W.

In the following we abbreviate this fibration by the fibration p,: L—W. So we
have the space p,: (L, lo)—(W, w,) over (W, w,) and the canonical cross-section
So: (W, we)—(L, 1y).

In Remark 1.2, if we replace (X, x,) by (S% %) ((=0) and replace a fibration
»: E>B by the fibration p,: L—W, then we have the fibration w: L§—L, and
the cross-section s’:(W, wo)—(L#, ¢;,) for the fibration pocw: Liy—W, where
¢, denotes the constant map of S* to /,. Also we have the following commu-

tative diagram
w
7\
Lﬁi_i, L

Let us denote @~ (s,(W)) by 2L for n+1>7=0, then we have a fibration
((2.5) in [1], the proof of Lemma 1.2 in [2], [6]):

K(G, n+1—s) —> 3L 2w,

such that Q'L may be regarded as a space L(G, n-+1—i).
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With these notations we have the following

Lemma 3.2. Let X be a CW complex, k be a fixed map of (X, xo)—(L, ly)
and peck="Fk 1 (X, x0)—(W, w,) be a space over W, w,). We have the following
isomorphisms :

m,(mapy(X, L)y, sook)=[X, Q'L =H"""4(X, x,; G),

where [X, QL% denotes the pointed homotopy classes over W of maps from
(X, xo) to (2L, ci,) and the cohomology is taken with local coefficients classified
by the map k' : X—>W.

Proof. Let f be a map of (S¢, ) to (mapy(X, L), sock’). Then we have
its associated map f:SiX(X, xo)—(L, ly) with f|*XX=sy°k’ such that the
following diagram is commutative

Six (X, -\'o)———f—>(L, 1y)

o

(Wy ZUO)

where p, is the projection of SiX(X, x,) onto (X, x,).
Furthermore f corresponds to the map f of (X, x,) to (L, ¢i,) defined by

Fo@=,0, )  (x€X, y59.
In fact, since for y=S¢ we have
PolF N N=boef(3, X)=k"(x)  (x€X),
we see that f(x) is an element of L§ for x&X. By using
o f(R)=Ff)W=s0k"(x)  (x€X),

we can easily see that f is a map of (X, x,) to (2°L, ¢i,) and the following
diagram is commutative :

(X, xo) (L§, 1) ——s(L, L)

T~ g

(W; wl))

where p’ denotes poeow.

Similarly a homotopy H:(S?, %)X I—(mapy(X, L)w, s,°k’) corresponds to a
homotopy H: (X, x)XI—(QL, c,). We can easily see that this correspondence
induces the bijection

m.(mapo(X, L)w, ook )=[X, 2'L7Y .

Since 2L is a L(G, n+1—i), we have the following isomorphisms ((5.2.4)
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Theorem in [1], 3.1 Definition in [10], (6.13) Theorem in Chapter VI of [20])
[X, &'LIW=[X, L(G, n+1—)1py=H "X, x,; G),

where H"*'-(X, x,; G) is the cohomology group with local coefficients classified
by the map %’

From this lemma we get the following

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, x,) to
(L, ly) and peok=k’: (X, x0)—>(W, w,) be a space over W, w,). Then mapy(X, L)w
has the same weak homotopy type as

H™ (X, x0; G)X ITK(H™ (X, 505 G), ),
where the cohomology is taken with local coefficients classified by the map k' : X—W.

Proof. Notice that [X, L]} is isomorphic to the group H**(X, xo; G).
Thus by using Proposition 3.1 and the theorem of J.C. Moore [8] we have

mapy(X, Ll = H™(X, x5 G)x XL KH™ =X, x0; G), 1)

§4. Main Results
Recall the fibration:
Poyx
F —> mapy(X, Bu; k) —> mapy(X, K(AUt(G), 1); pock),

where F is the fibre over p,ck==Fk’. In the following we shall investigate the
loop space QF of F.

Since the fibration p,: L—W has a canonical cross-section s,: (W, wo)—(L, ),
by Proposition 1.1 and Remark 1.2 we have the following commutative diagram :

where p’'=p,ow and s,—=w-s’. Let k& be a map of a given CIV complex (X, x,)
to (L, ). If we put p,ok=Fk’, by Proposition 1.3 we have the following
fibration w. :

mapy(X, Li)w —> mapy(X, L)w .

On a relation between this fibration and QF, we have the following

Lemma 4.1. QF is homeomorphic to the fibre wz'(k) over k.
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Proof. Let f be a map of (S, *) to (F, k). Then we have its associated
map f:S*X(X, xo)—(L, l,) such that

[, x)=k(x),
Do ft, X)=k'(x) (=pook(x)) (=S, xeX).
We may define a map f of (X, xo) to (L#, ¢;,) by f(x)()=/(t, x) for t€S*
and x =X, because
Doc@=f(x)=po(F(x)(¥))=Do [ (*, x)
=peok(x)=k'(x) (x€X).

Thus we see that f: (X, x,)—(LS, c,) is a map over (W, w,). Also we see
that w#(f)zk, that is, 7 is an element of a fibre w3'(k) of the fibration wy:
mapo(X, LY )w—maps(X, L)w. As easily seen, this correspondence gives rise to
a”homeomorphism of QF onto the fibre wz'(k) over k.

Now, for any CW complex K we have the following commutative diagram:

We denote by L{EXyL% the fibred product of the fibration p’: L¥E—W and
itself. It should be noted that there exists a map g of L#XwL{y to Lf defined
by

w(f, 2)=rgly) (YEK),

because f(y) and g(y) for every ye K are contained in the same fibre p'(p’(f))
=97 (p’(g)). Especially we have a map g of L XwL$ to L. By using this
multiplication of L{ we have the following

Proposition 4.2. Let X be a CW complex, k be a fixed map of (X, x,) to
(L, 1) and pock=Ek" (X, xo)—W, wo) be a space over (W, w,). Then mapy(X, L§)w
is a topological abelian group and the projection @s:mapy(X, LY )w—map(X, L)w
is an epimorphism of topological groups.

Proof. For any elements 7 and § of mapy(X, L§")y the multiplication 7-g
is defined by

(F-8)0)=fx)§x) (x€X),

where f(x)-g(x) means u(f(x), (x)). Note that p(f(x), Z(x)) is well defined,
because (f(x), 2(x)) is an element of L$'XwL$' by

PFEN=p"(F)N=k"(x) (x€X).
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Since p’(feF)(x)=p"-f(x)=Fk'(x), We see that f-F is an element of map,(X, L5 )w.

We can easily prove that with respect to this multiplication mapy(X, L§)w
is a topological abelian group with the identity element s’ok’.

Next we shall show that w, is a homomorphism of map,(X, L§Hw onto the
group map,(X, L)y. Let f and g be any elements of mapy(X, L§)w. Then we
have for x=X

0u(f- B)(x)=(F- X)) =(F(x) Fx))(*)
=(Fx)NE))
=(@4(/)(x))(@4(&)(x))
=(ws(f)-02(g)(x) .

Thus we have w,(f-H)=0.(f) ws(@).
Define a map ¢: L—L§ as follows:

a))=l (<L, teSH).

Then we see easily that ¢ is a map over (W, w,) and a cross-section for the
fibration w: L§'—L. So ¢ induces the map ¢.:mapy(X, L)w—mapy(X, L§)w
which is a cross-section for the fibration w.:mape(X, L§)w—mapo(X, L)y
Therefore we see that w; is surjective.

We can easily see wz!(soek’)=mapy(X, 2L)y. Hence the following is an
immediate consequence of Proposition 4.2.

Corollary 4.3. Ker w,=wz(sook’) is homeomorphic to the fibre wz'(k) over
k. In other words,
03 (k)=map,(X, 2L)y=mapy(X, L(G, n) .
Now, let p: E—B be a fibration with fibore F=K(G, n) (n>1) over a CW
complex B. In [18, 197 the following result is shown for a simply connected B:

@ (E mod F) = mapy(B, K(G, n))
= H™(B, G)x 11 K(H"¥(B, G), 1),

where ¢ (E mod F) is the space of self fibre homotopy equivalences of E leaving
a fibre p~(by)=F fixed. Here without assuming that B is simply connected, we
have a following generalization of this result which follows from our previous
Proposition 2.4, Lemma 4.1, Corollary 4.3 and Theorem 3.3.

Theorem 4.4. Let p: E—B be a fibration with fibre F=K(G, n) (n>1) such
that B is a CW complex. Then if we denote by k: (B, b)—(L{(G, n+1), ;) a

. . i P
corresponding map to the fibration: F->E 2> B, we have
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¢ (Emod F) = mapy(B, L(G, n))w
= H"(B, G)x TL K(H"*(B, by; G), 1)

where the cohomology is taken with local coefficients classified by the map
pock : B>K(Aut(G), 1) (p, is the projection of L(G, n-+1) to K(Aut(G), 1)).

Now, we quote the following two theorems [18, 19], where G,(X) denotes
the space of self homotopy equivalences of a CW complex (X, x,).

Theorem 4.5. Let E and B be CW complexes and let p: E—B be a fibration
with fibre F. For a given n>1 if F is (n—1)-connected and =, (B)=0 for every
i=n, then we have the following fibration:

@ (Emod F) —> Go(E) ——> Go(B)X Gy(F) .

Theorem 4.6. Under the hypothesis of Theorem 4.5, the image of p:Go(E)
—Go(B)XGy(F) is just the union of the path components in Go(B)X GoF) each of
which contains (g, h) satisfying

(Me(h)]oLkI=[k1-[g],
where Xo(h) is a self map of (Bew, bw) and k: (B, by)—(Bew, bx) s a corresponding
map to the fibration: F S E 2B
Let e(X) denote the group mo(G,(X)) for a CW complex X. Since G,(K(z, n))
%Aut(:r) for n=1, by Theorem 4.4, 4.5 and 4.6 we have the following theorem

which is a generalization of Theorem 10 in [18].
Theorem 4.7. For given 1=m<wn, let

F=K(G, n) —> E ~> K(z, m)=B
be a fibration with a corresponding map k: (B, by)—(L(G, n+1), l,). Then we
have
n—1
Go(E) = RXH™B, G)X I_IlK(H"‘i(B, by; G), ),

where R is the subgroup of Aut(zw)XAut(G)=e(B)Xe(F) consisting of ([g], [h])
with

[Xe(h)1-[R1=L[k]1-[g],
and the cohomology is taken with local coefficients classified by the map pook:

B—K(Aut(G), )=W (p, is the projection of L(G, n+1) to K(Aut(G), 1).

Note that the map p: Go(E)—Go(B)X Go(F) induces the homomorphism p, of
e(E) into &(B)Xe(F), that the image of ps is just R in Theorem 4.7 and that
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the kernel of p, may be regarded as H*(B, G). Thus, as a corollary of Theo-
rem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.8. Under the same hypothesis of Theorem 4.7 there exists the
following exact sequence

1—H"B,G) —> e¢(E)— R—>1,

where R is the same group as the group stated in Theorem 4.7 and the cohomology
is taken with local coefficients given by the map pyek: B—~K(Aut(G), 1).
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