On the Spaces of Self Homotopy Equivalences for Fibre Spaces II

By

Tsuneyo YAMANOSHITA*

Introduction

Let X be a connected CW complex with non-degenerate base point x_0 . And let $G_0(X)$ be the space of self homotopy equivalences of (X, x_0) .

The purpose of this paper is to study $G_0(E)$ when E is a fibre space of a fibration with fibre K(G, n) (n>1):

$$K(G, n) \xrightarrow{i} E \xrightarrow{p} B.$$

If a base space B is simply connected, we had some results on $G_0(E)$ in the previous papers [16, 17, 18, 19]. Here we treat $G_0(E)$ for the case of a non-simply connected base space B.

Let G be an abelian group and let Aut(G) be its group of automorphisms. Denote by L(G, n+1) the classifying space for fibrations with fibre K(G, n)and by W an Eilenberg-MacLane complex K(Aut(G), 1). Then we have the fibration:

$$K(G, n+1) \xrightarrow{\iota_0} L(G, n+1) \xrightarrow{p_0} W.$$

Under these notations our main results (Theorem 3.3, 4.4 and 4.7) are stated as follows.

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, x_0) to $(L(G, n+1), l_0)$ and $p_0 \circ k = k' : (X, x_0) \to (W, w_0)$ be a space over (W, w_0) . Then the space map₀ $(X, L(G, n+1))_W$ of maps over (W, w_0) has the same weak homotopy type as

$$H^{n+1}(X, x_0; G) \times \prod_{i=1}^n K(H^{n+1-i}(X, x_0; G), i)$$

where the cohomology is taken with local coefficients classified by the map $k': X \rightarrow W = K(\operatorname{Aut}(G), 1)$.

Communicated by N. Shimada, June 6, 1985.

^{*} Department of Mathematics, Musashi Institute of Technology, Tamazutsumi, Setagaya, Tokyo 158, Japan.

Denote by \mathcal{Q} $(E \mod F)$ the space of self fibre homotopy equivalences of E leaving a fibre F fixed in a fibration: $F \xrightarrow{i} E \xrightarrow{p} B$. We denote by $X_{\widetilde{w}}Y$ when X has the same weak homotopy type as Y. Then, by using the result proved in [18, 19] we have

Theorem 4.4. Let $p: E \to B$ be a fibration with fibre F = K(G, n) (n > 1)such that B is a CW complex. Then if we denote by $k: (B, b_0) \to (L(G, n+1), l_0)$ a corresponding map to the fibration: $F \xrightarrow{i} E \xrightarrow{p} B$, we have

 $\mathcal{G}(E \mod F) \simeq \max_{m} \max_{0} (B, L(G, n))_{W}.$

Let $\varepsilon(X)$ denote the group $\pi_0(G_0(X))$ for a *CW* complex *X*. Then we have the following theorem which is a generalization of Theorem 10 in [18].

Theorem 4.7. For a given $1 \leq m < n$, let

$$F = K(G, n) \xrightarrow{i} E \xrightarrow{p} K(\pi, m) = B$$

be a fibration with a corresponding map $k: (B, b_0) \rightarrow (L(G, n+1), l_0)$. Then we have

$$G_0(E) \underset{w}{\sim} R \times H^n(B, G) \times \prod_{i=1}^{n-1} K(H^{n-i}(B, b_0; G), i)$$

where R is the subgroup of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G) = \varepsilon(B) \times \varepsilon(F)$ consisting of ([g], [h]) with

$$[\boldsymbol{\chi}_{\infty}(h)] \circ [k] = [k] \circ [g],$$

and the cohomology is taken with local coefficients classified by the map $p_0 \circ k$: $B \rightarrow K(\operatorname{Aut}(G), 1) = W$.

Thus as a corollary of Theorem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.8. Under the same hypothesis of Theorem 4.7 there exists the following exact sequence

 $1 \longrightarrow H^n(B, G) \longrightarrow \varepsilon(E) \longrightarrow R \longrightarrow 1,$

where R is the same group as the group stated in Theorem 4.7 and the cohomology is taken with local coefficients classified by the map $p_0 \circ k : B \to K(\operatorname{Aut}(G), 1)$.

Acknowledgement

The author was stimulated by conversation with Mr. Y. Hirashima to start this work and heartily wishes to thank him.

§1. Fibrations

Throughout this paper, we shall work within the category of compactly generated Hausdorff spaces [13] and by a base point we mean a non-degenerate base point.

Let X and Y be spaces with base points x_0 and y_0 respectively. The space of maps of X to Y will be denoted by map(X, Y) and $map_0(X, Y)$ will be the subspace of map(X, Y) of maps of (X, x_0) to (Y, y_0) . Moreover, when k is a map of X to Y, we denote by map(X, Y; k) the path component of k in map(X, Y), and $map_0(X, Y; k)$ is defined similarly.

Furthermore, throughout this paper a CW complex means a connected CW complex with base point, unless otherwise stated.

Let $k: (X, x_0) \rightarrow (B, b_0)$ and $k': (Y, y_0) \rightarrow (B, b_0)$ be spaces over (B, b_0) , then we denote by map₀ $(X, Y)_B$ the subspace of map₀(X, Y) of maps over (B, b_0) of k to k'. That is, each element f of map₀ $(X, Y)_B$ satisfies $k' \circ f = k$,

Let $p: E \rightarrow B$ be a space over B and let X be a space. We denote by E_B^X the space of maps each of which is a map of X to E such that its composition with p is a constant map of X to B. Then the following diagram is commutative:

$$E_B^{X} \xrightarrow{i} \operatorname{map} (X, E)$$

$$\downarrow p' \qquad \qquad \downarrow p_{*}$$

$$B \xrightarrow{c} \operatorname{map} (X, B)$$

where $p_*: \max(X, E) \to \max(X, B)$ is the map induced by $p, p': E_B^X \to B$ is defined by $p'(f) = p \circ f(x)$, c is a map defined by

$$c(b)(x) = b$$
 $(b \in B, x \in X)$

and i is the inclusion map.

Let $p: E \to B$ be a map and let X be a space in the category. Then we say that p is a fibration, if and only if it has the homotopy lifting property with respect to every X. Thus our fibration $p: E \to B$ is not necessary surjective.

Note that $p': E_B^X \to B$ is a fibration if $p: E \to B$ is a fibration. Let X be a space with base point x_0 . Define a map $\omega: \operatorname{map}(X, E) \to E$ by $\omega(f) = f(x_0)$. The restriction of ω on E_B^X will be denoted by the same ω , then we have the following

Proposition 1.1. With the above notations, $\omega: E_B^X \to E$ is a fibration and the following diagram is commutative:

Proof. Define a map $\overline{p}: map(X, E) \rightarrow E \times map(X, B)$ by

 $\bar{p}(f) = (\boldsymbol{\omega}(f), p_{\#}(f)).$

Then we can easily see that the following diagram is commutative:

where $\bar{c}: E \rightarrow E \times map(X, B)$ is defined by

$$\bar{c}(e) = (e, c_{p(e)}),$$

 $c_{p(e)}(x) = p(e) \quad (e \in E, x \in X).$

Since $\bar{p}: \max(X, E) \to E \times \max(X, B)$ is a fibration (see Theorem 10 in [14]) and \bar{c} is injective, we see that $\omega: E_B^x \to E$ is a fibration.

The equality $p \circ \omega = p'$ follows immediately from the definition ω , p and p'.

Remark 1.2. In Proposition 1.1, when a fibration $p: E \to B$ has a cross-section $s: B \to E$, the fibration $p_*: \operatorname{map}(X, E) \to \operatorname{map}(X, B)$ has also a cross-section $s_*: \operatorname{map}(X, B) \to \operatorname{map}(X, E)$. Thus, since $p': E_B^X \to B$ is a pullback of the fibration p_* , the fibration p' has a cross-section $s': B \to E_B^X$ defined by

$$s'(b)(x) = s(b)$$
 $(b \in B, x \in X)$,

and the following diagram is commutative:

We need the following

Proposition 1.3. Let $p:(E', e'_0) \rightarrow (E, e_0)$ and $k:(E, e_0) \rightarrow (B, b_0)$ be fibrations. Put $k'=k \circ p$. Moreover, let $s:(B, b_0) \rightarrow (E, e_0)$ and $s':(B, b_0) \rightarrow (E', e'_0)$ be crosssections with $p \circ s'=s$ for the fibrations k and k' respectively. When k'' is a map of (X, x_0) to (B, b_0) , we have the following fibration $p_{\#}: \operatorname{map}_{0}(X, E')_{B} \rightarrow \operatorname{map}_{0}(X, E)_{B}.$

Proof can be done easily, so it is omitted.

§ 2. Fibrations with Fibre K(G, n)

Let $p: E \to B$ be a fibration with fibre K(G, n) (G is an abelian group) over a CW complex B. In the following, we denote by B_{∞} the classifying space for fibrations with fibre K(G, n) and we shall investigate the loop space $\mathcal{Q} \operatorname{map}_0(B, B_{\infty}; k)$ [18] of $\operatorname{map}_0(B, B_{\infty}; k)$, where k is the classifying map of the above fibration.

For this purpose we prove the following

Theorem 2.1. Let X be a CW complex and let π be an arbitrary group, then every path component of map₀(X, K(π , 1)) is weakly contractible.

Proof. First we shall show $\pi_i(\operatorname{map}_0(X, K(\pi, 1); k))=0$ for $i \ge 2$, where k is a map of (X, x_0) to $(K(\pi, 1), y_0)$. Let \overline{f} be a map of $(S^i, *)$ to $(\operatorname{map}(X, K(\pi, 1); k), k)$. Then we have its associated map $f: S^i \times X \to K(\pi, 1)$ with $f \mid * \times X = k$. The map $f: (S^i \times X, * \times x_0) \to (K(\pi, 1), y_0)$ induces the homomorphism f_* :

$$\pi_1(S^i \times X) \cong \pi_1(X) \to \pi_1(K(\pi, 1)) \cong \pi$$

which is the same as the homomorphism $k_*: \pi_1(X) \to \pi$ induced by the map k. Let c be a map of $S^i \times X$ to $K(\pi, 1)$ defined by

$$c(y, x) = k(x) \qquad (x \in X, y \in S^i).$$

Then obviously c induces the homomorphism $c_*:\pi_1(S^i\times X)\cong\pi_1(X)\to\pi$ which may be regarded as the homomorphism $k_*:\pi_1(X)\to\pi$. Therefore f and c are homotopic relative to $(*, x_0)$ [20]. This means that every map of S^i to map $(X, K(\pi, 1); k)$ is freely homotopic to the constant map \bar{c} defined by $\bar{c}(y)=k$ for all $y\in S^i$. Therefore we have $\pi_i(\operatorname{map}(X, K(\pi, 1); k))=0$ for $i\geq 2$.

Now, let ω be a map of map $(X, K(\pi, 1); k)$ to $K(\pi, 1)$ defined by

 $\boldsymbol{\omega}(f) = f(\boldsymbol{x}_0) \qquad (f \in \operatorname{map}(X, K(\boldsymbol{\pi}, 1); k)).$

We get the following fibration:

$$F \xrightarrow{j} \max(X, K(\pi, 1); k) \xrightarrow{\omega} K(\pi, 1),$$

where F is the fibre over y_0 which contains map₀(X, $K(\pi, 1)$; k). Since $K(\pi, 1)$ is aspherical, it holds that

$$\pi_i(\max(X, K(\pi, 1); k)) \cong \pi_i(\max(X, K(\pi, 1); k))$$

for $i \ge 2$. Consequently we have

$$\pi_i(\max_0(X, K(\pi, 1); k)) = 0$$

for $i \geq 2$.

Next we note that the following lemma holds.

Lemma 2.2. $\pi_1(map_0(X, K(\pi, 1); k) \text{ is trivial.}$

A proof of this lemma is similarly performed to the proof of Lemma 3 in [3], so it is omitted.

Thus our proof of Theorem 2.1 is completed.

On the homotopy sequence of the fibration:

$$F \xrightarrow{j} \max(X, K(\pi, 1); k) \xrightarrow{\omega} K(\pi, 1),$$

we have the following

Corollary 2.3. Let $k_*: \pi_1(X) \to \pi$ be the homomorphism induced by the map k and denote by C_k the centralizer of $k_*(\pi_1(X))$ in π . Then we have the following homotopy sequence of the above fibration

$$1 \xrightarrow{j_*} C_k \xrightarrow{\omega_*} \pi \xrightarrow{\partial} R \longrightarrow 1$$

where C_k is isomorphic to $\pi_1(\operatorname{map}(X, K(\pi, 1); k))$ and R is the subset of $\operatorname{Hom}(\pi_1(X), \pi)$ consisting of elements $\alpha^{-1}k_*\alpha$ ($\alpha \in \pi$).

Proof. We shall show in the following that the boundary $\partial: \pi_1(K(\pi, 1)) \cong \pi \to \pi_0(F)$ is just given by

$$\partial(\alpha) = \alpha^{-1}k_*\alpha$$
 ,

where $\pi_0(F)$ may be regarded as R. For a given element α of $\pi_1(K(\pi, 1))$, let $f:(I, \partial I) \rightarrow (K(\pi, 1), y_0)$ be a map representing α and let $\overline{F}:(I, 0) \rightarrow$ (map $(X, K(\pi, 1); k), k)$ be a map such that $\omega \cdot \overline{F} = f$. Then there exists the map $F: X \times I \rightarrow K(\pi, 1)$ associated with \overline{F} such that

$$F(x, 0) = k(x)$$

 $F(x_0, t) = f(t)$ $(x \in X, t \in I)$.

If we put F(x, 1) = k'(x) for $x \in X$, we easily see

$$k'_* = \alpha^{-1}k_*\alpha$$
.

Namely, for every λ of $\pi_1(X)$ it holds that

 $k'_*(\lambda) = \alpha^{-1}k_*(\lambda)\alpha$.

Thus we see $\partial(\alpha) = \alpha^{-1}k_*\alpha$.

Furthermore we can easily see that

$$\partial(\alpha\beta) = \beta^{-1}\partial(\alpha)\beta$$
.

By using this equality we find that $\partial^{-1}(k_*)$ is a subgroup of $\pi_1(K(\pi, 1))$ which is the centralizer of $k_*(\pi_1(X))$ in $\pi_1(K(\pi, 1))$. By Theorem 2.1 map₀(X, $K(\pi, 1)$; k) is weakly contractible. Therefore we have

$$\pi_1(\operatorname{map}(X, K(\pi, 1)); k) \cong C_k$$
.

Note that this is known in Lemma 2 of Gottlieb [4]. Now, for the classifying space B_{∞} we have the following fibration:

$$K(G, n+1) \xrightarrow{i_0} B_{\infty} \xrightarrow{p_0} K(\operatorname{Aut}(G), 1).$$

Let X be a CW complex, then we have the following fibration:

$$F \longrightarrow \operatorname{map}_{0}(X, B_{\infty}; k) \xrightarrow{p_{0}*} \operatorname{map}_{0}(X, K(\operatorname{Aut}(G), 1); p_{0} \circ k),$$

where F is the fibre over $p_0 \circ k$.

Proposition 2.4. With the above notations, we have

 $\Omega \operatorname{map}_{0}(X, B_{\infty}; k) \simeq \Omega F,$

where $Y \underset{w}{\simeq} Z$ means that Y has the same weak homotopy type as Z.

Proof. By Theorem 2.1 map₀(X, $K(\operatorname{Aut}(G), 1)$; $p_0 \circ k$) is weakly contractible. Therefore F is weakly homotopy equivalent to map₀(X, B_{∞} ; k). Thus we have

$$\mathcal{Q}F \simeq \mathcal{Q} \operatorname{map}_{0}(X, B_{\infty}; k).$$

§3. The Classifying Space for Fibration with Fibre K(G, n)

Let G be an abelian group and Aut(G) its group of automorphisms. Then there exists an Eilenberg-MacLane complex K(G, n+1) $(n \ge 0)$ which is a topological abelian group [7] and on which Aut(G) acts on the left by base point preserving cellular homeomorphisms ((5.2.5) Lemma in [1], 1.2. Lemma in [12]), here the base point is the identity element of K(G, n+1). Let W be a complex K(Aut(G), 1) and \widetilde{W} its universal covering complex. Then Aut(G) acts on \widetilde{W} freely and cellularly on the left. Thus Aut(G) acts on $\widetilde{W} \times K(G, n+1)$ diagonally. We denote by L(G, n+1) the quotient

$$(\widetilde{W} \times K(G, n+1))/\operatorname{Aut}(G)$$
.

The projection of $\widetilde{W} \times K(G, n+1)$ onto \widetilde{W} induces a map $p_0: L(G, n+1) \rightarrow W = K(\operatorname{Aut}(G), 1)$ which is a fibre bundle with fibre K(G, n+1) and with structure group $\operatorname{Aut}(G)$. Each fibre of this fibration is a topological abelian group isomorphic to K(G, n+1) and there exists a canonical cross-section $s_0: W \rightarrow L(G, n+1)$. It is well known that L(G, n+1) is a classifying space B_{∞} for

fibrations with fibre K(G, n) [5, 10].

Let X be a CW complex and let $k: (X, x_0) \rightarrow (W, w_0) = (K(\operatorname{Aut}(G), 1), w_0)$ be a space over (W, w_0) . Then we define a multiplication in the space map₀(X, $L(G, n+1))_W$, where the fibration $p_0: (L(G, n+1), l_0) \rightarrow (W, w_0)$ is the space over (W, w_0) and the canonical cross-section $s_0: (W, w_0) \rightarrow (L(G, n+1), l_0)$ is equipped.

Let f and g be any elements of $map_0(X, L(G, n+1))_W$, then we define multiplication $f \cdot g$ of f and g by

$$(f \cdot g)(x) = f(x)g(x)$$
 $(x \in X)$,

because both f(x) and g(x) are contained in the fibre $p^{-1}(k(x))$ over k(x). We can easily see that

$$f \cdot g \in \max_{0}(X, L(G, n+1))_{W}$$
.

Thus we obtain the following

Proposition 3.1. Let X be a CW complex and $k: (X, x_0) \rightarrow (W, w_0) = (K(\operatorname{Aut}(G), 1), w_0)$ be a space over (W, w_0) . Then, with respect to the multiplication defined above $\operatorname{map}_0(X, L(G, n+1))_W$ is a topological abelian group.

Proof is easily done, so it is omitted.

We observed that for $n \ge 0$ there exists the following fibre bundle with structure group Aut(G):

$$K(G, n+1) \xrightarrow{\iota_0} L(G, n+1) \xrightarrow{p_0} K(\operatorname{Aut}(G), 1) = W.$$

In the following we abbreviate this fibration by the fibration $p_0: L \to W$. So we have the space $p_0: (L, l_0) \to (W, w_0)$ over (W, w_0) and the canonical cross-section $s_0: (W, w_0) \to (L, l_0)$.

In Remark 1.2, if we replace (X, x_0) by $(S^i, *)$ $(i \ge 0)$ and replace a fibration $p: E \to B$ by the fibration $p_0: L \to W$, then we have the fibration $\omega: L_W^{S^i} \to L$, and the cross-section $s': (W, w_0) \to (L_W^{S^i}, c_{l_0})$ for the fibration $p_0 \circ \omega: L_W^{S^i} \to W$, where c_{l_0} denotes the constant map of S^i to l_0 . Also we have the following commutative diagram

Let us denote $\omega^{-1}(s_0(W))$ by $\overline{\Omega}^{i}L$ for $n+1>i\geq 0$, then we have a fibration ((2.5) in [1], the proof of Lemma 1.2 in [2], [6]):

$$K(G, n+1-i) \longrightarrow \bar{\mathcal{Q}}^i L \xrightarrow{p_0} W,$$

such that $\overline{Q}^{i}L$ may be regarded as a space L(G, n+1-i).

With these notations we have the following

Lemma 3.2. Let X be a CW complex, k be a fixed map of $(X, x_0) \rightarrow (L, l_0)$ and $p_0 \circ k = k' : (X, x_0) \rightarrow (W, w_0)$ be a space over (W, w_0) . We have the following isomorphisms:

$$\pi_{i}(\operatorname{map}_{0}(X, L)_{W}, s_{0} \circ k') \cong [X, \bar{\Omega}^{i}L]_{W}^{0} \cong H^{n+1-i}(X, x_{0}; G),$$

where $[X, \bar{\Omega}^i L]_W^o$ denotes the pointed homotopy classes over W of maps from (X, x_0) to $(\bar{\Omega}^i L, c_{l_0})$ and the cohomology is taken with local coefficients classified by the map $k': X \to W$.

Proof. Let \overline{f} be a map of $(S^i, *)$ to $(\operatorname{map}_0(X, L)_W, s_0 \circ k')$. Then we have its associated map $f: S^i \times (X, x_0) \to (L, l_0)$ with $f | * \times X = s_0 \circ k'$ such that the following diagram is commutative

$$S^{i} \times (X, x_{0}) \xrightarrow{f} (L, l_{0})$$

$$k' \circ p_{2} \xrightarrow{p_{0}} p_{0}$$

$$(W, w_{0})$$

where p_2 is the projection of $S^i \times (X, x_0)$ onto (X, x_0) .

Furthermore f corresponds to the map \tilde{f} of (X, x_0) to $(L_W^{\mathfrak{s}^1}, c_{l_0})$ defined by

 $\tilde{f}(x)(y) = f(y, x)$ $(x \in X, y \in S^i)$.

In fact, since for $y \in S^i$ we have

$$p_0(\tilde{f}(x)(y)) = p_0 \circ f(y, x) = k'(x) \qquad (x \in X),$$

we see that $\tilde{f}(x)$ is an element of $L_W^{\mathfrak{s}^{\mathfrak{s}}}$ for $x \in X$. By using

$$\boldsymbol{\omega} \circ \tilde{f}(x) = \tilde{f}(x)(*) = s_0 \circ k'(x) \qquad (x \in X),$$

we can easily see that \tilde{f} is a map of (X, x_0) to $(\bar{Q}^i L, c_{l_0})$ and the following diagram is commutative:

where p' denotes $p_0 \circ \omega$.

Similarly a homotopy $\overline{H}: (S^i, *) \times I \to (\operatorname{map}_0(X, L)_W, s_0 \circ k')$ corresponds to a homotopy $\widetilde{H}: (X, x_0) \times I \to (\overline{\Omega}^i L, c_{l_0})$. We can easily see that this correspondence induces the bijection

$$\pi_{\iota}(\operatorname{map}_{0}(X, L)_{W}, s_{0} \circ k') \cong [X, \overline{Q}^{i}L]_{W}^{0}.$$

Since $\overline{\Omega}^{i}L$ is a L(G, n+1-i), we have the following isomorphisms ((5.2.4)

Theorem in [1], 3.1 Definition in [10], (6.13) Theorem in Chapter VI of [20])

$$[X, \bar{\Omega}^{i}L]_{W}^{0} \cong [X, L(G, n+1-i)]_{W}^{0} \cong H^{n+1-i}(X, x_{0}; G),$$

where $H^{n+1-i}(X, x_0; G)$ is the cohomology group with local coefficients classified by the map k'.

From this lemma we get the following

Theorem 3.3. Let X be a CW complex, k be a fixed map of (X, x_0) to (L, l_0) and $p_0 \circ k = k' : (X, x_0) \to (W, w_0)$ be a space over (W, w_0) . Then map₀ $(X, L)_W$ has the same weak homotopy type as

$$H^{n+1}(X, x_0; G) \times \prod_{i=1}^n K(H^{n+1-i}(X, x_0; G), i),$$

where the cohomology is taken with local coefficients classified by the map $k': X \rightarrow W$.

Proof. Notice that $[X, L]_W^0$ is isomorphic to the group $H^{n+1}(X, x_0; G)$. Thus by using Proposition 3.1 and the theorem of J.C. Moore [8] we have

$$\mathrm{map}_{0}(X, L)_{W} \simeq H^{n+1}(X, x_{0}; G) \times \prod_{i=1}^{n} K(H^{n+1-i}(X, x_{0}; G), i).$$

§4. Main Results

Recall the fibration:

 $F \longrightarrow \operatorname{map}_{0}(X, B_{\infty}; k) \xrightarrow{p_{0}*} \operatorname{map}_{0}(X, K(\operatorname{Aut}(G), 1); p_{0} \cdot k),$

where F is the fibre over $p_0 \cdot k = k'$. In the following we shall investigate the loop space ΩF of F.

Since the fibration $p_0: L \to W$ has a canonical cross-section $s_0: (W, w_0) \to (L, l_0)$, by Proposition 1.1 and Remark 1.2 we have the following commutative diagram:

where $p'=p_0 \circ \omega$ and $s_0=\omega \circ s'$. Let k be a map of a given CW complex (X, x_0) to (L, l_0) . If we put $p_0 \circ k=k'$, by Proposition 1.3 we have the following fibration ω_{\sharp} :

$$\operatorname{map}_{0}(X, L_{W}^{S^{1}})_{W} \longrightarrow \operatorname{map}_{0}(X, L)_{W}.$$

On a relation between this fibration and ΩF , we have the following

Lemma 4.1. ΩF is homeomorphic to the fibre $\omega_{\epsilon}^{-1}(k)$ over k.

Proof. Let \overline{f} be a map of $(S^1, *)$ to (F, k). Then we have its associated map $f: S^1 \times (X, x_0) \rightarrow (L, l_0)$ such that

$$f(*, x) = k(x)$$
,

$$p_0 \circ f(t, x) = k'(x) \quad (= p_0 \circ k(x)) \quad (t \in S^1, x \in X).$$

We may define a map \tilde{f} of (X, x_0) to $(L_W^{S^1}, c_{t_0})$ by $\tilde{f}(x)(t) = f(t, x)$ for $t \in S^1$ and $x \in X$, because

$$p_0 \circ \boldsymbol{\omega} \circ \tilde{f}(x) = p_0(\tilde{f}(x)(*)) = p_0 \circ f(*, x)$$
$$= p_0 \circ k(x) = k'(x) \quad (x \in X).$$

Thus we see that $\tilde{f}: (X, x_0) \to (L_W^{S^1}, c_{l_0})$ is a map over (W, w_0) . Also we see that $\omega_{\sharp}(\tilde{f}) = k$, that is, \tilde{f} is an element of a fibre $\omega_{\sharp}^{-1}(k)$ of the fibration $\omega_{\sharp}: \max_{\phi}(X, L_W^{S^1})_W \to \max_{\phi}(X, L)_W$. As easily seen, this correspondence gives rise to a homeomorphism of ΩF onto the fibre $\omega_{\sharp}^{-1}(k)$ over k.

Now, for any CW complex K we have the following commutative diagram:

We denote by $L_W^K \times_W L_W^K$ the fibred product of the fibration $p': L_W^K \to W$ and itself. It should be noted that there exists a map μ of $L_W^K \times_W L_W^K$ to L_W^K defined by

$$\mu(f, g)(y) = f(y)g(y) \qquad (y \in K),$$

because f(y) and g(y) for every $y \in K$ are contained in the same fibre $p_0^{-1}(p'(f)) = p_0^{-1}(p'(g))$. Especially we have a map μ of $L_W^{S^1} \times_W L_W^{S^1}$ to $L_W^{S^1}$. By using this multiplication of $L_W^{S^1}$ we have the following

Proposition 4.2. Let X be a CW complex, k be a fixed map of (X, x_0) to (L, l_0) and $p_0 \circ k = k' : (X, x_0) \to (W, w_0)$ be a space over (W, w_0) . Then $\operatorname{map}_0(X, L_W^{S^1})_W$ is a topological abelian group and the projection $\omega_{\sharp} : \operatorname{map}_0(X, L_W^{S^1})_W \to \operatorname{map}_0(X, L)_W$ is an epimorphism of topological groups.

Proof. For any elements \tilde{f} and \tilde{g} of map₀(X, $L_W^{S^1}$)_W the multiplication $\tilde{f} \cdot \tilde{g}$ is defined by

$$(\tilde{f} \cdot \tilde{g})(x) = \tilde{f}(x) \cdot \tilde{g}(x) \qquad (x \in X),$$

where $\tilde{f}(x) \cdot \tilde{g}(x)$ means $\mu(\tilde{f}(x), \tilde{g}(x))$. Note that $\mu(\tilde{f}(x), \tilde{g}(x))$ is well defined, because $(\tilde{f}(x), \tilde{g}(x))$ is an element of $L_W^{S^1} \times_W L_W^{S^1}$ by

$$p'(\tilde{f}(x)) = p'(\tilde{g}(x)) = k'(x) \qquad (x \in X).$$

Since $p'(\tilde{f} \circ \tilde{g})(x) = p' \circ \tilde{f}(x) = k'(x)$, we see that $\tilde{f} \cdot \tilde{g}$ is an element of map₀(X, $L_W^{S^1})_W$. We can easily prove that with respect to this multiplication map₀(X, $L_W^{S^1})_W$.

is a topological abelian group with the identity element $s' \circ k'$. Next we shall show that ω_{\sharp} is a homomorphism of $\operatorname{map}_0(X, L_W^{S^1})_W$ onto the group $\operatorname{map}_0(X, L)_W$. Let \tilde{f} and \tilde{g} be any elements of $\operatorname{map}_0(X, L_W^{S^1})_W$. Then we have for $x \in X$

$$\begin{split} \boldsymbol{\omega}_{\ast}(\tilde{f} \cdot \tilde{g})(x) &= (\tilde{f} \cdot \tilde{g})(x)(\ast) = (\tilde{f}(x) \cdot \tilde{g}(x))(\ast) \\ &= (\tilde{f}(x)(\ast))(\tilde{g}(x)(\ast)) \\ &= (\boldsymbol{\omega}_{\ast}(\tilde{f})(x))(\boldsymbol{\omega}_{\ast}(\tilde{g})(x)) \\ &= (\boldsymbol{\omega}_{\ast}(f) \cdot \boldsymbol{\omega}_{\ast}(g))(x) \;. \end{split}$$

Thus we have $\omega_{\sharp}(\tilde{f} \cdot \tilde{g}) = \omega_{\sharp}(\tilde{f}) \cdot \omega_{\sharp}(\tilde{g})$.

Define a map $\sigma: L \rightarrow L_W^{S^1}$ as follows:

$$\sigma(l)(t) = l \qquad (l \in L, t \in S^1).$$

Then we see easily that σ is a map over (W, w_0) and a cross-section for the fibration $\omega: L_W^{S^1} \to L$. So σ induces the map $\sigma_*: \operatorname{map}_0(X, L)_W \to \operatorname{map}_0(X, L_W^{S^1})_W$ which is a cross-section for the fibration $\omega_*: \operatorname{map}_0(X, L_W^{S^1})_W \to \operatorname{map}_0(X, L)_W$. Therefore we see that ω_* is surjective.

We can easily see $\omega_{\sharp}^{-1}(s_0 \circ k') = \max_0(X, \overline{\Omega}L)_{W}$. Hence the following is an immediate consequence of Proposition 4.2.

Corollary 4.3. Ker $\omega_{*} = \omega_{*}^{-1}(s_{0} \circ k')$ is homeomorphic to the fibre $\omega_{*}^{-1}(k)$ over k. In other words,

$$\omega_{\sharp}^{-1}(k) \cong \max_{0}(X, \overline{\Omega}L)_{W} = \max_{0}(X, L(G, n))_{W}.$$

Now, let $p: E \rightarrow B$ be a fibration with fibre F = K(G, n) (n>1) over a CW complex B. In [18, 19] the following result is shown for a simply connected B:

$$\begin{aligned} \mathcal{Q} \left(E \mod F \right) & \underset{w}{\simeq} \operatorname{map}_{0}(B, \ K(G, \ n)) \\ & \underset{w}{\simeq} H^{n}(B, \ G) \times \prod_{i=1}^{n-1} K(H^{n-i}(B, \ G), \ i) \,, \end{aligned}$$

where $\mathcal{Q}(E \mod F)$ is the space of self fibre homotopy equivalences of E leaving a fibre $p^{-1}(b_0) = F$ fixed. Here without assuming that B is simply connected, we have a following generalization of this result which follows from our previous Proposition 2.4, Lemma 4.1, Corollary 4.3 and Theorem 3.3.

Theorem 4.4. Let $p: E \to B$ be a fibration with fibre F = K(G, n) (n > 1) such that B is a CW complex. Then if we denote by $k: (B, b_0) \to (L(G, n+1), l_0)$ a corresponding map to the fibration: $F \xrightarrow{i} E \xrightarrow{p} B$, we have

$$\begin{aligned} \mathcal{Q} (E \mod F) &\cong_{w} \operatorname{map}_{0}(B, \ L(G, \ n))_{W} \\ &\cong_{w} H^{n}(B, \ G) \times \prod_{i=1}^{n-1} K(H^{n-i}(B, \ b_{0}; \ G), \ i) \end{aligned}$$

where the cohomology is taken with local coefficients classified by the map $p_0 \circ k : B \to K(\operatorname{Aut}(G), 1)$ (p_0 is the projection of L(G, n+1) to $K(\operatorname{Aut}(G), 1)$).

Now, we quote the following two theorems [18, 19], where $G_0(X)$ denotes the space of self homotopy equivalences of a CW complex (X, x_0) .

Theorem 4.5. Let E and B be CW complexes and let $p: E \rightarrow B$ be a fibration with fibre F. For a given n > 1 if F is (n-1)-connected and $\pi_i(B)=0$ for every $i \ge n$, then we have the following fibration:

$$\mathcal{G}(E \mod F) \longrightarrow G_0(E) \stackrel{\rho}{\longrightarrow} G_0(B) \times G_0(F)$$
.

Theorem 4.6. Under the hypothesis of Theorem 4.5, the image of $\rho: G_0(E) \rightarrow G_0(B) \times G_0(F)$ is just the union of the path components in $G_0(B) \times G_0(F)$ each of which contains (g, h) satisfying

$$[\boldsymbol{\chi}_{\infty}(h)] \circ [k] = [k] \circ [g],$$

where $\chi_{\infty}(h)$ is a self map of (B_{∞}, b_{∞}) and $k: (B, b_0) \rightarrow (B_{\infty}, b_{\infty})$ is a corresponding map to the fibration: $F \xrightarrow{i} E \xrightarrow{p} B$.

Let $\varepsilon(X)$ denote the group $\pi_0(G_0(X))$ for a *CW* complex *X*. Since $G_0(K(\pi, n)) \simeq \operatorname{Aut}(\pi)$ for $n \ge 1$, by Theorem 4.4, 4.5 and 4.6 we have the following theorem which is a generalization of Theorem 10 in [18].

Theorem 4.7. For given $1 \leq m < n$, let

$$F = K(G, n) \xrightarrow{i} E \xrightarrow{p} K(\pi, m) = B$$

be a fibration with a corresponding map $k: (B, b_0) \rightarrow (L(G, n+1), l_0)$. Then we have

$$G_0(E) \simeq R \times H^n(B, G) \times \prod_{i=1}^{n-1} K(H^{n-i}(B, b_0; G), i),$$

where R is the subgroup of $\operatorname{Aut}(\pi) \times \operatorname{Aut}(G) = \varepsilon(B) \times \varepsilon(F)$ consisting of ([g], [h]) with

$$[\boldsymbol{\chi}_{\infty}(h)] \cdot [k] = [k] \cdot [g],$$

and the cohomology is taken with local coefficients classified by the map $p_0 \circ k$: $B \rightarrow K(\operatorname{Aut}(G), 1) = W$ (p_0 is the projection of L(G, n+1) to $K(\operatorname{Aut}(G), 1)$.

Note that the map $\rho: G_0(E) \to G_0(B) \times G_0(F)$ induces the homomorphism ρ_* of $\varepsilon(E)$ into $\varepsilon(B) \times \varepsilon(F)$, that the image of ρ_* is just R in Theorem 4.7 and that

the kernel of ρ_* may be regarded as $H^n(B, G)$. Thus, as a corollary of Theorem 4.7 we have the following theorem [9, 11, 15].

Theorem 4.8. Under the same hypothesis of Theorem 4.7 there exists the following exact sequence

 $1 \longrightarrow H^n(B, G) \longrightarrow \varepsilon(E) \longrightarrow R \longrightarrow 1,$

where R is the same group as the group stated in Theorem 4.7 and the cohomology is taken with local coefficients given by the map $p_0 \circ k : B \to K(\operatorname{Aut}(G), 1)$.

References

- Baues, H. J., Obstruction theory on homotopy classification of maps, Lecture Notes in Math., 628, Springer-Verlag, 1977.
- [2] Dror, E. and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, *Topology*, 18 (1979), 187-197.
- [3] Gottlieb, D.H., A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965), 840-846.
- [4] ____, Covering transformations and universal fibration, *Illinois J. Math.*, 13 (1969), 432-437.
- [5] Gitler, S., Cohomology operations with local coefficients, Amer. J. Math., 85 (1963), 156-188.
- [6] McClendon, J.F., On stable fibre space obstructions, Pacific J. Math., 36 (1971), 439-445.
- [7] Milgram, R., The bar construction and abelian H-spaces, Illinois J. Math., 11 (1967), 242-250.
- [8] Moore, J.C., Seminar on algebraic homotopy theory, Princeton, 1956 (mimeographed notes).
- [9] Nomura, Y., Homotopy equivalences in a principal fibre space, Math. Z., 92 (1966), 380-388.
- [10] Robinson, C. A., Moore-Postnikov systems for non-simple fibrations, *Illinois J. Math.*, 16 (1972), 234-242.
- [11] Shih, W., On the group ε[X] of homotopy equivalence maps, Bull. Amer. Math. Soc., 70 (1964), 361-365.
- [12] Siegel, J., Higher order cohomology operations in local coefficients theory, Amer. J. Math., 89 (1967), 909-931.
- [13] Steenrod, N.E., A convenient category of topological spaces, Michigan Math. J., 14 (1967), 133-152.
- [14] Strøm, A., Note on cofibrations II, Math. Scad., 22 (1968), 130-142.
- [15] Tsukiyama, K., Self-homotopy-equivalences of a space with two nonvanishing homotopy groups, Proc. Amer. Math. Soc., 79 (1980), 134-138.
- [16] Yamanoshita, T., On the spaces of self homotopy equivalences of certain CW complexes, Proc. Japan Acad., 60A (1984), 229-231.
- [17] ——, On the spaces of self homotopy equivalences of certain CW complexes, J. Math. Soc. Japan, to appear.
- [18] —, On the spaces of self homotopy equivalences for fibre spaces, *Proc. Japan* Acad., **61A** (1985), 15–18.
- [19] ——, On the spaces of self homotopy equivalences for fibre spaces I, in preparation.
- [20] Whitehead, G.W., Elements of Homotopy Theory, Graduate Texts in Math., 61, Springer-Verlag, New York, Heidelberg, Berlin, 1978.