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Abstract

Our purpose here is to seek on an arbitrary uniform algebra the class of representing
measures which admit a certain maximal function for each log-envelope function defined
on the maximal ideal space of the algebra. These maximal functions can be considered
as a proper generalization of those that are associated with two-dimensional Brownian
motion in the concrete algebras R (K).

Most of the results already obtained from the probabilistic approach, e. g. Burkholder-
Gundy-Silverstein inequalities, a weaker form of Fefferman's duality theorem etc., are
valid for our maximal functions. The remarkable feature of our class of representing
measures is that it is stable under the weak-star limit and the convex combination.

In the concrete algebras R(K), if the harmonic measure and the Keldysh measure
for a given point of K are different, then our class of representing measures that are
supported on the topological boundary of K forms an infinite-dimensional weak-star
compact convex set in the dual of C(K).

§ 0. Introduction

It is well-known that Hardy spaces on the unit disk carry the maximal
functions of several types. The probabilistic approach to the analysis of them
has been developed by many authors. Of course, most of the results are valid
for more general Hardy spaces, if we concentrate our attention on the Brownian
maximal function. The purpose here is to study these results from the view-
point of general uniform algebra theory. That is, we shall investigate a certain
class of representing measures associated with uniform algebras whose Hardy
spaces admit the maximal function analogous to that of the Brownian motion.

In order to explain our strategy, let us consider the concrete algebras. We
denote by K a nonempty compact subset of the complex plane. R(K) is the
uniform closure in C(K) of all rational functions with poles off K. We use
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the symbol XK to denote the Keldysh measure associated with the set K and a
fixed point pQ of K. By the result of A. Debiard and B. Gaveau [3], 1K is
maximum in the logarithmic order among all Jensen measures for pQ with
respect to R(K\ Here the logarithmic order «) implies the partial order over
positive measures on K induced by the cone of all continuous functions that are
subharmonic in neighbourhoods of K. The same is true for each E(J^)-convex
compact subset F of K, if it contains pQ. Consequently, to the Keldysh measure
1K there corresponds a family {2F} of Jensen measures indexed by the R(K)-
convex sets such that

(1) each 1F is a Jensen measure for pQ supported on F=>p0,
(2) if FC.G, then XF-<1G,
(3) each 1F is maximal in the logarithmic order among all positive measures

on F.

It is well-known that these measures are derived from two-dimensional Brownian
motion starting at p0, and accordingly Brownian maximal functions, or more
precisely their conditional expectations, are defined in Ll(XK} for functions \ f \ p ,
\u\p, where f^R(K) u=Re f and Q<p<co. Furthermore, most of the results
obtained in the case of the unit disk are still valid in such circumstances, if we
interpret the argument on the duality <//J, L00///00) suitably. We shall show
them from the viewpoint of general uniform algebra theory. Namely, suppose
a uniform algebra A has a Jensen measure IQ for which there exists a family
of measures satisfying (1), (2), (3) on the maximal ideal space Q of A. Here
the logarithmic order is defined by using the cone of all continuous log-envelope
functions on Q. Applying this assumption only, we shall establish the following:

(4) the generalized (conditional expectations of) Brownian maximal functions
can be defined in L\^Q) for functions as stated above,

(5) the maximal function, together with the original function, enjoys Burkholder-
Gundy-Silverstein inequalities,

(6) a weaker form of Fefferman's duality theorem holds, i. e. as the functionals
on Hl

pQ(Xo), abstract harmonic functions on Q have the norm bounded by
the constant times the Garsia norm of them. (Theorem 5.5, Corollary 5.6
and Theorem 5.7.)

From applicational point of view, conditions (1), (2), (3) are too hard. So we
shall relax them in Definition 4.1. The relaxed conditions have the remarkable
feature. That is, the class of representing measures satisfying these conditions
are stable under the weak-star limit and the convex combination (Theorem 4.8,
4.9.)

In Section 6, our concern will return to the algebra R(K\ If K has an
interior point pQ, and if Jensen measures for p0 that are supported on dK are
not unique, then infinitely many Jensen measures for p0 carried on dK admit



MAXIMAL FUNCTIONS OF UNIFORM ALGEBRAS 59

families of measures satisfying the relaxed conditions. Owing to the above
stability theorems and Remark 6.6, they form an infinite dimensional weak-star
compact convex set in the dual of C(K). Of course, all Jensen measures cited
here satisfy the results stated above.

Finally, the author expresses his deep gratitude to Professor T. Gamelin
who advised him on all the phases of this article. The author's thanks are
also due to the referee for the valuable communication.

§ 1. Preliminaries

Throughout this paper, we follow the useful terminologies in T. W. Gamelin
[5], [6]. We first clarify the notations, and mention some of the basic facts
without proofs. Details can be found in [5], [6].

In the sequel, A always denotes an arbitrary, but fixed, uniform algebra on
some compact Hausdorff space. The letter Q will designate the maximal ideal
space of A. Let h be a real-valued function defined on a subset E of Q. The
lower log-envelope h of h is an extended real-valued function on Q defined as

/z=sup{clog|/ | : fs=A, c^R, c^O, /z^clog|/ | on E}.

We use the letter J to denote the totality of functions / in CR(Q] such that
/=/ on Q. Clearly J is stable in the max operation V, i.e. /Vg^maxj/, g]
is contained in J provided /, g belong to J. Therefore, J— J is uniformly
dense in CR(Q\ because J contains Re A> the real parts of functions in A.

Since J is a convex cone of CR(Q), it defines a partial order over all finite
regular Borel measures that are supported on Q. We are interested in the order
restricted within the positive measures on Q. This order relation will be denoted
by the symbol < and called the logarithmic order simply. Here we note that
a probability measure /* is a Jensen measure for p^Q if and only if it satisfies
the relation dp-^pt, where dp is the Dirac measure at p^Q.

We say that a positive measure is maximal if it is a maximal element in
the logarithmic order among all positive measures on Q. It is known that every
positive measure is dominated by a maximal positive measure concerning this
order relation. Also it is known that a positive fjt is maximal if and only if it
satisfies h — h a. e. p for all h of CR(Q). In this characterization, if u is
supported on a closed set containing the Shilov boundary of A, h can be replaced
by continuous functions defined on the closed set.

Let p be a point on Q for which the point mass dp is maximal in the
logarithmic order. The totality of such points is known as the Jensen boundary
of A. It is a dense subset of the Shilov boundary of A, and contains all
generalized peak points with respect to A. In case that A is separable, all
maximal positive measures are supported on the Jensen boundary, which is a
GVsubset of Q in this case.
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Let E be a nonempty compact subset of Q. The ^4-convex hull of E is the
totality of points in Q whose evaluation functional A=>f^f(p) satisfy the
inequality

! : q^E] for all / of A.

Let AE denote the closure in C(E) of the restriction algebra A\E. Then the
maximal ideal space of AE is identical with the ^.-convex hull of E. Therefore
all the facts quoted above are valid for them. In this case, we note that
maximal positive measures associated with AE are supported on E, because E
contains the Shilov boundary of AE. We say that a positive measure is maximal
on E if it is supported on E and maximal in the logarithmic order with respect
to AE. Since A\E is dense in AE, a positive ^ is maximal on E if and only if
it satisfies h — h a. e. p for all h^CR(E).

We are now in a position to define a subfamily of Jensen measures as
stated in the preceding section. Recall that this subfamily has been desired to
be as small as possible. For a given point q^Q, put G=Q[g^r'] =
{p^Q : g(p}^r}, where g^J and r>g(q). Clearly G is ^4-convex. We denote
by EFg the set of all such G's.

Definition 1.1. Let {lG:G^3q} be a family of Jensen measures indexed
by EFg. We say that this family is maximally consistent if it satisfies

(1) each element 2G is a Jensen measure for q supported on G,
(2) for G, K of 2> if GdK, then XG<*K,
(3) each 1G is maximal on G in the logarithmic order.

The terminal measure IQ of the family will be called a Keldysh measure
for q.

§2. Some Properties of Locally Maximal Measures

The aim in this section is to prove Theorem 2.4. In comparison with the
probabilistic theory of Hardy spaces, it seems that this theorem corresponds to
the strong Markov property of Brownian motion.

The powerful device for our investigation is the following deep result due
to T. Gamelin and N. Sibony ([7] cf. [6]).

Theorem 2.1. (The localization principle for the Jensen boundary) Let B
be a uniform algebra and let K be a closed subset of the maximal ideal space of
B. Suppose an interior point p of K belongs to the Jensen boundary of BK.
Then p belongs to the Jensen boundary of B.

Applying this theorem, we first establish a localization theorem for locally
maximal measures. Here we note that the next theorem is contained in the
above result if a uniform algebra in problem is separable.
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Theorem 2.2. Let A be a uniform algebra with the maximal ideal space Q,
and let KdQ be compact. Suppose a positive measure /j is supported on Int K
and maximal on K. Then it is also maximal on Q.

Proof. At first given a countable subset S of A, we construct a separable
subalgebra B of A which contains 5 and has several nice properties.

Let {F^T be a sequence of open subsets of li&K such that each Vn is
defined by a finite number of functions {/?} in A, i.e. Vn=r\i@[.\f?\<l']'
Since p is regular, we can take {Vn} so that /jt{\J yn}=^(Int /0 = M|. Let
denote by Bl the closed subalgebra generated by S, constants and all /?.
Clearly Bl is separable. By induction we manufacture a sequence {Bn}n=i of
separable closed subalgebra in A so that they satisfy

(1) BndBn+1 (ntEN),
(2) if r is a nontrivial character (multiplicative linear form) on Bn+lJ thenrl^

coincides with the evaluation functional of some point in Q,
(3) if Dn is the closed subalgebra of CR(Q) generated by Re Bn, then for each

h of Dn and s>0, there are functions {g3} of Bn+l and c^O such that

h^Cjloglgj on K,

Assume that B1---Bn have already been constructed. Since Dn in (3) is
separable by induction hypothesis, it has a countable dense subset {hlt H2, •••}.
Then for each h3 and m^N we can find a finite number of functions {gk

jm} in

A and c*^0 such that /ij^c*log|gjm | on K, \maxk{cklog\gk
jm\}d{ji>\!ijd/ji—l/m.

These are possible, because JJL is maximal on K in the logarithmic order. Let
denote by Bn the closed subalgebra of A generated by Bn and all g]m. Clearly
Bn is separable. Moreover, any closed subalgebra of A containing Bn satisfies
condition (3) automatically. Let i : Bnc+A be the canonical inclusion map and
z* : A*-+B% be its adjoint. Since relativized weakstar topology on the maximal
ideal space <3tt(Bn) of Bn is metrizable and z*(fl) is compact, <3l(Bn)\i*(Q) is
sigma compact. So the set

is sigma compact also, where ^.4* is the closed unit ball of J.*. Therefore we
can find a countable subset Q of .4 so that for each re bA* with z'*(r)s
^(I?J\z *(£?), there are elements f , g o f Q satisfying r(fg}~r(f}r(g}. Denote
by Bn+1 the closed subalgebra of A generated by Bn and Q.

It is now clear that Bn+1 is separable and satisfies (1), (2), (3). Thus by
induction we obtain the desired sequence [Bn] of separable closed subalgebras
in A. Let B be the closure of \J™=iBn. Then B is a closed separable sub-
algebra in A with S and constants. Denote by i : Bc^A the canonical inclusion
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map, and by i* : A*->B* its adjoint. Then i*(Q] coincides with MB, the maximal
ideal space of B. Indeed, pick up any point r^<SttB> Then by (2) r Bn is
identical with some evaluation functional. Put Pn(T)={p^Q : g(p)=g(r), g^Bn}.
It is clear that Pn(r) is compact and decreasing along the index n. Therefore
r\Pn(?} is nonempty, and so f*(p\Pn(r))= r. This implies that MB is identical
with the compact Hausdorff space Q obtained from Q by regarding each level
set r\Pn(?} as one point. (We consider so in the sequel.) Let j:Q-*Q be a
continuous map so that /(£)=/(/(£)) for all f^B and p&Q. The map / gives
rise to the canonical inclusion C(Q}c*C(Q). We will not distinguish between
C(Q} and its image under this inclusion. Denote by p. the restriction of p onto
the Baire sub cr-algebra a{C(Q)}. p. can be viewed as a regular Borel measure
on Q. We show that p. is maximal on Q in the logarithmic order associated
with BdC(Q).

Firstly by very definition of {Vn}, each j(Vn) is open in Q. Therefore p.
is supported on the interior of j(K). On the other hand \JDn is uniformly
dense in CR(Q}. This implies that p is maximal on j(K) by (3). In particular
p is supported on the Jensen boundary XK of B3(K}, because XK is GVset.
(BJ(K} is separable.)

By Theorem 2.1, all points in XKr\lntj(K) belong to the Jensen boundary
of B. This yields that p is supported on the Jensen boundary of B, and so p
is maximal on Q.

We are now in a position to complete the proof. Recall that B contains
the countable subset S of A previously given. Assume that the assertion is

false. Then there exists a function h of CR(Q) such that \h dp>\h dp. Since

the subalgebra of CR(Q) generated by Re A is uniformly dense in CR(Q], we
may assume that h is in this subalgebra. Then we can find a finite subset S
of A so that the algebra generated by Re 5 contains the above function h. Let
B be our separable subalgebra of A containing 5. Then we can regard h as
a function in CR(Q}. Put

h=sup{clog\g\ : h^clog\g\ on Q, c^Q,

Then (h dp=\h dp=\h dp=\h d/£, because p is maximal on Q. On the other

hand (h dp>\h d^i/z dp=\h dp, a contradiction.

We need a localized form of the above theorem. Recall that an JUconvex
compact subset K of Q can be identified with the maximal ideal space of AK.

Corollary 2.3, Let K be an A-convex compact subset of Q, and let F be a
closed subset of K with the interior U relative to K. Suppose a positive measure
p is supported on U and maximal on F in the logarithmic order. Then p is
maximal on K,
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Theorem 2.4. Let A be a uniform algebra with the maximal ideal space Q,
and let F be a dosed subset of an A-convex compact set GdQ. Suppose that
positive measures ftF, ^G satisfy the relation [£F^{£G, and that fiF is maximal on
F. Then for the interior U of F relative to G, the restriction measure fiF\U is
absolutely continuous with respect to fjG, and the density d(fiF\U)/d.fiG is bounded
by the constant 1.

Proof. Put a=fjLF\U. By Corollary 2.3, a is maximal on G i.e. g=g a. e.
<$ for all g of CR(G}. For our purpose it suffices to prove that a(E)^fjLG(E)
for all compact subset E of G. Assume that p.G(E}<a(E} for some compact

£cG. Let g be a function in CR(G) such that g\E=l, O^ggl and \gdfjiG<a(E).

Then by fJtF^fjtG and Q^g^g, we are led to a contradiction

ff(E)>\g d^c^U dfiG^ \ g

§ 3. Conditional Expectations Between Ordered Measures

In order to clarify our purpose here, we first mention the result. The
notations will be explained in the argument.

Theorem 3.1. Let fjtl9 fjt2 be positive measures on Q with j«iX/^2. Then there
exists a positive measure v on the product space QxQ and a linear map T: Lp(fi2)
-*Lp(pi\ Ig0goo, with \\T\\P=1 as follows.
(1) // we view each a3 as a measure on QxQ in the canonical way, then

i.e.

v= f h d/^2 , h e C(Q) .

(2) (77z)®l=E(l<g)/z I (T{C(fl)®!}) a.e. v,
(3) Tg^g a.e. /Lt1} g^J. In particular, for every g^A or ^eRe A, Tg—g

a.e. plm

The map T will be called a conditional expectation between ordered measures
Hi and [tz- (Note that conditional expectations can be characterized as continuous
positive linear maps from Lp(/jiz) into Lp(^ satisfying condition (3).)

Proof. Let D={E1 ••• En\ be the decomposition of Q into a finite number
of pairwise disjoint Borel sets. We denote by f? the totality of such decom-
positions. f? has the canonical order -<. Namely, for [any pair Dlf D2 of f?
with Dj={EJ1 ••- Ejnj} (7 = 1, 2), the relation D^DZ implies that each member
E2k of D2 is contained in some Elm of D,. Call %D={D':D<D', jD'eg}.

Then putting Ds={E1Jr\EZk}j.k for Dlf D2 as above, we see that 8fjDir\3fz)2=Si,8.
This implies that the family {$D°D<=%} forms a filter base in the power set of
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f? with respect to the set theoretic inclusion. Pick up an arbitrary ultra filter
U containing this filter base, and fix it throughout. Note that any map from
§f into a compact Hausdorff space always has the limit along U.

Let ftlt p2 be positive measures supported on Q with fa^fa- For each
member D— {E1 ••• En} of ^ we consider the restriction measures pi\Ek

. By Cartier-Fell-Meyer's theorem (cf. [1]), there exists a decom-

position ^o^S^fc of ^2 into nonnegative elements {^2k}i so that they satisfy

the relation f J t ^ E k ^ p z k U^&^w). We fix one of such decompositions, jM2—
^21+ ---- \-{*2n for each D of Qf-

Next, let Ql} Q2 be two copies of Q and consider the direct product space
Q2=Q1xf32- Each C(Q3) can be regarded as a subspace of C(QZ) in the obvious
manner (/=!, 2). We denote them by C^)®! and l(g)C(£?2) respectively. That
is, for an / of C(Q\ (/®l)(/>lf />8)=/(/>i), (!®/)(/>i, P3=f(PJ. The measure
/*! (resp. ££2) can be regarded as a measure defined on a Baire sub (7-algebra
(7{C(fii)®!} (resp. <7{10(7(£?2)}). We use the same notation /^ (resp. /£2) to
denote it.

Now, fixing a point pk of E* for each D={El ••• En} of g, we define a
positive measure VD on jQ2 by

»D=8p1®p*i+ ~'+8Pn®frn, (pi\Ek<f*2k, l^k^n). (3.1)

Here dpj is the point mass at p } ^ f 3 l t and dP:j®^2j denotes the product measure
of 3PJ and f£zj. That is

The total mass Hv^l l of i^ is equal to H ^ J ^ H ^ I I - Therefore, the map, D-+vD

from g into the dual of C(Q2} is bounded, and so it has the weak* limit u along
IX. It is easily seen that v\a{l(£)C(Q)}—[j.2. Moreover the relation v a{C(Q)(£)l}
={*! holds. Indeed, given a g^C(Q) and £>0, we take D' from § so that the
oscillation of g on each member of Df is less than e. In particular, if D—

: p, q^Ek}<e, l^k^n, (3.2)

So by (3.1), for every D of %D.,

2 f
j^DjEj

On the other hand, II contains £?z>'- Therefore taking the limit in the above,

\^p(8)ld^::=\5'd/£1|g£||^1||. Letting e->0, we see that \g®l dv=\g dpi. Since

g^C(Q) is arbitrary, we conclude that i>\0{C(Q)®l}=/ji1. Once these relations
have been established, we need not hesitate to use the notation jLp(/O®l (resp.
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l(g)Lp(/£2)) for the canonical inclusion: L^/O^-^M (rasp. Lp(/jtz)c>Lp(i>}),

Finally, the conditional expectation on L\v) with respect to <7{C(/2)®1}
satisfies the relation :

E(l®g I *{CCQ)®1})^*®1 a.e. v (3.3)

for every g of J. Indeed, given a g of J and h of C(£?) we define the map
D-*gD from 3? into L00^) by

|| on Ek, (3.4)

where £>={£! • • •£„} and ̂ \Ek^^k (Igfcgn). Since ||gJoog||glU this map
has the weakstar limit g along 11. Here we take %D> so as to satisfy (3.2) with
h in place of g. Let D= {Ek} belong to ??/y. Then by (3.1), we see that

= 2
J Ej(=

Therefore,

so that \\h<8)g dv—\h g df*! |[ gIIoo. Letting e-»0, we have that

= \hgdf*!. Since h^C(Q] is arbitrary, this yields

On the other hand, if we take $D. so that it satisfies (3.2) with g, then for

f f— £ ) l l ^ 2 * l l ^ \ g df£i=*\g dfak on each Ek.jEk J

This is due to the facts ^JE^^ and gej (l^^^n). Hence g—e^gD a.e.
jHlf and so g—s^g a.e. ^^ Letting e->0, we conclude that g^g a.e. /ila

Together with (3.5), this yields (3.3).

§ 4. Maximal Functions Associated with Keldysh Measures

From now on, we set about to construct the maximal function associated
with a Keldysh measure. But our argument is applicable to more wide class of
Jensen measures. So we wish to represent the results in the form valid for
them.

Definition 4.1. Let [1G: GeSFj be a family of Jensen measures indexed by
EFg, where q is an arbitrary point of Q, and <3q is a subclass of ^4-convex sets
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introduced in Section 1. Then the family is said to be consistent if it satisfies
the following conditions.

(1) Every 2G is a Jensen measure for q supported on G.
(2) For G, K of 2> 1G-<1K whenever GcK.
(3) For G, K of EF3 with GdK, let U be the interior of G relative to K. Then

the restriction measure 1G\U satisfies the inequality, Q^d(2G\U)/dXK^i
a. e. 1K.

By Theorem 2.4, the next observation is now obvious.

Proposition 4.2* Every maximally consistent family of Jensen measures is
consistent.

Other examples of consistent families will be presented in Section 6.
Let {AG:G^$q} be a consistent family of Jensen measures with a given

base point q^Q. In the sequel, we often deal with the restriction measures
^Qig^ti @[g<£] and %Q\_gzft\Q\_g=f\, where g^J and jeJR, t>g(q). So we adopt
the following notations for convenience, i. e.

t>g(q}

otherwise

t>g(q)

0, otherwise

! Q[g=f], t>g(q}
(4.1)

otherwise.

Lemma 4.3. Let f^A and Q<p<oo. Then g=\f\p belongs to J, i.e.
g—g. Moreover if g^-J, so is the function expfg—c} 9 c^R.

Proof, (cf. [6]) Let p be an arbitrary Jensen measure for a given point CD

of Q. Applying Jensen's convexity inequality to log|/(w)| ̂ \log|/|d/i and

QW=exp{px}, we have that \f\p((o)^(l/lpd/*. So we conclude that \ f \ p is

a log-envelope function on Q. In the similar way, we have the second assertion.

Lemma 4.4. Let {1G: G<^3q} be an arbitrary consistent family and let
Then for every pair a, b^R with a^b

g a. e.

Proof. Note that Q\_g^a~]c:Q\_g^b~] and Q[g<f] is an open subset of Q.
Therefore from condition (3) of Definition 4.1, Ogd^[^<fl]/d^[^<5]^l and
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^;i a. e. AQ. These yield the desired inequality.

Theorem 4.5. Let \AG:G&3q} be an arbitrary consistent family of Jensen
measures, and let g^J. Call h(t, (^)=(^\_g<f]/^Q)(co)^Ll(^Q). Then for each
b^R, the density h(t, CD) converges increasingly to h(b, CD) provided t converges
increasingly to b, i. e. in LI(%Q), h(t, <s))/*h(b, cat) as t/*b. In particular, under the
proper modification, the function RxQ^(t, co)>-*h(t, CD) can be viewed as a meas-
urable function with respect to the product measure dt-dAg.

Proof. We may assume that b>g(q). Note that for every t with t^b,
h(t, }^h(b, ) a. e. IQ by Lemma 4.4. Hence it suffices to show that \\h(t, )\\Li
=*lg<t](Q)/t*lg<b'](Q) as t/b, or equivalently lim^[g=^](fl)=^[^=ft](fi).

£-*&-0

Since A[g<f](Q) is increasing, ^g=f](Q)=l—^lg<t'](Q) is decreasing with
respect to t. Consequently we have only to prove

HrH ftg=f](Q)^Ji\:g=b'](Q) . (4.2)
£-»&-0

Put Qn— exp{n(g— b)} n^N. By Lemma 4.3, Qn is contained in J. In

particular, ^Qnd^[g^f]gfoBd^[^g6], because ^^0<^[^^&] (t^b). For a

given positive e, take n so large that the inequality £>\Q7id/l[g<&] holds. Then

from the fact *[ggf]=-a[g<f]+A[g=f|, it follows that

Take t so close to b that the inequality l^exp{n(£— 6)}^1— s holds. Then we
have ;i[g=W(fi)^[£=f](fi)-2e. This yields (4.2), because e is arbitrary.

Finally, the latter half of the assertion is a basic result in real analysis,
and so we omit the detail.

Definition 4.6. Let {/£G: GeEFj be an arbitrary consistent family of Jensen
measures, and let J+={g^O: g^J}. Then for each g^J+ and p, Q<p<co
we put

(4.3)

The function MB(gp)^Ll(lo) will be called the generalized (conditional expecta-
tion of) Brownian maximal function of gp.

Theorem 4.78 Let {1G: Ge£F a} be a consistent family and let g^J+. Then
for each p, Q<p<oo,
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d(>l[g=fK£)) . (4.4)

Moreover, if g, gpej+ for some p with 0<p<<x>,

n> f-1{l-(d^<f]/d^)(<B)}df=r{l-(d^'><a/<Ufl)(o))}df a. e. *s.Jo Jo

Proof. Applying Fubini's theorem to (4.3) in Definition 4.6, we see that

The last expression is due to the fact that the correspondence
gives a left continuous decreasing function on R by Theorem 4.5.

Next, assume that g, gpe/+. Put h(t, )=d^[^r<Q/d^ and fe(s, )
Then for almost all o)^Q with respect to jfo, l—h(t, )

, oo). Therefore

Finally, we establish two stability theorems for consistent families. The
first theorem is almost obvious. So we omit its proof.

Theorem 4.8. Let {ZG:G&3q} and {/jtG:G<^3q} be maximally consistent
(resp. consistent}. Then every convex combination {s-AG+(l— s) •/£<?:
O^s^l, of them is also maximally consistent (resp. consistent).

Recall that every member of 3q contains q as an interior point. Therefore,
if a directed set {qt^Q:i^I} converges to q^Qf then each member G of 2"g

is contained in 3*^ with the index i sufficiently " large ".

Theorem 4.9. Let ( { t y : GeEFgJ)^/ be a set of consistent families indexed
by a directed set /, each of which has base point q^Q (z'ej). Suppose that qt

converges to q on Q and that for each Geffg, ZZ
G converges weakly-star to AG in

the dual of C(Q). Then the family {ZG:G^3q} is consistent.

Proof. It is clear that the family in problem satisfies conditions (1), (2) of
Definition 4.1. Let F, G be an arbitrary pair of 3q with FcG, and let denote
by U the relative interior of F with respect to G. Take any g of CR(G) that

is nonnegative and carried on U. Then by the assumption, \gd4^\gd^ with

the index i sufficiently "large", so that \ g d X F ^ ( g d X G . This implies that

^l a.e.
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Corollary 4,10, Let E be an arbitrary closed subset of Q containing the
Shilov boundary of A, and let q^Q. Suppose further that Hj is the totality of
Jensen measures for q supported on E, each of which is the terminal measure of
some consistent family with base point q. Then Hj is a weakstar compact convex
set in the dual of C(Q\

§ 5. Burkholder-Giindy-Silverstein Inequalities and Fefferman's Theorem

In this section, we shall discuss Burkholder-Gundy-Silverstein inequalities
and Garsia's definition of BMO. Here we should point out that as far as the
former is concerned, our strategy of the proof is analogous to the probabilistic
one (cf. [9]).

Lemma 5.1. Let {1G: G^3q} be a consistent family, and let g, /ej+ satisfy
the inequality g^f. Then for each p with

Proof. For the left-hand inequality, recall that

and

Hence it suffices to show that ^(fl[g>f])g>l[g=f](fl). Since ftg=
, we have that Z[.g=tKAQ—A[g<t']. In particular, Xlg=f](Q}

). On the other hand, ;t[g<fl(J2[g>f])=0, and so

because AQ— ̂ [g<f]^0 by condition (3) in Definition 4.1.
For the right-hand inequality, observe that Q\_f ^t~]dQ[_g^t~]. This implies

that ftg=f](Q)^Jt\:f=f](Q). Hence

Theorem 5.20 (Burkholder-Gundy-Silverstein inequalities [2]) Let {AG:
be an arbitrary consistent family of Jensen measures with base point q^Q. Then
for each p with l<p<oo} there exists the constant Cp dependent only on p such
that

Moreover, if f^A, then for every p with Q<p<oo,
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Proof. Owing to the preceding lemma, we have only to prove the right-
hand inequality in each case. We show the first inequality for p, 0<£<oo
under the assumption that gr is a log-envelope function for some r, 0<r</>.
Observe that with a=r/p

B(g*)d;ifl=j"^ (5.1)

For a given positive number e, take a finite sequence {M?=o of real numbers
such that 0=f 0<fi< - <tn (\\g\\~<t%) and

-IX^mC^tf]-^^^^^

Call ak=A[.g<tn, Q^k^n, for notational convenience. Then the above inequal-
ity can be read as

2 (tkn<rk-<rk-i}(Q)<*+\MB(g*)dla. (5.2)fe=i J

Furthermore, from the facts a0=Q and an=-^.Q, it follows that

^=2*-**-!) . (5.3)

Here let us estimate the value A[g=ta](Q). From the relation ^[g-^
we find that ^[g=fa]<^0—-*[g<fa]. Since gr is a log-envelope function, we
obtain (in all cases)

In particular, if tk-i^t<tk, then

or by (5.3)

)^r" 2 gr

Let denote by /ct<a] the indicator of the open interval (—00, a). Then above
inequality can be expressed in the form

Substituting this inequality in (5.1) and noting that r=ap, we have
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=(P/p-r) 2
k — 1

(p-r)/p f n

(p-r) / p (C 1 rip{ e

The last inequality is due to (5.2), (5.3). Letting e->0, we obtain

This leads us to the final conclusion. Indeed, if p>l, we can take 1 as r.
Thus the first inequality is proved. In case that g=\f\, then gr is a log-
envelope function for every r, 0<r<°o by Lemma 4.3. So the second inequality
holds.

Lemma 5,3. Let {AG:G^<Sq} be a consistent family, and let f^A and
w=Re/. Suppose a positive number a satisfies the inequality ct>\f(q)\. Then
for each

Proof. We may assume that fi>\u(q)\. Note that \u\=log\ef \V\og\ ef ~f

belongs to J, So the set G=fl[|/|ga, U|g|8]=0[|/|^a]nfl[UI^8] is
contained in EFg. We first show that the measure 1G of the family has no mass
on the set fl[|/|=a, |M|=jS]. Indeed, assume that this is false. Then for a
suitable complex number 7=±/3±fVa2— /J2, the inequality ^(<0[/=^])>0 must
hold. Put £=(/+r)/2r. It is clear that ^e^, ||g||c=l=g!fl[/=7'], and
|^(g)l<l, where g is the base point of 3q. Hence

0=lim gn(q)=lin

a contradiction.
Call 2,=^G | fi[|/|^a, UKjS] and ̂ 2=^G | fi[|/|<a, UH/3]. From the

above, we find that ^G=^i+^2. Furthermore, since £[l/|^a, IwKjS] is a
relatively open subset of fl[|/|^«], we are led to the relation ^[|/
by condition (3) of Def. 4.1. The similar reason yields that ^[| u\
Therefore we obtain
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Lemma 5.4. (Paley-Zygmund cf. [9], [10]) Let u be a positive measure on
some measure space. Suppose that for a measurable function g^O, there exist

positive numbers a, ft such that a lMl^lgdv and \g2dy^/3|Ml. Then

Theorem 5.5. (Burkholder-Gundy-Silverstein inequalities) Let U G :Ge£F Q } be
an arbitrary consistent family of Jensen measures with base point q<^Q, and let
f=u+iu^A, where u — Re/ and u(q}=Q. Then for each p, 0<£<oo, there
exists the universal constant Cp such that

Proof. The left-hand inequality is due to Lemma 5.1. For the inequality
on the right side, put I={t>Q:2p+1Z[\f\=2Q(Q)^Zi\f\=0(Q)}. Here recall
the well-known inequality (cf. [9])

Therefore,

(5.4)

Let us estimate the value ^[|/|=f|(fl) with t^L We first verify the case
t> I f(q) 1 = I u(q] | . For notational convenience, call ^=2 [ I / 1 =£] and /i2=
^[l /IS2f]-^[l / l<fl . By condition (3) in Def. 4.1, ^0 and /fXjw,. Let v
be a measure on the product space Qz=QxQ that is constructed in Theorem
3.1 for ordered measures ^ and ^2. Then by Tf=f a. e. ^! (f^A)

Hence we have that
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so that for S=Q2[\l®f\ ^2f],

From inequalities |/01|=f, |10/l^2f a. e. v, the above yields

( 1 1®/ 1 - 1

On the other hand,

Applying Lemma 5.4 with g=(10M— w®l)2, these yield

where ^=(2-p-3)1/2 and JB=(2-p-3)2/34.
Now, using Lemma 5.3, we are led to the estimate

u

Hence we conclude that

(5.5)

Since K2/B and A/2<1, (5.5) is still valid for the case ^|/(^)| = |M(^) | and
/. Substituting (5.5) in (5.4), we obtain that

u =

-^[ i u i =

Corollary 5.6. (Burkholder-Gundy-Silverstein) Lg^ { / ^ G ^ G e E F g } 6e a consis-
tent family, and let f—u+iu^A with u(q)=Q. Then for each p, 0<£<oo,

there exists the universal constant Cp such that \MB(\it\p}d}lQ^Cp\MB(\ u\p)d%Q.

In the remainder of this section, we discuss Fefferman's duality theorem on
BMO [4]. Let h be an (abstract) harmonic function on Q. Namely, h is a
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real-valued continuous function on Q such that h — h—h, where h ——(—h)a

Note that every function of Re A is harmonic on Q. According to the original
definition of Garsia (semi-) norm, we put, for any harmonic function h, (cf. [8])

Let fa, fj.2. be positive measures on Q with jWi<^2, and let T: Lp(/jt2)
1^=£^°°, be an arbitrary conditional expectation. By condition (3) in Theorem
3.1, the inequality Tg^g a. e. /^ is valid for g<E J and so, for every log-envelope
function on Q. In particular Tg=g a. e. /jtlf whenever g is harmonic on Q, or

Furthermore, if h is a harmonic function on Q, then O^T(/i2)— h2

a.e. filt because /i2^T(/22)^7W)^/T2 a.e. ^.

Theorem 5*7. Let {^G :Ge£F a} be an arbitrary consistent family of Jensen
measures and let h be a harmonic function on Q. Then for each f^A with

Proof. Given a positive number s, we take a finite sequence {?*}?=o of
real numbers such that 0=f0-Oi< ••• <?» (II/IK^J and

. (5.6)

Let i^ be a measure on Qz=QxQ constructed in Theorem 3.1 with ^=
I^A-i] and jM8=^[|/|^*], l^^^n. Then noting that /(0)=0 and
l^0]=3a, we have

On the other hand,

£(/®/i|<7{C(fl)®l})=A/®l a.e.

So, the above yields

Therefore

Here observe that
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Hence

Also we find that

From these, and by (5.6), it follows that

x

{ r > 1/2
2e+2jMa(|/|)dUlfl}

X { ̂ S (f »-(»-,)(J/i'd^- JA^[ I / ] ^t..,])}1". (5.7)

On the other hand, the following equality holds:

and also we have ^[l/l^t-J-^fl— /i[|/l <it-J. Let T be any conditional
expectation between ^[l / l=£«-i] and Jifi— >Z[|/ | <tt.J. Then as pointed out
earlier, O^T(/z2)-/!2^5j(/z)2 a.e. ^[|/|=f*-J. Hence

Substituting this inequality in (5.7), we obtain by (5.6) that
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1/2

Letting s-^0, and noting Theorem 5.2, we conclude that

§ 6. The Algebra

Throughout this section, we shall deal with the concrete algebra R(K),
which has been introduced in Section 0. It is known that the maximal ideal
space of R(K) is identical with K including the topology. We are interested
in the case that K has nonempty interior.

Let G be a compact plane set with an interior point q. We denote by <o$
(resp. A£) the harmonic measure (resp. Keldysh measure) for q associated with
the set G. From Wiener's construction of a)% and K%, it is easily seen that the
relation tyf -<<Mg, K%^K% is valid under the assumption FcGcK Their extremal
properties among Jensen measures were first observed by A. Debiard and B.
Gaveau [3].

Lemma 6.1. Let A=R(K) and q^lntK. Suppose G is a compact subset of
Q=K whose interior contains q. Then the harmonic measure a)% is the minimum
element in the logarithmic order among all Jensen measures for q that are
supported on /sf\Int G. Furthermore, the Keldysh measure K% for q is the
maximum element in the logarithmic order among all Jensen measures for q that
are supported on G, if G is R(K)-convex.

Lemma 6.2. Let A=R(K) and q^IntK. Let p. be an arbitrary Jensen
measure for q. Then for each decomposition p= pi+ ftz with Q^fa fa the
corresponding decomposition K^—K^K^ with Q^KJ and JJ.J^KJ (/=!, 2) is unique.

Proof. The existence of corresponding decompositions is due to Cartier-
Fell-Meyer theorem (cf. [1].) Let K^K^KZ be another decomposition as above.
Then £i+£2 is a Jensen measure for q maximal in the logarithmic order. Hence
K^=K!+Kzf by Lemma 6.1, and accordingly K2=tc2. (Note that this lemma is
covered by general Choquet theorem, cf. [1], [3].)

Lemma 6.3. Let A=R(K) and let ^elnt/T. Suppose that o)f=jcf. Then
for every

Proof. Recall that each G^3q is defined as G— [z^K: h(z)^r], where
and /iej. Since each h^J is subharmonic on Int/C every connected
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component of Int K\G is not relatively compact in Int K. Hence by Gonchar's
criterion, each z0 of SGnlnt K is a peak point for R(G). In particular, ZQ

belongs to the Jensen boundary of R(G). On the other hand, R(G) is identical
with AG. Indeed, for each c^C\G, (z—c}~l\G is uniformly approximated by
functions in R(K)\G, where z denotes the coordinate function on the complex
plane. This is due to the fact that G is J£(/f)-convex. From this fact, we
easily obtain that AG=R(G).

Assume that twf=/:f. Given an arbitrary element G of 3q, we put
^=6^ | (Int /Q and ftz=(t)%\dK. From the above consideration, /^ is maximal on
G. Let <yf =0)1+0*2 be the decomposition of tyf such that 0^<y/ and fa^coj
(/—I, 2). Then o^+^g is a Jensen measure for # supported on dK. Therefore
o>f -<^i+/*2 by Lemma 6.1. Since o>f is maximal, we find that &f =^+^2, so
that /£2=o)2. This implies that jei2 is maximal on Q in the logarithmic order.
Thus we conclude that <d=ii+z is maximal on G.

Proposition 6.4. Let A=R(K) and q^lntK. Then the family {K$
of Keldysh measures is maximally consistent, and the family {o)q : G e £FJ of
harmonic measures is consistent.

Proof. The first assertion is a corollary of Lemma 6.1. For the latter
half of the assertion, it suffices to verify condition (3) of Definition 4.1. Let F,
G be any elements of £Fff with FcG. Put F^Fnlnt G, and let denote by U
the relative interior of F with respect to G. Note that Fnf/ClntF, so that
a)%(Vr\U)=Q. For the decomposition Q^=(a^—aj^\V)+a^\Vf there exists a
decomposition o)$=o)1+o)2. such that O^eui, <w2 and <0%— o)q\V-^o)1} wj V-^o)2.
Then the measure o)3=o)2+o)q— o)q\V is supported on K \Int G and satisfies the
relation o)3-<^o)%. These imply that o)3=o)q by Lemma 6.1. Hence (oq\U=

because of the fact a%(Vr\U)=^b. Consequently we obtain that
a.e. .

Corollary 6.5. Let A=R(K) and q^lntK. Then consistent families with
base point q whose terminal measures are supported on 8K are unique if and only
if o#=*?, fl=K

Proof. One direction is clear by Proposition 6.4. Let {^G :Ge£Fj be a
consistent family with AQ=O)®=K$. Owing to Lemma 6.3, we have only to
prove that ^G(IntG)=0. But this is an immediate consequence from the facts

g(w? and

Remark 6.6. Let A=R(K) and q^lntK. Here let us agree to denote by
H\K the class of Jensen measures for q, each of which is supported on dK and
identical with the terminal measure of some consistent family. From stability
theorems, Hq

K is a weak-star compact convex set in the dual of C(K). Of
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course, H\K contains both of the harmonic measure and Keldysh measure.
is a one-point set if and only if O)$=K%.

In case that O)%^=K%, we can give a Jensen measure of H\K which is different
from the convex combination of &% and K$. Let h be any function of L°°(<w?)
with 0^/irgl. Using this function h, we decompose each a)%, G^3q, into two
pieces a)$=a>?+<og. They are defined by da)?=h d(a)$\VG) and a)$=a)$—a)f,
where VG denotes the relative interior of G with respect to K. Since a)%\VG is
absolutely continuous with respect to a$, (of is well-defined. We sweep out the
measure w? onto the Jensen boundary of AG—R(G] to obtain the measure K?,
i. e. Q^Kq — K? and tyf -<£?. By Lemma 6.2, such balayage of the mass is unique.
Put AG=K?+Q)$. We show that the family {ZG: GeEFj is consistent. It is clear
that every ZG is a Jensen measure for q. Next, let F, G e £Fg satisfy the relation
FcG. Then from the fact VFdVG, it follows that <o$\VF^a)%\VG, so that
<yf^cy?. Let A:?=*?i+A;?2 be the decomposition of K? such that of -<*£i and
<yf— <yf-O?2- By the uniqueness of balayage, we find that /cf -<A:?I. Hence,
^2^(Oq—a)i^o)2+Ki2 and cof+fffX^+^+^i, i.e. 1F^1G. Furthermore, if
U is the relative interior of P with respect to G, and if g is a nonnegative
continuous function supported on U, then by VF—Ur\VG

because /cf |£7^/t?i by Theorem 2.4, and cyf |C7^tyf by Proposition 6.4. This

yields the inequality \gd^F^\gdXG. Since g is arbitrary, we conclude that

^ a.e. G.
Thus our family of Jensen measures is surely consistent. It is clear that

for suitable choice of h, the resulting family gives the desired example: in the
present situation, the harmonic measure is not absolutely continuous with respect
to the Keldysh measure. In particular, H\K is infinite dimensional.

Finally, from several reasons, we pose here an open problem. Does the
class H\K contain all Jensen measures that are carried on dK?

§7» Some Remarks

On the algebras H°°(D), some comments should be made, where H°°(D)
denotes the Banach algebra of all bounded analytic functions on a given domain
D in the complex plane.

We start by summarizing some properties of H™(D} common with R(K).
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Recall that the maximal ideal space Q of H°°(D) contains D as an open subset.
Let q^D and Ge2> It is known that for every such G, the set G\IntCDr\G)
carries the harmonic measure &% for q. The measure 00% has a certain minimality
property with respect to the logarithmic order. This is a dual version of the
fact that for each h^CR(Q\lnt(Df^G)\ h is harmonic on Int(DnG). About
the behavior of such functions, the details can be found in [6].

Lemma 7.1. (T. Gamelin, cf. [6]) Let A=H°°(D) and q^D. Then the
harmonic measure CD%, G^3q} is the minimum element in the logarithmic order
among all Jensen measures for q that are supported on £?\Int(£>nG).

From this lemma and by the argument as in Proposition 6.4, the next
observation is immediate.

Proposition 7.2. Let A=H°°(D) and q^D. Then the family {o£:Ge£Fa}
of harmonic measures are consistent,

The following is the analogue of Lemma 6.3. Since the argument is strictly
same, we omit its proof.

Proposition 7.3. Let A=H°°(D) and q^D. Suppose the Jensen measure for
q supported on Q\D is unique. Then for each GeEF5, the Jensen measure for q
supported on G\Int(DnG) is unique.

Remark 7.4. The above is the case with the algebra H°°(A), A the unit
disk on C. Indeed, let h be a function of CR(Q\A). Then the functions h and

h =—(—h) are harmonic on A, and extend continuously to the Shilov boundary
of H°°(A). Hence we see that h— h on A. This implies that the Jensen measure
for q^A carried on Q\A is unique, i.e. only cy£.
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