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§0. Introduction

We denote by {X, Y} the group of stable homotopy classes of mappings
from X to Y. We denote by P™ the real n-dimensional projective space. The
purpose of this note is to determine the group structure of {P2", P?"} for
2<n=<4 (Theorems 2.4, 3.4 and 5.6). As an application, the stable group of
self-homotopy equivalences of P?* will be determined in our case (Corollaries to
the above theorems).

We denote by y,:S®—P" the projection. Let 7,,: E?*~1P?*—P?" be a stable
extension of 7,, such that P**** is the mapping cone of 7,,. Then our method
is to use the cofibre sequence starting with 7,, and to use the following: The
order of the identity class of P** [11], the order of the Kahn-Priddy map [6]
and the ring structure for 2=8 of the stable homotopy ring of spheres
we=> m(S% [10]. The EHP-sequence is used to show that the generator ¢ of
the 2-component of #,(S° survives in {P%, P*} (Lemma 5.2).

§1. Main Results Used in the Computations

Throughout this note we work in the stable category, unless otherwise
stated. First we shall give a remark about the stable secondary compositions.
The last part of Chap. III of [10] deals with them in the only case of the stable
homotopy groups of spheres. But the definition of the stable secondary com-
position is still valid in the case of the stable homotopy groups between finite
CW-complexes. The progerties (3.5), (3.6), (3.7) and (3.8) of [10] are valid in
our case. For example, we have the following:

a°<‘B: 7 5>C—(‘1>m‘<a°ﬁ; 7 5>
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and
la, B, P>e0=(—1)'""*"aB, 71, 0>,

where |a|=dim Y —dim Z for ac{Y, Z}.

These properties of the stable secondary compositions will be freely used in
the subsequent arguments.

We denote by s(n) the number of 7/ such that 0<i=<n and /=0, 1, 2 or 4
mod 8. By Theorem 6.2 of [1], P*! is reducible if and only if 23~V is a
divisor of n. So we have the following

Theorem 1.1. 7., is trivial if and only if n=1 or 3.

It is well known that 2y,,=0.
We denote by ¢ the identity class of S° by 7:S'—P? and p: P*—S? the
canonical maps. Then we have a cofire sequence
2¢ )
(L.1) Sl — 5S> pP2__ 5825 ...
We take 72, E{720, 2¢, p> such that P?**? is its mapping cone. Exactly we
have a cofibre sequence

77211, Z'(TL) (n)

(1.2)t™ Er-1p? s pin s penir 5 EIRpr_ 5 ...

where :® and p‘™ are the canonical maps.
Let » be the generator of z,(S=Z/2 and ¢; the identity class of P~
Then, by [11], we have the following

Theorem 1.2. i) ¢}, is of order 25¢™,
ii) 2=inp.

A mapping ¢: P**—S°is called a Kahn-Priddy map if the restriction ¢|S*=1.
We denote by &(X) the stable group of self-homotopy equivalences of X. Then,
by Theorems 1.1 and 3.1 of [6], we have the following

Theorem 1.3. Let ¢y, : P*"—S° be a Kahn-Priddy map. Then

1) @an is of order 2°¢™,
ii) There exists an element e;, SE(P*™) such that {@sn°€sn, Tan, D™D contains
a Kahn-Priddy map from P**% to S°.

This theorem will be used putting e;,=¢;, in our arguments.
We shall use the following [10]

Theorem 1.4. i) 7,(S° for 0=<Ek<8 (the 2-component for k=3 or 7) is
isomorphic to the corresponding group in the following table:
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k 0 1 2 3 | 45 6 | 7 8
mx(S°) ; (c0) @) 2) ®) 0 (2) (16) (2
gen. | ¢ Y/ /N v v a 1 70, €

Here (n) means Z/n and (2)*=(2)PB(2) (direct summand).
ii) There exist the following relations:

=<2, 9, 200, B’=4y, pu=yp=0, 2ve(y, 2, > mod 4y,
vi=0, v, ), no=ay, ey, 2, vH=<y, v, 2v) mod na,
not+e=<{, 1, 1.

By use of (1.1) and Theorem 1.4, we have the following (Theorems 3.1 and
3.2 of [4] and §2 of [5])

Theorem 1.5. i) G,=n(E**P? and Gi=n,,(P? are for 0<k<8 isomor-
Dhic to the corresponding group in the following table:

Eoo oo 1] 2] 3| 4| 5] 6 7 8
Gy=GF | @ | @ | @4 @ @ 0| @ (2)* 2)°
gen.of Gu| b | b | 7 |97, vp| 7°7 v'p | v ap |8a, nap, ep
gen. of G¥ 7 i 7| gn, v | §n° }a :2, i é\(}, ina, ie

ii) There exist the following relations:
pi=0, c€p, 1, 200=<2, p, > mod 2, 7€y, 2, p>, FEI, 2, P,
27=0%p, 29=in% F7==+2v, »5=0, =0, VY eQ? 2, p,
;EEQ', 2¢, V2, 77;5:517, ;5:7:1'5, 8¢ =<8a, 2¢, D>, é;red, 2¢, 86>,

By Theorem 3.3 of [4] and by Proposition 2.1 of [5], we have the following

Theorem 1.6. i) H,={E*P? P? for —1=<k=6 is isomorphic to the corre-
sponding group in the following table:

R 2 3 | 4] s 6
He o @ & (2)* (2)° @b | @ | @ 2)°
gen. ’l ip ¢ | i, 5P |ing, §np, wp| 77, m Jqn | P iv?, ;ép, io)h

ii) There exist the following relations:
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25=inp, G7)l=ing, GplP=qnp, Wy, 2, P=A, 2, vp)
Svpmod 277, 7p(F77)=(707)E7)=777=0.

We shall give a proof of the last relation (cf. the proof of Proposition 2.1.
vi) of [5]):

70 7=7<2, 9, 207C27, 1, 2p=4x’, 1, P* P>y, 1% 9>

=iy, dv, np>.
On the other hand,

i, 4y, 9p> Dy, 4, p>=<0, 4, np>>0mod (i9)7(E*P?)+ms(P2)(np)=0.
This completes the proof.

The theorems in this section will be often used without any references.

§2. Determination of {P*¢, P*}

Hereafter Z/2 is taken as the coefficients group of the cohomology. Since
Sq*: H*(PH—H*P* is nontrivial, we have
(2.1) fgzﬁp .

By Theorem 1.3 and (2.1), we have a Kahn-Priddy map 7' €x°P*) of order
8 satisfying 7'7'=7, i.e.,
(2.2) 7'€L7, b, P .
Here /=1 and p’=p in (1.2)’. So, by use of the exact sequence induced
from (1.2)’, we have 45'=%%;p’ and =%(P*)={5'}=Z/8.

We put py,=E*"2p.p™-D: P2nS22  Similarly as above, by use of (1.2),
we have the following

Proposition 2.1. zn*(P*) for 0=<k=<4 is isomorphic to the corresponding group
in the following table:

k 0 1 2 3 4 '
z*(PY | (8) 2 @ 0o @ {
gen. 7" | npp’,vhe | 7D’ Ds

Here 47'=n3p’.

By use of (1.2)’, we have a short exact sequence
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0 —> {7} —> my(P*) —> {i} —> 0.
U i
Z/4 Z/2

We define an element i=x,(P*) by p'i=i, i.e.,
2.3) 1€, 7P, 0.

Then 2/, §b, e2=—i'"<qp, i, 20" 5P, i, 2¢> 2’7 mod 2’7 ,(P?) = {245} .
So we have 2i=+i'5 and zy(P*)={i}=~Z/8.
By the similar arguments to the above, we have the following

Proposition 2.2,

k 0 1 2 3
T p+s(P*) ® 2)* 2 2)
gen. i 17, i'iv in? | Iy

Here 2i=+i"j.

Hereafter the inclusions 7, 7/, --- (resp. the projections p, p’, ---) are often
used to denote the compositions of the inclusions (resp. the projections), unless
any confusion occurs.

By use of (1.1) and Proposition 2.2, we have the following

Proposition 2.3.

Eol oo 1 2 3 4
{E*P%, P} (4) @) 2)° 9D 2 2)*
gen. i’ | 7, ip | ing, ipp, vp 17, i’y 197, Wwp

Theorem 2.4. i) 4ci=in7p’ modivp,.
i) {P*, P'}={e, ivp} =Z/8BZ/2.

Proof. Consider the following exact sequence induced from (1.2)":

i % = b\

(7p)
{P?, P} <— {P*, P*} =—— {E*P?, P'} < {EP?, P'}.

Then, (7)*(7)=0 and by Proposition 2.3, (5p)*(ip)=ipp+0. So we have a
short exact sequence
;* &3
0 <— {i’} <— {P*, P'} <— {in7p, ivp} <—0.
R R
Z/A (Z/2)
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By (2.2) and Proposition 2.1, 7'((p7p)=%*5p'=47" and 7'(lvp)=nvp=0. This
completes the proof.

We denote by (Z/n)* the multiplicative group of Z/n and by GXH the
direct product of groups G and H. In the above theorem, (fvp,)*=0. So we
have the following

Corollary. E(PHY=(Z/8)*X Z]2.

By (2.2) and (2.3), 27'1€{3, §ip, i>e2t=—5<Gp, i, 20D 77D, 1, 24> +2
mod (27)ms(P%)={4v}. So we have

2.4 7/1=v mod 2v .

§3. Determination of {PS, P¢}

Since Sq*: H*(P%)—H5(P?) is trivial, 7,=1n by Proposition 2.2. So, by Prop-
osition 2.3, we can take

(3.1 Fo=17 .
By (2.4), 7'(17)=v7=0. So, by Theorem 1.3, we have a Kahn-Priddy map
7 €x®(P®) of order 8 satisfying %i”"=7’, i.e.,
(3.2) 7e<q’, 17, p"> -
By use of (1.2)” and (3.2), we have a split exact sequence

in® ”x
0 <— {7} <— n°(P%) <— {p*p} <— 0.
U I
Z/8 Z/2

Therefore n°(P%)={7, v®pst =Z/8PZ/2.

By (2.3), pi=pi=0. So we can define an element p,=x*(P%) by pui”"=ps
ie.,

(3.3) Pt 17, D"

Then: 25462‘°<p4: {7_}! p”>:_<2{: fh; {77->p”:)_<2{) p: p/{77>p”3_<2{7 p: Z.>77p”5
—7p” mod 22°(P?)p"+xEP*)(i7p")={27p"} by Proposition 2.1. So we have
2p,==+7p”. Therefore (1.2)” and Proposition 2.1 lead us to the following

Proposition 3.1. z*(P% for 0=<k=6 is isomorphic to the corresponding group
in the following table:
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k 0 1 2 3 4 5 l 6
T*(P°®) ®D(2) ) 0 (2) 8) (2) (2)
‘ gen. 7, V:PDe ”134 vDs l ,54 NDs Ds i

Here 2p,==+75p".
By use of (1.2)” and Proposition 2.2, we have the following

Proposition 3.2.

B0 1 2
P | @ 0 @
gen. l v i1y

By use of (1.2)” and Proposition 2.3, we have the following

Proposition 3.3.

k 2 3 4
{E*P?, P} (2)® (2) 2
gen. Ny, wp ) i"tvp

Consider the following exact sequence:

"

7 ax Tx
a*(P*) — {P*, P'} —> {P*, P?} —> 0.

Then, by (L.2), r.pa=inpp’=p"*Gp)*ip)=0. So, by Theorem 2.4, we have
{P*, PS}={i", ivp} = Z/8DZ/2.

Theorem 3.4. {P°, P} =/{c}, ivp,, i"ivps} = Z/8D(Z/2)%

Proof. Consider the following exact sequence induced from (1.2)”:

({;7-)* P i 17)*

[E?P?, Pt} <— {P*, P%} < {P%, P¥} <— {E*P%, Pt} <~ {EP*, P} |

Then (fv‘;)*(iyp,,):O and by Proposition 3.2, (fﬁ)*{EP“, P}, (P%5=0. So we
have a short exact sequence
Z'//* 1£3 5
0<—{¢", ivp,} =<— {PS, P} =— {{"wp} =—0.
Q Q
Z/8BZ/2 Z/2
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By (3.3), there exists an element svp, of order 2 in {P% P°¢. Since ¢ is of
order 8, the above sequence is split. This completes the proof.

We put e=ivp, and f=i"ivp,. Then a*=pf>=0 and af=pa=0. This leads
us to the following

Corollary. E(PO)=(Z/8)*X(Z/2)
By use of (1.1) and Proposition 3.1, we have the following

Proposition 3.5. {P®, E*P?* for —1=<k=4 is isomorphic to the corresponding
group in the following table:

k -1 0 1 2 3 4
{P®, E*P?} 2)° (2) 2) 2)* 2)* 4
gen. ;J\:E‘;, Z.7=], iyzpe i”ﬁ4 ;J\bp” 57],06; iyps ﬁﬁs, 2.54 p”

Here vp,=4, 2, vpsy and 2p"=ipps.
By use of (1.2)", (1.2)” and Proposition 3.5, we have the following

Proposition 3.6. i) {P°, P*}={779ps, wpe, ivh:} =(Z/2)%,
where §NPEL, 1P, TNDe-

il) 4eg=i"5np, mod {i"1vpe, 1vP.}.
§4. Determination of Generators of n*(P?) for 0<k<8

By use of (1.2)’, we have a short exact sequence
Z‘/ !

0 —> {i1?} —> 2, (P*) —> {77% —> 0.
~~— ~~
We define an element jp*cx,(P*Y) by p'jp’=77?% ie.,
(4.1) Nt e, 7o, 79

By use of (1.2)”, we have a short exact sequence

N "
z

0 —> 7(P*) —> m,(P%) —> {5} —> 0.
We define an element 7'<x,(P®) by p”#'=7, i.e.,
4.2) 7EG", 17, 7).

By (3.3) and (4.2), p.7’'€<ps, 17, 7LD, 17, 72 LP, 1, 2D P, 7, 2)o(£y)D +v
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mod pr;(P%)+z(P?7=1{2v}. So we have

(4.3) pi’'=vmod 2v.
Proposition 4.1. 1) %’ is of order 8.
i) 4y'=qd" 7777 2 mod 72

i) rr7(P4)*—{v77,w2} (Z/2).
iv) m(POY={3", W*}=Z/8DZ/2.

Proof. 1) follows from (4.3). By (4.2), 45'€”, fﬁ, 77>°4z:~i”<fr7, 7, 4.
On the other hand, p’<fr7, 7, 4> LT, 7, 4> CG, £2, 400D, 2, )25 7°
mod iz,(S%)+47,(P%)=0. So we have <fr7, 7, 4:)9%2 mod sy This leads us to
ii). 1iii) and iv) follow from i) and ii). This completes the proof.

By Proposition 4.1, FsE<7e, 2, p>=<0, 2, p>=n(P)p={75’p, iv*p}. BY (4.2),
Propositions 3.3 and 4.1, §'€<”, i3, 7> mod i”m,(P*)+{E*P?, Pt}5=1{47’, iv?}.
Since qu:ﬁs(Ps)—J?s(Pa) is nontrivial, we can take

(4.4) 7s=7'p for a suitable representative 7'<<i", 17, iy .

By use of (1.2)”, we have a short exact sequence

n I
2

0 —> 7y(P%) —> m,(P¥) —> {i} —> 0.
We define an element i €x,(P®) by p"i'=i, i.e.,
(4.5) e, 3D, 1.

Then 27’ EG", P, Do2=—1"{F'P, i, 2>3"5’ mod 2i4r,(P*)=1{2{"3'} by Prop-
osition 4.1. This leads us to the following

Proposition 4.2. 2i'= "%’ mod 2{"%" and T(PY={1, v} = Z /16D Z /2.
By use of (1.2)™ for n=1, 2 and 3, we have the following

Proposition 4.3. #,(P**) for 2=k=<4 is isomorphic to the corresponding group
in the following table:

k 2 3 4
T5(P?*) (2)* @)+ 2)*
gen. 1V ig 7’7, z:, i’;é, ic | 1 1) z’”zu iy , 10

~ P .
Here ived”, 17, ).

Since Sg%: H(P?)—H*(P%) is nontrivial and Sg®: H(P*)—H*(P®) is trivial,
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rszz"n mod {z"”;';, z";\é} by Proposition 4.3. So we have the following

Proposition 4.4. i) 7,=i'y mod {i"4v, i’ *}.

i) we(P?={i"14y, i”u\g, io}=(Z/2)%.

Remark 1. By Proposition 3.2, m(P®={i"iv}~Z/2. So Propositions 2.2,
3.2, 4.2 and 4.4 overlap with Theorem 2.6 of [2] and Table 4.1 of [3].

Next we shall determine generators of 7*(P?) for 0=<k=<8. We define an
element vpen'(EP*) by vpi’=vp, i.e., vpelvp, 5p, p’>. Then, by use of (1.2),
we have n%(EPY)={y7’, vp}=(Z/2)~

Consider the following exact sequence induced from (1.2)”:

({7_/ * §7* ”x {77 *
7% E‘P?%) <— n(EP*) <— n%(EP®) <— n(E°P?) <— n% E?P*).
Then (fﬁ)*ﬂ°(EkP4)C7rk+3(S°)ﬁ=0 for k=1 or 2, and so we have a short exact
sequence
. Jr* n o
0<— {n7’, vp} <— a%EP®) <— {»? ap} <—0.
U U
(Z/2) (Z/2)?

We define an element vp €x°(EP®) by vp'i”=vp, i.e., vp’'E<vd, 17, p”>. Then
20p €2:4up, 17, "> =—<2, v, 170p" C—<2t, 0, 7>p” =2x%(EP?)p" +r5(SO)7 "
=0. So, by (3.2), we have the following

Proposition 4.5. z°(EP®%)={%7, vp', VEp”, apet =(Z/2)1

Consider the following exact sequence induced from (1.2)":

PYFNT Fm® mk =~/ A\

7 .
T (EPP?) <— n°%(P®) <— n°(P?®) <— n°(E°SP?) Z—— n°(EP®).

Then, by Proposition 3.1, (7'p)*(v*ps)=0 and (5'p)*7=7%#’p. Since 7 is of
order 8, 77'=2a¢ for some integer a. So the first (5'p)* is trivial. By (4.2)
and Proposition 4.5, (7'p)*(n7)=0, (7'p)*(*p")=¢p, (7'p)*(ep)=anp and
(7' p)*up €my(SYp. Therefore we have

(4.6) 75(S)ps=0

and a short exact sequence
Z‘”/* ms .
0 <— {7, v2ps} <— 7°(P?) <— {8a} <— 0.
ll Q
Z[8DZ/2 Z/2

We define an element vp,x*(P%) by vpe"=vps, i e.,
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(%) VD€, 7D, D"

By (4.6) and (4.7), Zuxz:j_JGEZxao@pG, 7'D, p">=<2y, ups_,ﬁ’p>p’”3<2u, v, 9pop"D
2y, v, P>pp"=0 mod 2vz*(E*P?)=0. So we have 2wp,=0. By Theorem 1.3,
we have a Kahn-Priddy map 7=]'En°(P8) of order 16 satisfying 77'{’”:77, ie.,

(4.8) 7ed, 7D, .

Therefore we have the following
Theorem 4.6. 87 =8¢p" and z°(P5)=1{%, vwp,}=Z/16DZ/2.

By (4.6) and (4.8&87}’68{°<ﬁ; 77/17; p/”>:—_<8{7 ﬁ’ ﬁ’p>lb/”c_<8(; 2(10', p>p/”
D—al8a, 2¢, p>p">a8c¢p" mod 8x(E°P?)p"+ny(S%)ps=0. So, by Theorem 4.6,
a must be odd and we have

4.9) 7#'=2¢ mod4s .

Consider the following exact sequence induced from (1.2)":

7.7./ sk Z'///* mx (f]fp)*
n(EP?) <— n*(P®) <— n*(P®) <— n°(E%*P?%) <— n®(P°).
Then, by Proposition 3.1 and (4.3), (7'p)*(wpe)=0, (7 p)*ps=vp and Im:"*=
{7p"}=Z/4. So we have a short exact sequence
Z'///* VET
0 <— {7p"} <— m'(P*) <— {5*7} <—0.
Q Q
Z /4 Z/2

We define an element 7p”€x*(P%) by 7p"i"=7p", i.e., 5p"€<GDp", 7D, .
Then 479" €4eel70", 7', D">=—<4, 70", T’ p>p"CT—<de, £2, POP"D— {4y, 2,
pyp" =795 p" mod 4x°(E2P?)p"=0. So we have 47p”=795p" and x*(P%)={7p"}
=7/8.

By the similar arguments to the above, we have the following

Proposition 4.7. #*(P?®) for 1<k=<8 is isomorphic to the corresponding group
in the following table:

k 1 2 3 | 4 5 6 | 7 8

Py @ | 0| @ ®| @ @ 0| @
p— — J— |

gen. | v*p", aps | vbs ’ 70" | nap" | 7" | ’ bs

Here 7p"€<{7p", 7'D, P> and 45p" =95 p".

Remark 2. Hideaki Oshima pointed out the following :
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Let V, , denote the Stiefel manifold of k2-frames in R™ Then, according
to [9], z* ™(P") =T y+m-n-1(V N-1.2), Where N=32°*-2 for a large integer j.
So the group structures of z%"-™(P2%") for n<4 are also obtained from the well-
known works of G.F. Paechter and C.S. Hoo.

By (4.5), (4.8) and (4.9), 77, 7'p, i>D(20, p, iy>—0 mod jm,(P%)+
7% E°P%{={20¢}. So we have

(4.10) 7 {'=¢ mod 2¢ .

§5. Determination of {P?, P8}

By use of (1.1) and Proposition 4.7, we have the following

Proposition 5.1. {P8, E*P?} for 0=k=6 is isomorphic to the corresponding
group in the following table:

k 0o | 1 2 3 4l 5] 6
{P®, E*P?} (2)® (2) (2)® (2)® 4) (2) (2)
gen. iVp", iaps| vbe | imTD”, ivhd 3P i7D"| 7" | i7p"| D"

Here EGEG, 2, 17)9, ﬁ’;e <, 2, 7p"> and 2%\1)-”7=z'7777p’”.

Consider the following exact sequence induced from (1.2)”:

(ﬁ/p)* Z'//l* /ES ﬁl *
{E°P?, P*} <— {P°, P*} <— {P%, P*} <— {E°P*, P*} <— {EP’, P*}.

Then, by Proposition 3.5, (4.3) and (4.9), (7’p)*Gvp.)=iv®p and (5'p)*@n)=
(7' DY*@v*pe)=0. We have also (§/p)*vp,e<i, 2t, vpoofi'pC <, 26, VD P V%D
modigp. So we have

(.1) ;épSEO mod 76 ps .

Remark 1. By the same arguments as the ones in the proof of Lemma 5.2,
we have :épszo.
Consider the following exact sequence induced from (1.2)":
(7 D) Lk Pk (7 D)«
{P%, EP*} —> {P®, P*} —> {P%, P*} —> {P5, E*P?} —> {P®, EP?}.

Then, by Proposition 5.1 and (4.7), (7p)swpe=7vPsS <o, 7'P) P">=<F, vDs
F'pp" DG, v, 771))2’”:)(5, v, 7> ps mod 57r°(E3_P_2)p”’=O. Since <7, v, P>CL7, v,
=y <7, v, »>>v® modig. So, by (5.1), 7vp,=0 or igps.



HomoTtory or THE REAL PROJECTIVE SPACE 93
Lemma 5.2. 7/;—_.0(;:0 in {PS, P?} and ieps#0 in {PS%, P*}.

Proof. It suffices to prove fops+0 in {P%, P*}. Consider the following
EHP-sequence :

4 E
[E*P%, E(E'P*AE"PY] —> [E'PS, E'P*] —> [E*P®, E*P*] —> 0.
0 | 2

[E°PS, E*P?] lH {Ps, P4}
Q
{P%, E"P?} [E"P®, E(E°P*ANE‘PY)]
Q
{P®, ETP?}

Here we have used the following: P2A PZ:EPZUQ,,ZC(EPz) and so the 3-skeleton
of P2AP? is stably equivalent to EP2VS®% Then, by use of (1.2)”, {P8, E"P?%}

={ips}=Z/2. By inspecting Proposition 2.2 of [10], H(E'(’7)cg°-E"ps)=
H(E™i'i)e0) E"pg=E¥-E"ps#0 since H(e)=¢;;. Here ¢, denotes the identity
class of S®. By Proposition 3.3 of [6], (5.16) of [10] and Lemma 3.1 of [8],
AEYEp)=A(E*)e E"pg=E"A(t17)c E"ps=E"-(26 —Ec')s E"ps=E i Eg’ < E"ps,
where ¢’ denotes the generator of the 2-component of [S*, S7]. So we have
H(A(E*{-E°pg))=0. Therefore E*(;’i)o6°E"ps is not in the image of 4. This
completes the proof.

By Proposition 5.1 and Lemma 5.2, we have a short exact sequence

4 ’

— . * Dx =
0 —> {v*p", iops} —> {P%, P} —> {§j97p", ivps} —>
Q Q
(Z/2)? (Z/2)?

We define an element 7n7<{E°P? P'} by p'gnp7=777, i.e,
(5.2) 797 €<, 7, 7970 -

By (2.3) and Proposition 4.7, there exists an element fv——jgs e{P%, P* and by
Proposition 2.2 and Lemma 5.2, Zzqu 7 yups—O This leads us to the following

Proposition 5.3. {P8, Pi}= {77777;,1) ,wpe, zvzp’”, iopst =(Z/2) .

Lemma 5.4. i) 77p"=0. i) 77p"=0. i) 77p"==+27p".

Proof. By Proposition 3.1, 77p”=7-2p,=0. By Proposition 4.7, n5p”’e
<7 p”", 7'p, p">=<n, 70", 7 p>p"CaAE*P*)p"=0. Therefore 77p" <, 2, 7>
707 =i%, 1, 7p">Cisn*(P)=0. By Propositions 4.7 and 5.1, 277p"=9%7p"=
47p" ex*(P)={5p"} =Z/8. This completes the proof.

Remark 2. i) By Theorem 4.6, Proposition 4.7, (4.6) and Lemma 5.4. i),
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{9, v, ps»>0 mod pz*(P%)=0. So, by Proposition 4.3, psE i, 17, Wps=

—i"<i7, 1V, psy Di"i{, v, ps»>0 mod i"7(P4)ps=1i'v'ps, icps}. Therefore, by

(5.1), ;’;pszo mod igps. Since Eps can desuspend on E°P%, we have ’z'\;pszo.
ii) By Proposition 4.7, f’ayps——-O. So, by i), Proposition 4.4 and Remark 1,

7sPs=0.
Conjecture. 7,,0,,=0 for all n.

Consider the following exact sequence induced from (1.2)”:

N Vi
Z

(1 Dk * * ({7])*
{P8, E?P?} — {P?, P} — {P?, P°} — {P?, E*P*} — {P%, EP*‘}.

Then, by Propositions 2.5, 5.1 and Lemma 5.4, @7 G5p"M=0, (7)a5p")=in7p"
=0 and (177)771)//’ +2i7p"=i’'77p"=0. So we have a short exact sequence
—~—— = —_— Z.;lg >/|: I~
0—> {797p", whe, iv*D", igps} —> (P, P} —> {7p"} —> 0.
Q Q
(Z/2)! Z/4

We define an element 7p” ’e{Ps, P¢} by p”%ﬁ/———;‘;ﬁ, ie.,
(5.3) 7" €7, 17, TP
By use of (1.2)” and Proposition 5.1, we have a short exact sequence
0—> {P*, P} —> {P*, P’} —> {p"} —>0.
Q
Z/2
Since ¢z is of order 16, there exists an element of order 8 in {P%, P’} which is
mapped onto 2¢; by 7% So this element must be 7 p’” modulo elements of order

2. Therefore we have Zeg—z”’" p”’ mod {some elements of order 2}. By Theorem
4.6, 77(47/15’” )——877 '—8¢p”. This leads us to

(5.4) 4570" =8ap".
Lemma 5.5. f;’%z% mod 74(S)p .

Proof. By (2.2) and (.2), 7'777 €<%, 70, 1797>C<T, 77, 77> mod 7{E°P?,
P2 4-ms(SO)(n7)=ms(S%p. By (4.9) and Proposition 4.1. ii), 8¢r=47777’———;7’7m2
mod 7(@»?)=0. So, by (22) and (1), 8o=7'F7°E<T, 7h, T, 77, 12
mod 77, (P?)475(S)9*=0. By (2.2), (4.1) and@), ﬁ’ﬁ@z‘e(ﬁ, 7ip, ﬁ1f>577'77772
mod 7m,(P?)+=(E?*P?)779*=0. Therefore 7’'597i=7"7n?*=8c. This completes

the proof.



HonioTory oF THE REAL PROJECTIVE SPACE 9%
Remark 3. According to [7], the equality <7, 7%, *==8¢ holds on S°.

By Lemma 5.5 and (4.6), 7("777p")=80p". By (2.4) and Theorem 4.6,
7" wp)=wps#0. So, by (5.4), we have

(5.5) 4757 =i"7n7p" mod (i¥¥p", ia s}
and
(5.6) 20=i"50" mod {i"ivbe, i D", i ps} -

Therefore (5.5) and (5.6) lead us to the following

Theorem 5.6.

i) {P%, Py ={70" , {"ivbe, i VD", 0D} = Z/8B(Z/2)".
i) {PS, PYh={ei, "D, {v*D", iaps} = Z/168XZ/2).

We put a=i"ivp,, B=iv?p"” and y=icps. Then a’=p2=y*=0, af=pRa=0,
Br=rB=0 and ay=ya=0. So we have the following

Corollary. E(P®)=(Z/16)*X(Z/2)
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