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Introduction

The purpose of this note is to analyse the surjectivity of the forgetful
homomorphism f(G, X): Ke(X)—K(X), which gives some useful information
about lifting group actions in stable vector bundles. Here G is a compact
connected Lie group and X is a compact G-space such that K¥(X) is finitely
generated over R(G). Moreover let T denote a maximal torus of G throughout
this paper. It is known that if =,(G) is torsion free, then the homomorphism
a(G, T): R(T)—K(G/T) which is interpreted as f(G, G/T) via the isomorphism
Ke(G/T)=R(T) is surjective (cf. [5], [6]). We shall use a theorem which
Pittie [6] presented to prove this fact.

In Section 1 we shall give a sufficient condition for the surjectivity of
f(G, X) for G a torus (Theorem 1) and further we shall prove that if =,(G) is
torsion free and f(T, X) is surjective, then f(G, X) is also surjective (Theorem
2). Section 2 consists of applications of the preceding theorems to actions on
homotopy complex projective spaces, pseudo-linear G-spheres and complex
quadrics. In Section 3 we shall give a generalized form of Theorem 2 for the
case when Tor n,(G)#0 (Theorem 5) and using some results due to Hodgkin we
shall obtain examples of actions of these groups. In the last section we shall
prove that if a(G, T) is surjective, then x,(G) is torsion free (Theorem 6).

§1. Some Criterions for the Surjectivity

First we provide a criterion for the case when G is a torus. Let G be the
n-dimensional torus S}XSj--- XS}, where S; is the circle subgroup, and Iet
T@)=eX -+ XeXShgs1X -+ XS} for 1=<i=<n where e is the trivial subgroup.

Theorem 1. Suppose that Ky ) (X)=0 for 1=i<n. Then f(G, X) is sur-
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Jective.
Proof. Let S'=S}, T '=S}x - XS} and denote by X’ the S'XT™"'-action

on X induced by Sl><T"‘1—ﬁ—2>T"‘1—Z—>Sl><T"‘1. Denote by C the complex one
dimensional S*X 7" *-module on which 7"-* acts trivially and S* acts as complex
multiplication, and denote by D(C) the unit disc with boundary S(C). There is
an S'XT"--homeomorphism S{(C)xX X’—S(C)X X given by (z, x)—(z, zx) (cf. the
proof of Theorem 1.1 in [4]). Consider the exact sequence associated with the

i j
Puppe sequence, S(C)XX C DIC)X X—=D(C)x X/S(C) X X,

ok -,
(Cx X) = K81, paa(DC) < X) = K S rns(X)

*

¢
.K§1 <Tn—1(X)z]<§x Tn-1
7

x
K% Tn—l(S(C)XX) &
"
S

0

= [\,;‘-n—l(x,)zl(¥(n—l)(hv) ’

where ¢ denotes the Thom isomorphism and = :S(C)XX—X is the projection,
and f is a forgetful homomorphism. By the assumption Kki,r»-1(X)=0, then
f is surjective. By an obvious induction we obtain the theorem.

Suppose that the fundamental group =,(G) is torsion free. Then we have
Theorem 2. If f(T, X) is surjective, then f(G, X) is so.
Proof. Since it follows from [5] that Hypothesis 3.2 in [7] is true, we

obtain by [7] an isomorphism

Ko(G/TX X)=R(T)Qr)Ke(X),
therefore
KT(X)zR(T)®R(G)KG(X) .

Since R(T) is a free R(G)-module (Theorem 1 in [6]), we have a decomposition
as an R(G)-module,

R(T)=R(G)Du:R(G)P -+ Dus-1R(G),

where u;,€R(T) for 1=/<s—1 and s is the order of the Weyl group of G.
Hence we have an isomorphism

(1) Kr(X)= Ko(X)Du, Ke(X)D -+ Dus-1Ke(X)

which we take to be an equality. By the assumption, for any x<K(X), there
exists ye Kp(X) such that f(T, X)(y)=x. We see by (1) that y can be written
in the form
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y=x¢Fu,x;+ -+ +us-1x5-; for some x,€Kg(X), 0=/=s—1.
Then
x=f(G, X)(xo)+e(u) f(G, X)(x)4 - +e(us-1) (G, X)(x5-1)

where e:R(T)—Z is the augmentation. Thus f(G, X)(xe+e(u)x,+ -+
e(us-1)xs-1)=x, and the proof is completed.

§2. Applications of the Preceding Theorems

First we consider compact connected Lie group actions on homotopy complex
projective spaces, and we have

Proposition 3. Let G satisfy the relation H*BG, Z)=0. Let X be a
homotopy complex projective G-space. Then f(G, X) is surjective.

Proof. Let h:X—CP™ be a homotopy equivalence, where CP™ denotes the
m-dimensional complex projective space. Consider the principal bundle S'—2X—X
induced from the principal bundle S'—S?*"*'—CP™, Then X is a homotopy
sphere. We denote by H the associated complex line bundle X X s:C. We have
K(X)=Z[H]/1—H)™*. Since G is connected, the Chern class ¢,(X) is invariant
under the action of G. Consider the cohomology spectral sequence associated
with the fibering X—=XXsEG—BG, then we have

E?»*=H?(BG, HXX, Z))=0,
d,: H¥X, Z)—- Ey'=H*BG, H\(X, Z))=0,
ds: EY*=H*X, Z)— E%°=a quotient group of E§"
=a quotient group of H*BG, Z)=0.

Thus by Corollary 1.3 in [2], we obtain the proposition.

Now suppose that z,(G) is torsion free, and let X be a smooth homotopy
complex projective G-space. Then we have

Corollary to Propoesition 3. f(G, X) is surjective.

Proof. Since H¥BT, Z)=0, we see by Progosition 3, f(T, X) is surjective,
and hence by Theorem 2 that so is f(G, X).

Next let Y be a pseudo-linear G sphere of even dimension [4] where =,(G)
is torsion free then we have

Corollary to Theorems 1 and 2. f(G, X) is surjective.

Proof. Let T(n) be a maximal torus of G. By Propesition 23 in [4],
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Kb, (2)=0 for 1</<n where T() is as in §1. Then by Theorem 1, f(T'(n), 2)
is surjective, hence by Theorem 2 we obtain the corollary.

Now let us consider the complex quadric W?™ defined by an equation
22422+ o +28,=0 in CP?*, We have an inclusion map U(m)CSO(2m)

which is given by the realification AJm/—_lB—><‘;1 —fl) For any MeSO(2m)

022 22 L
M\ i |=pM| : for peS

PZ2m+1 Zom+1

we have

then we obtain actions of SO@2m) and U(m) on W?™. Then we have
Propesition 4. f(U(m), W*™) is surjective.

Proof. Let T(m) be the standard maximal torus of U(m) and T(7) be as in
§1. By Theorems 1, 2, it is sufficient to prove that K% ,(W?™)=0 for 1=/=<m.
By 3.6 Theorem in [1], K!W?™)=K'SO(2m+2)/SO2m)xS0O(2))=0, then by
Theorem 1.1 and Lemma 1.6 in [4], S—'K},,(W?™)=0 for 1<:<m. Here let
Iz, be the kernmel of the augmentation R(T())—Z and S=1+Irq. Let
PCR(T(®)) be a prime ideal associated to the trivial group e, then (1+4Iz;))N\P
=@, therefore

(1) KrayWP™)=0 for 1=:<m.
Now we consider the case m=1. For any non trivial subgroup H of T(1)=S},
5V g = K5si(WHH) g = (K1, g(two points)Rgrcs1/a, R(S))g=0,

because of (W?#={[1, 4, 0, 0], [1, —z, 0, 0]}, therefore by (1) K4s:(W%e=0 for
any prime ideal ¢ of R(S'), thus KL:(W?»=0. Next let us suppose that
Koy (IW?™)=0 for n’<n<m. For m’<m and a subgroup H=eX - XeXH X ---
X H, of T(m’) where H;#e for 1<i<k, we have

T(m")/H=T(m'—k)XT(k)/H’

where H'=H,X :-- XH, and let T(m’—k), T(k) be viewed as Si.;X --- XSL.,
Six .- xS} respectively. Then

Kb ni 1af((W*™ )= Kt ey g(W ™= 2) = K e - ey W™= )YQR(T(R)/H')=0,
therefore
Kby (W*™)g= K iny(WP™)H) g = (K% (m )/H(Wzm)H®R(T(m‘ ym R(T(m'))g=0,

hence by (1), Khm ,(W?™)e=0 for any prime ideal @ of R(T(m’). Thus
K} ny (W™ =0 for m’<m.
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§3. A Generalization of Theorem 2

In this section we consider the case Tor z,(G)+0. It is known that G is
isomorphic to a quotient group of a compact connected Lie group G with
Tor n-l(é):O by a finite subgroup F of its center (é is uniquely determined up
to an isomorphism). So we write G=5/F. Here we assume that F is cyclic

of order d and there exist complex representations W, ,, ---, W, ., of G for
1=<:<d—1 such that
(1) Wi | F=m@, )V (1=k=l),

where W |F denotes the restriction of W on F, m(, k) the degree of W, , and
V a non trivial canonical 1-dimensional complex representation of F.

In fact, if G is simple and simply connected then we have such a system
of representations. Because G admits at least one faithful irreducible represen-
tation W and so we may consider that W|F=mV which implies that the 7-fold

exterior power of W is of the form (7?>V®i (1=i<d-1).

Let m; be the greatest common divisor (G.C.D.) of m(, 1), ---, m(, [;) for
1=/<d—1 and m be the least common multiple of m,, ---, mq-, (L.C.M.). Then
we have

Theorem 5. If f(T, X) is surjective, then Image f(G, X)DmK(X).

Proof. Choose a maximal torus T of G such that T=T/F. Since we can
view a T-vector bundle over X as a T-vector bundle over X in a natural way,
we see by the assumption that f(7~‘, X) is surjective, and so by Theorem 2 that
f(é, X) must also be. Let E—X be a G-vector bundle. Then we have a
decomposition of a F-vector bundle

E~EF®X{S Vo'"QHome(V®, E),

where EF is the invariant subbundle of F and A=AXX a product vector
bundle. Therefore we have an equality

(2) f(G, X)[E]=[E"]+ 3 [Homx(V®', E)],

in K(X). Since EF becomes a G-vector bundle, [Ef]<Image f(G, X). Now
by (1)

(We, QE) =m(s, )N VEQE)T,
as usual vector bundles. Therefore

m(s, )[Homp(V®*=2, E)]=[(W,, QE)"]Image f(G, X),

because of (VEQE) ~Homg(V®¢-9, E). This implies that m[Homz(V® -9 E)]
cImage f(G, X) for 1=<s<d—1. Hence by (2) we see that mf(G, X)[E]
elmage f(G, X), and the proof is completed.
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From the facts mentioned in § 12 of [3] we have the following examples of
m (we use the notations of [37).
1. é:SU(l), F=2Z, the center of G.

. [ . (e

m=L.C.M. of (Z) (1<i<i—1), for ZilF—(Z.)V :
2. G=Spin(@l+1), F=Z,(—1).

m=2%, for 4|F=2V.
3. G=Sp(l), F=Z,(—1).

m=G.C.D. of (22.2_5_1

4. G=Spin(2l), F=Z,(—1).
m=2!"1, for 4*|F=4-|F=2'-'V.

21

) (1=2i+1=D), for LIFz(Z.)V@i,

5. G=Spin(4l+2), F=Z(e; - essy)-
m=L.C. M. {221, G.C.D. (gjﬁ) 1<2i+1=2—1)}, for 4%|F=2"V,
LIF=(I+2)Ve, 4-|F=22V® and ,z,-fF:(‘”jz)V@zf.

6. G=Spin(4l), F=Zy(—e; - eq).

m=G.C.D. {2, (21.4_11), 1=2i—1<2i—2}, for Z|F=(

4+|F=2"-1.1 and 4-|F=2%-1V.

ZIN.
Z.)V ,
7. G=E,, F=Z, the center of G.

m=27, for p,|F=2TV, p;|F=13-27V, p,|F=21V° and p,| F=13-27V®,

8. 5=E7, F=Z, the center of G.
m=_8, for p,{F=8-95V, p;|F=16-5187V and p,|F=8-7V.

§4. On the Atiyah-Hirzebruch Map

In this section we shall make a remark about the map «(G, T).

Theorem 6. If the map a(G, T) is surjective, then the group m,(G) is torsion
free.

Proof. We suppose that the group =,(G) has a p-torsion subgroup, where
p is a prime number. As remarked in §3 if G is semisimple, then there are a
simply connected Lie group G and a non trivial subgroup F of the center Z(é)
and we can write G=G/F. Let I" be a cyclic subgroup of F and of order b.
We have R(I")=Z[V]/(V®"—1), where V is a canonical non trivial one dimen-
sional representation. By §12 in [3],

(1) ZLa(W)]/(a(Ver)—1, p*a(V)—1)CK(G/T),
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where a: R(I")—»K(é/l’) is given by the map U—>6><['U for a [-module U,
and £=1. Denote by z:G—G the projection map, and let T be a maximal
torus of G. Then I'cT and T::r(’f‘) is a maximal torus of G. Let
r:'v:R(F)(X)R(G)ZaK(é/]’) be the map induced from the map a. By Theorem 3
in [6], we have an isomorphism cY(G~, 7 R(T‘)@R(g)ZHK(é/T"). Then we have
a commutative diagram

a(G. T)

R(T) e K(G/T)
- X =i
R(T) G, 1), KG/T)
g9} /
R(T)®R(5}Z G, T) ‘l
i*®1J’ 144 ~
R(r)®R(5)Z —_—> K(G/r):

where ¢ denotes the natural projection. Suppose that a(G, T) is surjective, then
gexm™ is surjective, therefore (*@1)egex™ is so. Thus V®1 in RUNQr@Z is
contained in the image of ((*@1).g-zx*. Since the image of =n* are trivial on
I, aV@®l—1)=0. On the other hand, by (1) @(VRLl—1)=(a(V)R1—1)+0,
which is a contradiction. Hence «(G, T) is not surjective.

Now we consider the case where G is not semisimple. We have a compact
simply connected semisimple Lie group G,, a torus S and a finite subgroup F
of the center of GyXS such that FN{1XS)=¢ and G=(G,XS)/F. Then we
have an exact sequence,

00— ﬁl(GoXS) —> ﬂl(G) —_—> ﬂ:o(F) - O;
and isomorphisms

[
T (GoXS)=n(S)=DZ and m(F)=F,

l
where /[ is the dimension of S. Hence z,(G)=PZPBT for some torsion group
T. Denote by z:GyXS—G the projection map. Consider the exact sequence

e —> FN\(GyXe) —> GyXe —> n(GyXe) —> 2.

Suppose that FN(GoXe)=¢e, then GyXe=n(G,Xe), therefore from the fibration
Go=r(GyXe)—G—G/n(GyXe)=a torus of rank /, we have n,(G)=rn,(G/n(G,X e))

zéZ, hence T=0. Thus if T+0, then FN(GyXe)+e, and we have an element
g=(go, 1) in FN\(G,Xe) where 1 denotes the unit element, such that the order
of g is a prime number p. Let I, be the cyclic group generated by g, and
T, be a maximal torus of G,, Now we have a commutative diagram
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R(T) I PIN KG/T)
Tl GoXS, T =
R(T,XS) a(——o———'—li<5) K(GoyXS)/(T4XS))
q /
R(TyXS)Qry.5Z A(GyXS, TyXS) = l
=i a(G,, T)
R(To)®R(Go)Z —_— K(Go/Ty)
*Q1) a ¥
R(Fo)®R(Go)Z e —— K(Go/T'y),

then by the same argument as in the case of semisimple, we can prove that
a(G, T) is not surjective.

(1]
£2]
£3]

[4]
£5]

L6]
L7]
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