Forgetful Homomorphisms in Equivariant K-Theory

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

By

Hiromichi MATSUNAGA* and Haruo MINAMI**

Introduction

The purpose of this note is to analyse the surjectivity of the forgetful homomorphism $f(G, X): K_G(X) \rightarrow K(X)$, which gives some useful information about lifting group actions in stable vector bundles. Here G is a compact connected Lie group and X is a compact G-space such that $K_G^*(X)$ is finitely generated over R(G). Moreover let T denote a maximal torus of G throughout this paper. It is known that if $\pi_1(G)$ is torsion free, then the homomorphism $\alpha(G, T): R(T) \rightarrow K(G/T)$ which is interpreted as f(G, G/T) via the isomorphism $K_G(G/T) \approx R(T)$ is surjective (cf. [5], [6]). We shall use a theorem which Pittie [6] presented to prove this fact.

In Section 1 we shall give a sufficient condition for the surjectivity of f(G, X) for G a torus (Theorem 1) and further we shall prove that if $\pi_1(G)$ is torsion free and f(T, X) is surjective, then f(G, X) is also surjective (Theorem 2). Section 2 consists of applications of the preceding theorems to actions on homotopy complex projective spaces, pseudo-linear G-spheres and complex quadrics. In Section 3 we shall give a generalized form of Theorem 2 for the case when Tor $\pi_1(G) \neq 0$ (Theorem 5) and using some results due to Hodgkin we shall obtain examples of actions of these groups. In the last section we shall prove that if $\alpha(G, T)$ is surjective, then $\pi_1(G)$ is torsion free (Theorem 6).

§1. Some Criterions for the Surjectivity

First we provide a criterion for the case when G is a torus. Let G be the n-dimensional torus $S_1^1 \times S_2^1 \cdots \times S_n^1$ where S_j^1 is the circle subgroup, and let $T(i) = e \times \cdots \times e \times S_{n-i+1}^1 \times \cdots \times S_n^1$ for $1 \leq i \leq n$ where e is the trivial subgroup.

Theorem 1. Suppose that $K^1_{T(i)}(X)=0$ for $1 \leq i \leq n$. Then f(G, X) is sur-

Communicated by N. Shimada, August 9, 1985.

^{*} Department of Mathematics, Shimane University, Matsue 690, Japan.

^{**} Department of Mathematics, Naruto University of Teacher Education, Naruto 772, Japan.

jective.

Proof. Let $S^1 = S_1^i$, $T^{n-1} = S_2^i \times \cdots \times S_n^i$ and denote by X' the $S^1 \times T^{n-1}$ -action on X induced by $S^1 \times T^{n-1} \longrightarrow T^{n-1} \longrightarrow S^1 \times T^{n-1}$. Denote by C the complex one dimensional $S^1 \times T^{n-1}$ -module on which T^{n-1} acts trivially and S^1 acts as complex multiplication, and denote by D(C) the unit disc with boundary S(C). There is an $S^1 \times T^{n-1}$ -homeomorphism $S(C) \times X' \longrightarrow S(C) \times X$ given by $(z, x) \longrightarrow (z, zx)$ (cf. the proof of Theorem 1.1 in [4]). Consider the exact sequence associated with the Puppe sequence, $S(C) \times X \stackrel{j}{\subset} D(C) \times X \stackrel{j}{\longrightarrow} D(C) \times X/S(C) \times X$,

$$K_{S_{1} < T^{n-1}}^{\ast}(X) \stackrel{\phi}{\approx} K_{S_{1}}^{\ast} \xrightarrow{T^{n-1}(C \times X)} \xrightarrow{j^{\ast}} K_{S_{1} < T^{n-1}}^{\ast}(D(C) \times X) \approx K_{S_{1} < T^{n-1}}^{\ast}(X)}$$

$$\overbrace{\delta}^{i^{\ast}} \xrightarrow{K_{S_{1} < T^{n-1}}^{\ast}(S(C) \times X)} \xrightarrow{f} f$$

$$\approx K_{S_{1} < T^{n-1}}^{\ast}(S(C) \times X')$$

$$\approx K_{T^{n-1}}^{\ast}(X') \approx K_{T^{(n-1)}}^{\ast}(X),$$

where ϕ denotes the Thom isomorphism and $\pi: S(C) \times X \to X$ is the projection, and f is a forgetful homomorphism. By the assumption $K^1_{S^1 \times T^{n-1}}(X) = 0$, then f is surjective. By an obvious induction we obtain the theorem.

Suppose that the fundamental group $\pi_1(G)$ is torsion free. Then we have

Theorem 2. If f(T, X) is surjective, then f(G, X) is so.

Proof. Since it follows from [5] that Hypothesis 3.2 in [7] is true, we obtain by [7] an isomorphism

$$K_G(G/T \times X) \approx R(T) \bigotimes_{R(G)} K_G(X)$$

therefore

$$K_T(X) \approx R(T) \bigotimes_{R(G)} K_G(X)$$
.

Since R(T) is a free R(G)-module (Theorem 1 in [6]), we have a decomposition as an R(G)-module,

$$R(T) = R(G) \oplus u_1 R(G) \oplus \cdots \oplus u_{s-1} R(G),$$

where $u_i \in R(T)$ for $1 \leq i \leq s-1$ and s is the order of the Weyl group of G. Hence we have an isomorphism

(1)
$$K_T(X) \approx K_G(X) \oplus u_1 K_G(X) \oplus \cdots \oplus u_{s-1} K_G(X)$$

which we take to be an equality. By the assumption, for any $x \in K(X)$, there exists $y \in K_T(X)$ such that f(T, X)(y) = x. We see by (1) that y can be written in the form

144

$$y = x_0 + u_1 x_1 + \dots + u_{s-1} x_{s-1}$$
 for some $x_i \in K_G(X)$, $0 \le i \le s-1$.

Then

$$x = f(G, X)(x_0) + \varepsilon(u_1)f(G, X)(x_1) + \dots + \varepsilon(u_{s-1})f(G, X)(x_{s-1})$$

where $\varepsilon: R(T) \to Z$ is the augmentation. Thus $f(G, X)(x_0 + \varepsilon(u_1)x_1 + \cdots + \varepsilon(u_{s-1})x_{s-1}) = x$, and the proof is completed.

§2. Applications of the Preceding Theorems

First we consider compact connected Lie group actions on homotopy complex projective spaces, and we have

Proposition 3. Let G satisfy the relation $H^{s}(BG, Z)=0$. Let X be a homotopy complex projective G-space. Then f(G, X) is surjective.

Proof. Let $h: X \to CP^m$ be a homotopy equivalence, where CP^m denotes the *m*-dimensional complex projective space. Consider the principal bundle $S^1 \to \Sigma \to X$ induced from the principal bundle $S^1 \to S^{2m+1} \to CP^m$. Then Σ is a homotopy sphere. We denote by *H* the associated complex line bundle $\Sigma \times_{S^1}C$. We have $K(X) = Z[H]/(1-H)^{m+1}$. Since *G* is connected, the Chern class $c_1(\Sigma)$ is invariant under the action of *G*. Consider the cohomology spectral sequence associated with the fibering $X \to X \times_G EG \to BG$, then we have

$$\begin{split} E_2^{p,1} &= H^p(BG, H^1(X, Z)) = 0, \\ d_2 \colon H^2(X, Z) \to E_2^{2,1} = H^2(BG, H^1(X, Z)) = 0, \\ d_3 \colon E_3^{0,2} &= H^2(X, Z) \to E_3^{3,0} = a \text{ quotient group of } E_2^{2,0} \\ &= a \text{ quotient group of } H^3(BG, Z) = 0. \end{split}$$

Thus by Corollary 1.3 in [2], we obtain the proposition.

Now suppose that $\pi_1(G)$ is torsion free, and let X be a *smooth* homotopy complex projective G-space. Then we have

Corollary to Proposition 3. f(G, X) is surjective.

Proof. Since $H^{3}(BT, Z)=0$, we see by Proposition 3, f(T, X) is surjective, and hence by Theorem 2 that so is f(G, X).

Next let Σ be a pseudo-linear G sphere of even dimension [4] where $\pi_1(G)$ is torsion free then we have

Corollary to Theorems 1 and 2. $f(G, \Sigma)$ is surjective.

Proof. Let T(n) be a maximal torus of G. By Proposition 2.3 in [4],

 $K_{T(i)}^{1}(\Sigma)=0$ for $1 \leq i \leq n$ where T(i) is as in §1. Then by Theorem 1, $f(T(n), \Sigma)$ is surjective, hence by Theorem 2 we obtain the corollary.

Now let us consider the complex quadric W^{2m} defined by an equation $z_0^2+z_1^2+\cdots+z_{2m+1}^2=0$ in CP^{2m+1} . We have an inclusion map $U(m) \subset SO(2m)$ which is given by the realification $A+\sqrt{-1}B \rightarrow \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$. For any $M \in SO(2m)$ we have

$$M\begin{pmatrix} \rho z_2\\ \vdots\\ \rho z_{2m+1} \end{pmatrix} = \rho M\begin{pmatrix} z_2\\ \vdots\\ z_{2m+1} \end{pmatrix} \quad \text{for} \quad \rho \in S^1$$

then we obtain actions of SO(2m) and U(m) on W^{2m} . Then we have

Proposition 4. $f(U(m), W^{2m})$ is surjective.

Proof. Let T(m) be the standard maximal torus of U(m) and T(i) be as in §1. By Theorems 1, 2, it is sufficient to prove that $K_{T(i)}^1(W^{2m})=0$ for $1 \leq i \leq m$. By 3.6 Theorem in [1], $K^1(W^{2m})=K^1(SO(2m+2)/SO(2m)\times SO(2))=0$, then by Theorem 1.1 and Lemma 1.6 in [4], $S^{-1}K_{T(i)}^1(W^{2m})=0$ for $1\leq i \leq m$. Here let $I_{T(i)}$ be the kernel of the augmentation $R(T(i)) \rightarrow Z$ and $S=1+I_{T(i)}$. Let $\mathcal{PCR}(T(i))$ be a prime ideal associated to the trivial group e, then $(1+I_{T(i)}) \cap \mathcal{P} = \emptyset$, therefore

(1)
$$K_{T(i)}^{1}(W^{2m})_{e} = 0$$
 for $1 \leq i \leq m$.

Now we consider the case m=1. For any non trivial subgroup H of $T(1)=S^1$,

$$K_{S^{1}}^{1}(W^{2})_{H} \approx K_{S^{1}}^{1}((W^{2})^{H})_{H} \approx (K_{S^{1}/H}^{1}(\text{two points}) \otimes_{R(S^{1}/H)} R(S^{1}))_{H} = 0$$

because of $(W^2)^H = \{[1, i, 0, 0], [1, -i, 0, 0]\}$, therefore by (1) $K_{S^1}^1(W^2)_{\mathcal{P}} = 0$ for any prime ideal \mathcal{P} of $R(S^1)$, thus $K_{S^1}^1(W^2) = 0$. Next let us suppose that $K_{T(n')}^1(W^{2n}) = 0$ for $n' \leq n < m$. For $m' \leq m$ and a subgroup $H = e \times \cdots \times e \times H_1 \times \cdots \times H_k$ of T(m') where $H_i \neq e$ for $1 \leq i \leq k$, we have

$$T(m')/H = T(m'-k) \times T(k)/H'$$

where $H' = H_1 \times \cdots \times H_k$ and let T(m'-k), T(k) be viewed as $S_{k+1}^1 \times \cdots \times S_m^1$, $S_1^1 \times \cdots \times S_k^1$ respectively. Then

$$K^{1}_{T(m')/H}((W^{2m})^{H}) \approx K^{1}_{T(m')/H}(W^{2(m-k)}) \approx K^{1}_{T(m'-k)}(W^{2(m-k)}) \otimes R(T(k)/H') = 0,$$

therefore

$$K^{1}_{T(m')}(W^{2m})_{H} \approx K^{1}_{T(m')}((W^{2m})^{H})_{H} \approx (K^{1}_{T(m')/H}(W^{2m})^{H} \bigotimes_{R(T(m')/H)} R(T(m'))_{H} = 0,$$

hence by (1), $K_{T(m')}^1(W^{2m})_{\mathscr{D}} = 0$ for any prime ideal \mathscr{D} of R(T(m')). Thus $K_{T(m')}^1(W^{2m}) = 0$ for $m' \leq m$.

§3. A Generalization of Theorem 2

In this section we consider the case Tor $\pi_1(G) \neq 0$. It is known that G is isomorphic to a quotient group of a compact connected Lie group \tilde{G} with Tor $\pi_1(\tilde{G})=0$ by a finite subgroup F of its center (\tilde{G} is uniquely determined up to an isomorphism). So we write $G = \tilde{G}/F$. Here we assume that F is cyclic of order d and there exist complex representations $W_{i,1}, \dots, W_{i,l_i}$ of \tilde{G} for $1 \leq i \leq d-1$ such that

(1)
$$W_{i,k}|F=m(i,k)V^{\otimes i}$$
 $(1 \le k \le l_i),$

where W|F denotes the restriction of W on F, m(i, k) the degree of $W_{i, k}$ and V a non trivial canonical 1-dimensional complex representation of F.

In fact, if \tilde{G} is simple and simply connected then we have such a system of representations. Because \tilde{G} admits at least one faithful irreducible representation W and so we may consider that W|F=mV which implies that the *i*-fold exterior power of W is of the form $\binom{m}{i}V^{\otimes i}$ $(1 \leq i \leq d-1)$.

Let m_i be the greatest common divisor (G. C. D.) of $m(i, 1), \dots, m(i, l_i)$ for $1 \leq i \leq d-1$ and m be the least common multiple of m_1, \dots, m_{d-1} (L. C. M.). Then we have

Theorem 5. If f(T, X) is surjective, then Image $f(G, X) \supset mK(X)$.

Proof. Choose a maximal torus \tilde{T} of \tilde{G} such that $T = \tilde{T}/F$. Since we can view a *T*-vector bundle over *X* as a \tilde{T} -vector bundle over *X* in a natural way, we see by the assumption that $f(\tilde{T}, X)$ is surjective, and so by Theorem 2 that $f(\tilde{G}, X)$ must also be. Let $E \to X$ be a \tilde{G} -vector bundle. Then we have a decomposition of a *F*-vector bundle

$$E \approx E^F \bigoplus \sum_{i=1}^{d-1} \underline{V}^{\otimes i} \otimes \operatorname{Hom}_F(\underline{V}^{\otimes i}, E)$$
,

where E^F is the invariant subbundle of E and $\underline{A} = A \times X$ a product vector bundle. Therefore we have an equality

(2)
$$f(\widetilde{G}, X)[E] = [E^F] + \sum_{i=1}^{d-1} [\operatorname{Hom}_F(\underline{V}^{\otimes i}, E)],$$

in K(X). Since E^F becomes a G-vector bundle, $[E^F] \in \text{Image } f(G, X)$. Now by (1)

$$(\underline{W}_{s,t}\otimes E)^F \approx m(s, t)(\underline{V}^{\otimes s}\otimes E)^F,$$

as usual vector bundles. Therefore

$$m(s, t)[\operatorname{Hom}_{F}(\underline{V}^{\otimes (d-s)}, E)] = [(\underline{W}_{s,t} \otimes E)^{F}] \in \operatorname{Image} f(G, X),$$

because of $(\underline{V}^{\otimes s} \otimes E)^F \approx \operatorname{Hom}_F(\underline{V}^{\otimes (d-s)}, E)$. This implies that $m[\operatorname{Hom}_F(\underline{V}^{\otimes (d-s)}, E)] \in \operatorname{Image} f(G, X)$ for $1 \leq s \leq d-1$. Hence by (2) we see that $mf(\tilde{G}, X)[E] \in \operatorname{Image} f(G, X)$, and the proof is completed.

From the facts mentioned in §12 of [3] we have the following examples of m (we use the notations of [3]).

- 1. $\tilde{G} = SU(l), F = Z_l$ the center of \tilde{G} . $m = L. C. M. \text{ of } \binom{l}{i} (1 \leq i \leq l-1), \text{ for } \lambda_i | F = \binom{l}{i} V^{\otimes i}.$
- 2. $\tilde{G} = \text{Spin}(2l+1), F = Z_2(-1).$ $m = 2^l, \text{ for } \Delta | F = 2^l V.$
- 3. $\tilde{G} = \operatorname{Sp}(l), F = Z_2(-1).$ $m = G. C. D. \text{ of } \binom{2l}{2i+1} (1 \leq 2i+1 \leq l), \text{ for } \lambda_i | F = \binom{2l}{i} V^{\otimes i},$
- 4. $\tilde{G} = \text{Spin}(2l), F = Z_2(-1).$ $m = 2^{l-1}, \text{ for } \Delta^+ | F = \Delta^- | F = 2^{l-1}V.$
- 5. $\widetilde{G} = \text{Spin}(4l+2), F = Z_4(e_1 \cdots e_{4l+2}).$ $m = \text{L. C. M. } \{2^{2l}, \text{ G. C. D. } \binom{4l+2}{2i+1}, 1 \leq 2i+1 \leq 2l-1\}, \text{ for } \Delta^+ | F = 2^{2l}V,$ $\lambda_1 | F = (4l+2)V^{\otimes 2}, \Delta^- | F = 2^{2l}V^{\otimes 3} \text{ and } \lambda_i | F = \binom{4l+2}{i}V^{\otimes 2i}.$
- 6. $\tilde{G} = \text{Spin}(4l), F = Z_2(-e_1 \cdots e_{4l}).$ $m = \text{G. C. D. } \{2^{2l-1}, \binom{4l}{2i-1}, 1 \leq 2i-1 < 2l-2\}, \text{ for } \lambda_i | F = \binom{4l}{i} V^{\otimes i},$ $\Delta^+ | F = 2^{2l-1} \cdot 1 \text{ and } \Delta^- | F = 2^{2l-1} V.$
- 7. $\tilde{G} = E_6$, $F = Z_3$ the center of \tilde{G} . m = 27, for $\rho_1 | F = 27V$, $\rho_5 | F = 13 \cdot 27V$, $\rho_6 | F = 27V^{\odot 2}$ and $\rho_3 | F = 13 \cdot 27V^{\otimes 2}$.
- 8. $\tilde{G} = E_{\tau}$, $F = Z_{z}$ the center of \tilde{G} . m=8, for $\rho_{z}|F=8.95V$, $\rho_{5}|F=16.5187V$ and $\rho_{\tau}|F=8.7V$.

§4. On the Atiyah-Hirzebruch Map

In this section we shall make a remark about the map $\alpha(G, T)$.

Theorem 6. If the map $\alpha(G, T)$ is surjective, then the group $\pi_1(G)$ is torsion free.

Proof. We suppose that the group $\pi_1(G)$ has a *p*-torsion subgroup, where p is a prime number. As remarked in §3 if G is semisimple, then there are a simply connected Lie group \tilde{G} and a non trivial subgroup F of the center $Z(\tilde{G})$ and we can write $G = \tilde{G}/F$. Let Γ be a cyclic subgroup of F and of order p. We have $R(\Gamma) = Z[V]/(V^{\otimes p}-1)$, where V is a canonical non trivial one dimensional representation. By §12 in [3],

(1)
$$Z[\alpha(V)]/(\alpha(V^{\otimes p})-1, p^{k}(\alpha(V)-1)) \subset K(\tilde{G}/\Gamma),$$

where $\alpha: R(\Gamma) \to K(\widetilde{G}/\Gamma)$ is given by the map $U \to \widetilde{G} \times_{\Gamma} U$ for a Γ -module U, and $k \ge 1$. Denote by $\pi: \widetilde{G} \to G$ the projection map, and let \widetilde{T} be a maximal torus of \widetilde{G} . Then $\Gamma \subset \widetilde{T}$ and $T = \pi(\widetilde{T})$ is a maximal torus of G. Let $\overline{\alpha}: R(\Gamma) \otimes_{R(G)} Z \to K(\widetilde{G}/\Gamma)$ be the map induced from the map α . By Theorem 3 in [6], we have an isomorphism $\overline{\alpha}(\widetilde{G}, \widetilde{T}): R(\widetilde{T}) \otimes_{R(\widetilde{G})} Z \to K(\widetilde{G}/\widetilde{T})$. Then we have a commutative diagram

where q denotes the natural projection. Suppose that $\alpha(G, T)$ is surjective, then $q \circ \pi^*$ is surjective, therefore $(i^* \otimes 1) \circ q \circ \pi^*$ is so. Thus $V \otimes 1$ in $R(\Gamma) \otimes_{R(\tilde{G})} Z$ is contained in the image of $(i^* \otimes 1) \circ q \circ \pi^*$. Since the image of π^* are trivial on Γ , $\bar{\alpha}(V \otimes 1-1)=0$. On the other hand, by (1) $\bar{\alpha}(V \otimes 1-1)=(\alpha(V) \otimes 1-1)\neq 0$, which is a contradiction. Hence $\alpha(G, T)$ is not surjective.

Now we consider the case where G is not semisimple. We have a compact simply connected semisimple Lie group G_0 , a torus S and a finite subgroup F of the center of $G_0 \times S$ such that $F \cap (1 \times S) = e$ and $G = (G_0 \times S)/F$. Then we have an exact sequence,

$$0 \longrightarrow \pi_1(G_0 \times S) \longrightarrow \pi_1(G) \longrightarrow \pi_0(F) \longrightarrow 0,$$

and isomorphisms

$$\pi_1(G_0 \times S) \approx \pi_1(S) \approx \bigoplus^l Z \text{ and } \pi_0(F) = F,$$

where *l* is the dimension of *S*. Hence $\pi_1(G) \approx \bigoplus Z \oplus T$ for some torsion group *T*. Denote by $\pi: G_0 \times S \to G$ the projection map. Consider the exact sequence

$$e \longrightarrow F \cap (G_0 \times e) \longrightarrow G_0 \times e \longrightarrow \pi(G_0 \times e) \longrightarrow e.$$

Suppose that $F \cap (G_0 \times e) = e$, then $G_0 \times e \approx \pi(G_0 \times e)$, therefore from the fibration $G_0 \approx \pi(G_0 \times e) \rightarrow G \rightarrow G/\pi(G_0 \times e) = a$ torus of rank l, we have $\pi_1(G) \approx \pi_1(G/\pi(G_0 \times e))$ $\stackrel{l}{\approx} \bigoplus Z$, hence T=0. Thus if $T \neq 0$, then $F \cap (G_0 \times e) \neq e$, and we have an element $g=(g_0, 1)$ in $F \cap (G_0 \times e)$ where 1 denotes the unit element, such that the order of g is a prime number p. Let Γ_0 be the cyclic group generated by g_0 , and T_0 be a maximal torus of G_0 . Now we have a commutative diagram

then by the same argument as in the case of semisimple, we can prove that $\alpha(G, T)$ is not surjective.

References

- [1] Atiyah, M.F. and Hirzebruch, F., Vector bundles and homogeneous spaces, *Proceedings of Symposium, A.M.S.*, Vol. III (1960), 7-38.
- [2] Hattori, A. and Yoshida, T., Lifting compact group actions in fibre bundles, Japan. J. Math., 2 (1976), 13-25.
- [3] Hodgkin, L.H. and Snaith, V.P., Topics in K-theory, Lecture notes in Math., 496, Springer-Verlag, 1975.
- [4] Iberkleid, W., Pseudo-linear spheres, Michigan Math. J., 25 (1978), 359-370.
- [5] McLeod, J., The Kunneth formula in equivariant K-theory, Lecture notes in Math., 741, Springer-Verlag, 1979.
- [6] Pittie, H. V., Homogeneous vector bundles on homogeneous spaces, Topology, 11 (1972), 199-203.
- [7] Snaith, V.P., On the Kunneth formula spectral sequence in equivariant K-theory, Proc. Camb. Phil. Soc., 72 (1972), 167-177.