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Reflection Positivity for the Complementary
Series of SL(2n, C)
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Robert SCHRADER*

Abstract

We apply the concept of reflection positivity in euclidean quantum field theory to the
complementary series of SL(2n,C) as given by Gelfand and Neumark for n=l and
by Stein for n>l. The result is a virtual representation in the sense of Frohlich,
Osterwalder and Seiler or equivalently a strongly continuous representation of a closed
subsemigroup by contractions on a new Hilbert space. Analytic continuation gives a
unitary representation of a certain dual group of SL(2n,C}. The possible relation to
the theory of noncommuting monodromy matrices appearing in the theory of integrable
quantum systems is briefly discussed.

§ 1. Introduction

The concept of reflection positivity originates in relativistic quantum field
theory [OS]. It allows to recover the Green's functions (Wightman functions)
of a relativistic quantum field theory from its values at the euclidean points
(Schwinger functions) by providing the scalar product for the Hilbert space of
the relativistic theory.

On the other hand, the euclidean theory itself carries a scalar product,
referred to as Symanzik positivity [Sy] and an associated unitary representation
of the euclidean group. When combined with reflection positivity this unitary
representation leads, via an analytic continuation process, to a unitary repre-
sentation of the Poincare group, the symmetry group of special relativity. In
particular, the euclidean time translations first give a contraction semigroup,
called a transfer matrix because of the interpretation of euclidean quantum field
theory as a statistical theory. Its analytic continuation is the one-parameter
unitary group describing the time evolution of the relativistic quantum theory
(for a detailed account see e. g. [GJ]).

The insight obtained from the concept of reflection positivity was soon
applied to other groups. In particular the idea of analytic continuation led to a
non-commutative version of the Hille-Yosida theorem [LM] and the notion of a
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virtual representation [FOS] sometimes also called a local representation (see
e. g. [KL1], [KL2], [Jl], [J2], [Se]). The aim of this article is to extend this
discussion and in particular to apply it to the complementary series of SL(2n, C)
as given by Gelfand and Neumark for n=l [GN] (see also [N]) and by Stein
for n>l [St].

In Section 2 we present a general discussion of reflection positivity in the
context of unitary representations of groups. Although well known in special
examples, we believe some of our material to be new. It starts with a unitary
representation x of a group G in a Hilbert space M, viewing its scalar product
as a version of Symanzik positivity. Reflection positivity is then defined in
terms of a closed subspace M+ and a unitary involution 6 leading to a new
scalar product in M+. In addition we require the existence of an involutive
automorphism -9 of the group which in a specified sense is compatible with 0.
This leads to a representation KQ of a subsemigroup G+ in G. The elements
in G+ fixed under -9 are still represented by unitaries. However, some elements
in G+ are represented as selfadjoint contractions. We interpret them as transfer
matrices. In general they do not commute. In case G is a Lie group, the
noncommutative Hille-Yosida theorem then gives an analytic continuation of KO
to G*, which is a dual group of G and is obtained from the involutive auto-
morphism -9. In Section 3 we apply these concepts to the complementary series
of SL(2n, C). Actually we will obtain reflection positivity also for a larger
range of the parameter describing the representation and for which Symanzik
positivity does not hold.

In Section 4 we show that KQ also defines a local representation in the sense
of [Jl], [J2] (called a virtual representation in [FOS]). The proof is obtained
by establishing a result known as the Reeh-Schlieder theorem in the context of
relativistic quantum field theory [RS] (see also e.g. [SW]). Application of the
main result in [J2] will provide an alternative proof that KO extends to a unitary
representation of G*. Now transfer matrices appear also in another important
context, namely in the theory of completely integrable quantum systems, where
they are called monodromy matrices (see e. g. [F] for an account). They obey
certain relations called Yang-Baxter equations [Y], [B]. In the last years
considerable efforts have been undertaken, in particular by Soviet mathematicians
and physicists (see e.g. [Sem] for references), to arrive at a group theoretical
understanding of the Yang-Baxter equations. The author's interest in this
subject and the starting point for the present investigation arouse from a lucid
talk given by Semanov-Tyan-Shanskii in Kyoto in the fall of 1984, where he
proposed a double Lie algebra structure to describe the so-called classical Yang-
Baxter equations [Sem]. Recall that a Lie algebra defines a symplectic structure
on the dual of the Lie algebra, first discovered by Lie himself. Hence for given
Hamilton function one has two ways to obtain classical equations of motion.
The present author was struck by the close similarity to the quantum case



REFLECTION POSITIVITY 121

discussed above, where one also deals with one ' Hamiltonian', i. e. the infinites-
imal generator of time translations, and two scalar products, namely Symanzik
positivity and reflection positivity.

In the second part of Section 2 we try to point out some structural similar-
ities of our approach with the quantum mechanical Yang-Baxter relations. In
this context we find the following observation worth mentioning. The reason
that reflection positivity holds for the complementary series of SL(2n, C] is due
to a remarkable property of the intertwining operator appearing in this context.
Now as was also first noted by Semenov-Tyan-Shanskii the Yang-Baxter equations
exhibit a structural behaviour intrigueingly similar to ones encountered in the
theory of intertwining operators, an understanding of which was missing (see
the quotation in [KRS]).

It is the hope of the authors that the present investigation will stimulate
further investigations in this direction.
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§ 2. Reflection Positiyity for Group Representations

In this section we give a general discussion of reflection positivity adapted
to the theory of unitary representations of groups.

Definition 2.1. Given a Hilbert space M with scalar product ( , ) , a closed
subspace M+ and a unitary involution 6, the triple (JC, M+, 0) is called reflection
positive, if the quadratic form

(2-1) </, /%=(/, Of)

is positive semidefinite on J{+.

Let (M, M+, 0} be reflection positive and consider the subset 31 o of M+

consisting of those elements / for which </, />0=0. By Schwarz' inequality
for <-, ->0, md is equal to the set of all /'s in M+ with </', fy&=Q for all /'
in M+. On &+/370, <•, •># induces a positive definite scalar product, also denoted
by <•, ->0 . This makes ^C+/^le a pre Hilbert space and we denote by Me its
completion. Let [_']9:M

+-^M0 be the induced map obtained from the canonical
projection ^r+->JT+/^2^ and the canonical injection M+/32d-*J{0. Since
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(2.2) 0^</, &,<(/, f)

for all f^M+, the map []f l is a contraction

(2.3)

Note that those /e^f+ with Of=f are mapped isometrically into ^T^. Now let
in addition ic be a unitary representation of a group G in ^T. Denote by G+

the subsemigroup of G consisting of those g^G for which

(2.4) n(g)M+^3C+.

Furthermore assume there is an involutive automorphism -9 on G compatible
with 0 in the sense that

(2.5)

Finally assume that

(2.6) %-1=(%)-1eEG+ whenever

With these assumptions we have the first result. Its proof is an adaption of
arguments used in [OS].

Theorem 2.2. Let the triple (M, 3C+, 0) be reflection positive and -9 an
involution on G satisfying (2.5) and (2.6). Then the representation TC defines a
representation X0 of the semigroup G+ of G into the contractions of MQ such that

(2.7)

holds for f^M^ and g^G+. Furthermore, for f, f'^&e and

(2.8)

// in addition G is a topological group and x a strongly continuous representation
(such that G+ is closed in G), then KO is strongly continuous G+,

Proof. First we note that the null space 31 e in M^ is left invariant by any
. Indeed by (2.5) for any /, / /<E t#

+ and g^G+ we have

(2.9) <n(g)f, f ' > e = ( n ( g ) f , Of)

Here we have used assumption (2.6), relation (2.4) and the unitarity of n. In
particular if f<^370 the last expression in (2.9) is zero, showing that 7r(g)/e220.
Thus n(g) (g^G+) induces a map of SC^/Jlo into itself . We will show that this
map is a contraction w. r. t. the norm || \\0 on 3(+/320. By definition M+/3ld is
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dense in MQ. This map therefore extends to a contraction of M& into itself
yielding the desired Ke> Relation (2.8) is then a direct consequence of relation
(2.9). To establish the desired contractivity, let /e^+ and g^G+. We have

(2.10) <*(£)/, n(g)f>e=(*(g)f, On(g)f)

Again we have used the unitarity of n, relation (2.5) and Schwarz inequality
for <-, - > 0 . We now iterate estimate (2.10). This leads to

(2.11) <*(g)/, n ( g ) f > e ^ < f , />J-B"B<^(((^-1)-^)8B"1)/, 7T(((^-1)^)27l-1)/>rr'

for arbitrary integers n^l.
Now by (2.2), the second factor on the right hand side of (2.10) is bounded

by ll/H2"n + 1 . Here we may let n tend to infinity and obtain

(2.12) <*(£)/, x(g)f>9^<f, f>e

which is the desired contraction property. The continuity of nd, given the
strong continuity of TT, follows from (2.7) and the contractivity of the map []<?
(see (2.3)). This concludes the proof of the theorem.

Note that if g^G* is such that g~1^G+ then ne(g) is an invertible
contraction with inverse xe(g~1} and hence a unitary operator. Now such g's
form a subgroup K+ of G contained in G+. K+ is closed if G is a topological
group and K is continuous. In particular our construction leads to a unitary
representation of K+.

Next if g^G+ is such that -&g~l=g, then ito(g) is a self adjoint contraction.
If in addition g is in K+, then Ke(g) is a unitary and self ad joint contraction,
hence a selfadjoint involution. Let G+— {g^G \ -9g=g\ be the subgroup of G
on which -5 is the identity. By assumption (2.6) K+ contains the subgroup

(2.13)

From now on, we will assume G to be a Lie group, -9 a C°° automorphism and
TT(-) to be continuous. Then the triple (G, G+, -5) is a symmetric space [H],
[KN]. We may now give a discussion on the Lie algebra level. Let © denote
the Lie algebra of G. We define ®+, the tangent space of G+ at g=e, to be
the set of all tangent vectors at g(Q)=e of C°° maps g: [0, s]-*G+ (s>0 arbitrary).
If g(-) is such a map, then also g i ( - ) with gi(t)=g(tt) U>0). Also if gi(-)
and ^2(-) are such maps then g^gz with gi*gz(t)=gi(t)-gz(t). Hence ©+ is a
convex cone in ®, which is obviously closed and invariant under AdA-+o Note
that exp(ta)eG+ if ae©+. In fact let a be tangent to g(t) at the origin g(Q) = e.
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Then exp(ta)=Iim g(—} H^G+ for all 0
n-*oo \ 71 s

Let now d-9 denote the derived map of -9. d-9 is an involutive Lie algebra
automorphism of ®. The expression

(2.14) fl =

for an element ce® describes the decomposition of © into eigenspaces of d-9

(2.15) ®^©+®®_.

®+ is of course the Lie algebra of G+. Since (G, G+, •$) is a symmetric space,
we have the familiar relations

(2.16)

On the Lie algebra level, the condition (2.6) takes the form

(2.60 -d-9a^®+ whenever ae©+.

Lemma 283o Assume that G+ contains G+ such that ®^ contains ®+. Then
(2.60 holds and ©^ has the the decomposition

(2.17) ®+=:®+®(®+n©-) .

Proof, Since (2.60 is an easy consequence of (2.17), it suffices to prove
this last relation. Now let g(-):[0, s]~>G+ be C°° with tangent vector <2e©+

at the identity. By decreasing s if necessary, we may assume #(•) to be of
the form g(t)=exp a^t) exp az(t\ where a1(t)^®+ c2(0e®- depend on t in a
C°°-way. By the Campell-Hausdorff formula we have

(2.18)

Now -9g(0"1=exp a2(0 exp(— a^O). By assumption exp a1(t)^G+^G+. Hence

expaa(OeG+ for all 0^f<s. Therefore —(a-d-9a^®^} proving (2.17).z

We want to discuss the consequences of the assumption made in Lemma 2.3
for the representation theory.

Define

(2.19) d;r0(fl) = -
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to be the infinitesimal generator of the strongly continuous contraction semigroup
;r0(expta) (ae©+, £^0). The elements d x d ( a ) with ae©+ are antiselfadjoint.
Moreover, this is generally true for any ae©+ with — ae@+. The elements
dKo(a) with ae©+n@- form a cone of nonpositive selfadjoint operators. Two
operators dTi0(a} and dne(a

f) with a, a'e®+n@- on the same orbit under AdG^.
have the same spectrum. Also any a in the maximal linear subspace of @+n@-
is mapped onto zero under dx0. Note that this subspace is invariant under AdG+.

Now consider the real Lie algebra ©*=©+©;©_ contained in the complex-
ification ©c—©©;© (jz=—1). Since © will already be a complex vector space
in the cases we will consider, we use j to describe the additional complexification.
©* is called the dual of © obtained from the symmetric space (G, G+, $). Under
the additional condition that the cone ©+n@- has nonempty interior in ©_, and
hence spans ©_, we may apply the following noncommutative version of the
Hille-Yosida theorem [LM].

Theorem 2.4. Assume G+^G+ and let ©+n@- have nonempty interior in ©_.
Then KQ has an analytic continuation to a unitary representation TT* of the simply
connected Lie group G* whose Lie algebra is @*.

In our applications to the complementary series of SL(2n, C), we will be
able to establish the conditions of Theorem 2.4.

We turn to a brief discussion of possible physical applications. In the
quantum version of the Yang-Baxter equations one encounters noncommuting
monodromy matrices and therefore is interested in their behaviour if multiplied
in different order [F]. In our context, we may even interpret the selfadjoint
contraction semigroups ?r0(expta) (J^O, aG@+n@-) as so-called transfer
matrices. In fact, in the examples we shall encounter, we shall see that they
are positivity preserving in the sense that they leave a certain cone in MQ
invariant. Hence each of these one-parameter semigroups may be used as a
transition function in the construction of a Markov process.

Let T:G-^G denote the map g^-dg'1 and introduce the set G- =
{g I g—^g~1}- The tangent space to G_ at g—e is obviously ©_ and G_ is
just the fixed point set of the antiautomorphism T. Furthermore

(2.20) T(gl.g2)=g2.gl

wherever glf gz^G-. Thus T interchanges the order of multiplication on G_
and is therefore a way of measuring how much gi-gz fails to be an element
in G_.

Next introduce the set ^=G+-G_. Note that G^nG- consists of involutive
elements and is not necessarily a subgroup of G+. Since G is a Lie group, Q
contains a neighborhood of the identity. More generally we have the following
analogue of the polar decomposition theorem
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Lemma 2.5. Every element g^G such that (-Bg'^-g is a square in G-, is
contained in Q. In particular, if any element in G- is a square, Q—G.

Proof. For given g, let h^=(9g~1}- g. We have -9h~1=h) such that
Let g-^G- be such that g-2=h. Set g+^g-g-'1- Then -9g+=-9g-9g--1=

(*9g)-g-=g'(g-I"9g}'g-=g-g--2'g-=g'g-~1:=g+ and 8=g+-g- is the decom-
position.

Now let g=g+-g-. We have

(2.21)

Applying (2.20) and (2.21) we have proved

Theorem 2.6. For all sufficiently small a, b^®*T\®- there is an element
g+(a} b}^G+ such that

[7(2.22) expfl-exp 6 =£+(£, b)-1'expb-expa-g+(a> b}-1,

If every element in G- is a square in G-, such a relation holds for all
a,

We now apply KO to this relation. Then 7r^(exp&-expa) is the adjoint of
?T0(exp a-exp b) and X0(g+(a, b)) is unitary. Recall that by the polar decomposition
theorem any bounded operator A in the Hilbert space with zero kernel and
dense range is related to its adjoint via A*=U~1'A-U~1 for a suitable unitary
U. Hence the upshot of relation (2.22) is that for the choice ^L=;r0(expG-exp&)
the resulting U is in the image of G+ under KQ. Next we note a certain
similarity to the quantum mechanical Yang-Baxter relations, which are typically
of the form (see e. g. [F]).

(2.23) LfL^R'Li-Lt'R-1

for monodromy matrices L^ and L2 and a unitary ^-matrix. The difference to
our situation is that the ^-matrix appears in the form of conjugation. In this
context it would be interesting to see whether our approach is related to the
appearance of anticommutation relations in the discussion of the Yang-Baxter
relations as given in [Ski], [Sk2]. On the other hand there are striking simi-
larities. First we note that in analogy to the ^-matrix our unitary Tc6(g+(a, b}}
acts on a " smaller space " in the following sense. The unitary representation
G+ given by KQ is in general not irreducible such that Me decomposes and only
operators ito(g} (g^G+\G+) may interpolate between different components.
Secondly in relation (2.22) we may look at the behaviour of g+(a, b) as a and b
vary in (different) orbits under AdG+. More specifically choose fl=Adftla0,
b=Adh2b0 with a0, 6o^©+n@- and h1} hz^G+. Note that
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(2.24) spectrum dn0(d)=spectrum dn0(aQ).

Writing g+(a, b) as g+(a0, bQ, hlt /22), by construction we have g+(a0, a0, hlt hj=l
for all /z1eG+. More generally we have the covariance property

(2.25) g+(aQ, b0, hlt fc2) = /ii-£+(0o, b0, c, h^h^-h^1.

Hence we may interpret h1 and hz as abstract spectral parameters. This analogy
may even be pushed further, although at the moment in only a speculative way.
For integrable systems the inverse scattering problem is used to express the
relevant objects in terms of conserved quantities. To achieve this one is led to
consider a Riemann-Hilbert problem for the transfer matrix, viewed as a function
of the spectral parameter (see e. g. [F] and references quoted there). In our
context introduce pe©+ via h=exp p to describe the spectral parameter and set

(2.26) M(a, p)=exp Adexpi0a

=exp p-expa-exp — p

with ae®+n@- such that ne(M(a, p)) is a selfadjoint contraction for all
Next let G~—(G+)"1 with tangent space ®~=— @+. Assume in addition G to be
a complex analytic Lie group such that the interior int®+ of ©+ is an analytic
domain (as will be the case for the examples we will consider). The Riemann-
Hilbert problem may now be formulated as that of finding L+(a, p)^G+ and
L~(a, p}^G~ analytic in p in int®+ and int®~ respectively such that the
boundary values on ©+ii®+n®~ exist and satisfy

(2.27) L+(a, p)=L-(a, p)-M(a, p} ,

Similarly one might look at the equation

(2.28) R+(a, p)=M(a, p } - R ~ ( a , p) ,

with R±(a, p}^G± analytic for p in hit®*. If $ is holomorphic or antiholomorphic,
then

(2.29) R*(a, />)

is a solution to (2.28) if L± is a solution to (2.27) and vice versa. Hence it
suffices to consider equation (2.29). Now any solution to (2.27) is highly non-
unique, for example exp p-L±(a, p) is a solution wherever L±(at p} is a solution.

Also a particular solution to (2.29) is given by L±(a, p}— exp±yexp p. To

make the problem nontrivial, we therefore introduce a normalization condition
by requiring that

(2.30L) L*(Q, p}=e



128 ROBERT SCHRADER

and similarly

(2.30R) R±(Q, p}=e

for all p. If the solution to (2.29), (2.30L) is unique and -9 is holomorphic or
antiholomorphic, it is easy to verify that

(2.31) L-(a, p}=$L+(a, d&p) ,

Similarly the covariance property

(2.32) M(Ad,.a, Ads,p)=g'-M(a,

gives

(2.33)

Provided a solution to (2.27), (2. SOL) exists, then motivated by the discussion in
[GW], we may formulate the following abstract scattering problem. Consider
the limit (if it exists)

(2.34) L+(a)=lim L+(a,
C-*oo

L-(fl)=limL-(a,

In case L±(a)eran(exp), let ^±(a)e©+ be given by

(2.35) L±(a)=exp±jJ±(fl) .

By (2. SOL)

(2.36) ^(0)=0

and

(2.37) ^±(Ad,.a)=Ad^^±(fl) .

The scattering transformation is the map ^"(a)^^+(a) from Im0~ to Im 0+

provided the map a^<j)-(a) is injective. Note that since ^±(fl)e©+ by construc-
tion, the accretive operators — dn: 0(^(0)) are well defined. At the moment we
do not know whether the above approach has a solution in the concrete context
of our examples of SL(2n, C) to be discussed in the next section.

§ 3. The Complementary Series of SL(2n, C}

In this section we will prove reflection positivity for the representations of
SL(2n, C) as given by Stein [St] and which reduce to the complementary series
of Gelfand Neumark for SL(2, C) when n=l.

Actually we shall show that one obtains a Hilbert space M6 and a repre-
sentation KQ of G+ even for a larger range of the parameter describing the



REFLECTION POSITIVITY 129

representation TT than the one which is known to give unitary representations
of SL(2n, C). To deal with these extra cases, we will extend the general
arguments of Section 2. From the start we shall work with arbitrary n although
specialization to n—l would sometimes simplify the calculations.

Let Mn—Mn(C) denote the linear space of all complex nXn matrices
Let dz=H d Re(zli7)d Im(z^) be the canonical Lebesgue

measure on Mn. Let z*=zl be the hermitean adjoint of z and let

(3.1) z=x+iy

Rez=;: = --(2+z*), lmz=y = ^rr(z—z*)

be the resulting expression for z in terms of hermitean x and y. For n=l, the
star operation is simply complex conjugation such that Rez and Imz are real
numbers. We will use the notation z>0 to describe positive definite nXn
matrices z. Let Mn* be the open subspace of Mn consisting of elements z=x+iy
with ±y>Q. Mn

+ and Mn~ are spaces of the first Cartan type [C]. They are
isometric to SU(n, n)/S(UnxUn) and are denoted as type AIII in [H] (see also
the discussion at the end of this section). Some authors (see e. g. [Kl]) refer
to Mn

+ as a Siegel domain of the first genus. Each of the maps z^-* — z, z*-*z*
and z^z'1 maps Mn

+ onto-to-one onto Mn~ in a C°°-way. Note that detz^O
on Mn

+UMn~. For n—l, Mn
+ and Mn~ are simply the upper and lower complex

half plane in C. Next write any element g^SL(2n, C) in the form

where each gik (l^z, k^ri} is a complex nXn matrix. SL(2n, C) acts as a
transformation group on Mn by

(3.3) n(g)z=(gnz—gtd '(—gizZ+guY1

with inverse

(3.4) n(g-^z=(zgu+gnY\zgu+gK).

Here zg12 etc. denotes matrix multiplication in Mn. Note that 7c(g)z is not
defined for those pairs (g, z) for which det(—g^+^n)—0. However, they form
a lower dimensional closed set in SL(2n, C)xMn. In what follows, it is always
understood that this set is excluded. With this convention (g, z)<-»7r(g)z is a
C°° map from SL(2n, C}xMn into Mn. We now use the procedure of Gelfand
and Neumark, by which the representation properties of n follow easily if we

identify an element z^Mn with an element in SL(2, C} of the form ( \

These elements form (modulo a set of measure zero) the coset space of the
subgroup of SL(2n, C} consisting of elements g with £21=0. The action of
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SL(2n, C) on this coset space in terms of these representatives is now given
exactly in terms of (3.4), i. e.

\( 1 0\

/ W"1)* l}'V\g21 g \ 0 **!,

We introduce the symplectic matrix

<s.6) /=(_; 5)
and define the involutive automorphism $ on SL(2n, C) by

(3.7) Qg=Jg*-iJ.

For ?i=l, $ is simply complex conjugation. On the Lie algebra level, the derived
map d-9 of $ takes the form

(3.8) d$a=-Ja*J, a^sl(2n, C) .

The group G+={g<^SL(2n, C) \ <9g=g} is the subgroup of SL(2n, C) consisting
of those elements g^SL(2n} C) leaving the symplectic form / invariant

(3.9) G+={g^SL(2n, C} \ g*Jg=J}.

For n=l this group is just SL(2, R). By making use of (3.5) one easily derives

(3.10) (*(gW*

Also a routine calculation shows that under n, G+ maps Mn
+ one-to-one onto

itself. By (3.10) the same is true when Mn
+ is replaced by Mn~< We now

define G+ to be the subsemigroup of SL(2n, C) consisting of elements mapping
Mn

+ into itself under TT. In particular we have G+gG+. We claim G+ is
closed. In fact if the sequence gn^G+ tends to g, then by continuity g maps
Mn

+ into the closure of Mn
+, Since g has an inverse in SL(2n, C\ x(g)Mn

+ is
an open set and hence contained in Mn

+, since Mn
+ is the interior of its closure.

Now with

(3.ii) r ' °

), such that ^e@+n©-. In fact, we have ?r(exp tT)z=z+itl.
Since /^G+, this also gives

(3.12) r*^/r/-ie@+n®-.
Therefore f/=^+^*e©+n@-B We claim i] is an interior point of ©+n@- in
©_. To see this write the elements ae© in a neighborhood of // as

(313)(6'L6) a
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with ft, 7 hermitean. We have to show that for a, (I, 7 sufficiently small,
g(0=exp ta (^0) is in G"*\ To see this, we consider the flow generated by

g(t) on Mn. Thus it suffices to show that —j- n(g(t}}z\t=Q^Mn
+ for any

Now

(3.14)

such that

(3.15) Im

For (1+7)>0 we may complete the square. With the choice p=2(l+j)-1a we
obtain

(3.16) I m * t e ( 0 ) * l i - o = ( ( l + r ^

Hence all a, j8, 7 with

1+7>0
(3.17)

give

(3.18)
at,

Since the set of such a, £, 7 via (3.13) define an open neighborhood of ij in ©_,
the claim that ij is an interior point of the cone is proved.

An explicit calculation for n=l shows that ©+n©_ is the convex cone in
©_ spanned by the elements

0 i\ / 0 0/ \ / \ / \ , /—
(o 0)' (-,- o> (-,- -,-) and U

Note that the orbits in ©+n©- under AdSL(2jR:> are 2-dimensional. In general
AdG+ does not act transitively on ©+

0 We collect our result in

Lemma 3.L The cone ®+n®- has nonempty interior in ®_.

Next we claim that the dual ©*— ©+0;@- (J2=— 1) is isomorphic to
©+®®+. For n=l this follows by inspection. For the general case consider
the liMinear map /on © given by I(a)=ia. Then d-9l(a)=—I(d-9a) such that /
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maps ©+ into ®_ and vice versa. Since I4=id, these maps are actually onto,
giving an easy proof that dim ©+=dim ®_=l/2 dim ©. Now define two jR-linear
maps S and D from (&+ into (S* by

(3.19)

A routine calculation shows that S and D are Lie algebra homomorphisms with
trivial kernel and that ®*=ImS©ImD as a direct sum of Lie algebras. This
proves

Lemma 3.2, The dual ©* of sl(2n, C) with respect to the involution given
by (3.9) is isomorphic to ©+0©+.

With these preparations we turn to a discussion of the complementary series.
First the Hilbert-space for these representations of SL(2n, C) as used in [GN]
and [St] is obtained from the scalar product for measurable functions on Mn of
the form

(3.20)

with the restriction — 1</1<1 for n>l and 0<^1 for n=l. In the resulting
Hilbert space let M+ denote the closed subspace formed by functions with
support in the closure of Mn

+. Also let 6 be given by

(3.21) (0/)(*)=/(**).

To establish reflection positivity in the form discussed in Section 2, we will
actually discuss a more general set-up. Namely on C7(MTO

+) and for fixed
consider the quadratic form on &+ given as

(3.22)

The reflection positivity for the scalar product (3.20) is now a special case of

Theorem 3.30 The quadratic form (3.22) on C™(Mn~^) is positive semide finite
for all 1, fjt<l.

Proof. We will apply the theory of Laplace transforms on the symmetric
space Kn consisting of all positive definite complex nXn matrices. We recall
there is a measure dk on Kn which is invariant under the map
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(3.23) k*->zkz*(k*=Kn, zeMn, detz^O).

dk is unique up to a constant. With the choice

(3.24) dk=(fet &)-ra II dkit II d Re ktj dlmktj
i i<j

the resulting F function F(s, Kn) on Kn

(3.25) F(s, tfn)=

may be calculated explicitly and equals

(3.26) F(s, Kn)=xn/2(n-vr(s}F(s-l) ••• F(s-n

The proof of this dates back to Siegel ([Si], Hilfssatz 37) and Selberg [Se], (see
e.g. [M]).

From (3.25) one deduces

(3.27) (det y}-s=r(s, Kn)-
l\e~tTace(yk}(det k)sdk

for any positive definite nXn matrix y and s>n—1. By analytic continuation
this gives

n 28") detf J7Ys—r(s K }-1\Pitrace(kz') (c\e>t kYdkyO.^Uy VUtL^ I, /c j J. \,-Jj LYfiJ IK v^U-CL Kj LLK j

for any z^M^ and s>n— 1.
We now represent (det(-i(z-*'*)))*-n and (det/(z*~2 /))AI"n using (3.28).

Inserting this into (3.22) and interchanging the order of integration proves the
claim.

Remark 3.4. Let (v, v/)=^tviv1i
/ denote the canonical scalar product and

dnv the canonical Lebesgue measure on Rn. Using the representation

(3.29)

for zeMn"1", by a similar argument one shows that <-, ->^ is positive semi-
definite whenever both — X+n and — /*+n are nonnegative halfintegers. We do
not know whether Theorem 3.3 continues to hold for arbitrary — l-\-n and
— p-\-n in the interval [0, n— 1).

Next define by

(3.30) ^

a representation of SL(2n, C) on the space of measurable functions / on Mn

The representation properties follow from the relation
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(3.31)

which may easily be read off (3.5). For any g^G+, 7r ; '^(g) leaves
invariant.

The relevance of the scalar product <•, ->^ for this representation is due
to an important intertwining property of det(z— z') (z, z'eMJ. The following
result and its proof are essentially contained in [St]. For the convenience of
the reader, we repeat the arguments leading to

Proposition 3.5. For almost all g^SL(2n, C) and z, z'eMTO

(3.32)

Proof. If we introduce the quantity

/Q OQN 17 / M(3.33) F(g, z, z )

the aim is to show that F(g, z, zr] is independent of g and hence equals 1.
First relation (3.31) directly gives

(3.34) F(gg', z, z')=F(g, z, z')F(g', n(g-^z, *(£' V) .

Now any gs=SL(2, C) may be written as gigz-" gk (k^N(n)=(2ri) !) where each
gi is of the form

•> c,\g2i
(3.35)

I c) /.

By (3.34), to show that F(g, z, z'} does not depend on g, it therefore suffices to
check it on elements of the form (3.35). For g of the form (3.35a) F(g, z, z')=l
trivially holds since n(g~1)z=z+g21. For g of the form (3.35b) we have ^(g'^z
=g22~1zgu such that dQt(ji:(g~1)z—7t:(g~1)zf}=^(detg22)~1det(z—zf)(detg11). Since
det gii=(det gzz)'1 we have F(g, z, z')=l also in that case. Finally if g=J,
then

=(det;

Also det(zg12+g22)=detz, which again gives F(J, z, zf)—l. This concludes the
proof of Proposition 3.5.

Finally we will need the relation

(3.36)
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for the complex Jacobian.
Let now TC^ denote the restriction of the representation TT^ of G+ to

C»(Mn
+\ If we combine (3.22), (3.30), (3.32), and (3.36) we obtain the analog

of (2.8) for the present situation.

Theorem 3.6. The representations ;rJ>/£U, ^<1 or —1+n and —p+n half-
integers) satisfy the relation

(3.37) <*«•'(*)/, /'>$•"=</, jrW*-1)/')* .

Hence the interesting cases arise when we make the additional restriction
X= p. Write <-, •># and zrj for <-, ->0"* and nfc* respectively. Since our range
for the parameter 1 is larger than the one given for the unitary representations
of SL(2n, C), we will also give a direct proof of the contractive property of
7T0 on G+. First let Ml denote the Hilbert space obtained from the semidefinite
quadratic form <•, •># on C~(Mn

+).
By arguments similar to those used in Section 2, TT| extends to a continuous

representation of G+ on JC& and satisfies property (3.37) for /, ff^M\. In
particular, by (3.37) the operators 7rJ(g) are unitary for g in G+. To establish
the contractivity in the general case, we first note that estimate (2.10) continues
to hold in our present case.

Now let g(f)=expta with ae@+n@_. It suffices to show that

(3.38) </, nkg(t))f>l

is bounded in t for t^Q and /eC?(M7l
+), since then we may repeat the arguments

which led to (2.12). Since C™(Mn
+) is dense in this will prove the contractivity

of n$(g(t)). Now (3.38) may be written as

(3.39)

We need the following elementary

Lemma 3.7. Let A and B be hermitean nX?i matrices. If A>0, then

(3.40)

// A>B>Q then

(3.41) det,4>det£.

Proof. If A>0, then

A+C=A1/2(l+A~1/2CA-1/z)A1/2.

Apply this first to C=iB, and (3.40) follows. To get (3.41), write A=-B+(A-B),
and factor B112 out on the left, and the right.
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We apply this lemma as follows. Since 7t(g)z'^Mn
+ we also have

—(n(g)z')*^Mn
+ and therefore

(3.42) I det(z-(;rte)z')*) i ̂ det(Im(z-(;rte)z')*))

^det Im z

and the right hand side is bounded below by some c>0 on the support of /(z).
Inserting this in (3.38) proves the boundedness in J^O. We collect our results in

Theorem 3.8. The representation nj of G^ on 3CJ is continuous and con-
tractive and satisfies

(3.43) <*$(£)/, /'>$=</, *l(#g-l)ff>l

for f, f'^M#. Here /1<1 or —1+n is a nonnegative halfinteger. Each ne(g)
(geG+) leaves the cone, obtained by forming the closure of positive functions in
CS°(Mn

+) invariant. The representation K\ has an analytic continuation to a unitary
representation of the simply connected Lie group G* with Lie algebra ©+0CS+,
denoted by ICQ*.

We conclude this section by giving an alternative description of our con-
struction in terms of functions living on the unit disc D(Mn} in Mn

(3.45)

In fact let / > = — ,== ( ) and define
V 2 \— 21 I/

(3.45)

Then if / lives on Mn
+, <p lives on D(Mn) and under the pull back by n^'

the scalar product </, /'>^ takes the form

(3.46) f S(z)det(l-zz/*)i-Bdet(l-z*zOAI->/(z/)dzrfz/.
Jz,z'&D(Mny

 r

We note that the kernel det(l— zzx*)~m plays an important role in the theory of
automorphic functions (see e.g. [Ka]).

For 1—p. the pullback of KO gives a representation of the subsemigroup of
SL(2n, C), consisting of elements mapping D(Mn] into itself. This subsemigroup
is just the conjugate to G+ under p. The subgroup of SL(2n, C) which maps
D(Mn] one-to-one onto itself is then the conjugate under p to G+. It is given
as SU(n, ri), defined to be the set of elements g<^SL(2n, C) with

(see e.g. [H], Chap. IX, §4, [KN], Chap. IX, §6, Example 6.5, Chap. XI, §10,
Example 10.9). It is known that SU(n, n) is connected but not simply connected.
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In particular our group G+ is connected but not simply connected. Moreover
the representation n$* of G* does not reduce to a representation of G+XG+.

Indeed, Mm)=expG*—^= (/+/•/(/)) (meZ) is in the kernel of the covering

homomorphism and therefore would have to be mapped into the identity operator
on Ml under xe*. Now dx0(J) has discrete spectrum ^2^Z and commutes with
dne(iJ)=dno(I(J)). Also by definition of the analytic continuation ?r$*(exp tjl(j))
=exp id 7rJ(/(/)). But dne(I(J}} has nonpositive spectrum. Therefore h(m) cannot
be mapped into the identity under n$* .

% 4. Construction of the Local Representation

The main result of this section is

Theorem 4.1. For all X<1 and all X such that —A+n is a nonnegative half-
integer, KQ extends to a local representation of SL(2n, C) on Ml in the sense of

CJ1], [J2].

Thus by a theorem in [J2] we obtain another proof of the second part of
Theorem 3.8. This theorem in [J2] relies on the exponentiation theory for Lie
algebras of unbounded operators, see for example [FSSS], [GoJ], [JM], [P], [Si].

We recall the defining properties of a local representation as given in [J2].
We have to find a dense domain 3) in Ml and a neighborhood U of the identity
in SL(2n, C} with the following properties.

( i ) For all g e U, 3) is in the domain ^?(^(g)) of
(i i) If glf g2 and gi-gz are in U and f&3), then

and

(iii) If ae®_ is such that expae£7 then exptae£7 for O^^l and

(4. 1) s-lim ̂ (exp ta)f=f (0, 1) 3 ^->0

for all

(v) For each <p^<D, there is a neighborhood V\ of e in G+ such that
and

(4.2) ^(g)/e^>, g^V9.

Finally
(vi) For ae(S_ and f^g) the function

(4.3)



138 ROBERT SCHRADER

is locally integrable on the subset {g^G+ \ exp
To construct 3), let O be any open, precompact set in Mn

+. Let U0 be the
interior of a compact neighborhood K of the identity such that x(g)OdMn

+ for
any g^K. Let alt ••• , a4nZ-2 be a basis in sl(2n, C] such that alt ••• , ^2^2-1^©+
and a2n2, • • • , a47l2-2^®-. By taking s>0 sufficiently small, we will choose K
to be of the form

{ 47l2-2 4n2-2

exp 2 ^fl, I ^efli 2 ^si-i 1=1

With this choice {ae©_ | exp a^U0} is trivially star shaped and Uo is invariant
under the map g*^>$g~l.

Let CJ°(O) denote the space of C°° functions with compact support in O. We
extend 7$ to £70 on C?(0) by

(4.4) (4(^)/)W-|det(z^12+^22)|-
27l-2;'/(^-1(^) =

Thus relation (3.42) is still valid for all g^U0, f, f'^C~(O}. For any
r>0 let

(4.5) BZQ(r)

We now take ®=CS (£<i(l/2)) and U=Us.l(1/2).

Lemma 4.2. £) fs rfense in Ml for any 2 in the range given in Theorem 4.1.

This result is of a type known as the Reeh-Schlieder theorem in quantum
field theory [RS].

Assuming this lemma to be true, the conditions (i) and (ii) for a local
representation are trivially valid. As for (iii), we now use the relations

lim
U^g->

(4.6) °
lim

U0^g^

valid for any /, /'eC^O).
Relations (4.6) are an easy consequence of Lebesgue dominated convergence

theorem. Relation (4.1) in turn is also an easy consequence of relation (4.6).
Condition (iv) is even satisfied for all ae®. Next, if f^3) then for all g in a
neighborhood of e, depending on the support of /, ^(g)f^S), proving (v). (vi)
again is trivially satisfied.

It remains to prove Lemma 4.2.
Let (p^3)L, the orthogonal complement of S) in M&. We will show that

(4.5) <p, />J=0

for all /eC?(Mn
+). Since C?(Mn

+) is dense in Me by construction of Me, this
implies that p=0 and S) is dense. Now to prove (4.5), fix /eQ°(Mn

+). Take
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+. s>0 depends on the support of / and is chosen so large

that for all g^G+ in a small neighborhood of g(l), Ke(g)f has support in
Mn

+r\{z | z*z<l/4}. This is possible due to the relation

(4.6)

Next choose (see (3.11))

(4.7)

Then

(4.8) W(

Therefore xo(h(i:)g)f has support in 5^(1/2) for r in an open interval containing
1 and all g in a small neighborhood WdG+ of g(l). Therefore

(4.9) <p, 7rf(A(r)£)/>$=0

for r in an open interval containing 1 and all g^W. Now by our discussion
in Section 3, 7t0(h(r}} defines a self ad joint contraction semigroup for r^O. By
the spectral theorem, we obtain an analytic contraction semigroup for complex
r with Rer>0.

For fixed g^W, the left hand side of (4.9) extends to an analytic function
in Rer>0. Since it vanishes for r in a real open interval, it is actually the
zero function in r for all g^W. Hence, if we let r— >0, by continuity we obtain

(4.10)

for
Now for arbitrary g^G+, we may write

(4.10) <p,

We have used relation (3.10). Now we consider G+ as a real analytic Lie
group. Then the right hand side of (4.10) is real analytic in g. In particular
by Heine-Borel it extends to an analytic function in a complex neighborhood V
in SL(2n, C) of the set {g(f)}o*«*i, where

(sf +(1-0)1 0
0

Since this function vanishes on Vr\W, a real open set in V, it must vanish
identically on V. In particular it is zero at g(Q)=e. This proves (4.5), con-
cluding the proof of Lemma 4.2.



140 ROBERT SCHRADER

References

[B] Baxter, R. J., Partition function of the eight vector lattice model, Ann. Phys.,
70 (1982), 193-228.

[C] Cartan, E., Sur les domaines bornes homogenes de Tespace de n variables
complexes, Abh. Math. Sem. Hansische Universitdt, 11 (1936), 116-162.

[F] Faddeev, L., Integrable models in 1 + 1 dimensional quantum field theory, in
Proceedings of the "Ecole d'Ete de Physique Theorique", Les Houches 1982,
North Holland, Amsterdam, 1983.

[FOS] Frohlich, J., Osterwalder, K. and Seiler, E., On virtual representations of sym-
metric spaces and their analytic continuation, Ann. Math., 118 (1983), 461-489.

[FSSS] Flato, M. J. Simon, Snellman, H. and Sternheimer, D., Simple facts about analytic
vectors and integrability, Ann. Sci. E.N.S. (Paris), 5 (1972), 423-434.

[GJ] Glimm, J. and Jaffe, A., Quantum Physics, A Functional Integral Point of View.
New York, Heidelberg, Berlin: Springer Verlag, 1981.

[GOJ] Goodman, F. M. and Jorgensen, P. E. T., Lie algebras of unbounded derivations,
/. Funct. Anal., 52 (1981), 369-384.

[GN] Gelfand, I. M. and Neumark, M. A., Unitdre Darstellungen der klassischen Grup-
pen, Berlin: Akademie Verlag, 1957.

[GW] Goodman, R. and Wallach, N. R., Classical and quantum mechanical systems of
Toda-lattice type, Commun. Math. Phys., 94 (1984), 177-217.

[H] Helgason, S., Differential Geometry and Symmetric Spaces, New York, London:
Academic Press, 1962.

[Jl] Jorgensen, P. E. T., Analytic continuation of local representations of symmetric
spaces, Iowa University preprint, 1985.

[j2] 1 Analytic continuation of local representations of Lie groups, Iowa Uni-
versity preprint, 1985.

[JM] Jorgensen, P. E. T. and Moore, R.T., Operator Commutation Relations, Dordrecht,
Boston, Lancaster: D. Reidel, 1984.

[Ka] Kato, S., A dimension formula for a certain space of automorphic forms of
SU(p,l), Math. Ann., 266 (1984), 457-477.

[Kl] Klingen, H., Diskontinuierliche Gruppen in symmetrischen Ra'umen, Math. Ann.,
129 (1955), 345-369.

[KL1] Klein, A. and Landau, L. J., Construction of a unique self-adjoint generator for
a symmetric local semigroup, /. Funct. Anal., 44 (1981), 121-137.

[KL2] and , From the Euclidean group to the Poincare group via
Osterwalder-Schrader positivity, Commun. Math. Phys., 87 (1983), 469-484.

[KN] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. II,
New York, London, Sydney: Interscience, 1969.

[KRS] Kulish, P.P., Reshetikhin, N. Yu and Sklyanin, E. K., Yang-Baxter equation and
representation theory, Lett. Math. Phys., 5(5) (1981), 393-403.

[LM] Liischer, M. and Mack, G., Global conformal invariance in quantum field theory,
Commun. Math. Phys., 41 (1975), 203-234.

[M] MaaB, H., Siegels Modular Forms and Dirichlet Series, Lecture Notes in
Mathematics 216, Berlin, Heidelberg, New York: Springer Verlag, 1971.

[N] Neumark, M. A., Lineare Darstellungen der Lorentzgruppe, Berlin: VEB
Deutscher Verlage der Wissenschaften, 1983.

[OS] Osterwalder, K. and Schrader, R., Axioms for Euclidean Green's functions,
Commun. Math. Phys., 31 (1973), 83-112, 42 (1975), 281-305.

[P] Poulsen, N. S., On C°°-vectors and interwining bilinear forms for representations
of Lie groups, /. Funct. Anal.. 9 (1972), 87-120.



REFLECTION POSITIVITY 141

[Py] Pyatetskii-Shapiro, 1.1., Automorphic Functions and the Geometry of Classical
Domains. New York, London, Paris : Gordon and Breach, 1969.

[RS] Reeh, H. and Schlieder, S., Bemerkungen zur Unitaraquivalenz von Lorentz-
invarianten Feldern, Nuovo Cimento, 22 (1961), 1051-1068.

[Se] Seller, E., Gauge Theories as a problem of constructive quantum field theory
and statistical mechanics, Lecture Notes in Physics, Berlin, Heidelberg, New
York : Springer, 1981.

[Sel] Selberg, A., Harmonic analysis and discontinuous groups, /. Indian Math. Soc.,
20 (1956), 47-87.

[Sem] Semenov-Tyan-Shansky, M. A., What is a classical J?-matrix ? Fund. Anal. AppL,
17(4) (1984), 259-272.

[Si] Simon, J., On the integrability of representations of finite dimensional real Lie
algebras, Commun. Math. Phys., 28 (1972), 39-46.

[Si] Siegel, C.L., Uber die analytische Theorie der quadratischen Formen, Ann.
Math., 36 (1935), 527-606.

[Ski] Sklyanin, E. K., Some algebraic structures connected with the Yang-Baxter
equation, Fund. Anal. AppL, 16(4) (1982), 263-270.

[Sk2] , Some algebraic structures connected with the Yang-Baxter equation.
Representation of quantum algebras, Fund. Anal. AppL, 17(4) (1984), 273-284.

[St] Stein, E. M., Analysis in matrix space and some new representations of SL(N; C),
Ann. Math., 86 (1967), 461-490.

[SW] Streater, R. and Wightman, A. S., PCT, Spin and Statistics and all that. New
York : Benjamin, 1984.

[Sy] Symanzik, K., Euclidean quantum field theory, in: Local quantum theory, R.
Jost, ed., New York: Academic Press, 1969.

[Y] Yang, C. N., Some results of the many body problem in one dimension with
repulsive delta-function interaction, Phys. Rev, Lett., 19 (1967), 1312-1315.




